|  | /* | 
|  | * linux/net/sunrpc/svc_xprt.c | 
|  | * | 
|  | * Author: Tom Tucker <tom@opengridcomputing.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/fcntl.h> | 
|  | #include <linux/net.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/inet.h> | 
|  | #include <linux/udp.h> | 
|  | #include <linux/tcp.h> | 
|  | #include <linux/unistd.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <net/sock.h> | 
|  | #include <net/checksum.h> | 
|  | #include <net/ip.h> | 
|  | #include <net/ipv6.h> | 
|  | #include <net/tcp_states.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/ioctls.h> | 
|  |  | 
|  | #include <linux/sunrpc/types.h> | 
|  | #include <linux/sunrpc/clnt.h> | 
|  | #include <linux/sunrpc/xdr.h> | 
|  | #include <linux/sunrpc/stats.h> | 
|  | #include <linux/sunrpc/svc_xprt.h> | 
|  |  | 
|  | #define RPCDBG_FACILITY	RPCDBG_SVCXPRT | 
|  |  | 
|  | static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); | 
|  | static int svc_deferred_recv(struct svc_rqst *rqstp); | 
|  | static struct cache_deferred_req *svc_defer(struct cache_req *req); | 
|  | static void svc_age_temp_xprts(unsigned long closure); | 
|  |  | 
|  | /* apparently the "standard" is that clients close | 
|  | * idle connections after 5 minutes, servers after | 
|  | * 6 minutes | 
|  | *   http://www.connectathon.org/talks96/nfstcp.pdf | 
|  | */ | 
|  | static int svc_conn_age_period = 6*60; | 
|  |  | 
|  | /* List of registered transport classes */ | 
|  | static DEFINE_SPINLOCK(svc_xprt_class_lock); | 
|  | static LIST_HEAD(svc_xprt_class_list); | 
|  |  | 
|  | /* SMP locking strategy: | 
|  | * | 
|  | *	svc_pool->sp_lock protects most of the fields of that pool. | 
|  | *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. | 
|  | *	when both need to be taken (rare), svc_serv->sv_lock is first. | 
|  | *	BKL protects svc_serv->sv_nrthread. | 
|  | *	svc_sock->sk_lock protects the svc_sock->sk_deferred list | 
|  | *             and the ->sk_info_authunix cache. | 
|  | * | 
|  | *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being | 
|  | *	enqueued multiply. During normal transport processing this bit | 
|  | *	is set by svc_xprt_enqueue and cleared by svc_xprt_received. | 
|  | *	Providers should not manipulate this bit directly. | 
|  | * | 
|  | *	Some flags can be set to certain values at any time | 
|  | *	providing that certain rules are followed: | 
|  | * | 
|  | *	XPT_CONN, XPT_DATA: | 
|  | *		- Can be set or cleared at any time. | 
|  | *		- After a set, svc_xprt_enqueue must be called to enqueue | 
|  | *		  the transport for processing. | 
|  | *		- After a clear, the transport must be read/accepted. | 
|  | *		  If this succeeds, it must be set again. | 
|  | *	XPT_CLOSE: | 
|  | *		- Can set at any time. It is never cleared. | 
|  | *      XPT_DEAD: | 
|  | *		- Can only be set while XPT_BUSY is held which ensures | 
|  | *		  that no other thread will be using the transport or will | 
|  | *		  try to set XPT_DEAD. | 
|  | */ | 
|  |  | 
|  | int svc_reg_xprt_class(struct svc_xprt_class *xcl) | 
|  | { | 
|  | struct svc_xprt_class *cl; | 
|  | int res = -EEXIST; | 
|  |  | 
|  | dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name); | 
|  |  | 
|  | INIT_LIST_HEAD(&xcl->xcl_list); | 
|  | spin_lock(&svc_xprt_class_lock); | 
|  | /* Make sure there isn't already a class with the same name */ | 
|  | list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { | 
|  | if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) | 
|  | goto out; | 
|  | } | 
|  | list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); | 
|  | res = 0; | 
|  | out: | 
|  | spin_unlock(&svc_xprt_class_lock); | 
