|  | /* | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file "COPYING" in the main directory of this archive | 
|  | * for more details. | 
|  | * | 
|  | * Copyright (C) 1994 - 1999, 2000, 01 Ralf Baechle | 
|  | * Copyright (C) 1995, 1996 Paul M. Antoine | 
|  | * Copyright (C) 1998 Ulf Carlsson | 
|  | * Copyright (C) 1999 Silicon Graphics, Inc. | 
|  | * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com | 
|  | * Copyright (C) 2000, 01 MIPS Technologies, Inc. | 
|  | * Copyright (C) 2002, 2003, 2004  Maciej W. Rozycki | 
|  | */ | 
|  | #include <linux/config.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/kallsyms.h> | 
|  |  | 
|  | #include <asm/bootinfo.h> | 
|  | #include <asm/branch.h> | 
|  | #include <asm/break.h> | 
|  | #include <asm/cpu.h> | 
|  | #include <asm/fpu.h> | 
|  | #include <asm/module.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/ptrace.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/tlbdebug.h> | 
|  | #include <asm/traps.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/watch.h> | 
|  | #include <asm/types.h> | 
|  |  | 
|  | extern asmlinkage void handle_tlbm(void); | 
|  | extern asmlinkage void handle_tlbl(void); | 
|  | extern asmlinkage void handle_tlbs(void); | 
|  | extern asmlinkage void handle_adel(void); | 
|  | extern asmlinkage void handle_ades(void); | 
|  | extern asmlinkage void handle_ibe(void); | 
|  | extern asmlinkage void handle_dbe(void); | 
|  | extern asmlinkage void handle_sys(void); | 
|  | extern asmlinkage void handle_bp(void); | 
|  | extern asmlinkage void handle_ri(void); | 
|  | extern asmlinkage void handle_cpu(void); | 
|  | extern asmlinkage void handle_ov(void); | 
|  | extern asmlinkage void handle_tr(void); | 
|  | extern asmlinkage void handle_fpe(void); | 
|  | extern asmlinkage void handle_mdmx(void); | 
|  | extern asmlinkage void handle_watch(void); | 
|  | extern asmlinkage void handle_mcheck(void); | 
|  | extern asmlinkage void handle_reserved(void); | 
|  |  | 
|  | extern int fpu_emulator_cop1Handler(int xcptno, struct pt_regs *xcp, | 
|  | struct mips_fpu_soft_struct *ctx); | 
|  |  | 
|  | void (*board_be_init)(void); | 
|  | int (*board_be_handler)(struct pt_regs *regs, int is_fixup); | 
|  |  | 
|  | /* | 
|  | * These constant is for searching for possible module text segments. | 
|  | * MODULE_RANGE is a guess of how much space is likely to be vmalloced. | 
|  | */ | 
|  | #define MODULE_RANGE (8*1024*1024) | 
|  |  | 
|  | /* | 
|  | * This routine abuses get_user()/put_user() to reference pointers | 
|  | * with at least a bit of error checking ... | 
|  | */ | 
|  | void show_stack(struct task_struct *task, unsigned long *sp) | 
|  | { | 
|  | const int field = 2 * sizeof(unsigned long); | 
|  | long stackdata; | 
|  | int i; | 
|  |  | 
|  | if (!sp) { | 
|  | if (task && task != current) | 
|  | sp = (unsigned long *) task->thread.reg29; | 
|  | else | 
|  | sp = (unsigned long *) &sp; | 
|  | } | 
|  |  | 
|  | printk("Stack :"); | 
|  | i = 0; | 
|  | while ((unsigned long) sp & (PAGE_SIZE - 1)) { | 
|  | if (i && ((i % (64 / field)) == 0)) | 
|  | printk("\n       "); | 
|  | if (i > 39) { | 
|  | printk(" ..."); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (__get_user(stackdata, sp++)) { | 
|  | printk(" (Bad stack address)"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | printk(" %0*lx", field, stackdata); | 
|  | i++; | 
|  | } | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | void show_trace(struct task_struct *task, unsigned long *stack) | 
|  | { | 
|  | const int field = 2 * sizeof(unsigned long); | 
|  | unsigned long addr; | 
|  |  | 
|  | if (!stack) { | 
|  | if (task && task != current) | 
|  | stack = (unsigned long *) task->thread.reg29; | 
|  | else | 
|  | stack = (unsigned long *) &stack; | 
|  | } | 
|  |  | 
|  | printk("Call Trace:"); | 
|  | #ifdef CONFIG_KALLSYMS | 
|  | printk("\n"); | 
|  | #endif | 
|  | while (!kstack_end(stack)) { | 
|  | addr = *stack++; | 
|  | if (__kernel_text_address(addr)) { | 
