| /* | 
 |  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | 
 |  * | 
 |  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | 
 |  * | 
 |  *  Interactivity improvements by Mike Galbraith | 
 |  *  (C) 2007 Mike Galbraith <efault@gmx.de> | 
 |  * | 
 |  *  Various enhancements by Dmitry Adamushko. | 
 |  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | 
 |  * | 
 |  *  Group scheduling enhancements by Srivatsa Vaddagiri | 
 |  *  Copyright IBM Corporation, 2007 | 
 |  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | 
 |  * | 
 |  *  Scaled math optimizations by Thomas Gleixner | 
 |  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | 
 |  * | 
 |  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra | 
 |  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | 
 |  */ | 
 |  | 
 | #include <linux/latencytop.h> | 
 | #include <linux/sched.h> | 
 |  | 
 | /* | 
 |  * Targeted preemption latency for CPU-bound tasks: | 
 |  * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds) | 
 |  * | 
 |  * NOTE: this latency value is not the same as the concept of | 
 |  * 'timeslice length' - timeslices in CFS are of variable length | 
 |  * and have no persistent notion like in traditional, time-slice | 
 |  * based scheduling concepts. | 
 |  * | 
 |  * (to see the precise effective timeslice length of your workload, | 
 |  *  run vmstat and monitor the context-switches (cs) field) | 
 |  */ | 
 | unsigned int sysctl_sched_latency = 6000000ULL; | 
 | unsigned int normalized_sysctl_sched_latency = 6000000ULL; | 
 |  | 
 | /* | 
 |  * The initial- and re-scaling of tunables is configurable | 
 |  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) | 
 |  * | 
 |  * Options are: | 
 |  * SCHED_TUNABLESCALING_NONE - unscaled, always *1 | 
 |  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) | 
 |  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus | 
 |  */ | 
 | enum sched_tunable_scaling sysctl_sched_tunable_scaling | 
 | 	= SCHED_TUNABLESCALING_LOG; | 
 |  | 
 | /* | 
 |  * Minimal preemption granularity for CPU-bound tasks: | 
 |  * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds) | 
 |  */ | 
 | unsigned int sysctl_sched_min_granularity = 2000000ULL; | 
 | unsigned int normalized_sysctl_sched_min_granularity = 2000000ULL; | 
 |  | 
 | /* | 
 |  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity | 
 |  */ | 
 | static unsigned int sched_nr_latency = 3; | 
 |  | 
 | /* | 
 |  * After fork, child runs first. If set to 0 (default) then | 
 |  * parent will (try to) run first. | 
 |  */ | 
 | unsigned int sysctl_sched_child_runs_first __read_mostly; | 
 |  | 
 | /* | 
 |  * sys_sched_yield() compat mode | 
 |  * | 
 |  * This option switches the agressive yield implementation of the | 
 |  * old scheduler back on. | 
 |  */ | 
 | unsigned int __read_mostly sysctl_sched_compat_yield; | 
 |  | 
 | /* | 
 |  * SCHED_OTHER wake-up granularity. | 
 |  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) | 
 |  * | 
 |  * This option delays the preemption effects of decoupled workloads | 
 |  * and reduces their over-scheduling. Synchronous workloads will still | 
 |  * have immediate wakeup/sleep latencies. | 
 |  */ | 
 | unsigned int sysctl_sched_wakeup_granularity = 1000000UL; | 
 | unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; | 
 |  | 
 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; | 
 |  | 
 | static const struct sched_class fair_sched_class; | 
 |  | 
 | /************************************************************** | 
 |  * CFS operations on generic schedulable entities: | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 |  | 
 | /* cpu runqueue to which this cfs_rq is attached */ | 
 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return cfs_rq->rq; | 
 | } | 
 |  | 
 | /* An entity is a task if it doesn't "own" a runqueue */ | 
 | #define entity_is_task(se)	(!se->my_q) | 
 |  | 
 | static inline struct task_struct *task_of(struct sched_entity *se) | 
 | { | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | 	WARN_ON_ONCE(!entity_is_task(se)); | 
 | #endif | 
 | 	return container_of(se, struct task_struct, se); | 
 | } | 
 |  | 
 | /* Walk up scheduling entities hierarchy */ | 
 | #define for_each_sched_entity(se) \ | 
 | 		for (; se; se = se->parent) | 
 |  | 
 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | 
 | { | 
 | 	return p->se.cfs_rq; | 
 | } | 
 |  | 
 | /* runqueue on which this entity is (to be) queued */ | 
 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | 
 | { | 
 | 	return se->cfs_rq; | 
 | } | 
 |  | 
 | /* runqueue "owned" by this group */ | 
 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | 
 | { | 
 | 	return grp->my_q; | 
 | } | 
 |  | 
 | /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on | 
 |  * another cpu ('this_cpu') | 
 |  */ | 
 | static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) | 
 | { | 
 | 	return cfs_rq->tg->cfs_rq[this_cpu]; | 
 | } | 
 |  | 
 | /* Iterate thr' all leaf cfs_rq's on a runqueue */ | 
 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | 
 | 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) | 
 |  | 
 | /* Do the two (enqueued) entities belong to the same group ? */ | 
 | static inline int | 
 | is_same_group(struct sched_entity *se, struct sched_entity *pse) | 
 | { | 
 | 	if (se->cfs_rq == pse->cfs_rq) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | 
 | { | 
 | 	return se->parent; | 
 | } | 
 |  | 
 | /* return depth at which a sched entity is present in the hierarchy */ | 
 | static inline int depth_se(struct sched_entity *se) | 
 | { | 
 | 	int depth = 0; | 
 |  | 
 | 	for_each_sched_entity(se) | 
 | 		depth++; | 
 |  | 
 | 	return depth; | 
 | } | 
 |  | 
 | static void | 
 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | 
 | { | 
 | 	int se_depth, pse_depth; | 
 |  | 
 | 	/* | 
 | 	 * preemption test can be made between sibling entities who are in the | 
 | 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of | 
 | 	 * both tasks until we find their ancestors who are siblings of common | 
 | 	 * parent. | 
 | 	 */ | 
 |  | 
 | 	/* First walk up until both entities are at same depth */ | 
 | 	se_depth = depth_se(*se); | 
 | 	pse_depth = depth_se(*pse); | 
 |  | 
 | 	while (se_depth > pse_depth) { | 
 | 		se_depth--; | 
 | 		*se = parent_entity(*se); | 
 | 	} | 
 |  | 
 | 	while (pse_depth > se_depth) { | 
 | 		pse_depth--; | 
 | 		*pse = parent_entity(*pse); | 
 | 	} | 
 |  | 
 | 	while (!is_same_group(*se, *pse)) { | 
 | 		*se = parent_entity(*se); | 
 | 		*pse = parent_entity(*pse); | 
 | 	} | 
 | } | 
 |  | 
 | #else	/* !CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 | static inline struct task_struct *task_of(struct sched_entity *se) | 
 | { | 
 | 	return container_of(se, struct task_struct, se); | 
 | } | 
 |  | 
 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return container_of(cfs_rq, struct rq, cfs); | 
 | } | 
 |  | 
 | #define entity_is_task(se)	1 | 
 |  | 
 | #define for_each_sched_entity(se) \ | 
 | 		for (; se; se = NULL) | 
 |  | 
 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | 
 | { | 
 | 	return &task_rq(p)->cfs; | 
 | } | 
 |  | 
 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | 
 | { | 
 | 	struct task_struct *p = task_of(se); | 
 | 	struct rq *rq = task_rq(p); | 
 |  | 
 | 	return &rq->cfs; | 
 | } | 
 |  | 
 | /* runqueue "owned" by this group */ | 
 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) | 
 | { | 
 | 	return &cpu_rq(this_cpu)->cfs; | 
 | } | 
 |  | 
 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | 
 | 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) | 
 |  | 
 | static inline int | 
 | is_same_group(struct sched_entity *se, struct sched_entity *pse) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline void | 
 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | 
 | { | 
 | } | 
 |  | 
 | #endif	/* CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 |  | 
 | /************************************************************** | 
 |  * Scheduling class tree data structure manipulation methods: | 
 |  */ | 
 |  | 
 | static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime) | 
 | { | 
 | 	s64 delta = (s64)(vruntime - min_vruntime); | 
 | 	if (delta > 0) | 
 | 		min_vruntime = vruntime; | 
 |  | 
 | 	return min_vruntime; | 
 | } | 
 |  | 
 | static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) | 
 | { | 
 | 	s64 delta = (s64)(vruntime - min_vruntime); | 
 | 	if (delta < 0) | 
 | 		min_vruntime = vruntime; | 
 |  | 
 | 	return min_vruntime; | 
 | } | 
 |  | 
 | static inline int entity_before(struct sched_entity *a, | 
 | 				struct sched_entity *b) | 
 | { | 
 | 	return (s64)(a->vruntime - b->vruntime) < 0; | 
 | } | 
 |  | 
 | static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	return se->vruntime - cfs_rq->min_vruntime; | 
 | } | 
 |  | 
 | static void update_min_vruntime(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	u64 vruntime = cfs_rq->min_vruntime; | 
 |  | 
 | 	if (cfs_rq->curr) | 
 | 		vruntime = cfs_rq->curr->vruntime; | 
 |  | 
 | 	if (cfs_rq->rb_leftmost) { | 
 | 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, | 
 | 						   struct sched_entity, | 
 | 						   run_node); | 
 |  | 
 | 		if (!cfs_rq->curr) | 
 | 			vruntime = se->vruntime; | 
 | 		else | 
 | 			vruntime = min_vruntime(vruntime, se->vruntime); | 
 | 	} | 
 |  | 
 | 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); | 
 | } | 
 |  | 
 | /* | 
 |  * Enqueue an entity into the rb-tree: | 
 |  */ | 
 | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct sched_entity *entry; | 
 | 	s64 key = entity_key(cfs_rq, se); | 
 | 	int leftmost = 1; | 
 |  | 
 | 	/* | 
 | 	 * Find the right place in the rbtree: | 
 | 	 */ | 
 | 	while (*link) { | 
 | 		parent = *link; | 
 | 		entry = rb_entry(parent, struct sched_entity, run_node); | 
 | 		/* | 
 | 		 * We dont care about collisions. Nodes with | 
 | 		 * the same key stay together. | 
 | 		 */ | 
 | 		if (key < entity_key(cfs_rq, entry)) { | 
 | 			link = &parent->rb_left; | 
 | 		} else { | 
 | 			link = &parent->rb_right; | 
 | 			leftmost = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Maintain a cache of leftmost tree entries (it is frequently | 
 | 	 * used): | 
 | 	 */ | 
 | 	if (leftmost) | 
 | 		cfs_rq->rb_leftmost = &se->run_node; | 
 |  | 
 | 	rb_link_node(&se->run_node, parent, link); | 
 | 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); | 
 | } | 
 |  | 
 | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	if (cfs_rq->rb_leftmost == &se->run_node) { | 
 | 		struct rb_node *next_node; | 
 |  | 
 | 		next_node = rb_next(&se->run_node); | 
 | 		cfs_rq->rb_leftmost = next_node; | 
 | 	} | 
 |  | 
 | 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline); | 
 | } | 
 |  | 
 | static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct rb_node *left = cfs_rq->rb_leftmost; | 
 |  | 
 | 	if (!left) | 
 | 		return NULL; | 
 |  | 
 | 	return rb_entry(left, struct sched_entity, run_node); | 
 | } | 
 |  | 
 | static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); | 
 |  | 
 | 	if (!last) | 
 | 		return NULL; | 
 |  | 
 | 	return rb_entry(last, struct sched_entity, run_node); | 
 | } | 
 |  | 
 | /************************************************************** | 
 |  * Scheduling class statistics methods: | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | int sched_proc_update_handler(struct ctl_table *table, int write, | 
 | 		void __user *buffer, size_t *lenp, | 
 | 		loff_t *ppos) | 
 | { | 
 | 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | 
 | 	int factor = get_update_sysctl_factor(); | 
 |  | 
 | 	if (ret || !write) | 
 | 		return ret; | 
 |  | 
 | 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, | 
 | 					sysctl_sched_min_granularity); | 
 |  | 
 | #define WRT_SYSCTL(name) \ | 
 | 	(normalized_sysctl_##name = sysctl_##name / (factor)) | 
 | 	WRT_SYSCTL(sched_min_granularity); | 
 | 	WRT_SYSCTL(sched_latency); | 
 | 	WRT_SYSCTL(sched_wakeup_granularity); | 
 | 	WRT_SYSCTL(sched_shares_ratelimit); | 
 | #undef WRT_SYSCTL | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * delta /= w | 
 |  */ | 
 | static inline unsigned long | 
 | calc_delta_fair(unsigned long delta, struct sched_entity *se) | 
 | { | 
 | 	if (unlikely(se->load.weight != NICE_0_LOAD)) | 
 | 		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); | 
 |  | 
 | 	return delta; | 
 | } | 
 |  | 
 | /* | 
 |  * The idea is to set a period in which each task runs once. | 
 |  * | 
 |  * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch | 
 |  * this period because otherwise the slices get too small. | 
 |  * | 
 |  * p = (nr <= nl) ? l : l*nr/nl | 
 |  */ | 
 | static u64 __sched_period(unsigned long nr_running) | 
 | { | 
 | 	u64 period = sysctl_sched_latency; | 
 | 	unsigned long nr_latency = sched_nr_latency; | 
 |  | 
 | 	if (unlikely(nr_running > nr_latency)) { | 
 | 		period = sysctl_sched_min_granularity; | 
 | 		period *= nr_running; | 
 | 	} | 
 |  | 
 | 	return period; | 
 | } | 
 |  | 
 | /* | 
 |  * We calculate the wall-time slice from the period by taking a part | 
 |  * proportional to the weight. | 
 |  * | 
 |  * s = p*P[w/rw] | 
 |  */ | 
 | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		struct load_weight *load; | 
 | 		struct load_weight lw; | 
 |  | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		load = &cfs_rq->load; | 
 |  | 
 | 		if (unlikely(!se->on_rq)) { | 
 | 			lw = cfs_rq->load; | 
 |  | 
 | 			update_load_add(&lw, se->load.weight); | 
 | 			load = &lw; | 
 | 		} | 
 | 		slice = calc_delta_mine(slice, se->load.weight, load); | 
 | 	} | 
 | 	return slice; | 
 | } | 
 |  | 
 | /* | 
 |  * We calculate the vruntime slice of a to be inserted task | 
 |  * | 
 |  * vs = s/w | 
 |  */ | 
 | static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	return calc_delta_fair(sched_slice(cfs_rq, se), se); | 
 | } | 
 |  | 
 | /* | 
 |  * Update the current task's runtime statistics. Skip current tasks that | 
 |  * are not in our scheduling class. | 
 |  */ | 
 | static inline void | 
 | __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, | 
 | 	      unsigned long delta_exec) | 
 | { | 
 | 	unsigned long delta_exec_weighted; | 
 |  | 
 | 	schedstat_set(curr->statistics.exec_max, | 
 | 		      max((u64)delta_exec, curr->statistics.exec_max)); | 
 |  | 
 | 	curr->sum_exec_runtime += delta_exec; | 
 | 	schedstat_add(cfs_rq, exec_clock, delta_exec); | 
 | 	delta_exec_weighted = calc_delta_fair(delta_exec, curr); | 
 |  | 
 | 	curr->vruntime += delta_exec_weighted; | 
 | 	update_min_vruntime(cfs_rq); | 
 | } | 
 |  | 
 | static void update_curr(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct sched_entity *curr = cfs_rq->curr; | 
 | 	u64 now = rq_of(cfs_rq)->clock; | 
 | 	unsigned long delta_exec; | 
 |  | 
 | 	if (unlikely(!curr)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Get the amount of time the current task was running | 
 | 	 * since the last time we changed load (this cannot | 
 | 	 * overflow on 32 bits): | 
 | 	 */ | 
 | 	delta_exec = (unsigned long)(now - curr->exec_start); | 
 | 	if (!delta_exec) | 
 | 		return; | 
 |  | 