|  | return res; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(svc_reg_xprt_class); | 
|  |  | 
|  | void svc_unreg_xprt_class(struct svc_xprt_class *xcl) | 
|  | { | 
|  | dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name); | 
|  | spin_lock(&svc_xprt_class_lock); | 
|  | list_del_init(&xcl->xcl_list); | 
|  | spin_unlock(&svc_xprt_class_lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); | 
|  |  | 
|  | /* | 
|  | * Format the transport list for printing | 
|  | */ | 
|  | int svc_print_xprts(char *buf, int maxlen) | 
|  | { | 
|  | struct list_head *le; | 
|  | char tmpstr[80]; | 
|  | int len = 0; | 
|  | buf[0] = '\0'; | 
|  |  | 
|  | spin_lock(&svc_xprt_class_lock); | 
|  | list_for_each(le, &svc_xprt_class_list) { | 
|  | int slen; | 
|  | struct svc_xprt_class *xcl = | 
|  | list_entry(le, struct svc_xprt_class, xcl_list); | 
|  |  | 
|  | sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload); | 
|  | slen = strlen(tmpstr); | 
|  | if (len + slen > maxlen) | 
|  | break; | 
|  | len += slen; | 
|  | strcat(buf, tmpstr); | 
|  | } | 
|  | spin_unlock(&svc_xprt_class_lock); | 
|  |  | 
|  | return len; | 
|  | } | 
|  |  | 
|  | static void svc_xprt_free(struct kref *kref) | 
|  | { | 
|  | struct svc_xprt *xprt = | 
|  | container_of(kref, struct svc_xprt, xpt_ref); | 
|  | struct module *owner = xprt->xpt_class->xcl_owner; | 
|  | if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags) | 
|  | && xprt->xpt_auth_cache != NULL) | 
|  | svcauth_unix_info_release(xprt->xpt_auth_cache); | 
|  | xprt->xpt_ops->xpo_free(xprt); | 
|  | module_put(owner); | 
|  | } | 
|  |  | 
|  | void svc_xprt_put(struct svc_xprt *xprt) | 
|  | { | 
|  | kref_put(&xprt->xpt_ref, svc_xprt_free); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(svc_xprt_put); | 
|  |  | 
|  | /* | 
|  | * Called by transport drivers to initialize the transport independent | 
|  | * portion of the transport instance. | 
|  | */ | 
|  | void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt, | 
|  | struct svc_serv *serv) | 
|  | { | 
|  | memset(xprt, 0, sizeof(*xprt)); | 
|  | xprt->xpt_class = xcl; | 
|  | xprt->xpt_ops = xcl->xcl_ops; | 
|  | kref_init(&xprt->xpt_ref); | 
|  | xprt->xpt_server = serv; | 
|  | INIT_LIST_HEAD(&xprt->xpt_list); | 
|  | INIT_LIST_HEAD(&xprt->xpt_ready); | 
|  | INIT_LIST_HEAD(&xprt->xpt_deferred); | 
|  | mutex_init(&xprt->xpt_mutex); | 
|  | spin_lock_init(&xprt->xpt_lock); | 
|  | set_bit(XPT_BUSY, &xprt->xpt_flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(svc_xprt_init); | 
|  |  | 
|  | int svc_create_xprt(struct svc_serv *serv, char *xprt_name, unsigned short port, | 
|  | int flags) | 
|  | { | 
|  | struct svc_xprt_class *xcl; | 
|  | struct sockaddr_in sin = { | 
|  | .sin_family		= AF_INET, | 
|  | .sin_addr.s_addr	= htonl(INADDR_ANY), | 
|  | .sin_port		= htons(port), | 
|  | }; | 
|  | dprintk("svc: creating transport %s[%d]\n", xprt_name, port); | 
|  | spin_lock(&svc_xprt_class_lock); | 
|  | list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { | 
|  | struct svc_xprt *newxprt; | 
|  |  | 
|  | if (strcmp(xprt_name, xcl->xcl_name)) | 
|  | continue; | 
|  |  | 
|  | if (!try_module_get(xcl->xcl_owner)) | 
|  | goto err; | 
|  |  | 
|  | spin_unlock(&svc_xprt_class_lock); | 
|  | newxprt = xcl->xcl_ops-> | 
|  | xpo_create(serv, (struct sockaddr *)&sin, sizeof(sin), | 
|  | flags); | 
|  | if (IS_ERR(newxprt)) { | 
|  | module_put(xcl->xcl_owner); | 
|  | return PTR_ERR(newxprt); | 
|  | } | 
|  |  | 
|  | clear_bit(XPT_TEMP, &newxprt->xpt_flags); | 
|  | spin_lock_bh(&serv->sv_lock); | 
|  | list_add(&newxprt->xpt_list, &serv->sv_permsocks); | 