|  | printk(" [<%0*lx>] ", field, addr); | 
|  | print_symbol("%s\n", addr); | 
|  | } | 
|  | } | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The architecture-independent dump_stack generator | 
|  | */ | 
|  | void dump_stack(void) | 
|  | { | 
|  | unsigned long stack; | 
|  |  | 
|  | show_trace(current, &stack); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dump_stack); | 
|  |  | 
|  | void show_code(unsigned int *pc) | 
|  | { | 
|  | long i; | 
|  |  | 
|  | printk("\nCode:"); | 
|  |  | 
|  | for(i = -3 ; i < 6 ; i++) { | 
|  | unsigned int insn; | 
|  | if (__get_user(insn, pc + i)) { | 
|  | printk(" (Bad address in epc)\n"); | 
|  | break; | 
|  | } | 
|  | printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>')); | 
|  | } | 
|  | } | 
|  |  | 
|  | void show_regs(struct pt_regs *regs) | 
|  | { | 
|  | const int field = 2 * sizeof(unsigned long); | 
|  | unsigned int cause = regs->cp0_cause; | 
|  | int i; | 
|  |  | 
|  | printk("Cpu %d\n", smp_processor_id()); | 
|  |  | 
|  | /* | 
|  | * Saved main processor registers | 
|  | */ | 
|  | for (i = 0; i < 32; ) { | 
|  | if ((i % 4) == 0) | 
|  | printk("$%2d   :", i); | 
|  | if (i == 0) | 
|  | printk(" %0*lx", field, 0UL); | 
|  | else if (i == 26 || i == 27) | 
|  | printk(" %*s", field, ""); | 
|  | else | 
|  | printk(" %0*lx", field, regs->regs[i]); | 
|  |  | 
|  | i++; | 
|  | if ((i % 4) == 0) | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | printk("Hi    : %0*lx\n", field, regs->hi); | 
|  | printk("Lo    : %0*lx\n", field, regs->lo); | 
|  |  | 
|  | /* | 
|  | * Saved cp0 registers | 
|  | */ | 
|  | printk("epc   : %0*lx ", field, regs->cp0_epc); | 
|  | print_symbol("%s ", regs->cp0_epc); | 
|  | printk("    %s\n", print_tainted()); | 
|  | printk("ra    : %0*lx ", field, regs->regs[31]); | 
|  | print_symbol("%s\n", regs->regs[31]); | 
|  |  | 
|  | printk("Status: %08x    ", (uint32_t) regs->cp0_status); | 
|  |  | 
|  | if (regs->cp0_status & ST0_KX) | 
|  | printk("KX "); | 
|  | if (regs->cp0_status & ST0_SX) | 
|  | printk("SX "); | 
|  | if (regs->cp0_status & ST0_UX) | 
|  | printk("UX "); | 
|  | switch (regs->cp0_status & ST0_KSU) { | 
|  | case KSU_USER: | 
|  | printk("USER "); | 
|  | break; | 
|  | case KSU_SUPERVISOR: | 
|  | printk("SUPERVISOR "); | 
|  | break; | 
|  | case KSU_KERNEL: | 
|  | printk("KERNEL "); | 
|  | break; | 
|  | default: | 
|  | printk("BAD_MODE "); | 
|  | break; | 
|  | } | 
|  | if (regs->cp0_status & ST0_ERL) | 
|  | printk("ERL "); | 
|  | if (regs->cp0_status & ST0_EXL) | 
|  | printk("EXL "); | 
|  | if (regs->cp0_status & ST0_IE) | 
|  | printk("IE "); | 
|  | printk("\n"); | 
|  |  | 
|  | printk("Cause : %08x\n", cause); | 
|  |  | 
|  | cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; | 
|  | if (1 <= cause && cause <= 5) | 
|  | printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); | 
|  |  | 
|  | printk("PrId  : %08x\n", read_c0_prid()); | 
|  | } | 
|  |  | 
|  | void show_registers(struct pt_regs *regs) | 
|  | { | 
|  | show_regs(regs); | 
|  | print_modules(); | 
|  | printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n", | 
|  | current->comm, current->pid, current_thread_info(), current); | 
|  | show_stack(current, (long *) regs->regs[29]); | 
|  | show_trace(current, (long *) regs->regs[29]); | 
|  | show_code((unsigned int *) regs->cp0_epc); | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | static DEFINE_SPINLOCK(die_lock); | 
|  |  | 
|  | NORET_TYPE void __die(const char * str, struct pt_regs * regs, | 
|  | const char * file, const char * func, unsigned long line) | 
|  | { | 
|  | static int die_counter; | 
|  |  | 
|  | console_verbose(); | 
|  | spin_lock_irq(&die_lock); | 
|  | printk("%s", str); | 
|  | if (file && func) | 
|  | printk(" in %s:%s, line %ld", file, func, line); | 
|  | printk("[#%d]:\n", ++die_counter); | 
|  | show_registers(regs); | 
|  | spin_unlock_irq(&die_lock); | 
|  | do_exit(SIGSEGV); | 
|  | } | 
|  |  | 
|  | void __die_if_kernel(const char * str, struct pt_regs * regs, | 