 | 	__update_curr(cfs_rq, curr, delta_exec); | 
 | 	curr->exec_start = now; | 
 |  | 
 | 	if (entity_is_task(curr)) { | 
 | 		struct task_struct *curtask = task_of(curr); | 
 |  | 
 | 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); | 
 | 		cpuacct_charge(curtask, delta_exec); | 
 | 		account_group_exec_runtime(curtask, delta_exec); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void | 
 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock); | 
 | } | 
 |  | 
 | /* | 
 |  * Task is being enqueued - update stats: | 
 |  */ | 
 | static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	/* | 
 | 	 * Are we enqueueing a waiting task? (for current tasks | 
 | 	 * a dequeue/enqueue event is a NOP) | 
 | 	 */ | 
 | 	if (se != cfs_rq->curr) | 
 | 		update_stats_wait_start(cfs_rq, se); | 
 | } | 
 |  | 
 | static void | 
 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, | 
 | 			rq_of(cfs_rq)->clock - se->statistics.wait_start)); | 
 | 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); | 
 | 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + | 
 | 			rq_of(cfs_rq)->clock - se->statistics.wait_start); | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	if (entity_is_task(se)) { | 
 | 		trace_sched_stat_wait(task_of(se), | 
 | 			rq_of(cfs_rq)->clock - se->statistics.wait_start); | 
 | 	} | 
 | #endif | 
 | 	schedstat_set(se->statistics.wait_start, 0); | 
 | } | 
 |  | 
 | static inline void | 
 | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	/* | 
 | 	 * Mark the end of the wait period if dequeueing a | 
 | 	 * waiting task: | 
 | 	 */ | 
 | 	if (se != cfs_rq->curr) | 
 | 		update_stats_wait_end(cfs_rq, se); | 
 | } | 
 |  | 
 | /* | 
 |  * We are picking a new current task - update its stats: | 
 |  */ | 
 | static inline void | 
 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	/* | 
 | 	 * We are starting a new run period: | 
 | 	 */ | 
 | 	se->exec_start = rq_of(cfs_rq)->clock; | 
 | } | 
 |  | 
 | /************************************************** | 
 |  * Scheduling class queueing methods: | 
 |  */ | 
 |  | 
 | #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED | 
 | static void | 
 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | 
 | { | 
 | 	cfs_rq->task_weight += weight; | 
 | } | 
 | #else | 
 | static inline void | 
 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | static void | 
 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	update_load_add(&cfs_rq->load, se->load.weight); | 
 | 	if (!parent_entity(se)) | 
 | 		inc_cpu_load(rq_of(cfs_rq), se->load.weight); | 
 | 	if (entity_is_task(se)) { | 
 | 		add_cfs_task_weight(cfs_rq, se->load.weight); | 
 | 		list_add(&se->group_node, &cfs_rq->tasks); | 
 | 	} | 
 | 	cfs_rq->nr_running++; | 
 | 	se->on_rq = 1; | 
 | } | 
 |  | 
 | static void | 
 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	update_load_sub(&cfs_rq->load, se->load.weight); | 
 | 	if (!parent_entity(se)) | 
 | 		dec_cpu_load(rq_of(cfs_rq), se->load.weight); | 
 | 	if (entity_is_task(se)) { | 
 | 		add_cfs_task_weight(cfs_rq, -se->load.weight); | 
 | 		list_del_init(&se->group_node); | 
 | 	} | 
 | 	cfs_rq->nr_running--; | 
 | 	se->on_rq = 0; | 
 | } | 
 |  | 
 | static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	struct task_struct *tsk = NULL; | 
 |  | 
 | 	if (entity_is_task(se)) | 
 | 		tsk = task_of(se); | 
 |  | 
 | 	if (se->statistics.sleep_start) { | 
 | 		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start; | 
 |  | 
 | 		if ((s64)delta < 0) | 
 | 			delta = 0; | 
 |  | 
 | 		if (unlikely(delta > se->statistics.sleep_max)) | 
 | 			se->statistics.sleep_max = delta; | 
 |  | 
 | 		se->statistics.sleep_start = 0; | 
 | 		se->statistics.sum_sleep_runtime += delta; | 
 |  | 
 | 		if (tsk) { | 
 | 			account_scheduler_latency(tsk, delta >> 10, 1); | 
 | 			trace_sched_stat_sleep(tsk, delta); | 
 | 		} | 
 | 	} | 
 | 	if (se->statistics.block_start) { | 
 | 		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start; | 
 |  | 
 | 		if ((s64)delta < 0) | 
 | 			delta = 0; | 
 |  | 
 | 		if (unlikely(delta > se->statistics.block_max)) | 
 | 			se->statistics.block_max = delta; | 
 |  | 
 | 		se->statistics.block_start = 0; | 
 | 		se->statistics.sum_sleep_runtime += delta; | 
 |  | 
 | 		if (tsk) { | 
 | 			if (tsk->in_iowait) { | 
 | 				se->statistics.iowait_sum += delta; | 
 | 				se->statistics.iowait_count++; | 
 | 				trace_sched_stat_iowait(tsk, delta); | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Blocking time is in units of nanosecs, so shift by | 
 | 			 * 20 to get a milliseconds-range estimation of the | 
 | 			 * amount of time that the task spent sleeping: | 
 | 			 */ | 
 | 			if (unlikely(prof_on == SLEEP_PROFILING)) { | 
 | 				profile_hits(SLEEP_PROFILING, | 
 | 						(void *)get_wchan(tsk), | 
 | 						delta >> 20); | 
 | 			} | 
 | 			account_scheduler_latency(tsk, delta >> 10, 0); | 
 | 		} | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | 	s64 d = se->vruntime - cfs_rq->min_vruntime; | 
 |  | 
 | 	if (d < 0) | 
 | 		d = -d; | 
 |  | 
 | 	if (d > 3*sysctl_sched_latency) | 
 | 		schedstat_inc(cfs_rq, nr_spread_over); | 
 | #endif | 
 | } | 
 |  | 
 | static void | 
 | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | 
 | { | 
 | 	u64 vruntime = cfs_rq->min_vruntime; | 
 |  | 
 | 	/* | 
 | 	 * The 'current' period is already promised to the current tasks, | 
 | 	 * however the extra weight of the new task will slow them down a | 
 | 	 * little, place the new task so that it fits in the slot that | 
 | 	 * stays open at the end. | 
 | 	 */ | 
 | 	if (initial && sched_feat(START_DEBIT)) | 
 | 		vruntime += sched_vslice(cfs_rq, se); | 
 |  | 
 | 	/* sleeps up to a single latency don't count. */ | 
 | 	if (!initial) { | 
 | 		unsigned long thresh = sysctl_sched_latency; | 
 |  | 
 | 		/* | 
 | 		 * Halve their sleep time's effect, to allow | 
 | 		 * for a gentler effect of sleepers: | 
 | 		 */ | 
 | 		if (sched_feat(GENTLE_FAIR_SLEEPERS)) | 
 | 			thresh >>= 1; | 
 |  | 
 | 		vruntime -= thresh; | 
 | 	} | 
 |  | 
 | 	/* ensure we never gain time by being placed backwards. */ | 
 | 	vruntime = max_vruntime(se->vruntime, vruntime); | 
 |  | 
 | 	se->vruntime = vruntime; | 
 | } | 
 |  | 
 | static void | 
 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
 | { | 
 | 	/* | 
 | 	 * Update the normalized vruntime before updating min_vruntime | 
 | 	 * through callig update_curr(). | 
 | 	 */ | 
 | 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) | 
 | 		se->vruntime += cfs_rq->min_vruntime; | 
 |  | 
 | 	/* | 
 | 	 * Update run-time statistics of the 'current'. | 
 | 	 */ | 
 | 	update_curr(cfs_rq); | 
 | 	account_entity_enqueue(cfs_rq, se); | 
 |  | 
 | 	if (flags & ENQUEUE_WAKEUP) { | 
 | 		place_entity(cfs_rq, se, 0); | 
 | 		enqueue_sleeper(cfs_rq, se); | 
 | 	} | 
 |  | 
 | 	update_stats_enqueue(cfs_rq, se); | 
 | 	check_spread(cfs_rq, se); | 
 | 	if (se != cfs_rq->curr) | 
 | 		__enqueue_entity(cfs_rq, se); | 
 | } | 
 |  | 
 | static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	if (!se || cfs_rq->last == se) | 
 | 		cfs_rq->last = NULL; | 
 |  | 
 | 	if (!se || cfs_rq->next == se) | 
 | 		cfs_rq->next = NULL; | 
 | } | 
 |  | 
 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	for_each_sched_entity(se) | 
 | 		__clear_buddies(cfs_rq_of(se), se); | 
 | } | 
 |  | 
 | static void | 
 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
 | { | 
 | 	/* | 
 | 	 * Update run-time statistics of the 'current'. | 
 | 	 */ | 
 | 	update_curr(cfs_rq); | 
 |  | 
 | 	update_stats_dequeue(cfs_rq, se); | 
 | 	if (flags & DEQUEUE_SLEEP) { | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 		if (entity_is_task(se)) { | 
 | 			struct task_struct *tsk = task_of(se); | 
 |  | 
 | 			if (tsk->state & TASK_INTERRUPTIBLE) | 
 | 				se->statistics.sleep_start = rq_of(cfs_rq)->clock; | 
 | 			if (tsk->state & TASK_UNINTERRUPTIBLE) | 
 | 				se->statistics.block_start = rq_of(cfs_rq)->clock; | 
 | 		} | 
 | #endif | 
 | 	} | 
 |  | 
 | 	clear_buddies(cfs_rq, se); | 
 |  | 
 | 	if (se != cfs_rq->curr) | 
 | 		__dequeue_entity(cfs_rq, se); | 
 | 	account_entity_dequeue(cfs_rq, se); | 
 | 	update_min_vruntime(cfs_rq); | 
 |  | 
 | 	/* | 
 | 	 * Normalize the entity after updating the min_vruntime because the | 
 | 	 * update can refer to the ->curr item and we need to reflect this | 
 | 	 * movement in our normalized position. | 
 | 	 */ | 
 | 	if (!(flags & DEQUEUE_SLEEP)) | 
 | 		se->vruntime -= cfs_rq->min_vruntime; | 
 | } | 
 |  | 
 | /* | 
 |  * Preempt the current task with a newly woken task if needed: | 
 |  */ | 
 | static void | 
 | check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) | 
 | { | 
 | 	unsigned long ideal_runtime, delta_exec; | 
 |  | 
 | 	ideal_runtime = sched_slice(cfs_rq, curr); | 
 | 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | 
 | 	if (delta_exec > ideal_runtime) { | 
 | 		resched_task(rq_of(cfs_rq)->curr); | 
 | 		/* | 
 | 		 * The current task ran long enough, ensure it doesn't get | 
 | 		 * re-elected due to buddy favours. | 
 | 		 */ | 
 | 		clear_buddies(cfs_rq, curr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Ensure that a task that missed wakeup preemption by a | 
 | 	 * narrow margin doesn't have to wait for a full slice. | 
 | 	 * This also mitigates buddy induced latencies under load. | 
 | 	 */ | 
 | 	if (!sched_feat(WAKEUP_PREEMPT)) | 
 | 		return; | 
 |  | 
 | 	if (delta_exec < sysctl_sched_min_granularity) | 
 | 		return; | 
 |  | 
 | 	if (cfs_rq->nr_running > 1) { | 
 | 		struct sched_entity *se = __pick_next_entity(cfs_rq); | 
 | 		s64 delta = curr->vruntime - se->vruntime; | 
 |  | 
 | 		if (delta > ideal_runtime) | 
 | 			resched_task(rq_of(cfs_rq)->curr); | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	/* 'current' is not kept within the tree. */ | 
 | 	if (se->on_rq) { | 
 | 		/* | 
 | 		 * Any task has to be enqueued before it get to execute on | 
 | 		 * a CPU. So account for the time it spent waiting on the | 
 | 		 * runqueue. | 
 | 		 */ | 
 | 		update_stats_wait_end(cfs_rq, se); | 
 | 		__dequeue_entity(cfs_rq, se); | 
 | 	} | 
 |  | 
 | 	update_stats_curr_start(cfs_rq, se); | 
 | 	cfs_rq->curr = se; | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	/* | 
 | 	 * Track our maximum slice length, if the CPU's load is at | 
 | 	 * least twice that of our own weight (i.e. dont track it | 
 | 	 * when there are only lesser-weight tasks around): | 
 | 	 */ | 
 | 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { | 
 | 		se->statistics.slice_max = max(se->statistics.slice_max, | 
 | 			se->sum_exec_runtime - se->prev_sum_exec_runtime); | 
 | 	} | 
 | #endif | 
 | 	se->prev_sum_exec_runtime = se->sum_exec_runtime; | 
 | } | 
 |  | 
 | static int | 
 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); | 
 |  | 
 | static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct sched_entity *se = __pick_next_entity(cfs_rq); | 
 | 	struct sched_entity *left = se; | 
 |  | 
 | 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) | 
 | 		se = cfs_rq->next; | 
 |  | 
 | 	/* | 
 | 	 * Prefer last buddy, try to return the CPU to a preempted task. | 
 | 	 */ | 
 | 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) | 
 | 		se = cfs_rq->last; | 
 |  | 
 | 	clear_buddies(cfs_rq, se); | 
 |  | 
 | 	return se; | 
 | } | 
 |  | 
 | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) | 
 | { | 
 | 	/* | 
 | 	 * If still on the runqueue then deactivate_task() | 
 | 	 * was not called and update_curr() has to be done: | 
 | 	 */ | 
 | 	if (prev->on_rq) | 
 | 		update_curr(cfs_rq); | 
 |  | 
 | 	check_spread(cfs_rq, prev); | 
 | 	if (prev->on_rq) { | 
 | 		update_stats_wait_start(cfs_rq, prev); | 
 | 		/* Put 'current' back into the tree. */ | 
 | 		__enqueue_entity(cfs_rq, prev); | 
 | 	} | 
 | 	cfs_rq->curr = NULL; | 
 | } | 
 |  | 
 | static void | 
 | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | 
 | { | 
 | 	/* | 
 | 	 * Update run-time statistics of the 'current'. | 
 | 	 */ | 
 | 	update_curr(cfs_rq); | 
 |  | 
 | #ifdef CONFIG_SCHED_HRTICK | 
 | 	/* | 
 | 	 * queued ticks are scheduled to match the slice, so don't bother | 
 | 	 * validating it and just reschedule. | 
 | 	 */ | 
 | 	if (queued) { | 
 | 		resched_task(rq_of(cfs_rq)->curr); | 
 | 		return; | 
 | 	} | 
 | 	/* | 
 | 	 * don't let the period tick interfere with the hrtick preemption | 
 | 	 */ | 
 | 	if (!sched_feat(DOUBLE_TICK) && | 
 | 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) | 
 | 		return; | 
 | #endif | 
 |  | 
 | 	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT)) | 
 | 		check_preempt_tick(cfs_rq, curr); | 
 | } | 
 |  | 
 | /************************************************** | 
 |  * CFS operations on tasks: | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_SCHED_HRTICK | 
 | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	struct sched_entity *se = &p->se; | 
 | 	struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 |  | 
 | 	WARN_ON(task_rq(p) != rq); | 
 |  | 
 | 	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) { | 
 | 		u64 slice = sched_slice(cfs_rq, se); | 
 | 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; | 
 | 		s64 delta = slice - ran; | 
 |  | 
 | 		if (delta < 0) { | 
 | 			if (rq->curr == p) | 
 | 				resched_task(p); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Don't schedule slices shorter than 10000ns, that just | 
 | 		 * doesn't make sense. Rely on vruntime for fairness. | 
 | 		 */ | 
 | 		if (rq->curr != p) | 
 | 			delta = max_t(s64, 10000LL, delta); | 
 |  | 
 | 		hrtick_start(rq, delta); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * called from enqueue/dequeue and updates the hrtick when the | 
 |  * current task is from our class and nr_running is low enough | 
 |  * to matter. | 
 |  */ | 
 | static void hrtick_update(struct rq *rq) | 
 | { | 
 | 	struct task_struct *curr = rq->curr; | 
 |  | 
 | 	if (curr->sched_class != &fair_sched_class) | 
 | 		return; | 
 |  | 
 | 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) | 
 | 		hrtick_start_fair(rq, curr); | 
 | } | 
 | #else /* !CONFIG_SCHED_HRTICK */ | 
 | static inline void | 
 | hrtick_start_fair(struct rq *rq, struct task_struct *p) | 
 | { | 
 | } | 
 |  | 
 | static inline void hrtick_update(struct rq *rq) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * The enqueue_task method is called before nr_running is | 
 |  * increased. Here we update the fair scheduling stats and | 
 |  * then put the task into the rbtree: | 
 |  */ | 
 | static void | 
 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	struct sched_entity *se = &p->se; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		if (se->on_rq) | 
 | 			break; | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		enqueue_entity(cfs_rq, se, flags); | 
 | 		flags = ENQUEUE_WAKEUP; | 
 | 	} | 
 |  | 
 | 	hrtick_update(rq); | 
 | } | 
 |  | 
 | /* | 
 |  * The dequeue_task method is called before nr_running is | 
 |  * decreased. We remove the task from the rbtree and | 
 |  * update the fair scheduling stats: | 
 |  */ | 
 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	struct sched_entity *se = &p->se; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		dequeue_entity(cfs_rq, se, flags); | 