|  | spin_unlock_bh(&serv->sv_lock); | 
|  | clear_bit(XPT_BUSY, &newxprt->xpt_flags); | 
|  | return svc_xprt_local_port(newxprt); | 
|  | } | 
|  | err: | 
|  | spin_unlock(&svc_xprt_class_lock); | 
|  | dprintk("svc: transport %s not found\n", xprt_name); | 
|  | return -ENOENT; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(svc_create_xprt); | 
|  |  | 
|  | /* | 
|  | * Copy the local and remote xprt addresses to the rqstp structure | 
|  | */ | 
|  | void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) | 
|  | { | 
|  | struct sockaddr *sin; | 
|  |  | 
|  | memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); | 
|  | rqstp->rq_addrlen = xprt->xpt_remotelen; | 
|  |  | 
|  | /* | 
|  | * Destination address in request is needed for binding the | 
|  | * source address in RPC replies/callbacks later. | 
|  | */ | 
|  | sin = (struct sockaddr *)&xprt->xpt_local; | 
|  | switch (sin->sa_family) { | 
|  | case AF_INET: | 
|  | rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr; | 
|  | break; | 
|  | case AF_INET6: | 
|  | rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr; | 
|  | break; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); | 
|  |  | 
|  | /** | 
|  | * svc_print_addr - Format rq_addr field for printing | 
|  | * @rqstp: svc_rqst struct containing address to print | 
|  | * @buf: target buffer for formatted address | 
|  | * @len: length of target buffer | 
|  | * | 
|  | */ | 
|  | char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) | 
|  | { | 
|  | return __svc_print_addr(svc_addr(rqstp), buf, len); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(svc_print_addr); | 
|  |  | 
|  | /* | 
|  | * Queue up an idle server thread.  Must have pool->sp_lock held. | 
|  | * Note: this is really a stack rather than a queue, so that we only | 
|  | * use as many different threads as we need, and the rest don't pollute | 
|  | * the cache. | 
|  | */ | 
|  | static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp) | 
|  | { | 
|  | list_add(&rqstp->rq_list, &pool->sp_threads); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dequeue an nfsd thread.  Must have pool->sp_lock held. | 
|  | */ | 
|  | static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp) | 
|  | { | 
|  | list_del(&rqstp->rq_list); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue up a transport with data pending. If there are idle nfsd | 
|  | * processes, wake 'em up. | 
|  | * | 
|  | */ | 
|  | void svc_xprt_enqueue(struct svc_xprt *xprt) | 
|  | { | 
|  | struct svc_serv	*serv = xprt->xpt_server; | 
|  | struct svc_pool *pool; | 
|  | struct svc_rqst	*rqstp; | 
|  | int cpu; | 
|  |  | 
|  | if (!(xprt->xpt_flags & | 
|  | ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED)))) | 
|  | return; | 
|  | if (test_bit(XPT_DEAD, &xprt->xpt_flags)) | 
|  | return; | 
|  |  | 
|  | cpu = get_cpu(); | 
|  | pool = svc_pool_for_cpu(xprt->xpt_server, cpu); | 
|  | put_cpu(); | 
|  |  | 
|  | spin_lock_bh(&pool->sp_lock); | 
|  |  | 
|  | if (!list_empty(&pool->sp_threads) && | 
|  | !list_empty(&pool->sp_sockets)) | 
|  | printk(KERN_ERR | 
|  | "svc_xprt_enqueue: " | 
|  | "threads and transports both waiting??\n"); | 
|  |  | 
|  | if (test_bit(XPT_DEAD, &xprt->xpt_flags)) { | 
|  | /* Don't enqueue dead transports */ | 
|  | dprintk("svc: transport %p is dead, not enqueued\n", xprt); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* Mark transport as busy. It will remain in this state until | 
|  | * the provider calls svc_xprt_received. We update XPT_BUSY | 
|  | * atomically because it also guards against trying to enqueue | 
|  | * the transport twice. | 
|  | */ | 