|  | const char * file, const char * func, unsigned long line) | 
|  | { | 
|  | if (!user_mode(regs)) | 
|  | __die(str, regs, file, func, line); | 
|  | } | 
|  |  | 
|  | extern const struct exception_table_entry __start___dbe_table[]; | 
|  | extern const struct exception_table_entry __stop___dbe_table[]; | 
|  |  | 
|  | void __declare_dbe_table(void) | 
|  | { | 
|  | __asm__ __volatile__( | 
|  | ".section\t__dbe_table,\"a\"\n\t" | 
|  | ".previous" | 
|  | ); | 
|  | } | 
|  |  | 
|  | /* Given an address, look for it in the exception tables. */ | 
|  | static const struct exception_table_entry *search_dbe_tables(unsigned long addr) | 
|  | { | 
|  | const struct exception_table_entry *e; | 
|  |  | 
|  | e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); | 
|  | if (!e) | 
|  | e = search_module_dbetables(addr); | 
|  | return e; | 
|  | } | 
|  |  | 
|  | asmlinkage void do_be(struct pt_regs *regs) | 
|  | { | 
|  | const int field = 2 * sizeof(unsigned long); | 
|  | const struct exception_table_entry *fixup = NULL; | 
|  | int data = regs->cp0_cause & 4; | 
|  | int action = MIPS_BE_FATAL; | 
|  |  | 
|  | /* XXX For now.  Fixme, this searches the wrong table ...  */ | 
|  | if (data && !user_mode(regs)) | 
|  | fixup = search_dbe_tables(exception_epc(regs)); | 
|  |  | 
|  | if (fixup) | 
|  | action = MIPS_BE_FIXUP; | 
|  |  | 
|  | if (board_be_handler) | 
|  | action = board_be_handler(regs, fixup != 0); | 
|  |  | 
|  | switch (action) { | 
|  | case MIPS_BE_DISCARD: | 
|  | return; | 
|  | case MIPS_BE_FIXUP: | 
|  | if (fixup) { | 
|  | regs->cp0_epc = fixup->nextinsn; | 
|  | return; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Assume it would be too dangerous to continue ... | 
|  | */ | 
|  | printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", | 
|  | data ? "Data" : "Instruction", | 
|  | field, regs->cp0_epc, field, regs->regs[31]); | 
|  | die_if_kernel("Oops", regs); | 
|  | force_sig(SIGBUS, current); | 
|  | } | 
|  |  | 
|  | static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode) | 
|  | { | 
|  | unsigned int *epc; | 
|  |  | 
|  | epc = (unsigned int *) regs->cp0_epc + | 
|  | ((regs->cp0_cause & CAUSEF_BD) != 0); | 
|  | if (!get_user(*opcode, epc)) | 
|  | return 0; | 
|  |  | 
|  | force_sig(SIGSEGV, current); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ll/sc emulation | 
|  | */ | 
|  |  | 
|  | #define OPCODE 0xfc000000 | 
|  | #define BASE   0x03e00000 | 
|  | #define RT     0x001f0000 | 
|  | #define OFFSET 0x0000ffff | 
|  | #define LL     0xc0000000 | 
|  | #define SC     0xe0000000 | 
|  |  | 
|  | /* | 
|  | * The ll_bit is cleared by r*_switch.S | 
|  | */ | 
|  |  | 
|  | unsigned long ll_bit; | 
|  |  | 
|  | static struct task_struct *ll_task = NULL; | 
|  |  | 
|  | static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode) | 
|  | { | 
|  | unsigned long value, *vaddr; | 
|  | long offset; | 
|  | int signal = 0; | 
|  |  | 
|  | /* | 
|  | * analyse the ll instruction that just caused a ri exception | 
|  | * and put the referenced address to addr. | 
|  | */ | 
|  |  | 
|  | /* sign extend offset */ | 
|  | offset = opcode & OFFSET; | 
|  | offset <<= 16; | 
|  | offset >>= 16; | 
|  |  | 
|  | vaddr = (unsigned long *)((long)(regs->regs[(opcode & BASE) >> 21]) + offset); | 
|  |  | 
|  | if ((unsigned long)vaddr & 3) { | 
|  | signal = SIGBUS; | 
|  | goto sig; | 
|  | } | 
|  | if (get_user(value, vaddr)) { | 
|  | signal = SIGSEGV; | 
|  | goto sig; | 
|  | } | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | if (ll_task == NULL || ll_task == current) { | 
|  | ll_bit = 1; | 
|  | } else { | 
|  | ll_bit = 0; | 
|  | } | 
|  | ll_task = current; | 
|  |  | 
|  | preempt_enable(); | 
|  |  | 
|  | regs->regs[(opcode & RT) >> 16] = value; | 
|  |  | 
|  | compute_return_epc(regs); | 
|  | return; | 
|  |  | 
|  | sig: | 
|  | force_sig(signal, current); | 
|  | } | 
|  |  | 
|  | static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode) | 
|  | { | 
|  | unsigned long *vaddr, reg; | 