 | 		/* Don't dequeue parent if it has other entities besides us */ | 
 | 		if (cfs_rq->load.weight) | 
 | 			break; | 
 | 		flags |= DEQUEUE_SLEEP; | 
 | 	} | 
 |  | 
 | 	hrtick_update(rq); | 
 | } | 
 |  | 
 | /* | 
 |  * sched_yield() support is very simple - we dequeue and enqueue. | 
 |  * | 
 |  * If compat_yield is turned on then we requeue to the end of the tree. | 
 |  */ | 
 | static void yield_task_fair(struct rq *rq) | 
 | { | 
 | 	struct task_struct *curr = rq->curr; | 
 | 	struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 
 | 	struct sched_entity *rightmost, *se = &curr->se; | 
 |  | 
 | 	/* | 
 | 	 * Are we the only task in the tree? | 
 | 	 */ | 
 | 	if (unlikely(cfs_rq->nr_running == 1)) | 
 | 		return; | 
 |  | 
 | 	clear_buddies(cfs_rq, se); | 
 |  | 
 | 	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) { | 
 | 		update_rq_clock(rq); | 
 | 		/* | 
 | 		 * Update run-time statistics of the 'current'. | 
 | 		 */ | 
 | 		update_curr(cfs_rq); | 
 |  | 
 | 		return; | 
 | 	} | 
 | 	/* | 
 | 	 * Find the rightmost entry in the rbtree: | 
 | 	 */ | 
 | 	rightmost = __pick_last_entity(cfs_rq); | 
 | 	/* | 
 | 	 * Already in the rightmost position? | 
 | 	 */ | 
 | 	if (unlikely(!rightmost || entity_before(rightmost, se))) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Minimally necessary key value to be last in the tree: | 
 | 	 * Upon rescheduling, sched_class::put_prev_task() will place | 
 | 	 * 'current' within the tree based on its new key value. | 
 | 	 */ | 
 | 	se->vruntime = rightmost->vruntime + 1; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | static void task_waking_fair(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	struct sched_entity *se = &p->se; | 
 | 	struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 |  | 
 | 	se->vruntime -= cfs_rq->min_vruntime; | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | /* | 
 |  * effective_load() calculates the load change as seen from the root_task_group | 
 |  * | 
 |  * Adding load to a group doesn't make a group heavier, but can cause movement | 
 |  * of group shares between cpus. Assuming the shares were perfectly aligned one | 
 |  * can calculate the shift in shares. | 
 |  * | 
 |  * The problem is that perfectly aligning the shares is rather expensive, hence | 
 |  * we try to avoid doing that too often - see update_shares(), which ratelimits | 
 |  * this change. | 
 |  * | 
 |  * We compensate this by not only taking the current delta into account, but | 
 |  * also considering the delta between when the shares were last adjusted and | 
 |  * now. | 
 |  * | 
 |  * We still saw a performance dip, some tracing learned us that between | 
 |  * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased | 
 |  * significantly. Therefore try to bias the error in direction of failing | 
 |  * the affine wakeup. | 
 |  * | 
 |  */ | 
 | static long effective_load(struct task_group *tg, int cpu, | 
 | 		long wl, long wg) | 
 | { | 
 | 	struct sched_entity *se = tg->se[cpu]; | 
 |  | 
 | 	if (!tg->parent) | 
 | 		return wl; | 
 |  | 
 | 	/* | 
 | 	 * By not taking the decrease of shares on the other cpu into | 
 | 	 * account our error leans towards reducing the affine wakeups. | 
 | 	 */ | 
 | 	if (!wl && sched_feat(ASYM_EFF_LOAD)) | 
 | 		return wl; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		long S, rw, s, a, b; | 
 | 		long more_w; | 
 |  | 
 | 		/* | 
 | 		 * Instead of using this increment, also add the difference | 
 | 		 * between when the shares were last updated and now. | 
 | 		 */ | 
 | 		more_w = se->my_q->load.weight - se->my_q->rq_weight; | 
 | 		wl += more_w; | 
 | 		wg += more_w; | 
 |  | 
 | 		S = se->my_q->tg->shares; | 
 | 		s = se->my_q->shares; | 
 | 		rw = se->my_q->rq_weight; | 
 |  | 
 | 		a = S*(rw + wl); | 
 | 		b = S*rw + s*wg; | 
 |  | 
 | 		wl = s*(a-b); | 
 |  | 
 | 		if (likely(b)) | 
 | 			wl /= b; | 
 |  | 
 | 		/* | 
 | 		 * Assume the group is already running and will | 
 | 		 * thus already be accounted for in the weight. | 
 | 		 * | 
 | 		 * That is, moving shares between CPUs, does not | 
 | 		 * alter the group weight. | 
 | 		 */ | 
 | 		wg = 0; | 
 | 	} | 
 |  | 
 | 	return wl; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static inline unsigned long effective_load(struct task_group *tg, int cpu, | 
 | 		unsigned long wl, unsigned long wg) | 
 | { | 
 | 	return wl; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) | 
 | { | 
 | 	unsigned long this_load, load; | 
 | 	int idx, this_cpu, prev_cpu; | 
 | 	unsigned long tl_per_task; | 
 | 	struct task_group *tg; | 
 | 	unsigned long weight; | 
 | 	int balanced; | 
 |  | 
 | 	idx	  = sd->wake_idx; | 
 | 	this_cpu  = smp_processor_id(); | 
 | 	prev_cpu  = task_cpu(p); | 
 | 	load	  = source_load(prev_cpu, idx); | 
 | 	this_load = target_load(this_cpu, idx); | 
 |  | 
 | 	/* | 
 | 	 * If sync wakeup then subtract the (maximum possible) | 
 | 	 * effect of the currently running task from the load | 
 | 	 * of the current CPU: | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	if (sync) { | 
 | 		tg = task_group(current); | 
 | 		weight = current->se.load.weight; | 
 |  | 
 | 		this_load += effective_load(tg, this_cpu, -weight, -weight); | 
 | 		load += effective_load(tg, prev_cpu, 0, -weight); | 
 | 	} | 
 |  | 
 | 	tg = task_group(p); | 
 | 	weight = p->se.load.weight; | 
 |  | 
 | 	/* | 
 | 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle | 
 | 	 * due to the sync cause above having dropped this_load to 0, we'll | 
 | 	 * always have an imbalance, but there's really nothing you can do | 
 | 	 * about that, so that's good too. | 
 | 	 * | 
 | 	 * Otherwise check if either cpus are near enough in load to allow this | 
 | 	 * task to be woken on this_cpu. | 
 | 	 */ | 
 | 	if (this_load) { | 
 | 		unsigned long this_eff_load, prev_eff_load; | 
 |  | 
 | 		this_eff_load = 100; | 
 | 		this_eff_load *= power_of(prev_cpu); | 
 | 		this_eff_load *= this_load + | 
 | 			effective_load(tg, this_cpu, weight, weight); | 
 |  | 
 | 		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; | 
 | 		prev_eff_load *= power_of(this_cpu); | 
 | 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); | 
 |  | 
 | 		balanced = this_eff_load <= prev_eff_load; | 
 | 	} else | 
 | 		balanced = true; | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	/* | 
 | 	 * If the currently running task will sleep within | 
 | 	 * a reasonable amount of time then attract this newly | 
 | 	 * woken task: | 
 | 	 */ | 
 | 	if (sync && balanced) | 
 | 		return 1; | 
 |  | 
 | 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); | 
 | 	tl_per_task = cpu_avg_load_per_task(this_cpu); | 
 |  | 
 | 	if (balanced || | 
 | 	    (this_load <= load && | 
 | 	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) { | 
 | 		/* | 
 | 		 * This domain has SD_WAKE_AFFINE and | 
 | 		 * p is cache cold in this domain, and | 
 | 		 * there is no bad imbalance. | 
 | 		 */ | 
 | 		schedstat_inc(sd, ttwu_move_affine); | 
 | 		schedstat_inc(p, se.statistics.nr_wakeups_affine); | 
 |  | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * find_idlest_group finds and returns the least busy CPU group within the | 
 |  * domain. | 
 |  */ | 
 | static struct sched_group * | 
 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, | 
 | 		  int this_cpu, int load_idx) | 
 | { | 
 | 	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; | 
 | 	unsigned long min_load = ULONG_MAX, this_load = 0; | 
 | 	int imbalance = 100 + (sd->imbalance_pct-100)/2; | 
 |  | 
 | 	do { | 
 | 		unsigned long load, avg_load; | 
 | 		int local_group; | 
 | 		int i; | 
 |  | 
 | 		/* Skip over this group if it has no CPUs allowed */ | 
 | 		if (!cpumask_intersects(sched_group_cpus(group), | 
 | 					&p->cpus_allowed)) | 
 | 			continue; | 
 |  | 
 | 		local_group = cpumask_test_cpu(this_cpu, | 
 | 					       sched_group_cpus(group)); | 
 |  | 
 | 		/* Tally up the load of all CPUs in the group */ | 
 | 		avg_load = 0; | 
 |  | 
 | 		for_each_cpu(i, sched_group_cpus(group)) { | 
 | 			/* Bias balancing toward cpus of our domain */ | 
 | 			if (local_group) | 
 | 				load = source_load(i, load_idx); | 
 | 			else | 
 | 				load = target_load(i, load_idx); | 
 |  | 
 | 			avg_load += load; | 
 | 		} | 
 |  | 
 | 		/* Adjust by relative CPU power of the group */ | 
 | 		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | 
 |  | 
 | 		if (local_group) { | 
 | 			this_load = avg_load; | 
 | 			this = group; | 
 | 		} else if (avg_load < min_load) { | 
 | 			min_load = avg_load; | 
 | 			idlest = group; | 
 | 		} | 
 | 	} while (group = group->next, group != sd->groups); | 
 |  | 
 | 	if (!idlest || 100*this_load < imbalance*min_load) | 
 | 		return NULL; | 
 | 	return idlest; | 
 | } | 
 |  | 
 | /* | 
 |  * find_idlest_cpu - find the idlest cpu among the cpus in group. | 
 |  */ | 
 | static int | 
 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | 
 | { | 
 | 	unsigned long load, min_load = ULONG_MAX; | 
 | 	int idlest = -1; | 
 | 	int i; | 
 |  | 
 | 	/* Traverse only the allowed CPUs */ | 
 | 	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { | 
 | 		load = weighted_cpuload(i); | 
 |  | 
 | 		if (load < min_load || (load == min_load && i == this_cpu)) { | 
 | 			min_load = load; | 
 | 			idlest = i; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return idlest; | 
 | } | 
 |  | 
 | /* | 
 |  * Try and locate an idle CPU in the sched_domain. | 
 |  */ | 
 | static int select_idle_sibling(struct task_struct *p, int target) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	int prev_cpu = task_cpu(p); | 
 | 	struct sched_domain *sd; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * If the task is going to be woken-up on this cpu and if it is | 
 | 	 * already idle, then it is the right target. | 
 | 	 */ | 
 | 	if (target == cpu && idle_cpu(cpu)) | 
 | 		return cpu; | 
 |  | 
 | 	/* | 
 | 	 * If the task is going to be woken-up on the cpu where it previously | 
 | 	 * ran and if it is currently idle, then it the right target. | 
 | 	 */ | 
 | 	if (target == prev_cpu && idle_cpu(prev_cpu)) | 
 | 		return prev_cpu; | 
 |  | 
 | 	/* | 
 | 	 * Otherwise, iterate the domains and find an elegible idle cpu. | 
 | 	 */ | 
 | 	for_each_domain(target, sd) { | 
 | 		if (!(sd->flags & SD_SHARE_PKG_RESOURCES)) | 
 | 			break; | 
 |  | 
 | 		for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) { | 
 | 			if (idle_cpu(i)) { | 
 | 				target = i; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Lets stop looking for an idle sibling when we reached | 
 | 		 * the domain that spans the current cpu and prev_cpu. | 
 | 		 */ | 
 | 		if (cpumask_test_cpu(cpu, sched_domain_span(sd)) && | 
 | 		    cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return target; | 
 | } | 
 |  | 
 | /* | 
 |  * sched_balance_self: balance the current task (running on cpu) in domains | 
 |  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | 
 |  * SD_BALANCE_EXEC. | 
 |  * | 
 |  * Balance, ie. select the least loaded group. | 
 |  * | 
 |  * Returns the target CPU number, or the same CPU if no balancing is needed. | 
 |  * | 
 |  * preempt must be disabled. | 
 |  */ | 
 | static int | 
 | select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags) | 
 | { | 
 | 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; | 
 | 	int cpu = smp_processor_id(); | 
 | 	int prev_cpu = task_cpu(p); | 
 | 	int new_cpu = cpu; | 
 | 	int want_affine = 0; | 
 | 	int want_sd = 1; | 
 | 	int sync = wake_flags & WF_SYNC; | 
 |  | 
 | 	if (sd_flag & SD_BALANCE_WAKE) { | 
 | 		if (cpumask_test_cpu(cpu, &p->cpus_allowed)) | 
 | 			want_affine = 1; | 
 | 		new_cpu = prev_cpu; | 
 | 	} | 
 |  | 
 | 	for_each_domain(cpu, tmp) { | 
 | 		if (!(tmp->flags & SD_LOAD_BALANCE)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * If power savings logic is enabled for a domain, see if we | 
 | 		 * are not overloaded, if so, don't balance wider. | 
 | 		 */ | 
 | 		if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) { | 
 | 			unsigned long power = 0; | 
 | 			unsigned long nr_running = 0; | 
 | 			unsigned long capacity; | 
 | 			int i; | 
 |  | 
 | 			for_each_cpu(i, sched_domain_span(tmp)) { | 
 | 				power += power_of(i); | 
 | 				nr_running += cpu_rq(i)->cfs.nr_running; | 
 | 			} | 
 |  | 
 | 			capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); | 
 |  | 
 | 			if (tmp->flags & SD_POWERSAVINGS_BALANCE) | 
 | 				nr_running /= 2; | 
 |  | 
 | 			if (nr_running < capacity) | 
 | 				want_sd = 0; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If both cpu and prev_cpu are part of this domain, | 
 | 		 * cpu is a valid SD_WAKE_AFFINE target. | 
 | 		 */ | 
 | 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && | 
 | 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { | 
 | 			affine_sd = tmp; | 
 | 			want_affine = 0; | 
 | 		} | 
 |  | 
 | 		if (!want_sd && !want_affine) | 
 | 			break; | 
 |  | 
 | 		if (!(tmp->flags & sd_flag)) | 
 | 			continue; | 
 |  | 
 | 		if (want_sd) | 
 | 			sd = tmp; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	if (sched_feat(LB_SHARES_UPDATE)) { | 
 | 		/* | 
 | 		 * Pick the largest domain to update shares over | 
 | 		 */ | 
 | 		tmp = sd; | 
 | 		if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight)) | 
 | 			tmp = affine_sd; | 
 |  | 
 | 		if (tmp) { | 
 | 			raw_spin_unlock(&rq->lock); | 
 | 			update_shares(tmp); | 
 | 			raw_spin_lock(&rq->lock); | 
 | 		} | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (affine_sd) { | 
 | 		if (cpu == prev_cpu || wake_affine(affine_sd, p, sync)) | 
 | 			return select_idle_sibling(p, cpu); | 
 | 		else | 
 | 			return select_idle_sibling(p, prev_cpu); | 
 | 	} | 
 |  | 
 | 	while (sd) { | 
 | 		int load_idx = sd->forkexec_idx; | 
 | 		struct sched_group *group; | 
 | 		int weight; | 
 |  | 
 | 		if (!(sd->flags & sd_flag)) { | 
 | 			sd = sd->child; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (sd_flag & SD_BALANCE_WAKE) | 
 | 			load_idx = sd->wake_idx; | 
 |  | 
 | 		group = find_idlest_group(sd, p, cpu, load_idx); | 
 | 		if (!group) { | 
 | 			sd = sd->child; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		new_cpu = find_idlest_cpu(group, p, cpu); | 
 | 		if (new_cpu == -1 || new_cpu == cpu) { | 
 | 			/* Now try balancing at a lower domain level of cpu */ | 
 | 			sd = sd->child; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Now try balancing at a lower domain level of new_cpu */ | 
 | 		cpu = new_cpu; | 
 | 		weight = sd->span_weight; | 
 | 		sd = NULL; | 
 | 		for_each_domain(cpu, tmp) { | 
 | 			if (weight <= tmp->span_weight) | 
 | 				break; | 
 | 			if (tmp->flags & sd_flag) | 
 | 				sd = tmp; | 
 | 		} | 
 | 		/* while loop will break here if sd == NULL */ | 
 | 	} | 
 |  | 
 | 	return new_cpu; | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | static unsigned long | 
 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) | 
 | { | 
 | 	unsigned long gran = sysctl_sched_wakeup_granularity; | 
 |  | 
 | 	/* | 
 | 	 * Since its curr running now, convert the gran from real-time | 
 | 	 * to virtual-time in his units. | 
