| /* | 
 |  * Linux/PA-RISC Project (http://www.parisc-linux.org/) | 
 |  * | 
 |  * Floating-point emulation code | 
 |  *  Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org> | 
 |  * | 
 |  *    This program is free software; you can redistribute it and/or modify | 
 |  *    it under the terms of the GNU General Public License as published by | 
 |  *    the Free Software Foundation; either version 2, or (at your option) | 
 |  *    any later version. | 
 |  * | 
 |  *    This program is distributed in the hope that it will be useful, | 
 |  *    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  *    GNU General Public License for more details. | 
 |  * | 
 |  *    You should have received a copy of the GNU General Public License | 
 |  *    along with this program; if not, write to the Free Software | 
 |  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
 |  */ | 
 | /* | 
 |  * BEGIN_DESC | 
 |  * | 
 |  *  File: | 
 |  *	@(#)	pa/spmath/sfrem.c		$Revision: 1.1 $ | 
 |  * | 
 |  *  Purpose: | 
 |  *	Single Precision Floating-point Remainder | 
 |  * | 
 |  *  External Interfaces: | 
 |  *	sgl_frem(srcptr1,srcptr2,dstptr,status) | 
 |  * | 
 |  *  Internal Interfaces: | 
 |  * | 
 |  *  Theory: | 
 |  *	<<please update with a overview of the operation of this file>> | 
 |  * | 
 |  * END_DESC | 
 | */ | 
 |  | 
 |  | 
 |  | 
 | #include "float.h" | 
 | #include "sgl_float.h" | 
 |  | 
 | /* | 
 |  *  Single Precision Floating-point Remainder | 
 |  */ | 
 |  | 
 | int | 
 | sgl_frem (sgl_floating_point * srcptr1, sgl_floating_point * srcptr2, | 
 | 	  sgl_floating_point * dstptr, unsigned int *status) | 
 | { | 
 | 	register unsigned int opnd1, opnd2, result; | 
 | 	register int opnd1_exponent, opnd2_exponent, dest_exponent, stepcount; | 
 | 	register boolean roundup = FALSE; | 
 |  | 
 | 	opnd1 = *srcptr1; | 
 | 	opnd2 = *srcptr2; | 
 | 	/* | 
 | 	 * check first operand for NaN's or infinity | 
 | 	 */ | 
 | 	if ((opnd1_exponent = Sgl_exponent(opnd1)) == SGL_INFINITY_EXPONENT) { | 
 | 		if (Sgl_iszero_mantissa(opnd1)) { | 
 | 			if (Sgl_isnotnan(opnd2)) { | 
 | 				/* invalid since first operand is infinity */ | 
 | 				if (Is_invalidtrap_enabled())  | 
 |                                 	return(INVALIDEXCEPTION); | 
 |                                 Set_invalidflag(); | 
 |                                 Sgl_makequietnan(result); | 
 | 				*dstptr = result; | 
 | 				return(NOEXCEPTION); | 
 | 			} | 
 | 		} | 
 | 		else { | 
 |                 	/* | 
 |                  	 * is NaN; signaling or quiet? | 
 |                  	 */ | 
 |                 	if (Sgl_isone_signaling(opnd1)) { | 
 |                         	/* trap if INVALIDTRAP enabled */ | 
 |                         	if (Is_invalidtrap_enabled())  | 
 |                             		return(INVALIDEXCEPTION); | 
 |                         	/* make NaN quiet */ | 
 |                         	Set_invalidflag(); | 
 |                         	Sgl_set_quiet(opnd1); | 
 |                 	} | 
 | 			/*  | 
 | 			 * is second operand a signaling NaN?  | 
 | 			 */ | 
 | 			else if (Sgl_is_signalingnan(opnd2)) { | 
 |                         	/* trap if INVALIDTRAP enabled */ | 
 |                         	if (Is_invalidtrap_enabled())  | 