|  | long offset; | 
|  | int signal = 0; | 
|  |  | 
|  | /* | 
|  | * analyse the sc instruction that just caused a ri exception | 
|  | * and put the referenced address to addr. | 
|  | */ | 
|  |  | 
|  | /* sign extend offset */ | 
|  | offset = opcode & OFFSET; | 
|  | offset <<= 16; | 
|  | offset >>= 16; | 
|  |  | 
|  | vaddr = (unsigned long *)((long)(regs->regs[(opcode & BASE) >> 21]) + offset); | 
|  | reg = (opcode & RT) >> 16; | 
|  |  | 
|  | if ((unsigned long)vaddr & 3) { | 
|  | signal = SIGBUS; | 
|  | goto sig; | 
|  | } | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | if (ll_bit == 0 || ll_task != current) { | 
|  | regs->regs[reg] = 0; | 
|  | preempt_enable(); | 
|  | compute_return_epc(regs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | preempt_enable(); | 
|  |  | 
|  | if (put_user(regs->regs[reg], vaddr)) { | 
|  | signal = SIGSEGV; | 
|  | goto sig; | 
|  | } | 
|  |  | 
|  | regs->regs[reg] = 1; | 
|  |  | 
|  | compute_return_epc(regs); | 
|  | return; | 
|  |  | 
|  | sig: | 
|  | force_sig(signal, current); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both | 
|  | * opcodes are supposed to result in coprocessor unusable exceptions if | 
|  | * executed on ll/sc-less processors.  That's the theory.  In practice a | 
|  | * few processors such as NEC's VR4100 throw reserved instruction exceptions | 
|  | * instead, so we're doing the emulation thing in both exception handlers. | 
|  | */ | 
|  | static inline int simulate_llsc(struct pt_regs *regs) | 
|  | { | 
|  | unsigned int opcode; | 
|  |  | 
|  | if (unlikely(get_insn_opcode(regs, &opcode))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if ((opcode & OPCODE) == LL) { | 
|  | simulate_ll(regs, opcode); | 
|  | return 0; | 
|  | } | 
|  | if ((opcode & OPCODE) == SC) { | 
|  | simulate_sc(regs, opcode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -EFAULT;			/* Strange things going on ... */ | 
|  | } | 
|  |  | 
|  | asmlinkage void do_ov(struct pt_regs *regs) | 
|  | { | 
|  | siginfo_t info; | 
|  |  | 
|  | info.si_code = FPE_INTOVF; | 
|  | info.si_signo = SIGFPE; | 
|  | info.si_errno = 0; | 
|  | info.si_addr = (void *)regs->cp0_epc; | 
|  | force_sig_info(SIGFPE, &info, current); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * XXX Delayed fp exceptions when doing a lazy ctx switch XXX | 
|  | */ | 
|  | asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) | 
|  | { | 
|  | if (fcr31 & FPU_CSR_UNI_X) { | 
|  | int sig; | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | /* | 
|  | * Unimplemented operation exception.  If we've got the full | 
|  | * software emulator on-board, let's use it... | 
|  | * | 
|  | * Force FPU to dump state into task/thread context.  We're | 
|  | * moving a lot of data here for what is probably a single | 
|  | * instruction, but the alternative is to pre-decode the FP | 
|  | * register operands before invoking the emulator, which seems | 
|  | * a bit extreme for what should be an infrequent event. | 
|  | */ | 
|  | save_fp(current); | 
|  |  | 
|  | /* Run the emulator */ | 
|  | sig = fpu_emulator_cop1Handler (0, regs, | 
|  | ¤t->thread.fpu.soft); | 
|  |  | 
|  | /* | 
|  | * We can't allow the emulated instruction to leave any of | 
|  | * the cause bit set in $fcr31. | 
|  | */ | 
|  | current->thread.fpu.soft.fcr31 &= ~FPU_CSR_ALL_X; | 
|  |  | 
|  | /* Restore the hardware register state */ | 
|  | restore_fp(current); | 
|  |  | 
|  | preempt_enable(); | 
|  |  | 
|  | /* If something went wrong, signal */ | 
|  | if (sig) | 
|  | force_sig(sig, current); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | force_sig(SIGFPE, current); | 
|  | } | 
|  |  | 
|  | asmlinkage void do_bp(struct pt_regs *regs) | 
|  | { | 
|  | unsigned int opcode, bcode; | 
|  | siginfo_t info; | 
|  |  | 
|  | die_if_kernel("Break instruction in kernel code", regs); | 
|  |  | 
|  | if (get_insn_opcode(regs, &opcode)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * There is the ancient bug in the MIPS assemblers that the break | 