 | 	 * | 
 | 	 * By using 'se' instead of 'curr' we penalize light tasks, so | 
 | 	 * they get preempted easier. That is, if 'se' < 'curr' then | 
 | 	 * the resulting gran will be larger, therefore penalizing the | 
 | 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will | 
 | 	 * be smaller, again penalizing the lighter task. | 
 | 	 * | 
 | 	 * This is especially important for buddies when the leftmost | 
 | 	 * task is higher priority than the buddy. | 
 | 	 */ | 
 | 	if (unlikely(se->load.weight != NICE_0_LOAD)) | 
 | 		gran = calc_delta_fair(gran, se); | 
 |  | 
 | 	return gran; | 
 | } | 
 |  | 
 | /* | 
 |  * Should 'se' preempt 'curr'. | 
 |  * | 
 |  *             |s1 | 
 |  *        |s2 | 
 |  *   |s3 | 
 |  *         g | 
 |  *      |<--->|c | 
 |  * | 
 |  *  w(c, s1) = -1 | 
 |  *  w(c, s2) =  0 | 
 |  *  w(c, s3) =  1 | 
 |  * | 
 |  */ | 
 | static int | 
 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) | 
 | { | 
 | 	s64 gran, vdiff = curr->vruntime - se->vruntime; | 
 |  | 
 | 	if (vdiff <= 0) | 
 | 		return -1; | 
 |  | 
 | 	gran = wakeup_gran(curr, se); | 
 | 	if (vdiff > gran) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void set_last_buddy(struct sched_entity *se) | 
 | { | 
 | 	if (likely(task_of(se)->policy != SCHED_IDLE)) { | 
 | 		for_each_sched_entity(se) | 
 | 			cfs_rq_of(se)->last = se; | 
 | 	} | 
 | } | 
 |  | 
 | static void set_next_buddy(struct sched_entity *se) | 
 | { | 
 | 	if (likely(task_of(se)->policy != SCHED_IDLE)) { | 
 | 		for_each_sched_entity(se) | 
 | 			cfs_rq_of(se)->next = se; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Preempt the current task with a newly woken task if needed: | 
 |  */ | 
 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) | 
 | { | 
 | 	struct task_struct *curr = rq->curr; | 
 | 	struct sched_entity *se = &curr->se, *pse = &p->se; | 
 | 	struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 
 | 	int scale = cfs_rq->nr_running >= sched_nr_latency; | 
 |  | 
 | 	if (unlikely(rt_prio(p->prio))) | 
 | 		goto preempt; | 
 |  | 
 | 	if (unlikely(p->sched_class != &fair_sched_class)) | 
 | 		return; | 
 |  | 
 | 	if (unlikely(se == pse)) | 
 | 		return; | 
 |  | 
 | 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) | 
 | 		set_next_buddy(pse); | 
 |  | 
 | 	/* | 
 | 	 * We can come here with TIF_NEED_RESCHED already set from new task | 
 | 	 * wake up path. | 
 | 	 */ | 
 | 	if (test_tsk_need_resched(curr)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Batch and idle tasks do not preempt (their preemption is driven by | 
 | 	 * the tick): | 
 | 	 */ | 
 | 	if (unlikely(p->policy != SCHED_NORMAL)) | 
 | 		return; | 
 |  | 
 | 	/* Idle tasks are by definition preempted by everybody. */ | 
 | 	if (unlikely(curr->policy == SCHED_IDLE)) | 
 | 		goto preempt; | 
 |  | 
 | 	if (!sched_feat(WAKEUP_PREEMPT)) | 
 | 		return; | 
 |  | 
 | 	update_curr(cfs_rq); | 
 | 	find_matching_se(&se, &pse); | 
 | 	BUG_ON(!pse); | 
 | 	if (wakeup_preempt_entity(se, pse) == 1) | 
 | 		goto preempt; | 
 |  | 
 | 	return; | 
 |  | 
 | preempt: | 
 | 	resched_task(curr); | 
 | 	/* | 
 | 	 * Only set the backward buddy when the current task is still | 
 | 	 * on the rq. This can happen when a wakeup gets interleaved | 
 | 	 * with schedule on the ->pre_schedule() or idle_balance() | 
 | 	 * point, either of which can * drop the rq lock. | 
 | 	 * | 
 | 	 * Also, during early boot the idle thread is in the fair class, | 
 | 	 * for obvious reasons its a bad idea to schedule back to it. | 
 | 	 */ | 
 | 	if (unlikely(!se->on_rq || curr == rq->idle)) | 
 | 		return; | 
 |  | 
 | 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) | 
 | 		set_last_buddy(se); | 
 | } | 
 |  | 
 | static struct task_struct *pick_next_task_fair(struct rq *rq) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	struct cfs_rq *cfs_rq = &rq->cfs; | 
 | 	struct sched_entity *se; | 
 |  | 
 | 	if (!cfs_rq->nr_running) | 
 | 		return NULL; | 
 |  | 
 | 	do { | 
 | 		se = pick_next_entity(cfs_rq); | 
 | 		set_next_entity(cfs_rq, se); | 
 | 		cfs_rq = group_cfs_rq(se); | 
 | 	} while (cfs_rq); | 
 |  | 
 | 	p = task_of(se); | 
 | 	hrtick_start_fair(rq, p); | 
 |  | 
 | 	return p; | 
 | } | 
 |  | 
 | /* | 
 |  * Account for a descheduled task: | 
 |  */ | 
 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) | 
 | { | 
 | 	struct sched_entity *se = &prev->se; | 
 | 	struct cfs_rq *cfs_rq; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		put_prev_entity(cfs_rq, se); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /************************************************** | 
 |  * Fair scheduling class load-balancing methods: | 
 |  */ | 
 |  | 
 | /* | 
 |  * pull_task - move a task from a remote runqueue to the local runqueue. | 
 |  * Both runqueues must be locked. | 
 |  */ | 
 | static void pull_task(struct rq *src_rq, struct task_struct *p, | 
 | 		      struct rq *this_rq, int this_cpu) | 
 | { | 
 | 	deactivate_task(src_rq, p, 0); | 
 | 	set_task_cpu(p, this_cpu); | 
 | 	activate_task(this_rq, p, 0); | 
 | 	check_preempt_curr(this_rq, p, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | 
 |  */ | 
 | static | 
 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | 
 | 		     struct sched_domain *sd, enum cpu_idle_type idle, | 
 | 		     int *all_pinned) | 
 | { | 
 | 	int tsk_cache_hot = 0; | 
 | 	/* | 
 | 	 * We do not migrate tasks that are: | 
 | 	 * 1) running (obviously), or | 
 | 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or | 
 | 	 * 3) are cache-hot on their current CPU. | 
 | 	 */ | 
 | 	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { | 
 | 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine); | 
 | 		return 0; | 
 | 	} | 
 | 	*all_pinned = 0; | 
 |  | 
 | 	if (task_running(rq, p)) { | 
 | 		schedstat_inc(p, se.statistics.nr_failed_migrations_running); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Aggressive migration if: | 
 | 	 * 1) task is cache cold, or | 
 | 	 * 2) too many balance attempts have failed. | 
 | 	 */ | 
 |  | 
 | 	tsk_cache_hot = task_hot(p, rq->clock, sd); | 
 | 	if (!tsk_cache_hot || | 
 | 		sd->nr_balance_failed > sd->cache_nice_tries) { | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 		if (tsk_cache_hot) { | 
 | 			schedstat_inc(sd, lb_hot_gained[idle]); | 
 | 			schedstat_inc(p, se.statistics.nr_forced_migrations); | 
 | 		} | 
 | #endif | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (tsk_cache_hot) { | 
 | 		schedstat_inc(p, se.statistics.nr_failed_migrations_hot); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * move_one_task tries to move exactly one task from busiest to this_rq, as | 
 |  * part of active balancing operations within "domain". | 
 |  * Returns 1 if successful and 0 otherwise. | 
 |  * | 
 |  * Called with both runqueues locked. | 
 |  */ | 
 | static int | 
 | move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
 | 	      struct sched_domain *sd, enum cpu_idle_type idle) | 
 | { | 
 | 	struct task_struct *p, *n; | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	int pinned = 0; | 
 |  | 
 | 	for_each_leaf_cfs_rq(busiest, cfs_rq) { | 
 | 		list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) { | 
 |  | 
 | 			if (!can_migrate_task(p, busiest, this_cpu, | 
 | 						sd, idle, &pinned)) | 
 | 				continue; | 
 |  | 
 | 			pull_task(busiest, p, this_rq, this_cpu); | 
 | 			/* | 
 | 			 * Right now, this is only the second place pull_task() | 
 | 			 * is called, so we can safely collect pull_task() | 
 | 			 * stats here rather than inside pull_task(). | 
 | 			 */ | 
 | 			schedstat_inc(sd, lb_gained[idle]); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned long | 
 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
 | 	      unsigned long max_load_move, struct sched_domain *sd, | 
 | 	      enum cpu_idle_type idle, int *all_pinned, | 
 | 	      int *this_best_prio, struct cfs_rq *busiest_cfs_rq) | 
 | { | 
 | 	int loops = 0, pulled = 0, pinned = 0; | 
 | 	long rem_load_move = max_load_move; | 
 | 	struct task_struct *p, *n; | 
 |  | 
 | 	if (max_load_move == 0) | 
 | 		goto out; | 
 |  | 
 | 	pinned = 1; | 
 |  | 
 | 	list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) { | 
 | 		if (loops++ > sysctl_sched_nr_migrate) | 
 | 			break; | 
 |  | 
 | 		if ((p->se.load.weight >> 1) > rem_load_move || | 
 | 		    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) | 
 | 			continue; | 
 |  | 
 | 		pull_task(busiest, p, this_rq, this_cpu); | 
 | 		pulled++; | 
 | 		rem_load_move -= p->se.load.weight; | 
 |  | 
 | #ifdef CONFIG_PREEMPT | 
 | 		/* | 
 | 		 * NEWIDLE balancing is a source of latency, so preemptible | 
 | 		 * kernels will stop after the first task is pulled to minimize | 
 | 		 * the critical section. | 
 | 		 */ | 
 | 		if (idle == CPU_NEWLY_IDLE) | 
 | 			break; | 
 | #endif | 
 |  | 
 | 		/* | 
 | 		 * We only want to steal up to the prescribed amount of | 
 | 		 * weighted load. | 
 | 		 */ | 
 | 		if (rem_load_move <= 0) | 
 | 			break; | 
 |  | 
 | 		if (p->prio < *this_best_prio) | 
 | 			*this_best_prio = p->prio; | 
 | 	} | 
 | out: | 
 | 	/* | 
 | 	 * Right now, this is one of only two places pull_task() is called, | 
 | 	 * so we can safely collect pull_task() stats here rather than | 
 | 	 * inside pull_task(). | 
 | 	 */ | 
 | 	schedstat_add(sd, lb_gained[idle], pulled); | 
 |  | 
 | 	if (all_pinned) | 
 | 		*all_pinned = pinned; | 
 |  | 
 | 	return max_load_move - rem_load_move; | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | static unsigned long | 
 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
 | 		  unsigned long max_load_move, | 
 | 		  struct sched_domain *sd, enum cpu_idle_type idle, | 
 | 		  int *all_pinned, int *this_best_prio) | 
 | { | 
 | 	long rem_load_move = max_load_move; | 
 | 	int busiest_cpu = cpu_of(busiest); | 
 | 	struct task_group *tg; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	update_h_load(busiest_cpu); | 
 |  | 
 | 	list_for_each_entry_rcu(tg, &task_groups, list) { | 
 | 		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu]; | 
 | 		unsigned long busiest_h_load = busiest_cfs_rq->h_load; | 
 | 		unsigned long busiest_weight = busiest_cfs_rq->load.weight; | 
 | 		u64 rem_load, moved_load; | 
 |  | 
 | 		/* | 
 | 		 * empty group | 
 | 		 */ | 
 | 		if (!busiest_cfs_rq->task_weight) | 
 | 			continue; | 
 |  | 
 | 		rem_load = (u64)rem_load_move * busiest_weight; | 
 | 		rem_load = div_u64(rem_load, busiest_h_load + 1); | 
 |  | 
 | 		moved_load = balance_tasks(this_rq, this_cpu, busiest, | 
 | 				rem_load, sd, idle, all_pinned, this_best_prio, | 
 | 				busiest_cfs_rq); | 
 |  | 
 | 		if (!moved_load) | 
 | 			continue; | 
 |  | 
 | 		moved_load *= busiest_h_load; | 
 | 		moved_load = div_u64(moved_load, busiest_weight + 1); | 
 |  | 
 | 		rem_load_move -= moved_load; | 
 | 		if (rem_load_move < 0) | 
 | 			break; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return max_load_move - rem_load_move; | 
 | } | 
 | #else | 
 | static unsigned long | 
 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
 | 		  unsigned long max_load_move, | 
 | 		  struct sched_domain *sd, enum cpu_idle_type idle, | 
 | 		  int *all_pinned, int *this_best_prio) | 
 | { | 
 | 	return balance_tasks(this_rq, this_cpu, busiest, | 
 | 			max_load_move, sd, idle, all_pinned, | 
 | 			this_best_prio, &busiest->cfs); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * move_tasks tries to move up to max_load_move weighted load from busiest to | 
 |  * this_rq, as part of a balancing operation within domain "sd". | 
 |  * Returns 1 if successful and 0 otherwise. | 
 |  * | 
 |  * Called with both runqueues locked. | 
 |  */ | 
 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
 | 		      unsigned long max_load_move, | 
 | 		      struct sched_domain *sd, enum cpu_idle_type idle, | 
 | 		      int *all_pinned) | 
 | { | 
 | 	unsigned long total_load_moved = 0, load_moved; | 
 | 	int this_best_prio = this_rq->curr->prio; | 
 |  | 
 | 	do { | 
 | 		load_moved = load_balance_fair(this_rq, this_cpu, busiest, | 
 | 				max_load_move - total_load_moved, | 
 | 				sd, idle, all_pinned, &this_best_prio); | 
 |  | 
 | 		total_load_moved += load_moved; | 
 |  | 
 | #ifdef CONFIG_PREEMPT | 
 | 		/* | 
 | 		 * NEWIDLE balancing is a source of latency, so preemptible | 
 | 		 * kernels will stop after the first task is pulled to minimize | 
 | 		 * the critical section. | 
 | 		 */ | 
 | 		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | 
 | 			break; | 
 |  | 
 | 		if (raw_spin_is_contended(&this_rq->lock) || | 
 | 				raw_spin_is_contended(&busiest->lock)) | 
 | 			break; | 
 | #endif | 
 | 	} while (load_moved && max_load_move > total_load_moved); | 
 |  | 
 | 	return total_load_moved > 0; | 
 | } | 
 |  | 
 | /********** Helpers for find_busiest_group ************************/ | 
 | /* | 
 |  * sd_lb_stats - Structure to store the statistics of a sched_domain | 
 |  * 		during load balancing. | 
 |  */ | 
 | struct sd_lb_stats { | 
 | 	struct sched_group *busiest; /* Busiest group in this sd */ | 
 | 	struct sched_group *this;  /* Local group in this sd */ | 
 | 	unsigned long total_load;  /* Total load of all groups in sd */ | 
 | 	unsigned long total_pwr;   /*	Total power of all groups in sd */ | 
 | 	unsigned long avg_load;	   /* Average load across all groups in sd */ | 
 |  | 
 | 	/** Statistics of this group */ | 
 | 	unsigned long this_load; | 
 | 	unsigned long this_load_per_task; | 
 | 	unsigned long this_nr_running; | 
 |  | 
 | 	/* Statistics of the busiest group */ | 
 | 	unsigned long max_load; | 
 | 	unsigned long busiest_load_per_task; | 
 | 	unsigned long busiest_nr_running; | 
 | 	unsigned long busiest_group_capacity; | 
 |  | 
 | 	int group_imb; /* Is there imbalance in this sd */ | 
 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
 | 	int power_savings_balance; /* Is powersave balance needed for this sd */ | 
 | 	struct sched_group *group_min; /* Least loaded group in sd */ | 
 | 	struct sched_group *group_leader; /* Group which relieves group_min */ | 
 | 	unsigned long min_load_per_task; /* load_per_task in group_min */ | 
 | 	unsigned long leader_nr_running; /* Nr running of group_leader */ | 
 | 	unsigned long min_nr_running; /* Nr running of group_min */ | 
 | #endif | 
 | }; | 
 |  | 
 | /* | 
 |  * sg_lb_stats - stats of a sched_group required for load_balancing | 
 |  */ | 
 | struct sg_lb_stats { | 
 | 	unsigned long avg_load; /*Avg load across the CPUs of the group */ | 
 | 	unsigned long group_load; /* Total load over the CPUs of the group */ | 
 | 	unsigned long sum_nr_running; /* Nr tasks running in the group */ | 
 | 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | 
 | 	unsigned long group_capacity; | 
 | 	int group_imb; /* Is there an imbalance in the group ? */ | 
 | }; | 
 |  | 
 | /** | 
 |  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. | 
 |  * @group: The group whose first cpu is to be returned. | 
 |  */ | 
 | static inline unsigned int group_first_cpu(struct sched_group *group) | 
 | { | 
 | 	return cpumask_first(sched_group_cpus(group)); | 
 | } | 
 |  | 
 | /** | 
 |  * get_sd_load_idx - Obtain the load index for a given sched domain. | 