|  | if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) { | 
|  | /* Don't enqueue transport while already enqueued */ | 
|  | dprintk("svc: transport %p busy, not enqueued\n", xprt); | 
|  | goto out_unlock; | 
|  | } | 
|  | BUG_ON(xprt->xpt_pool != NULL); | 
|  | xprt->xpt_pool = pool; | 
|  |  | 
|  | /* Handle pending connection */ | 
|  | if (test_bit(XPT_CONN, &xprt->xpt_flags)) | 
|  | goto process; | 
|  |  | 
|  | /* Handle close in-progress */ | 
|  | if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) | 
|  | goto process; | 
|  |  | 
|  | /* Check if we have space to reply to a request */ | 
|  | if (!xprt->xpt_ops->xpo_has_wspace(xprt)) { | 
|  | /* Don't enqueue while not enough space for reply */ | 
|  | dprintk("svc: no write space, transport %p  not enqueued\n", | 
|  | xprt); | 
|  | xprt->xpt_pool = NULL; | 
|  | clear_bit(XPT_BUSY, &xprt->xpt_flags); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | process: | 
|  | if (!list_empty(&pool->sp_threads)) { | 
|  | rqstp = list_entry(pool->sp_threads.next, | 
|  | struct svc_rqst, | 
|  | rq_list); | 
|  | dprintk("svc: transport %p served by daemon %p\n", | 
|  | xprt, rqstp); | 
|  | svc_thread_dequeue(pool, rqstp); | 
|  | if (rqstp->rq_xprt) | 
|  | printk(KERN_ERR | 
|  | "svc_xprt_enqueue: server %p, rq_xprt=%p!\n", | 
|  | rqstp, rqstp->rq_xprt); | 
|  | rqstp->rq_xprt = xprt; | 
|  | svc_xprt_get(xprt); | 
|  | rqstp->rq_reserved = serv->sv_max_mesg; | 
|  | atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); | 
|  | BUG_ON(xprt->xpt_pool != pool); | 
|  | wake_up(&rqstp->rq_wait); | 
|  | } else { | 
|  | dprintk("svc: transport %p put into queue\n", xprt); | 
|  | list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); | 
|  | BUG_ON(xprt->xpt_pool != pool); | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock_bh(&pool->sp_lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(svc_xprt_enqueue); | 
|  |  | 
|  | /* | 
|  | * Dequeue the first transport.  Must be called with the pool->sp_lock held. | 
|  | */ | 
|  | static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) | 
|  | { | 
|  | struct svc_xprt	*xprt; | 
|  |  | 
|  | if (list_empty(&pool->sp_sockets)) | 
|  | return NULL; | 
|  |  | 
|  | xprt = list_entry(pool->sp_sockets.next, | 
|  | struct svc_xprt, xpt_ready); | 
|  | list_del_init(&xprt->xpt_ready); | 
|  |  | 
|  | dprintk("svc: transport %p dequeued, inuse=%d\n", | 
|  | xprt, atomic_read(&xprt->xpt_ref.refcount)); | 
|  |  | 
|  | return xprt; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * svc_xprt_received conditionally queues the transport for processing | 
|  | * by another thread. The caller must hold the XPT_BUSY bit and must | 
|  | * not thereafter touch transport data. | 
|  | * | 
|  | * Note: XPT_DATA only gets cleared when a read-attempt finds no (or | 
|  | * insufficient) data. | 
|  | */ | 
|  | void svc_xprt_received(struct svc_xprt *xprt) | 
|  | { | 
|  | BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags)); | 
|  | xprt->xpt_pool = NULL; | 
|  | clear_bit(XPT_BUSY, &xprt->xpt_flags); | 
|  | svc_xprt_enqueue(xprt); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(svc_xprt_received); | 
|  |  | 
|  | /** | 
|  | * svc_reserve - change the space reserved for the reply to a request. | 
|  | * @rqstp:  The request in question | 
|  | * @space: new max space to reserve | 
|  | * | 
|  | * Each request reserves some space on the output queue of the transport | 
|  | * to make sure the reply fits.  This function reduces that reserved | 
|  | * space to be the amount of space used already, plus @space. | 
|  | * | 
|  | */ | 
|  | void svc_reserve(struct svc_rqst *rqstp, int space) | 