|  | * code starts left to bit 16 instead to bit 6 in the opcode. | 
|  | * Gas is bug-compatible, but not always, grrr... | 
|  | * We handle both cases with a simple heuristics.  --macro | 
|  | */ | 
|  | bcode = ((opcode >> 6) & ((1 << 20) - 1)); | 
|  | if (bcode < (1 << 10)) | 
|  | bcode <<= 10; | 
|  |  | 
|  | /* | 
|  | * (A short test says that IRIX 5.3 sends SIGTRAP for all break | 
|  | * insns, even for break codes that indicate arithmetic failures. | 
|  | * Weird ...) | 
|  | * But should we continue the brokenness???  --macro | 
|  | */ | 
|  | switch (bcode) { | 
|  | case BRK_OVERFLOW << 10: | 
|  | case BRK_DIVZERO << 10: | 
|  | if (bcode == (BRK_DIVZERO << 10)) | 
|  | info.si_code = FPE_INTDIV; | 
|  | else | 
|  | info.si_code = FPE_INTOVF; | 
|  | info.si_signo = SIGFPE; | 
|  | info.si_errno = 0; | 
|  | info.si_addr = (void *)regs->cp0_epc; | 
|  | force_sig_info(SIGFPE, &info, current); | 
|  | break; | 
|  | default: | 
|  | force_sig(SIGTRAP, current); | 
|  | } | 
|  | } | 
|  |  | 
|  | asmlinkage void do_tr(struct pt_regs *regs) | 
|  | { | 
|  | unsigned int opcode, tcode = 0; | 
|  | siginfo_t info; | 
|  |  | 
|  | die_if_kernel("Trap instruction in kernel code", regs); | 
|  |  | 
|  | if (get_insn_opcode(regs, &opcode)) | 
|  | return; | 
|  |  | 
|  | /* Immediate versions don't provide a code.  */ | 
|  | if (!(opcode & OPCODE)) | 
|  | tcode = ((opcode >> 6) & ((1 << 10) - 1)); | 
|  |  | 
|  | /* | 
|  | * (A short test says that IRIX 5.3 sends SIGTRAP for all trap | 
|  | * insns, even for trap codes that indicate arithmetic failures. | 
|  | * Weird ...) | 
|  | * But should we continue the brokenness???  --macro | 
|  | */ | 
|  | switch (tcode) { | 
|  | case BRK_OVERFLOW: | 
|  | case BRK_DIVZERO: | 
|  | if (tcode == BRK_DIVZERO) | 
|  | info.si_code = FPE_INTDIV; | 
|  | else | 
|  | info.si_code = FPE_INTOVF; | 
|  | info.si_signo = SIGFPE; | 
|  | info.si_errno = 0; | 
|  | info.si_addr = (void *)regs->cp0_epc; | 
|  | force_sig_info(SIGFPE, &info, current); | 
|  | break; | 
|  | default: | 
|  | force_sig(SIGTRAP, current); | 
|  | } | 
|  | } | 
|  |  | 
|  | asmlinkage void do_ri(struct pt_regs *regs) | 
|  | { | 
|  | die_if_kernel("Reserved instruction in kernel code", regs); | 
|  |  | 
|  | if (!cpu_has_llsc) | 
|  | if (!simulate_llsc(regs)) | 
|  | return; | 
|  |  | 
|  | force_sig(SIGILL, current); | 
|  | } | 
|  |  | 
|  | asmlinkage void do_cpu(struct pt_regs *regs) | 
|  | { | 
|  | unsigned int cpid; | 
|  |  | 
|  | die_if_kernel("do_cpu invoked from kernel context!", regs); | 
|  |  | 
|  | cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; | 
|  |  | 
|  | switch (cpid) { | 
|  | case 0: | 
|  | if (cpu_has_llsc) | 
|  | break; | 
|  |  | 
|  | if (!simulate_llsc(regs)) | 
|  | return; | 
|  | break; | 
|  |  | 
|  | case 1: | 
|  | preempt_disable(); | 
|  |  | 
|  | own_fpu(); | 
|  | if (used_math()) {	/* Using the FPU again.  */ | 
|  | restore_fp(current); | 
|  | } else {			/* First time FPU user.  */ | 
|  | init_fpu(); | 
|  | set_used_math(); | 
|  | } | 
|  |  | 
|  | if (!cpu_has_fpu) { | 
|  | int sig = fpu_emulator_cop1Handler(0, regs, | 
|  | ¤t->thread.fpu.soft); | 
|  | if (sig) | 
|  | force_sig(sig, current); | 
|  | } | 
|  |  | 
|  | preempt_enable(); | 
|  |  | 
|  | return; | 
|  |  | 
|  | case 2: | 
|  | case 3: | 
|  | break; | 
|  | } | 
|  |  | 
|  | force_sig(SIGILL, current); | 
|  | } | 
|  |  | 
|  | asmlinkage void do_mdmx(struct pt_regs *regs) | 
|  | { | 
|  | force_sig(SIGILL, current); | 
|  | } | 
|  |  | 
|  | asmlinkage void do_watch(struct pt_regs *regs) | 
|  | { | 
|  | /* | 
|  | * We use the watch exception where available to detect stack | 
|  | * overflows. | 
|  | */ | 
|  | dump_tlb_all(); | 
|  | show_regs(regs); | 
|  | panic("Caught WATCH exception - probably caused by stack overflow."); | 
|  | } | 
|  |  | 
|  | asmlinkage void do_mcheck(struct pt_regs *regs) | 
|  | { | 
|  | show_regs(regs); | 
|  | dump_tlb_all(); | 
|  | /* | 