 |  * @sd: The sched_domain whose load_idx is to be obtained. | 
 |  * @idle: The Idle status of the CPU for whose sd load_icx is obtained. | 
 |  */ | 
 | static inline int get_sd_load_idx(struct sched_domain *sd, | 
 | 					enum cpu_idle_type idle) | 
 | { | 
 | 	int load_idx; | 
 |  | 
 | 	switch (idle) { | 
 | 	case CPU_NOT_IDLE: | 
 | 		load_idx = sd->busy_idx; | 
 | 		break; | 
 |  | 
 | 	case CPU_NEWLY_IDLE: | 
 | 		load_idx = sd->newidle_idx; | 
 | 		break; | 
 | 	default: | 
 | 		load_idx = sd->idle_idx; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return load_idx; | 
 | } | 
 |  | 
 |  | 
 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
 | /** | 
 |  * init_sd_power_savings_stats - Initialize power savings statistics for | 
 |  * the given sched_domain, during load balancing. | 
 |  * | 
 |  * @sd: Sched domain whose power-savings statistics are to be initialized. | 
 |  * @sds: Variable containing the statistics for sd. | 
 |  * @idle: Idle status of the CPU at which we're performing load-balancing. | 
 |  */ | 
 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | 
 | 	struct sd_lb_stats *sds, enum cpu_idle_type idle) | 
 | { | 
 | 	/* | 
 | 	 * Busy processors will not participate in power savings | 
 | 	 * balance. | 
 | 	 */ | 
 | 	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | 
 | 		sds->power_savings_balance = 0; | 
 | 	else { | 
 | 		sds->power_savings_balance = 1; | 
 | 		sds->min_nr_running = ULONG_MAX; | 
 | 		sds->leader_nr_running = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * update_sd_power_savings_stats - Update the power saving stats for a | 
 |  * sched_domain while performing load balancing. | 
 |  * | 
 |  * @group: sched_group belonging to the sched_domain under consideration. | 
 |  * @sds: Variable containing the statistics of the sched_domain | 
 |  * @local_group: Does group contain the CPU for which we're performing | 
 |  * 		load balancing ? | 
 |  * @sgs: Variable containing the statistics of the group. | 
 |  */ | 
 | static inline void update_sd_power_savings_stats(struct sched_group *group, | 
 | 	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | 
 | { | 
 |  | 
 | 	if (!sds->power_savings_balance) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * If the local group is idle or completely loaded | 
 | 	 * no need to do power savings balance at this domain | 
 | 	 */ | 
 | 	if (local_group && (sds->this_nr_running >= sgs->group_capacity || | 
 | 				!sds->this_nr_running)) | 
 | 		sds->power_savings_balance = 0; | 
 |  | 
 | 	/* | 
 | 	 * If a group is already running at full capacity or idle, | 
 | 	 * don't include that group in power savings calculations | 
 | 	 */ | 
 | 	if (!sds->power_savings_balance || | 
 | 		sgs->sum_nr_running >= sgs->group_capacity || | 
 | 		!sgs->sum_nr_running) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Calculate the group which has the least non-idle load. | 
 | 	 * This is the group from where we need to pick up the load | 
 | 	 * for saving power | 
 | 	 */ | 
 | 	if ((sgs->sum_nr_running < sds->min_nr_running) || | 
 | 	    (sgs->sum_nr_running == sds->min_nr_running && | 
 | 	     group_first_cpu(group) > group_first_cpu(sds->group_min))) { | 
 | 		sds->group_min = group; | 
 | 		sds->min_nr_running = sgs->sum_nr_running; | 
 | 		sds->min_load_per_task = sgs->sum_weighted_load / | 
 | 						sgs->sum_nr_running; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Calculate the group which is almost near its | 
 | 	 * capacity but still has some space to pick up some load | 
 | 	 * from other group and save more power | 
 | 	 */ | 
 | 	if (sgs->sum_nr_running + 1 > sgs->group_capacity) | 
 | 		return; | 
 |  | 
 | 	if (sgs->sum_nr_running > sds->leader_nr_running || | 
 | 	    (sgs->sum_nr_running == sds->leader_nr_running && | 
 | 	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) { | 
 | 		sds->group_leader = group; | 
 | 		sds->leader_nr_running = sgs->sum_nr_running; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * check_power_save_busiest_group - see if there is potential for some power-savings balance | 
 |  * @sds: Variable containing the statistics of the sched_domain | 
 |  *	under consideration. | 
 |  * @this_cpu: Cpu at which we're currently performing load-balancing. | 
 |  * @imbalance: Variable to store the imbalance. | 
 |  * | 
 |  * Description: | 
 |  * Check if we have potential to perform some power-savings balance. | 
 |  * If yes, set the busiest group to be the least loaded group in the | 
 |  * sched_domain, so that it's CPUs can be put to idle. | 
 |  * | 
 |  * Returns 1 if there is potential to perform power-savings balance. | 
 |  * Else returns 0. | 
 |  */ | 
 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | 
 | 					int this_cpu, unsigned long *imbalance) | 
 | { | 
 | 	if (!sds->power_savings_balance) | 
 | 		return 0; | 
 |  | 
 | 	if (sds->this != sds->group_leader || | 
 | 			sds->group_leader == sds->group_min) | 
 | 		return 0; | 
 |  | 
 | 	*imbalance = sds->min_load_per_task; | 
 | 	sds->busiest = sds->group_min; | 
 |  | 
 | 	return 1; | 
 |  | 
 | } | 
 | #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | 
 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | 
 | 	struct sd_lb_stats *sds, enum cpu_idle_type idle) | 
 | { | 
 | 	return; | 
 | } | 
 |  | 
 | static inline void update_sd_power_savings_stats(struct sched_group *group, | 
 | 	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | 
 | { | 
 | 	return; | 
 | } | 
 |  | 
 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | 
 | 					int this_cpu, unsigned long *imbalance) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | 
 |  | 
 |  | 
 | unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	return SCHED_LOAD_SCALE; | 
 | } | 
 |  | 
 | unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	return default_scale_freq_power(sd, cpu); | 
 | } | 
 |  | 
 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	unsigned long weight = sd->span_weight; | 
 | 	unsigned long smt_gain = sd->smt_gain; | 
 |  | 
 | 	smt_gain /= weight; | 
 |  | 
 | 	return smt_gain; | 
 | } | 
 |  | 
 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	return default_scale_smt_power(sd, cpu); | 
 | } | 
 |  | 
 | unsigned long scale_rt_power(int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	u64 total, available; | 
 |  | 
 | 	sched_avg_update(rq); | 
 |  | 
 | 	total = sched_avg_period() + (rq->clock - rq->age_stamp); | 
 | 	available = total - rq->rt_avg; | 
 |  | 
 | 	if (unlikely((s64)total < SCHED_LOAD_SCALE)) | 
 | 		total = SCHED_LOAD_SCALE; | 
 |  | 
 | 	total >>= SCHED_LOAD_SHIFT; | 
 |  | 
 | 	return div_u64(available, total); | 
 | } | 
 |  | 
 | static void update_cpu_power(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	unsigned long weight = sd->span_weight; | 
 | 	unsigned long power = SCHED_LOAD_SCALE; | 
 | 	struct sched_group *sdg = sd->groups; | 
 |  | 
 | 	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | 
 | 		if (sched_feat(ARCH_POWER)) | 
 | 			power *= arch_scale_smt_power(sd, cpu); | 
 | 		else | 
 | 			power *= default_scale_smt_power(sd, cpu); | 
 |  | 
 | 		power >>= SCHED_LOAD_SHIFT; | 
 | 	} | 
 |  | 
 | 	sdg->cpu_power_orig = power; | 
 |  | 
 | 	if (sched_feat(ARCH_POWER)) | 
 | 		power *= arch_scale_freq_power(sd, cpu); | 
 | 	else | 
 | 		power *= default_scale_freq_power(sd, cpu); | 
 |  | 
 | 	power >>= SCHED_LOAD_SHIFT; | 
 |  | 
 | 	power *= scale_rt_power(cpu); | 
 | 	power >>= SCHED_LOAD_SHIFT; | 
 |  | 
 | 	if (!power) | 
 | 		power = 1; | 
 |  | 
 | 	cpu_rq(cpu)->cpu_power = power; | 
 | 	sdg->cpu_power = power; | 
 | } | 
 |  | 
 | static void update_group_power(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	struct sched_domain *child = sd->child; | 
 | 	struct sched_group *group, *sdg = sd->groups; | 
 | 	unsigned long power; | 
 |  | 
 | 	if (!child) { | 
 | 		update_cpu_power(sd, cpu); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	power = 0; | 
 |  | 
 | 	group = child->groups; | 
 | 	do { | 
 | 		power += group->cpu_power; | 
 | 		group = group->next; | 
 | 	} while (group != child->groups); | 
 |  | 
 | 	sdg->cpu_power = power; | 
 | } | 
 |  | 
 | /* | 
 |  * Try and fix up capacity for tiny siblings, this is needed when | 
 |  * things like SD_ASYM_PACKING need f_b_g to select another sibling | 
 |  * which on its own isn't powerful enough. | 
 |  * | 
 |  * See update_sd_pick_busiest() and check_asym_packing(). | 
 |  */ | 
 | static inline int | 
 | fix_small_capacity(struct sched_domain *sd, struct sched_group *group) | 
 | { | 
 | 	/* | 
 | 	 * Only siblings can have significantly less than SCHED_LOAD_SCALE | 
 | 	 */ | 
 | 	if (sd->level != SD_LV_SIBLING) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * If ~90% of the cpu_power is still there, we're good. | 
 | 	 */ | 
 | 	if (group->cpu_power * 32 > group->cpu_power_orig * 29) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * update_sg_lb_stats - Update sched_group's statistics for load balancing. | 
 |  * @sd: The sched_domain whose statistics are to be updated. | 
 |  * @group: sched_group whose statistics are to be updated. | 
 |  * @this_cpu: Cpu for which load balance is currently performed. | 
 |  * @idle: Idle status of this_cpu | 
 |  * @load_idx: Load index of sched_domain of this_cpu for load calc. | 
 |  * @sd_idle: Idle status of the sched_domain containing group. | 
 |  * @local_group: Does group contain this_cpu. | 
 |  * @cpus: Set of cpus considered for load balancing. | 
 |  * @balance: Should we balance. | 
 |  * @sgs: variable to hold the statistics for this group. | 
 |  */ | 
 | static inline void update_sg_lb_stats(struct sched_domain *sd, | 
 | 			struct sched_group *group, int this_cpu, | 
 | 			enum cpu_idle_type idle, int load_idx, int *sd_idle, | 
 | 			int local_group, const struct cpumask *cpus, | 
 | 			int *balance, struct sg_lb_stats *sgs) | 
 | { | 
 | 	unsigned long load, max_cpu_load, min_cpu_load; | 
 | 	int i; | 
 | 	unsigned int balance_cpu = -1, first_idle_cpu = 0; | 
 | 	unsigned long avg_load_per_task = 0; | 
 |  | 
 | 	if (local_group) | 
 | 		balance_cpu = group_first_cpu(group); | 
 |  | 
 | 	/* Tally up the load of all CPUs in the group */ | 
 | 	max_cpu_load = 0; | 
 | 	min_cpu_load = ~0UL; | 
 |  | 
 | 	for_each_cpu_and(i, sched_group_cpus(group), cpus) { | 
 | 		struct rq *rq = cpu_rq(i); | 
 |  | 
 | 		if (*sd_idle && rq->nr_running) | 
 | 			*sd_idle = 0; | 
 |  | 
 | 		/* Bias balancing toward cpus of our domain */ | 
 | 		if (local_group) { | 
 | 			if (idle_cpu(i) && !first_idle_cpu) { | 
 | 				first_idle_cpu = 1; | 
 | 				balance_cpu = i; | 
 | 			} | 
 |  | 
 | 			load = target_load(i, load_idx); | 
 | 		} else { | 
 | 			load = source_load(i, load_idx); | 
 | 			if (load > max_cpu_load) | 
 | 				max_cpu_load = load; | 
 | 			if (min_cpu_load > load) | 
 | 				min_cpu_load = load; | 
 | 		} | 
 |  | 
 | 		sgs->group_load += load; | 
 | 		sgs->sum_nr_running += rq->nr_running; | 
 | 		sgs->sum_weighted_load += weighted_cpuload(i); | 
 |  | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * First idle cpu or the first cpu(busiest) in this sched group | 
 | 	 * is eligible for doing load balancing at this and above | 
 | 	 * domains. In the newly idle case, we will allow all the cpu's | 
 | 	 * to do the newly idle load balance. | 
 | 	 */ | 
 | 	if (idle != CPU_NEWLY_IDLE && local_group) { | 
 | 		if (balance_cpu != this_cpu) { | 
 | 			*balance = 0; | 
 | 			return; | 
 | 		} | 
 | 		update_group_power(sd, this_cpu); | 
 | 	} | 
 |  | 
 | 	/* Adjust by relative CPU power of the group */ | 
 | 	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power; | 
 |  | 
 | 	/* | 
 | 	 * Consider the group unbalanced when the imbalance is larger | 
 | 	 * than the average weight of two tasks. | 
 | 	 * | 
 | 	 * APZ: with cgroup the avg task weight can vary wildly and | 
 | 	 *      might not be a suitable number - should we keep a | 
 | 	 *      normalized nr_running number somewhere that negates | 
 | 	 *      the hierarchy? | 
 | 	 */ | 
 | 	if (sgs->sum_nr_running) | 
 | 		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; | 
 |  | 
 | 	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | 
 | 		sgs->group_imb = 1; | 
 |  | 
 | 	sgs->group_capacity = | 
 | 		DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE); | 
 | 	if (!sgs->group_capacity) | 
 | 		sgs->group_capacity = fix_small_capacity(sd, group); | 
 | } | 
 |  | 
 | /** | 
 |  * update_sd_pick_busiest - return 1 on busiest group | 
 |  * @sd: sched_domain whose statistics are to be checked | 
 |  * @sds: sched_domain statistics | 
 |  * @sg: sched_group candidate to be checked for being the busiest | 
 |  * @sgs: sched_group statistics | 
 |  * @this_cpu: the current cpu | 
 |  * | 
 |  * Determine if @sg is a busier group than the previously selected | 
 |  * busiest group. | 
 |  */ | 
 | static bool update_sd_pick_busiest(struct sched_domain *sd, | 
 | 				   struct sd_lb_stats *sds, | 
 | 				   struct sched_group *sg, | 
 | 				   struct sg_lb_stats *sgs, | 
 | 				   int this_cpu) | 
 | { | 
 | 	if (sgs->avg_load <= sds->max_load) | 
 | 		return false; | 
 |  | 
 | 	if (sgs->sum_nr_running > sgs->group_capacity) | 
 | 		return true; | 
 |  | 
 | 	if (sgs->group_imb) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * ASYM_PACKING needs to move all the work to the lowest | 
 | 	 * numbered CPUs in the group, therefore mark all groups | 
 | 	 * higher than ourself as busy. | 
 | 	 */ | 
 | 	if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && | 
 | 	    this_cpu < group_first_cpu(sg)) { | 
 | 		if (!sds->busiest) | 
 | 			return true; | 
 |  | 
 | 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * update_sd_lb_stats - Update sched_group's statistics for load balancing. | 
 |  * @sd: sched_domain whose statistics are to be updated. | 
 |  * @this_cpu: Cpu for which load balance is currently performed. | 
 |  * @idle: Idle status of this_cpu | 
 |  * @sd_idle: Idle status of the sched_domain containing sg. | 
 |  * @cpus: Set of cpus considered for load balancing. | 
 |  * @balance: Should we balance. | 
 |  * @sds: variable to hold the statistics for this sched_domain. | 
 |  */ | 
 | static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | 
 | 			enum cpu_idle_type idle, int *sd_idle, | 
 | 			const struct cpumask *cpus, int *balance, | 
 | 			struct sd_lb_stats *sds) | 
 | { | 
 | 	struct sched_domain *child = sd->child; | 
 | 	struct sched_group *sg = sd->groups; | 
 | 	struct sg_lb_stats sgs; | 
 | 	int load_idx, prefer_sibling = 0; | 
 |  | 
 | 	if (child && child->flags & SD_PREFER_SIBLING) | 
 | 		prefer_sibling = 1; | 
 |  | 
 | 	init_sd_power_savings_stats(sd, sds, idle); | 
 | 	load_idx = get_sd_load_idx(sd, idle); | 
 |  | 
 | 	do { | 
 | 		int local_group; | 
 |  | 
 | 		local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg)); | 
 | 		memset(&sgs, 0, sizeof(sgs)); | 
 | 		update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle, | 
 | 				local_group, cpus, balance, &sgs); | 
 |  | 
 | 		if (local_group && !(*balance)) | 
 | 			return; | 
 |  | 
 | 		sds->total_load += sgs.group_load; | 