 |                             		return(INVALIDEXCEPTION); | 
 |                         	/* make NaN quiet */ | 
 |                         	Set_invalidflag(); | 
 |                         	Sgl_set_quiet(opnd2); | 
 |                 		*dstptr = opnd2; | 
 |                 		return(NOEXCEPTION); | 
 | 			} | 
 |                 	/* | 
 |                  	 * return quiet NaN | 
 |                  	 */ | 
 |                 	*dstptr = opnd1; | 
 |                 	return(NOEXCEPTION); | 
 | 		} | 
 | 	}  | 
 | 	/* | 
 | 	 * check second operand for NaN's or infinity | 
 | 	 */ | 
 | 	if ((opnd2_exponent = Sgl_exponent(opnd2)) == SGL_INFINITY_EXPONENT) { | 
 | 		if (Sgl_iszero_mantissa(opnd2)) { | 
 | 			/* | 
 | 			 * return first operand | 
 | 			 */ | 
 |                 	*dstptr = opnd1; | 
 | 			return(NOEXCEPTION); | 
 | 		} | 
 |                 /* | 
 |                  * is NaN; signaling or quiet? | 
 |                  */ | 
 |                 if (Sgl_isone_signaling(opnd2)) { | 
 |                         /* trap if INVALIDTRAP enabled */ | 
 |                         if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION); | 
 |                         /* make NaN quiet */ | 
 |                         Set_invalidflag(); | 
 |                         Sgl_set_quiet(opnd2); | 
 |                 } | 
 |                 /* | 
 |                  * return quiet NaN | 
 |                  */ | 
 |                 *dstptr = opnd2; | 
 |                 return(NOEXCEPTION); | 
 | 	} | 
 | 	/* | 
 | 	 * check second operand for zero | 
 | 	 */ | 
 | 	if (Sgl_iszero_exponentmantissa(opnd2)) { | 
 | 		/* invalid since second operand is zero */ | 
 | 		if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION); | 
 |                 Set_invalidflag(); | 
 |                 Sgl_makequietnan(result); | 
 | 		*dstptr = result; | 
 | 		return(NOEXCEPTION); | 
 | 	} | 
 |  | 
 | 	/*  | 
 | 	 * get sign of result | 
 | 	 */ | 
 | 	result = opnd1;   | 
 |  | 
 | 	/*  | 
 | 	 * check for denormalized operands | 
 | 	 */ | 
 | 	if (opnd1_exponent == 0) { | 
 | 		/* check for zero */ | 
 | 		if (Sgl_iszero_mantissa(opnd1)) { | 
 | 			*dstptr = opnd1; | 
 | 			return(NOEXCEPTION); | 
 | 		} | 
 | 		/* normalize, then continue */ | 
 | 		opnd1_exponent = 1; | 
 | 		Sgl_normalize(opnd1,opnd1_exponent); | 
 | 	} | 
 | 	else { | 
 | 		Sgl_clear_signexponent_set_hidden(opnd1); | 
 | 	} | 
 | 	if (opnd2_exponent == 0) { | 
 | 		/* normalize, then continue */ | 
 | 		opnd2_exponent = 1; | 
 | 		Sgl_normalize(opnd2,opnd2_exponent); | 
 | 	} | 
 | 	else { | 
 | 		Sgl_clear_signexponent_set_hidden(opnd2); | 
 | 	} | 
 |  | 
 | 	/* find result exponent and divide step loop count */ | 
 | 	dest_exponent = opnd2_exponent - 1; | 
 | 	stepcount = opnd1_exponent - opnd2_exponent; | 
 |  | 
 | 	/* | 
 | 	 * check for opnd1/opnd2 < 1 | 
 | 	 */ | 
 | 	if (stepcount < 0) { | 
 | 		/* | 
 | 		 * check for opnd1/opnd2 > 1/2 | 
 | 		 * | 
 | 		 * In this case n will round to 1, so  | 
 | 		 *    r = opnd1 - opnd2  | 
 | 		 */ | 
 | 		if (stepcount == -1 && Sgl_isgreaterthan(opnd1,opnd2)) { | 
 | 			Sgl_all(result) = ~Sgl_all(result);   /* set sign */ | 
 | 			/* align opnd2 with opnd1 */ | 