|  | * Some chips may have other causes of machine check (e.g. SB1 | 
|  | * graduation timer) | 
|  | */ | 
|  | panic("Caught Machine Check exception - %scaused by multiple " | 
|  | "matching entries in the TLB.", | 
|  | (regs->cp0_status & ST0_TS) ? "" : "not "); | 
|  | } | 
|  |  | 
|  | asmlinkage void do_reserved(struct pt_regs *regs) | 
|  | { | 
|  | /* | 
|  | * Game over - no way to handle this if it ever occurs.  Most probably | 
|  | * caused by a new unknown cpu type or after another deadly | 
|  | * hard/software error. | 
|  | */ | 
|  | show_regs(regs); | 
|  | panic("Caught reserved exception %ld - should not happen.", | 
|  | (regs->cp0_cause & 0x7f) >> 2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some MIPS CPUs can enable/disable for cache parity detection, but do | 
|  | * it different ways. | 
|  | */ | 
|  | static inline void parity_protection_init(void) | 
|  | { | 
|  | switch (current_cpu_data.cputype) { | 
|  | case CPU_24K: | 
|  | /* 24K cache parity not currently implemented in FPGA */ | 
|  | printk(KERN_INFO "Disable cache parity protection for " | 
|  | "MIPS 24K CPU.\n"); | 
|  | write_c0_ecc(read_c0_ecc() & ~0x80000000); | 
|  | break; | 
|  | case CPU_5KC: | 
|  | /* Set the PE bit (bit 31) in the c0_ecc register. */ | 
|  | printk(KERN_INFO "Enable cache parity protection for " | 
|  | "MIPS 5KC/24K CPUs.\n"); | 
|  | write_c0_ecc(read_c0_ecc() | 0x80000000); | 
|  | break; | 
|  | case CPU_20KC: | 
|  | case CPU_25KF: | 
|  | /* Clear the DE bit (bit 16) in the c0_status register. */ | 
|  | printk(KERN_INFO "Enable cache parity protection for " | 
|  | "MIPS 20KC/25KF CPUs.\n"); | 
|  | clear_c0_status(ST0_DE); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | asmlinkage void cache_parity_error(void) | 
|  | { | 
|  | const int field = 2 * sizeof(unsigned long); | 
|  | unsigned int reg_val; | 
|  |  | 
|  | /* For the moment, report the problem and hang. */ | 
|  | printk("Cache error exception:\n"); | 
|  | printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); | 
|  | reg_val = read_c0_cacheerr(); | 
|  | printk("c0_cacheerr == %08x\n", reg_val); | 
|  |  | 
|  | printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", | 
|  | reg_val & (1<<30) ? "secondary" : "primary", | 
|  | reg_val & (1<<31) ? "data" : "insn"); | 
|  | printk("Error bits: %s%s%s%s%s%s%s\n", | 
|  | reg_val & (1<<29) ? "ED " : "", | 
|  | reg_val & (1<<28) ? "ET " : "", | 
|  | reg_val & (1<<26) ? "EE " : "", | 
|  | reg_val & (1<<25) ? "EB " : "", | 
|  | reg_val & (1<<24) ? "EI " : "", | 
|  | reg_val & (1<<23) ? "E1 " : "", | 
|  | reg_val & (1<<22) ? "E0 " : ""); | 
|  | printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); | 
|  |  | 
|  | #if defined(CONFIG_CPU_MIPS32) || defined (CONFIG_CPU_MIPS64) | 
|  | if (reg_val & (1<<22)) | 
|  | printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); | 
|  |  | 
|  | if (reg_val & (1<<23)) | 
|  | printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); | 
|  | #endif | 
|  |  | 
|  | panic("Can't handle the cache error!"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SDBBP EJTAG debug exception handler. | 
|  | * We skip the instruction and return to the next instruction. | 
|  | */ | 
|  | void ejtag_exception_handler(struct pt_regs *regs) | 
|  | { | 
|  | const int field = 2 * sizeof(unsigned long); | 
|  | unsigned long depc, old_epc; | 
|  | unsigned int debug; | 
|  |  | 
|  | printk("SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); | 
|  | depc = read_c0_depc(); | 
|  | debug = read_c0_debug(); | 
|  | printk("c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); | 
|  | if (debug & 0x80000000) { | 
|  | /* | 
|  | * In branch delay slot. | 
|  | * We cheat a little bit here and use EPC to calculate the | 
|  | * debug return address (DEPC). EPC is restored after the | 
|  | * calculation. | 
|  | */ | 
|  | old_epc = regs->cp0_epc; | 
|  | regs->cp0_epc = depc; | 
|  | __compute_return_epc(regs); | 
|  | depc = regs->cp0_epc; | 
|  | regs->cp0_epc = old_epc; | 