 | 		sds->total_pwr += sg->cpu_power; | 
 |  | 
 | 		/* | 
 | 		 * In case the child domain prefers tasks go to siblings | 
 | 		 * first, lower the sg capacity to one so that we'll try | 
 | 		 * and move all the excess tasks away. | 
 | 		 */ | 
 | 		if (prefer_sibling) | 
 | 			sgs.group_capacity = min(sgs.group_capacity, 1UL); | 
 |  | 
 | 		if (local_group) { | 
 | 			sds->this_load = sgs.avg_load; | 
 | 			sds->this = sg; | 
 | 			sds->this_nr_running = sgs.sum_nr_running; | 
 | 			sds->this_load_per_task = sgs.sum_weighted_load; | 
 | 		} else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) { | 
 | 			sds->max_load = sgs.avg_load; | 
 | 			sds->busiest = sg; | 
 | 			sds->busiest_nr_running = sgs.sum_nr_running; | 
 | 			sds->busiest_group_capacity = sgs.group_capacity; | 
 | 			sds->busiest_load_per_task = sgs.sum_weighted_load; | 
 | 			sds->group_imb = sgs.group_imb; | 
 | 		} | 
 |  | 
 | 		update_sd_power_savings_stats(sg, sds, local_group, &sgs); | 
 | 		sg = sg->next; | 
 | 	} while (sg != sd->groups); | 
 | } | 
 |  | 
 | int __weak arch_sd_sibling_asym_packing(void) | 
 | { | 
 |        return 0*SD_ASYM_PACKING; | 
 | } | 
 |  | 
 | /** | 
 |  * check_asym_packing - Check to see if the group is packed into the | 
 |  *			sched doman. | 
 |  * | 
 |  * This is primarily intended to used at the sibling level.  Some | 
 |  * cores like POWER7 prefer to use lower numbered SMT threads.  In the | 
 |  * case of POWER7, it can move to lower SMT modes only when higher | 
 |  * threads are idle.  When in lower SMT modes, the threads will | 
 |  * perform better since they share less core resources.  Hence when we | 
 |  * have idle threads, we want them to be the higher ones. | 
 |  * | 
 |  * This packing function is run on idle threads.  It checks to see if | 
 |  * the busiest CPU in this domain (core in the P7 case) has a higher | 
 |  * CPU number than the packing function is being run on.  Here we are | 
 |  * assuming lower CPU number will be equivalent to lower a SMT thread | 
 |  * number. | 
 |  * | 
 |  * Returns 1 when packing is required and a task should be moved to | 
 |  * this CPU.  The amount of the imbalance is returned in *imbalance. | 
 |  * | 
 |  * @sd: The sched_domain whose packing is to be checked. | 
 |  * @sds: Statistics of the sched_domain which is to be packed | 
 |  * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | 
 |  * @imbalance: returns amount of imbalanced due to packing. | 
 |  */ | 
 | static int check_asym_packing(struct sched_domain *sd, | 
 | 			      struct sd_lb_stats *sds, | 
 | 			      int this_cpu, unsigned long *imbalance) | 
 | { | 
 | 	int busiest_cpu; | 
 |  | 
 | 	if (!(sd->flags & SD_ASYM_PACKING)) | 
 | 		return 0; | 
 |  | 
 | 	if (!sds->busiest) | 
 | 		return 0; | 
 |  | 
 | 	busiest_cpu = group_first_cpu(sds->busiest); | 
 | 	if (this_cpu > busiest_cpu) | 
 | 		return 0; | 
 |  | 
 | 	*imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power, | 
 | 				       SCHED_LOAD_SCALE); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  * fix_small_imbalance - Calculate the minor imbalance that exists | 
 |  *			amongst the groups of a sched_domain, during | 
 |  *			load balancing. | 
 |  * @sds: Statistics of the sched_domain whose imbalance is to be calculated. | 
 |  * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | 
 |  * @imbalance: Variable to store the imbalance. | 
 |  */ | 
 | static inline void fix_small_imbalance(struct sd_lb_stats *sds, | 
 | 				int this_cpu, unsigned long *imbalance) | 
 | { | 
 | 	unsigned long tmp, pwr_now = 0, pwr_move = 0; | 
 | 	unsigned int imbn = 2; | 
 | 	unsigned long scaled_busy_load_per_task; | 
 |  | 
 | 	if (sds->this_nr_running) { | 
 | 		sds->this_load_per_task /= sds->this_nr_running; | 
 | 		if (sds->busiest_load_per_task > | 
 | 				sds->this_load_per_task) | 
 | 			imbn = 1; | 
 | 	} else | 
 | 		sds->this_load_per_task = | 
 | 			cpu_avg_load_per_task(this_cpu); | 
 |  | 
 | 	scaled_busy_load_per_task = sds->busiest_load_per_task | 
 | 						 * SCHED_LOAD_SCALE; | 
 | 	scaled_busy_load_per_task /= sds->busiest->cpu_power; | 
 |  | 
 | 	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >= | 
 | 			(scaled_busy_load_per_task * imbn)) { | 
 | 		*imbalance = sds->busiest_load_per_task; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * OK, we don't have enough imbalance to justify moving tasks, | 
 | 	 * however we may be able to increase total CPU power used by | 
 | 	 * moving them. | 
 | 	 */ | 
 |  | 
 | 	pwr_now += sds->busiest->cpu_power * | 
 | 			min(sds->busiest_load_per_task, sds->max_load); | 
 | 	pwr_now += sds->this->cpu_power * | 
 | 			min(sds->this_load_per_task, sds->this_load); | 
 | 	pwr_now /= SCHED_LOAD_SCALE; | 
 |  | 
 | 	/* Amount of load we'd subtract */ | 
 | 	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / | 
 | 		sds->busiest->cpu_power; | 
 | 	if (sds->max_load > tmp) | 
 | 		pwr_move += sds->busiest->cpu_power * | 
 | 			min(sds->busiest_load_per_task, sds->max_load - tmp); | 
 |  | 
 | 	/* Amount of load we'd add */ | 
 | 	if (sds->max_load * sds->busiest->cpu_power < | 
 | 		sds->busiest_load_per_task * SCHED_LOAD_SCALE) | 
 | 		tmp = (sds->max_load * sds->busiest->cpu_power) / | 
 | 			sds->this->cpu_power; | 
 | 	else | 
 | 		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / | 
 | 			sds->this->cpu_power; | 
 | 	pwr_move += sds->this->cpu_power * | 
 | 			min(sds->this_load_per_task, sds->this_load + tmp); | 
 | 	pwr_move /= SCHED_LOAD_SCALE; | 
 |  | 
 | 	/* Move if we gain throughput */ | 
 | 	if (pwr_move > pwr_now) | 
 | 		*imbalance = sds->busiest_load_per_task; | 
 | } | 
 |  | 
 | /** | 
 |  * calculate_imbalance - Calculate the amount of imbalance present within the | 
 |  *			 groups of a given sched_domain during load balance. | 
 |  * @sds: statistics of the sched_domain whose imbalance is to be calculated. | 
 |  * @this_cpu: Cpu for which currently load balance is being performed. | 
 |  * @imbalance: The variable to store the imbalance. | 
 |  */ | 
 | static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | 
 | 		unsigned long *imbalance) | 
 | { | 
 | 	unsigned long max_pull, load_above_capacity = ~0UL; | 
 |  | 
 | 	sds->busiest_load_per_task /= sds->busiest_nr_running; | 
 | 	if (sds->group_imb) { | 
 | 		sds->busiest_load_per_task = | 
 | 			min(sds->busiest_load_per_task, sds->avg_load); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * In the presence of smp nice balancing, certain scenarios can have | 
 | 	 * max load less than avg load(as we skip the groups at or below | 
 | 	 * its cpu_power, while calculating max_load..) | 
 | 	 */ | 
 | 	if (sds->max_load < sds->avg_load) { | 
 | 		*imbalance = 0; | 
 | 		return fix_small_imbalance(sds, this_cpu, imbalance); | 
 | 	} | 
 |  | 
 | 	if (!sds->group_imb) { | 
 | 		/* | 
 | 		 * Don't want to pull so many tasks that a group would go idle. | 
 | 		 */ | 
 | 		load_above_capacity = (sds->busiest_nr_running - | 
 | 						sds->busiest_group_capacity); | 
 |  | 
 | 		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE); | 
 |  | 
 | 		load_above_capacity /= sds->busiest->cpu_power; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We're trying to get all the cpus to the average_load, so we don't | 
 | 	 * want to push ourselves above the average load, nor do we wish to | 
 | 	 * reduce the max loaded cpu below the average load. At the same time, | 
 | 	 * we also don't want to reduce the group load below the group capacity | 
 | 	 * (so that we can implement power-savings policies etc). Thus we look | 
 | 	 * for the minimum possible imbalance. | 
 | 	 * Be careful of negative numbers as they'll appear as very large values | 
 | 	 * with unsigned longs. | 
 | 	 */ | 
 | 	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity); | 
 |  | 
 | 	/* How much load to actually move to equalise the imbalance */ | 
 | 	*imbalance = min(max_pull * sds->busiest->cpu_power, | 
 | 		(sds->avg_load - sds->this_load) * sds->this->cpu_power) | 
 | 			/ SCHED_LOAD_SCALE; | 
 |  | 
 | 	/* | 
 | 	 * if *imbalance is less than the average load per runnable task | 
 | 	 * there is no gaurantee that any tasks will be moved so we'll have | 
 | 	 * a think about bumping its value to force at least one task to be | 
 | 	 * moved | 
 | 	 */ | 
 | 	if (*imbalance < sds->busiest_load_per_task) | 
 | 		return fix_small_imbalance(sds, this_cpu, imbalance); | 
 |  | 
 | } | 
 | /******* find_busiest_group() helpers end here *********************/ | 
 |  | 
 | /** | 
 |  * find_busiest_group - Returns the busiest group within the sched_domain | 
 |  * if there is an imbalance. If there isn't an imbalance, and | 
 |  * the user has opted for power-savings, it returns a group whose | 
 |  * CPUs can be put to idle by rebalancing those tasks elsewhere, if | 
 |  * such a group exists. | 
 |  * | 
 |  * Also calculates the amount of weighted load which should be moved | 
 |  * to restore balance. | 
 |  * | 
 |  * @sd: The sched_domain whose busiest group is to be returned. | 
 |  * @this_cpu: The cpu for which load balancing is currently being performed. | 
 |  * @imbalance: Variable which stores amount of weighted load which should | 
 |  *		be moved to restore balance/put a group to idle. | 
 |  * @idle: The idle status of this_cpu. | 
 |  * @sd_idle: The idleness of sd | 
 |  * @cpus: The set of CPUs under consideration for load-balancing. | 
 |  * @balance: Pointer to a variable indicating if this_cpu | 
 |  *	is the appropriate cpu to perform load balancing at this_level. | 
 |  * | 
 |  * Returns:	- the busiest group if imbalance exists. | 
 |  *		- If no imbalance and user has opted for power-savings balance, | 
 |  *		   return the least loaded group whose CPUs can be | 
 |  *		   put to idle by rebalancing its tasks onto our group. | 
 |  */ | 
 | static struct sched_group * | 
 | find_busiest_group(struct sched_domain *sd, int this_cpu, | 
 | 		   unsigned long *imbalance, enum cpu_idle_type idle, | 
 | 		   int *sd_idle, const struct cpumask *cpus, int *balance) | 
 | { | 
 | 	struct sd_lb_stats sds; | 
 |  | 
 | 	memset(&sds, 0, sizeof(sds)); | 
 |  | 
 | 	/* | 
 | 	 * Compute the various statistics relavent for load balancing at | 
 | 	 * this level. | 
 | 	 */ | 
 | 	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, | 
 | 					balance, &sds); | 
 |  | 
 | 	/* Cases where imbalance does not exist from POV of this_cpu */ | 
 | 	/* 1) this_cpu is not the appropriate cpu to perform load balancing | 
 | 	 *    at this level. | 
 | 	 * 2) There is no busy sibling group to pull from. | 
 | 	 * 3) This group is the busiest group. | 
 | 	 * 4) This group is more busy than the avg busieness at this | 
 | 	 *    sched_domain. | 
 | 	 * 5) The imbalance is within the specified limit. | 
 | 	 */ | 
 | 	if (!(*balance)) | 
 | 		goto ret; | 
 |  | 
 | 	if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) && | 
 | 	    check_asym_packing(sd, &sds, this_cpu, imbalance)) | 
 | 		return sds.busiest; | 
 |  | 
 | 	if (!sds.busiest || sds.busiest_nr_running == 0) | 
 | 		goto out_balanced; | 
 |  | 
 | 	if (sds.this_load >= sds.max_load) | 
 | 		goto out_balanced; | 
 |  | 
 | 	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; | 
 |  | 
 | 	if (sds.this_load >= sds.avg_load) | 
 | 		goto out_balanced; | 
 |  | 
 | 	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) | 
 | 		goto out_balanced; | 
 |  | 
 | 	/* Looks like there is an imbalance. Compute it */ | 
 | 	calculate_imbalance(&sds, this_cpu, imbalance); | 
 | 	return sds.busiest; | 
 |  | 
 | out_balanced: | 
 | 	/* | 
 | 	 * There is no obvious imbalance. But check if we can do some balancing | 
 | 	 * to save power. | 
 | 	 */ | 
 | 	if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) | 
 | 		return sds.busiest; | 
 | ret: | 
 | 	*imbalance = 0; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * find_busiest_queue - find the busiest runqueue among the cpus in group. | 
 |  */ | 
 | static struct rq * | 
 | find_busiest_queue(struct sched_domain *sd, struct sched_group *group, | 
 | 		   enum cpu_idle_type idle, unsigned long imbalance, | 
 | 		   const struct cpumask *cpus) | 
 | { | 
 | 	struct rq *busiest = NULL, *rq; | 
 | 	unsigned long max_load = 0; | 
 | 	int i; | 
 |  | 
 | 	for_each_cpu(i, sched_group_cpus(group)) { | 
 | 		unsigned long power = power_of(i); | 
 | 		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); | 
 | 		unsigned long wl; | 
 |  | 
 | 		if (!capacity) | 
 | 			capacity = fix_small_capacity(sd, group); | 
 |  | 
 | 		if (!cpumask_test_cpu(i, cpus)) | 
 | 			continue; | 
 |  | 
 | 		rq = cpu_rq(i); | 
 | 		wl = weighted_cpuload(i); | 
 |  | 
 | 		/* | 
 | 		 * When comparing with imbalance, use weighted_cpuload() | 
 | 		 * which is not scaled with the cpu power. | 
 | 		 */ | 
 | 		if (capacity && rq->nr_running == 1 && wl > imbalance) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * For the load comparisons with the other cpu's, consider | 
 | 		 * the weighted_cpuload() scaled with the cpu power, so that | 
 | 		 * the load can be moved away from the cpu that is potentially | 
 | 		 * running at a lower capacity. | 
 | 		 */ | 
 | 		wl = (wl * SCHED_LOAD_SCALE) / power; | 
 |  | 
 | 		if (wl > max_load) { | 
 | 			max_load = wl; | 
 | 			busiest = rq; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return busiest; | 
 | } | 
 |  | 
 | /* | 
 |  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | 
 |  * so long as it is large enough. | 
 |  */ | 
 | #define MAX_PINNED_INTERVAL	512 | 
 |  | 
 | /* Working cpumask for load_balance and load_balance_newidle. */ | 
 | static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); | 
 |  | 
 | static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle, | 
 | 			       int busiest_cpu, int this_cpu) | 
 | { | 
 | 	if (idle == CPU_NEWLY_IDLE) { | 
 |  | 
 | 		/* | 
 | 		 * ASYM_PACKING needs to force migrate tasks from busy but | 
 | 		 * higher numbered CPUs in order to pack all tasks in the | 
 | 		 * lowest numbered CPUs. | 
 | 		 */ | 
 | 		if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu) | 
 | 			return 1; | 
 |  | 
 | 		/* | 
 | 		 * The only task running in a non-idle cpu can be moved to this | 
 | 		 * cpu in an attempt to completely freeup the other CPU | 
 | 		 * package. | 
 | 		 * | 
 | 		 * The package power saving logic comes from | 
 | 		 * find_busiest_group(). If there are no imbalance, then | 
 | 		 * f_b_g() will return NULL. However when sched_mc={1,2} then | 
 | 		 * f_b_g() will select a group from which a running task may be | 
 | 		 * pulled to this cpu in order to make the other package idle. | 
 | 		 * If there is no opportunity to make a package idle and if | 
 | 		 * there are no imbalance, then f_b_g() will return NULL and no | 
 | 		 * action will be taken in load_balance_newidle(). | 
 | 		 * | 
 | 		 * Under normal task pull operation due to imbalance, there | 
 | 		 * will be more than one task in the source run queue and | 
 | 		 * move_tasks() will succeed.  ld_moved will be true and this | 
 | 		 * active balance code will not be triggered. | 
 | 		 */ | 
 | 		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 