 | 			Sgl_leftshiftby1(opnd2);  | 
 | 			Sgl_subtract(opnd2,opnd1,opnd2); | 
 | 			/* now normalize */ | 
 |                 	while (Sgl_iszero_hidden(opnd2)) { | 
 |                         	Sgl_leftshiftby1(opnd2); | 
 |                         	dest_exponent--; | 
 | 			} | 
 | 			Sgl_set_exponentmantissa(result,opnd2); | 
 | 			goto testforunderflow; | 
 | 		} | 
 | 		/* | 
 | 		 * opnd1/opnd2 <= 1/2 | 
 | 		 * | 
 | 		 * In this case n will round to zero, so  | 
 | 		 *    r = opnd1 | 
 | 		 */ | 
 | 		Sgl_set_exponentmantissa(result,opnd1); | 
 | 		dest_exponent = opnd1_exponent; | 
 | 		goto testforunderflow; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Generate result | 
 | 	 * | 
 | 	 * Do iterative subtract until remainder is less than operand 2. | 
 | 	 */ | 
 | 	while (stepcount-- > 0 && Sgl_all(opnd1)) { | 
 | 		if (Sgl_isnotlessthan(opnd1,opnd2)) | 
 | 			Sgl_subtract(opnd1,opnd2,opnd1); | 
 | 		Sgl_leftshiftby1(opnd1); | 
 | 	} | 
 | 	/* | 
 | 	 * Do last subtract, then determine which way to round if remainder  | 
 | 	 * is exactly 1/2 of opnd2  | 
 | 	 */ | 
 | 	if (Sgl_isnotlessthan(opnd1,opnd2)) { | 
 | 		Sgl_subtract(opnd1,opnd2,opnd1); | 
 | 		roundup = TRUE; | 
 | 	} | 
 | 	if (stepcount > 0 || Sgl_iszero(opnd1)) { | 
 | 		/* division is exact, remainder is zero */ | 
 | 		Sgl_setzero_exponentmantissa(result); | 
 | 		*dstptr = result; | 
 | 		return(NOEXCEPTION); | 
 | 	} | 
 |  | 
 | 	/*  | 
 | 	 * Check for cases where opnd1/opnd2 < n  | 
 | 	 * | 
 | 	 * In this case the result's sign will be opposite that of | 
 | 	 * opnd1.  The mantissa also needs some correction. | 
 | 	 */ | 
 | 	Sgl_leftshiftby1(opnd1); | 
 | 	if (Sgl_isgreaterthan(opnd1,opnd2)) { | 
 | 		Sgl_invert_sign(result); | 
 | 		Sgl_subtract((opnd2<<1),opnd1,opnd1); | 
 | 	} | 
 | 	/* check for remainder being exactly 1/2 of opnd2 */ | 
 | 	else if (Sgl_isequal(opnd1,opnd2) && roundup) {  | 
 | 		Sgl_invert_sign(result); | 
 | 	} | 
 |  | 
 | 	/* normalize result's mantissa */ | 
 |         while (Sgl_iszero_hidden(opnd1)) { | 
 |                 dest_exponent--; | 
 |                 Sgl_leftshiftby1(opnd1); | 
 |         } | 
 | 	Sgl_set_exponentmantissa(result,opnd1); | 
 |  | 
 |         /*  | 
 |          * Test for underflow | 
 |          */ | 
 |     testforunderflow: | 
 | 	if (dest_exponent <= 0) { | 
 |                 /* trap if UNDERFLOWTRAP enabled */ | 
 |                 if (Is_underflowtrap_enabled()) { | 
 |                         /* | 
 |                          * Adjust bias of result | 
 |                          */ | 
 |                         Sgl_setwrapped_exponent(result,dest_exponent,unfl); | 
 | 			*dstptr = result; | 
 | 			/* frem is always exact */ | 
 | 			return(UNDERFLOWEXCEPTION); | 
 |                 } | 
 |                 /* | 
 |                  * denormalize result or set to signed zero | 
 |                  */ | 
 |                 if (dest_exponent >= (1 - SGL_P)) { | 
 | 			Sgl_rightshift_exponentmantissa(result,1-dest_exponent); | 
 |                 } | 
 |                 else { | 
 | 			Sgl_setzero_exponentmantissa(result); | 
 | 		} | 
 | 	} | 
 | 	else Sgl_set_exponent(result,dest_exponent); | 
 | 	*dstptr = result; | 
 | 	return(NOEXCEPTION); | 
 | } |