|  | } else | 
|  | depc += 4; | 
|  | write_c0_depc(depc); | 
|  |  | 
|  | #if 0 | 
|  | printk("\n\n----- Enable EJTAG single stepping ----\n\n"); | 
|  | write_c0_debug(debug | 0x100); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NMI exception handler. | 
|  | */ | 
|  | void nmi_exception_handler(struct pt_regs *regs) | 
|  | { | 
|  | printk("NMI taken!!!!\n"); | 
|  | die("NMI", regs); | 
|  | while(1) ; | 
|  | } | 
|  |  | 
|  | unsigned long exception_handlers[32]; | 
|  |  | 
|  | /* | 
|  | * As a side effect of the way this is implemented we're limited | 
|  | * to interrupt handlers in the address range from | 
|  | * KSEG0 <= x < KSEG0 + 256mb on the Nevada.  Oh well ... | 
|  | */ | 
|  | void *set_except_vector(int n, void *addr) | 
|  | { | 
|  | unsigned long handler = (unsigned long) addr; | 
|  | unsigned long old_handler = exception_handlers[n]; | 
|  |  | 
|  | exception_handlers[n] = handler; | 
|  | if (n == 0 && cpu_has_divec) { | 
|  | *(volatile u32 *)(CAC_BASE + 0x200) = 0x08000000 | | 
|  | (0x03ffffff & (handler >> 2)); | 
|  | flush_icache_range(CAC_BASE + 0x200, CAC_BASE + 0x204); | 
|  | } | 
|  | return (void *)old_handler; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is used by native signal handling | 
|  | */ | 
|  | asmlinkage int (*save_fp_context)(struct sigcontext *sc); | 
|  | asmlinkage int (*restore_fp_context)(struct sigcontext *sc); | 
|  |  | 
|  | extern asmlinkage int _save_fp_context(struct sigcontext *sc); | 
|  | extern asmlinkage int _restore_fp_context(struct sigcontext *sc); | 
|  |  | 
|  | extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc); | 
|  | extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc); | 
|  |  | 
|  | static inline void signal_init(void) | 
|  | { | 
|  | if (cpu_has_fpu) { | 
|  | save_fp_context = _save_fp_context; | 
|  | restore_fp_context = _restore_fp_context; | 
|  | } else { | 
|  | save_fp_context = fpu_emulator_save_context; | 
|  | restore_fp_context = fpu_emulator_restore_context; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MIPS32_COMPAT | 
|  |  | 
|  | /* | 
|  | * This is used by 32-bit signal stuff on the 64-bit kernel | 
|  | */ | 
|  | asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc); | 
|  | asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc); | 
|  |  | 
|  | extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc); | 
|  | extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc); | 
|  |  | 
|  | extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc); | 
|  | extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc); | 
|  |  | 
|  | static inline void signal32_init(void) | 
|  | { | 
|  | if (cpu_has_fpu) { | 
|  | save_fp_context32 = _save_fp_context32; | 
|  | restore_fp_context32 = _restore_fp_context32; | 
|  | } else { | 
|  | save_fp_context32 = fpu_emulator_save_context32; | 
|  | restore_fp_context32 = fpu_emulator_restore_context32; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | extern void cpu_cache_init(void); | 
|  | extern void tlb_init(void); | 
|  |  | 
|  | void __init per_cpu_trap_init(void) | 
|  | { | 
|  | unsigned int cpu = smp_processor_id(); | 
|  | unsigned int status_set = ST0_CU0; | 
|  |  | 
|  | /* | 
|  | * Disable coprocessors and select 32-bit or 64-bit addressing | 
|  | * and the 16/32 or 32/32 FPR register model.  Reset the BEV | 
|  | * flag that some firmware may have left set and the TS bit (for | 
|  | * IP27).  Set XX for ISA IV code to work. | 
|  | */ | 
|  | #ifdef CONFIG_MIPS64 | 
|  | status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; | 
|  | #endif | 
|  | if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV) | 
|  | status_set |= ST0_XX; | 
|  | change_c0_status(ST0_CU|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, | 
|  | status_set); | 
|  |  | 
|  | /* | 
|  | * Some MIPS CPUs have a dedicated interrupt vector which reduces the | 
|  | * interrupt processing overhead.  Use it where available. | 
|  | */ | 
|  | if (cpu_has_divec) | 
|  | set_c0_cause(CAUSEF_IV); | 