 | 		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 
 | 			return 0; | 
 |  | 
 | 		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); | 
 | } | 
 |  | 
 | static int active_load_balance_cpu_stop(void *data); | 
 |  | 
 | /* | 
 |  * Check this_cpu to ensure it is balanced within domain. Attempt to move | 
 |  * tasks if there is an imbalance. | 
 |  */ | 
 | static int load_balance(int this_cpu, struct rq *this_rq, | 
 | 			struct sched_domain *sd, enum cpu_idle_type idle, | 
 | 			int *balance) | 
 | { | 
 | 	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; | 
 | 	struct sched_group *group; | 
 | 	unsigned long imbalance; | 
 | 	struct rq *busiest; | 
 | 	unsigned long flags; | 
 | 	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | 
 |  | 
 | 	cpumask_copy(cpus, cpu_active_mask); | 
 |  | 
 | 	/* | 
 | 	 * When power savings policy is enabled for the parent domain, idle | 
 | 	 * sibling can pick up load irrespective of busy siblings. In this case, | 
 | 	 * let the state of idle sibling percolate up as CPU_IDLE, instead of | 
 | 	 * portraying it as CPU_NOT_IDLE. | 
 | 	 */ | 
 | 	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && | 
 | 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 
 | 		sd_idle = 1; | 
 |  | 
 | 	schedstat_inc(sd, lb_count[idle]); | 
 |  | 
 | redo: | 
 | 	update_shares(sd); | 
 | 	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, | 
 | 				   cpus, balance); | 
 |  | 
 | 	if (*balance == 0) | 
 | 		goto out_balanced; | 
 |  | 
 | 	if (!group) { | 
 | 		schedstat_inc(sd, lb_nobusyg[idle]); | 
 | 		goto out_balanced; | 
 | 	} | 
 |  | 
 | 	busiest = find_busiest_queue(sd, group, idle, imbalance, cpus); | 
 | 	if (!busiest) { | 
 | 		schedstat_inc(sd, lb_nobusyq[idle]); | 
 | 		goto out_balanced; | 
 | 	} | 
 |  | 
 | 	BUG_ON(busiest == this_rq); | 
 |  | 
 | 	schedstat_add(sd, lb_imbalance[idle], imbalance); | 
 |  | 
 | 	ld_moved = 0; | 
 | 	if (busiest->nr_running > 1) { | 
 | 		/* | 
 | 		 * Attempt to move tasks. If find_busiest_group has found | 
 | 		 * an imbalance but busiest->nr_running <= 1, the group is | 
 | 		 * still unbalanced. ld_moved simply stays zero, so it is | 
 | 		 * correctly treated as an imbalance. | 
 | 		 */ | 
 | 		local_irq_save(flags); | 
 | 		double_rq_lock(this_rq, busiest); | 
 | 		ld_moved = move_tasks(this_rq, this_cpu, busiest, | 
 | 				      imbalance, sd, idle, &all_pinned); | 
 | 		double_rq_unlock(this_rq, busiest); | 
 | 		local_irq_restore(flags); | 
 |  | 
 | 		/* | 
 | 		 * some other cpu did the load balance for us. | 
 | 		 */ | 
 | 		if (ld_moved && this_cpu != smp_processor_id()) | 
 | 			resched_cpu(this_cpu); | 
 |  | 
 | 		/* All tasks on this runqueue were pinned by CPU affinity */ | 
 | 		if (unlikely(all_pinned)) { | 
 | 			cpumask_clear_cpu(cpu_of(busiest), cpus); | 
 | 			if (!cpumask_empty(cpus)) | 
 | 				goto redo; | 
 | 			goto out_balanced; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!ld_moved) { | 
 | 		schedstat_inc(sd, lb_failed[idle]); | 
 | 		sd->nr_balance_failed++; | 
 |  | 
 | 		if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest), | 
 | 					this_cpu)) { | 
 | 			raw_spin_lock_irqsave(&busiest->lock, flags); | 
 |  | 
 | 			/* don't kick the active_load_balance_cpu_stop, | 
 | 			 * if the curr task on busiest cpu can't be | 
 | 			 * moved to this_cpu | 
 | 			 */ | 
 | 			if (!cpumask_test_cpu(this_cpu, | 
 | 					      &busiest->curr->cpus_allowed)) { | 
 | 				raw_spin_unlock_irqrestore(&busiest->lock, | 
 | 							    flags); | 
 | 				all_pinned = 1; | 
 | 				goto out_one_pinned; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * ->active_balance synchronizes accesses to | 
 | 			 * ->active_balance_work.  Once set, it's cleared | 
 | 			 * only after active load balance is finished. | 
 | 			 */ | 
 | 			if (!busiest->active_balance) { | 
 | 				busiest->active_balance = 1; | 
 | 				busiest->push_cpu = this_cpu; | 
 | 				active_balance = 1; | 
 | 			} | 
 | 			raw_spin_unlock_irqrestore(&busiest->lock, flags); | 
 |  | 
 | 			if (active_balance) | 
 | 				stop_one_cpu_nowait(cpu_of(busiest), | 
 | 					active_load_balance_cpu_stop, busiest, | 
 | 					&busiest->active_balance_work); | 
 |  | 
 | 			/* | 
 | 			 * We've kicked active balancing, reset the failure | 
 | 			 * counter. | 
 | 			 */ | 
 | 			sd->nr_balance_failed = sd->cache_nice_tries+1; | 
 | 		} | 
 | 	} else | 
 | 		sd->nr_balance_failed = 0; | 
 |  | 
 | 	if (likely(!active_balance)) { | 
 | 		/* We were unbalanced, so reset the balancing interval */ | 
 | 		sd->balance_interval = sd->min_interval; | 
 | 	} else { | 
 | 		/* | 
 | 		 * If we've begun active balancing, start to back off. This | 
 | 		 * case may not be covered by the all_pinned logic if there | 
 | 		 * is only 1 task on the busy runqueue (because we don't call | 
 | 		 * move_tasks). | 
 | 		 */ | 
 | 		if (sd->balance_interval < sd->max_interval) | 
 | 			sd->balance_interval *= 2; | 
 | 	} | 
 |  | 
 | 	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 
 | 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 
 | 		ld_moved = -1; | 
 |  | 
 | 	goto out; | 
 |  | 
 | out_balanced: | 
 | 	schedstat_inc(sd, lb_balanced[idle]); | 
 |  | 
 | 	sd->nr_balance_failed = 0; | 
 |  | 
 | out_one_pinned: | 
 | 	/* tune up the balancing interval */ | 
 | 	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || | 
 | 			(sd->balance_interval < sd->max_interval)) | 
 | 		sd->balance_interval *= 2; | 
 |  | 
 | 	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 
 | 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 
 | 		ld_moved = -1; | 
 | 	else | 
 | 		ld_moved = 0; | 
 | out: | 
 | 	if (ld_moved) | 
 | 		update_shares(sd); | 
 | 	return ld_moved; | 
 | } | 
 |  | 
 | /* | 
 |  * idle_balance is called by schedule() if this_cpu is about to become | 
 |  * idle. Attempts to pull tasks from other CPUs. | 
 |  */ | 
 | static void idle_balance(int this_cpu, struct rq *this_rq) | 
 | { | 
 | 	struct sched_domain *sd; | 
 | 	int pulled_task = 0; | 
 | 	unsigned long next_balance = jiffies + HZ; | 
 |  | 
 | 	this_rq->idle_stamp = this_rq->clock; | 
 |  | 
 | 	if (this_rq->avg_idle < sysctl_sched_migration_cost) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Drop the rq->lock, but keep IRQ/preempt disabled. | 
 | 	 */ | 
 | 	raw_spin_unlock(&this_rq->lock); | 
 |  | 
 | 	for_each_domain(this_cpu, sd) { | 
 | 		unsigned long interval; | 
 | 		int balance = 1; | 
 |  | 
 | 		if (!(sd->flags & SD_LOAD_BALANCE)) | 
 | 			continue; | 
 |  | 
 | 		if (sd->flags & SD_BALANCE_NEWIDLE) { | 
 | 			/* If we've pulled tasks over stop searching: */ | 
 | 			pulled_task = load_balance(this_cpu, this_rq, | 
 | 						   sd, CPU_NEWLY_IDLE, &balance); | 
 | 		} | 
 |  | 
 | 		interval = msecs_to_jiffies(sd->balance_interval); | 
 | 		if (time_after(next_balance, sd->last_balance + interval)) | 
 | 			next_balance = sd->last_balance + interval; | 
 | 		if (pulled_task) { | 
 | 			this_rq->idle_stamp = 0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	raw_spin_lock(&this_rq->lock); | 
 |  | 
 | 	if (pulled_task || time_after(jiffies, this_rq->next_balance)) { | 
 | 		/* | 
 | 		 * We are going idle. next_balance may be set based on | 
 | 		 * a busy processor. So reset next_balance. | 
 | 		 */ | 
 | 		this_rq->next_balance = next_balance; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * active_load_balance_cpu_stop is run by cpu stopper. It pushes | 
 |  * running tasks off the busiest CPU onto idle CPUs. It requires at | 
 |  * least 1 task to be running on each physical CPU where possible, and | 
 |  * avoids physical / logical imbalances. | 
 |  */ | 
 | static int active_load_balance_cpu_stop(void *data) | 
 | { | 
 | 	struct rq *busiest_rq = data; | 
 | 	int busiest_cpu = cpu_of(busiest_rq); | 
 | 	int target_cpu = busiest_rq->push_cpu; | 
 | 	struct rq *target_rq = cpu_rq(target_cpu); | 
 | 	struct sched_domain *sd; | 
 |  | 
 | 	raw_spin_lock_irq(&busiest_rq->lock); | 
 |  | 
 | 	/* make sure the requested cpu hasn't gone down in the meantime */ | 
 | 	if (unlikely(busiest_cpu != smp_processor_id() || | 
 | 		     !busiest_rq->active_balance)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* Is there any task to move? */ | 
 | 	if (busiest_rq->nr_running <= 1) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * This condition is "impossible", if it occurs | 
 | 	 * we need to fix it. Originally reported by | 
 | 	 * Bjorn Helgaas on a 128-cpu setup. | 
 | 	 */ | 
 | 	BUG_ON(busiest_rq == target_rq); | 
 |  | 
 | 	/* move a task from busiest_rq to target_rq */ | 
 | 	double_lock_balance(busiest_rq, target_rq); | 
 |  | 
 | 	/* Search for an sd spanning us and the target CPU. */ | 
 | 	for_each_domain(target_cpu, sd) { | 
 | 		if ((sd->flags & SD_LOAD_BALANCE) && | 
 | 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) | 
 | 				break; | 
 | 	} | 
 |  | 
 | 	if (likely(sd)) { | 
 | 		schedstat_inc(sd, alb_count); | 
 |  | 
 | 		if (move_one_task(target_rq, target_cpu, busiest_rq, | 
 | 				  sd, CPU_IDLE)) | 
 | 			schedstat_inc(sd, alb_pushed); | 
 | 		else | 
 | 			schedstat_inc(sd, alb_failed); | 
 | 	} | 
 | 	double_unlock_balance(busiest_rq, target_rq); | 
 | out_unlock: | 
 | 	busiest_rq->active_balance = 0; | 
 | 	raw_spin_unlock_irq(&busiest_rq->lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NO_HZ | 
 |  | 
 | static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb); | 
 |  | 
 | static void trigger_sched_softirq(void *data) | 
 | { | 
 | 	raise_softirq_irqoff(SCHED_SOFTIRQ); | 
 | } | 
 |  | 
 | static inline void init_sched_softirq_csd(struct call_single_data *csd) | 
 | { | 
 | 	csd->func = trigger_sched_softirq; | 
 | 	csd->info = NULL; | 
 | 	csd->flags = 0; | 
 | 	csd->priv = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * idle load balancing details | 
 |  * - One of the idle CPUs nominates itself as idle load_balancer, while | 
 |  *   entering idle. | 
 |  * - This idle load balancer CPU will also go into tickless mode when | 
 |  *   it is idle, just like all other idle CPUs | 
 |  * - When one of the busy CPUs notice that there may be an idle rebalancing | 
 |  *   needed, they will kick the idle load balancer, which then does idle | 
 |  *   load balancing for all the idle CPUs. | 
 |  */ | 
 | static struct { | 
 | 	atomic_t load_balancer; | 
 | 	atomic_t first_pick_cpu; | 
 | 	atomic_t second_pick_cpu; | 
 | 	cpumask_var_t idle_cpus_mask; | 
 | 	cpumask_var_t grp_idle_mask; | 
 | 	unsigned long next_balance;     /* in jiffy units */ | 
 | } nohz ____cacheline_aligned; | 
 |  | 
 | int get_nohz_load_balancer(void) | 
 | { | 
 | 	return atomic_read(&nohz.load_balancer); | 
 | } | 
 |  | 
 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
 | /** | 
 |  * lowest_flag_domain - Return lowest sched_domain containing flag. | 
 |  * @cpu:	The cpu whose lowest level of sched domain is to | 
 |  *		be returned. | 
 |  * @flag:	The flag to check for the lowest sched_domain | 
 |  *		for the given cpu. | 
 |  * | 
 |  * Returns the lowest sched_domain of a cpu which contains the given flag. | 
 |  */ | 
 | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) | 
 | { | 
 | 	struct sched_domain *sd; | 
 |  | 
 | 	for_each_domain(cpu, sd) | 
 | 		if (sd && (sd->flags & flag)) | 
 | 			break; | 
 |  | 
 | 	return sd; | 
 | } | 
 |  | 
 | /** | 
 |  * for_each_flag_domain - Iterates over sched_domains containing the flag. | 
 |  * @cpu:	The cpu whose domains we're iterating over. | 
 |  * @sd:		variable holding the value of the power_savings_sd | 
 |  *		for cpu. | 
 |  * @flag:	The flag to filter the sched_domains to be iterated. | 
 |  * | 
 |  * Iterates over all the scheduler domains for a given cpu that has the 'flag' | 
 |  * set, starting from the lowest sched_domain to the highest. | 
 |  */ | 
 | #define for_each_flag_domain(cpu, sd, flag) \ | 
 | 	for (sd = lowest_flag_domain(cpu, flag); \ | 
 | 		(sd && (sd->flags & flag)); sd = sd->parent) | 
 |  | 
 | /** | 
 |  * is_semi_idle_group - Checks if the given sched_group is semi-idle. | 
 |  * @ilb_group:	group to be checked for semi-idleness | 
 |  * | 
 |  * Returns:	1 if the group is semi-idle. 0 otherwise. | 
 |  * | 
 |  * We define a sched_group to be semi idle if it has atleast one idle-CPU | 
 |  * and atleast one non-idle CPU. This helper function checks if the given | 
 |  * sched_group is semi-idle or not. | 
 |  */ | 
 | static inline int is_semi_idle_group(struct sched_group *ilb_group) | 
 | { | 
 | 	cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask, | 
 | 					sched_group_cpus(ilb_group)); | 
 |  | 
 | 	/* | 
 | 	 * A sched_group is semi-idle when it has atleast one busy cpu | 
 | 	 * and atleast one idle cpu. | 
 | 	 */ | 
 | 	if (cpumask_empty(nohz.grp_idle_mask)) | 
 | 		return 0; | 
 |  | 
 | 	if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group))) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 | /** | 
 |  * find_new_ilb - Finds the optimum idle load balancer for nomination. | 
 |  * @cpu:	The cpu which is nominating a new idle_load_balancer. | 
 |  * | 
 |  * Returns:	Returns the id of the idle load balancer if it exists, | 
 |  *		Else, returns >= nr_cpu_ids. | 
 |  * | 
 |  * This algorithm picks the idle load balancer such that it belongs to a | 
 |  * semi-idle powersavings sched_domain. The idea is to try and avoid | 
 |  * completely idle packages/cores just for the purpose of idle load balancing | 
 |  * when there are other idle cpu's which are better suited for that job. | 
 |  */ | 
 | static int find_new_ilb(int cpu) | 
 | { | 
 | 	struct sched_domain *sd; | 
 | 	struct sched_group *ilb_group; | 
 |  | 
 | 	/* | 
 | 	 * Have idle load balancer selection from semi-idle packages only | 
 | 	 * when power-aware load balancing is enabled | 
 | 	 */ | 
 | 	if (!(sched_smt_power_savings || sched_mc_power_savings)) | 
 | 		goto out_done; | 
 |  | 
 | 	/* | 
 | 	 * Optimize for the case when we have no idle CPUs or only one | 
 | 	 * idle CPU. Don't walk the sched_domain hierarchy in such cases | 
 | 	 */ | 
 | 	if (cpumask_weight(nohz.idle_cpus_mask) < 2) | 
 | 		goto out_done; | 
 |  | 
 | 	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { | 
 | 		ilb_group = sd->groups; | 
 |  | 
 | 		do { | 
 | 			if (is_semi_idle_group(ilb_group)) | 
 | 				return cpumask_first(nohz.grp_idle_mask); | 
 |  | 
 | 			ilb_group = ilb_group->next; | 
 |  | 
 | 		} while (ilb_group != sd->groups); | 
 | 	} | 
 |  | 
 | out_done: | 
 | 	return nr_cpu_ids; | 
 | } | 
 | #else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ | 
 | static inline int find_new_ilb(int call_cpu) | 
 | { | 
 | 	return nr_cpu_ids; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the | 
 |  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle | 
 |  * CPU (if there is one). | 
 |  */ | 
 | static void nohz_balancer_kick(int cpu) | 
 | { | 
 | 	int ilb_cpu; | 
 |  | 
 | 	nohz.next_balance++; | 
 |  | 
 | 	ilb_cpu = get_nohz_load_balancer(); | 
 |  | 
 | 	if (ilb_cpu >= nr_cpu_ids) { | 
 | 		ilb_cpu = cpumask_first(nohz.idle_cpus_mask); | 
 | 		if (ilb_cpu >= nr_cpu_ids) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	if (!cpu_rq(ilb_cpu)->nohz_balance_kick) { | 
 | 		struct call_single_data *cp; | 
 |  | 
 | 		cpu_rq(ilb_cpu)->nohz_balance_kick = 1; | 
 | 		cp = &per_cpu(remote_sched_softirq_cb, cpu); | 
 | 		__smp_call_function_single(ilb_cpu, cp, 0); | 
 | 	} | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * This routine will try to nominate the ilb (idle load balancing) | 
 |  * owner among the cpus whose ticks are stopped. ilb owner will do the idle | 
 |  * load balancing on behalf of all those cpus. | 
 |  * | 
 |  * When the ilb owner becomes busy, we will not have new ilb owner until some | 
 |  * idle CPU wakes up and goes back to idle or some busy CPU tries to kick | 
 |  * idle load balancing by kicking one of the idle CPUs. | 
 |  * | 
 |  * Ticks are stopped for the ilb owner as well, with busy CPU kicking this | 
 |  * ilb owner CPU in future (when there is a need for idle load balancing on | 
 |  * behalf of all idle CPUs). | 
 |  */ | 
 | void select_nohz_load_balancer(int stop_tick) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | 	if (stop_tick) { | 
 | 		if (!cpu_active(cpu)) { | 
 | 			if (atomic_read(&nohz.load_balancer) != cpu) | 
 | 				return; | 
 |  | 
 | 			/* | 
 | 			 * If we are going offline and still the leader, | 
 | 			 * give up! | 
 | 			 */ | 
 | 			if (atomic_cmpxchg(&nohz.load_balancer, cpu, | 
 | 					   nr_cpu_ids) != cpu) | 
 | 				BUG(); | 
 |  | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		cpumask_set_cpu(cpu, nohz.idle_cpus_mask); | 
 |  | 
 | 		if (atomic_read(&nohz.first_pick_cpu) == cpu) | 
 | 			atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids); | 
 | 		if (atomic_read(&nohz.second_pick_cpu) == cpu) | 
 | 			atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids); | 
 |  | 
 | 		if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) { | 
 | 			int new_ilb; | 
 |  | 
 | 			/* make me the ilb owner */ | 
 | 			if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids, | 
 | 					   cpu) != nr_cpu_ids) | 
 | 				return; | 
 |  | 
 | 			/* | 
 | 			 * Check to see if there is a more power-efficient | 
 | 			 * ilb. | 
 | 			 */ | 
 | 			new_ilb = find_new_ilb(cpu); | 
 | 			if (new_ilb < nr_cpu_ids && new_ilb != cpu) { | 
 | 				atomic_set(&nohz.load_balancer, nr_cpu_ids); | 
 | 				resched_cpu(new_ilb); | 
 | 				return; | 
 | 			} | 
 | 			return; | 
 | 		} | 
 | 	} else { | 
 | 		if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) | 
 | 			return; | 
 |  | 
 | 		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); | 
 |  | 
 | 		if (atomic_read(&nohz.load_balancer) == cpu) | 
 | 			if (atomic_cmpxchg(&nohz.load_balancer, cpu, | 
 | 					   nr_cpu_ids) != cpu) | 
 | 				BUG(); | 
 | 	} | 
 | 	return; | 
 | } | 
 | #endif | 
 |  | 
 | static DEFINE_SPINLOCK(balancing); | 
 |  | 
 | /* | 
 |  * It checks each scheduling domain to see if it is due to be balanced, | 
 |  * and initiates a balancing operation if so. | 
 |  * | 
 |  * Balancing parameters are set up in arch_init_sched_domains. | 
 |  */ | 
 | static void rebalance_domains(int cpu, enum cpu_idle_type idle) | 
 | { | 
 | 	int balance = 1; | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long interval; | 
 | 	struct sched_domain *sd; | 
 | 	/* Earliest time when we have to do rebalance again */ | 
 | 	unsigned long next_balance = jiffies + 60*HZ; | 
 | 	int update_next_balance = 0; | 
 | 	int need_serialize; | 
 |  | 
 | 	for_each_domain(cpu, sd) { | 
 | 		if (!(sd->flags & SD_LOAD_BALANCE)) | 
 | 			continue; | 
 |  | 
 | 		interval = sd->balance_interval; | 
 | 		if (idle != CPU_IDLE) | 
 | 			interval *= sd->busy_factor; | 
 |  | 
 | 		/* scale ms to jiffies */ | 
 | 		interval = msecs_to_jiffies(interval); | 
 | 		if (unlikely(!interval)) | 
 | 			interval = 1; | 
 | 		if (interval > HZ*NR_CPUS/10) | 
 | 			interval = HZ*NR_CPUS/10; | 
 |  | 
 | 		need_serialize = sd->flags & SD_SERIALIZE; | 
 |  | 
 | 		if (need_serialize) { | 
 | 			if (!spin_trylock(&balancing)) | 
 | 				goto out; | 
 | 		} | 
 |  | 
 | 		if (time_after_eq(jiffies, sd->last_balance + interval)) { | 
 | 			if (load_balance(cpu, rq, sd, idle, &balance)) { | 
 | 				/* | 
 | 				 * We've pulled tasks over so either we're no | 
 | 				 * longer idle, or one of our SMT siblings is | 
 | 				 * not idle. | 
 | 				 */ | 
 | 				idle = CPU_NOT_IDLE; | 
 | 			} | 
 | 			sd->last_balance = jiffies; | 
 | 		} | 
 | 		if (need_serialize) | 
 | 			spin_unlock(&balancing); | 
 | out: | 
 | 		if (time_after(next_balance, sd->last_balance + interval)) { | 
 | 			next_balance = sd->last_balance + interval; | 
 | 			update_next_balance = 1; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Stop the load balance at this level. There is another | 
 | 		 * CPU in our sched group which is doing load balancing more | 
 | 		 * actively. | 
 | 		 */ | 
 | 		if (!balance) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * next_balance will be updated only when there is a need. | 
 | 	 * When the cpu is attached to null domain for ex, it will not be | 
 | 	 * updated. | 
 | 	 */ | 
 | 	if (likely(update_next_balance)) | 
 | 		rq->next_balance = next_balance; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NO_HZ | 
 | /* | 
 |  * In CONFIG_NO_HZ case, the idle balance kickee will do the | 
 |  * rebalancing for all the cpus for whom scheduler ticks are stopped. | 
 |  */ | 
 | static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) | 
 | { | 
 | 	struct rq *this_rq = cpu_rq(this_cpu); | 
 | 	struct rq *rq; | 
 | 	int balance_cpu; | 
 |  | 
 | 	if (idle != CPU_IDLE || !this_rq->nohz_balance_kick) | 
 | 		return; | 
 |  | 
 | 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { | 
 | 		if (balance_cpu == this_cpu) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * If this cpu gets work to do, stop the load balancing | 
 | 		 * work being done for other cpus. Next load | 
 | 		 * balancing owner will pick it up. | 
 | 		 */ | 
 | 		if (need_resched()) { | 
 | 			this_rq->nohz_balance_kick = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		raw_spin_lock_irq(&this_rq->lock); | 
 | 		update_rq_clock(this_rq); | 
 | 		update_cpu_load(this_rq); | 
 | 		raw_spin_unlock_irq(&this_rq->lock); | 
 |  | 
 | 		rebalance_domains(balance_cpu, CPU_IDLE); | 
 |  | 
 | 		rq = cpu_rq(balance_cpu); | 
 | 		if (time_after(this_rq->next_balance, rq->next_balance)) | 
 | 			this_rq->next_balance = rq->next_balance; | 
 | 	} | 
 | 	nohz.next_balance = this_rq->next_balance; | 
 | 	this_rq->nohz_balance_kick = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Current heuristic for kicking the idle load balancer | 
 |  * - first_pick_cpu is the one of the busy CPUs. It will kick | 
 |  *   idle load balancer when it has more than one process active. This | 
 |  *   eliminates the need for idle load balancing altogether when we have | 
 |  *   only one running process in the system (common case). | 
 |  * - If there are more than one busy CPU, idle load balancer may have | 
 |  *   to run for active_load_balance to happen (i.e., two busy CPUs are | 
 |  *   SMT or core siblings and can run better if they move to different | 
 |  *   physical CPUs). So, second_pick_cpu is the second of the busy CPUs | 
 |  *   which will kick idle load balancer as soon as it has any load. | 
 |  */ | 
 | static inline int nohz_kick_needed(struct rq *rq, int cpu) | 
 | { | 
 | 	unsigned long now = jiffies; | 
 | 	int ret; | 
 | 	int first_pick_cpu, second_pick_cpu; | 
 |  | 
 | 	if (time_before(now, nohz.next_balance)) | 
 | 		return 0; | 
 |  | 
 | 	if (!rq->nr_running) | 
 | 		return 0; | 
 |  | 
 | 	first_pick_cpu = atomic_read(&nohz.first_pick_cpu); | 
 | 	second_pick_cpu = atomic_read(&nohz.second_pick_cpu); | 
 |  | 
 | 	if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu && | 
 | 	    second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu) | 
 | 		return 0; | 
 |  | 
 | 	ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu); | 
 | 	if (ret == nr_cpu_ids || ret == cpu) { | 
 | 		atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids); | 
 | 		if (rq->nr_running > 1) | 
 | 			return 1; | 
 | 	} else { | 
 | 		ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu); | 
 | 		if (ret == nr_cpu_ids || ret == cpu) { | 
 | 			if (rq->nr_running) | 
 | 				return 1; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | #else | 
 | static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } | 
 | #endif | 
 |  | 
 | /* | 
 |  * run_rebalance_domains is triggered when needed from the scheduler tick. | 
 |  * Also triggered for nohz idle balancing (with nohz_balancing_kick set). | 
 |  */ | 
 | static void run_rebalance_domains(struct softirq_action *h) | 
 | { | 
 | 	int this_cpu = smp_processor_id(); | 
 | 	struct rq *this_rq = cpu_rq(this_cpu); | 
 | 	enum cpu_idle_type idle = this_rq->idle_at_tick ? | 
 | 						CPU_IDLE : CPU_NOT_IDLE; | 
 |  | 
 | 	rebalance_domains(this_cpu, idle); | 
 |  | 
 | 	/* | 
 | 	 * If this cpu has a pending nohz_balance_kick, then do the | 
 | 	 * balancing on behalf of the other idle cpus whose ticks are | 
 | 	 * stopped. | 
 | 	 */ | 
 | 	nohz_idle_balance(this_cpu, idle); | 
 | } | 
 |  | 
 | static inline int on_null_domain(int cpu) | 
 | { | 
 | 	return !rcu_dereference_sched(cpu_rq(cpu)->sd); | 
 | } | 
 |  | 
 | /* | 
 |  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | 
 |  */ | 
 | static inline void trigger_load_balance(struct rq *rq, int cpu) | 
 | { | 
 | 	/* Don't need to rebalance while attached to NULL domain */ | 
 | 	if (time_after_eq(jiffies, rq->next_balance) && | 
 | 	    likely(!on_null_domain(cpu))) | 
 | 		raise_softirq(SCHED_SOFTIRQ); | 
 | #ifdef CONFIG_NO_HZ | 
 | 	else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) | 
 | 		nohz_balancer_kick(cpu); | 
 | #endif | 
 | } | 
 |  | 
 | static void rq_online_fair(struct rq *rq) | 
 | { | 
 | 	update_sysctl(); | 
 | } | 
 |  | 
 | static void rq_offline_fair(struct rq *rq) | 
 | { | 
 | 	update_sysctl(); | 
 | } | 
 |  | 
 | #else	/* CONFIG_SMP */ | 
 |  | 
 | /* | 
 |  * on UP we do not need to balance between CPUs: | 
 |  */ | 
 | static inline void idle_balance(int cpu, struct rq *rq) | 
 | { | 
 | } | 
 |  | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | /* | 
 |  * scheduler tick hitting a task of our scheduling class: | 
 |  */ | 
 | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	struct sched_entity *se = &curr->se; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		entity_tick(cfs_rq, se, queued); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * called on fork with the child task as argument from the parent's context | 
 |  *  - child not yet on the tasklist | 
 |  *  - preemption disabled | 
 |  */ | 
 | static void task_fork_fair(struct task_struct *p) | 
 | { | 
 | 	struct cfs_rq *cfs_rq = task_cfs_rq(current); | 
 | 	struct sched_entity *se = &p->se, *curr = cfs_rq->curr; | 
 | 	int this_cpu = smp_processor_id(); | 
 | 	struct rq *rq = this_rq(); | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&rq->lock, flags); | 
 |  | 
 | 	update_rq_clock(rq); | 
 |  | 
 | 	if (unlikely(task_cpu(p) != this_cpu)) | 
 | 		__set_task_cpu(p, this_cpu); | 
 |  | 
 | 	update_curr(cfs_rq); | 
 |  | 
 | 	if (curr) | 
 | 		se->vruntime = curr->vruntime; | 
 | 	place_entity(cfs_rq, se, 1); | 
 |  | 
 | 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { | 
 | 		/* | 
 | 		 * Upon rescheduling, sched_class::put_prev_task() will place | 
 | 		 * 'current' within the tree based on its new key value. | 
 | 		 */ | 
 | 		swap(curr->vruntime, se->vruntime); | 
 | 		resched_task(rq->curr); | 
 | 	} | 
 |  | 
 | 	se->vruntime -= cfs_rq->min_vruntime; | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Priority of the task has changed. Check to see if we preempt | 
 |  * the current task. | 
 |  */ | 
 | static void prio_changed_fair(struct rq *rq, struct task_struct *p, | 
 | 			      int oldprio, int running) | 
 | { | 
 | 	/* | 
 | 	 * Reschedule if we are currently running on this runqueue and | 
 | 	 * our priority decreased, or if we are not currently running on | 
 | 	 * this runqueue and our priority is higher than the current's | 
 | 	 */ | 
 | 	if (running) { | 
 | 		if (p->prio > oldprio) | 
 | 			resched_task(rq->curr); | 
 | 	} else | 
 | 		check_preempt_curr(rq, p, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * We switched to the sched_fair class. | 
 |  */ | 
 | static void switched_to_fair(struct rq *rq, struct task_struct *p, | 
 | 			     int running) | 
 | { | 
 | 	/* | 
 | 	 * We were most likely switched from sched_rt, so | 
 | 	 * kick off the schedule if running, otherwise just see | 
 | 	 * if we can still preempt the current task. | 
 | 	 */ | 
 | 	if (running) | 
 | 		resched_task(rq->curr); | 
 | 	else | 
 | 		check_preempt_curr(rq, p, 0); | 
 | } | 
 |  | 
 | /* Account for a task changing its policy or group. | 
 |  * | 
 |  * This routine is mostly called to set cfs_rq->curr field when a task | 
 |  * migrates between groups/classes. | 
 |  */ | 
 | static void set_curr_task_fair(struct rq *rq) | 
 | { | 
 | 	struct sched_entity *se = &rq->curr->se; | 
 |  | 
 | 	for_each_sched_entity(se) | 
 | 		set_next_entity(cfs_rq_of(se), se); | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | static void moved_group_fair(struct task_struct *p, int on_rq) | 
 | { | 
 | 	struct cfs_rq *cfs_rq = task_cfs_rq(p); | 
 |  | 
 | 	update_curr(cfs_rq); | 
 | 	if (!on_rq) | 
 | 		place_entity(cfs_rq, &p->se, 1); | 
 | } | 
 | #endif | 
 |  | 
 | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) | 
 | { | 
 | 	struct sched_entity *se = &task->se; | 
 | 	unsigned int rr_interval = 0; | 
 |  | 
 | 	/* | 
 | 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | 
 | 	 * idle runqueue: | 
 | 	 */ | 
 | 	if (rq->cfs.load.weight) | 
 | 		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | 
 |  | 
 | 	return rr_interval; | 
 | } | 
 |  | 
 | /* | 
 |  * All the scheduling class methods: | 
 |  */ | 
 | static const struct sched_class fair_sched_class = { | 
 | 	.next			= &idle_sched_class, | 
 | 	.enqueue_task		= enqueue_task_fair, | 
 | 	.dequeue_task		= dequeue_task_fair, | 
 | 	.yield_task		= yield_task_fair, | 
 |  | 
 | 	.check_preempt_curr	= check_preempt_wakeup, | 
 |  | 
 | 	.pick_next_task		= pick_next_task_fair, | 
 | 	.put_prev_task		= put_prev_task_fair, | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	.select_task_rq		= select_task_rq_fair, | 
 |  | 
 | 	.rq_online		= rq_online_fair, | 
 | 	.rq_offline		= rq_offline_fair, | 
 |  | 
 | 	.task_waking		= task_waking_fair, | 
 | #endif | 
 |  | 
 | 	.set_curr_task          = set_curr_task_fair, | 
 | 	.task_tick		= task_tick_fair, | 
 | 	.task_fork		= task_fork_fair, | 
 |  | 
 | 	.prio_changed		= prio_changed_fair, | 
 | 	.switched_to		= switched_to_fair, | 
 |  | 
 | 	.get_rr_interval	= get_rr_interval_fair, | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	.moved_group		= moved_group_fair, | 
 | #endif | 
 | }; | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | static void print_cfs_stats(struct seq_file *m, int cpu) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) | 
 | 		print_cfs_rq(m, cpu, cfs_rq); | 
 | 	rcu_read_unlock(); | 
 | } | 
 | #endif |