|  |  | 
|  | cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; | 
|  | TLBMISS_HANDLER_SETUP(); | 
|  |  | 
|  | atomic_inc(&init_mm.mm_count); | 
|  | current->active_mm = &init_mm; | 
|  | BUG_ON(current->mm); | 
|  | enter_lazy_tlb(&init_mm, current); | 
|  |  | 
|  | cpu_cache_init(); | 
|  | tlb_init(); | 
|  | } | 
|  |  | 
|  | void __init trap_init(void) | 
|  | { | 
|  | extern char except_vec3_generic, except_vec3_r4000; | 
|  | extern char except_vec_ejtag_debug; | 
|  | extern char except_vec4; | 
|  | unsigned long i; | 
|  |  | 
|  | per_cpu_trap_init(); | 
|  |  | 
|  | /* | 
|  | * Copy the generic exception handlers to their final destination. | 
|  | * This will be overriden later as suitable for a particular | 
|  | * configuration. | 
|  | */ | 
|  | memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80); | 
|  |  | 
|  | /* | 
|  | * Setup default vectors | 
|  | */ | 
|  | for (i = 0; i <= 31; i++) | 
|  | set_except_vector(i, handle_reserved); | 
|  |  | 
|  | /* | 
|  | * Copy the EJTAG debug exception vector handler code to it's final | 
|  | * destination. | 
|  | */ | 
|  | if (cpu_has_ejtag) | 
|  | memcpy((void *)(CAC_BASE + 0x300), &except_vec_ejtag_debug, 0x80); | 
|  |  | 
|  | /* | 
|  | * Only some CPUs have the watch exceptions. | 
|  | */ | 
|  | if (cpu_has_watch) | 
|  | set_except_vector(23, handle_watch); | 
|  |  | 
|  | /* | 
|  | * Some MIPS CPUs have a dedicated interrupt vector which reduces the | 
|  | * interrupt processing overhead.  Use it where available. | 
|  | */ | 
|  | if (cpu_has_divec) | 
|  | memcpy((void *)(CAC_BASE + 0x200), &except_vec4, 0x8); | 
|  |  | 
|  | /* | 
|  | * Some CPUs can enable/disable for cache parity detection, but does | 
|  | * it different ways. | 
|  | */ | 
|  | parity_protection_init(); | 
|  |  | 
|  | /* | 
|  | * The Data Bus Errors / Instruction Bus Errors are signaled | 
|  | * by external hardware.  Therefore these two exceptions | 
|  | * may have board specific handlers. | 
|  | */ | 
|  | if (board_be_init) | 
|  | board_be_init(); | 
|  |  | 
|  | set_except_vector(1, handle_tlbm); | 
|  | set_except_vector(2, handle_tlbl); | 
|  | set_except_vector(3, handle_tlbs); | 
|  |  | 
|  | set_except_vector(4, handle_adel); | 
|  | set_except_vector(5, handle_ades); | 
|  |  | 
|  | set_except_vector(6, handle_ibe); | 
|  | set_except_vector(7, handle_dbe); | 
|  |  | 
|  | set_except_vector(8, handle_sys); | 
|  | set_except_vector(9, handle_bp); | 
|  | set_except_vector(10, handle_ri); | 
|  | set_except_vector(11, handle_cpu); | 
|  | set_except_vector(12, handle_ov); | 
|  | set_except_vector(13, handle_tr); | 
|  | set_except_vector(22, handle_mdmx); | 
|  |  | 
|  | if (cpu_has_fpu && !cpu_has_nofpuex) | 
|  | set_except_vector(15, handle_fpe); | 
|  |  | 
|  | if (cpu_has_mcheck) | 
|  | set_except_vector(24, handle_mcheck); | 
|  |  | 
|  | if (cpu_has_vce) | 
|  | /* Special exception: R4[04]00 uses also the divec space. */ | 
|  | memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100); | 
|  | else if (cpu_has_4kex) | 
|  | memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80); | 
|  | else | 
|  | memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80); | 
|  |  | 
|  | if (current_cpu_data.cputype == CPU_R6000 || | 
|  | current_cpu_data.cputype == CPU_R6000A) { | 
|  | /* | 
|  | * The R6000 is the only R-series CPU that features a machine | 
|  | * check exception (similar to the R4000 cache error) and | 
|  | * unaligned ldc1/sdc1 exception.  The handlers have not been | 
|  | * written yet.  Well, anyway there is no R6000 machine on the | 
|  | * current list of targets for Linux/MIPS. | 
|  | * (Duh, crap, there is someone with a triple R6k machine) | 
|  | */ | 
|  | //set_except_vector(14, handle_mc); | 
|  | //set_except_vector(15, handle_ndc); | 
|  | } | 
|  |  | 
|  | signal_init(); | 
|  | #ifdef CONFIG_MIPS32_COMPAT | 
|  | signal32_init(); | 
|  | #endif | 
|  |  | 
|  | flush_icache_range(CAC_BASE, CAC_BASE + 0x400); | 
|  | } |