|  | { | 
|  | space += rqstp->rq_res.head[0].iov_len; | 
|  |  | 
|  | if (space < rqstp->rq_reserved) { | 
|  | struct svc_xprt *xprt = rqstp->rq_xprt; | 
|  | atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); | 
|  | rqstp->rq_reserved = space; | 
|  |  | 
|  | svc_xprt_enqueue(xprt); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(svc_reserve); | 
|  |  | 
|  | static void svc_xprt_release(struct svc_rqst *rqstp) | 
|  | { | 
|  | struct svc_xprt	*xprt = rqstp->rq_xprt; | 
|  |  | 
|  | rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); | 
|  |  | 
|  | svc_free_res_pages(rqstp); | 
|  | rqstp->rq_res.page_len = 0; | 
|  | rqstp->rq_res.page_base = 0; | 
|  |  | 
|  | /* Reset response buffer and release | 
|  | * the reservation. | 
|  | * But first, check that enough space was reserved | 
|  | * for the reply, otherwise we have a bug! | 
|  | */ | 
|  | if ((rqstp->rq_res.len) >  rqstp->rq_reserved) | 
|  | printk(KERN_ERR "RPC request reserved %d but used %d\n", | 
|  | rqstp->rq_reserved, | 
|  | rqstp->rq_res.len); | 
|  |  | 
|  | rqstp->rq_res.head[0].iov_len = 0; | 
|  | svc_reserve(rqstp, 0); | 
|  | rqstp->rq_xprt = NULL; | 
|  |  | 
|  | svc_xprt_put(xprt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * External function to wake up a server waiting for data | 
|  | * This really only makes sense for services like lockd | 
|  | * which have exactly one thread anyway. | 
|  | */ | 
|  | void svc_wake_up(struct svc_serv *serv) | 
|  | { | 
|  | struct svc_rqst	*rqstp; | 
|  | unsigned int i; | 
|  | struct svc_pool *pool; | 
|  |  | 
|  | for (i = 0; i < serv->sv_nrpools; i++) { | 
|  | pool = &serv->sv_pools[i]; | 
|  |  | 
|  | spin_lock_bh(&pool->sp_lock); | 
|  | if (!list_empty(&pool->sp_threads)) { | 
|  | rqstp = list_entry(pool->sp_threads.next, | 
|  | struct svc_rqst, | 
|  | rq_list); | 
|  | dprintk("svc: daemon %p woken up.\n", rqstp); | 
|  | /* | 
|  | svc_thread_dequeue(pool, rqstp); | 
|  | rqstp->rq_xprt = NULL; | 
|  | */ | 
|  | wake_up(&rqstp->rq_wait); | 
|  | } | 
|  | spin_unlock_bh(&pool->sp_lock); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(svc_wake_up); | 
|  |  | 
|  | int svc_port_is_privileged(struct sockaddr *sin) | 
|  | { | 
|  | switch (sin->sa_family) { | 
|  | case AF_INET: | 
|  | return ntohs(((struct sockaddr_in *)sin)->sin_port) | 
|  | < PROT_SOCK; | 
|  | case AF_INET6: | 
|  | return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) | 
|  | < PROT_SOCK; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure that we don't have too many active connections.  If we | 
|  | * have, something must be dropped. | 
|  | * | 
|  | * There's no point in trying to do random drop here for DoS | 
|  | * prevention. The NFS clients does 1 reconnect in 15 seconds. An | 
|  | * attacker can easily beat that. | 
|  | * | 
|  | * The only somewhat efficient mechanism would be if drop old | 
|  | * connections from the same IP first. But right now we don't even | 
|  | * record the client IP in svc_sock. | 
|  | */ | 
|  | static void svc_check_conn_limits(struct svc_serv *serv) | 
|  | { | 
|  | if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) { | 
|  | struct svc_xprt *xprt = NULL; | 
|  | spin_lock_bh(&serv->sv_lock); | 
|  | if (!list_empty(&serv->sv_tempsocks)) { | 
|  | if (net_ratelimit()) { | 
|  | /* Try to help the admin */ | 
|  | printk(KERN_NOTICE "%s: too many open  " | 
|  | "connections, consider increasing the " | 
|  | "number of nfsd threads\n", | 
|  | serv->sv_name); | 
|  | } | 
|  | /* | 
|  | * Always select the oldest connection. It's not fair, | 
|  | * but so is life | 
|  | */ | 
|  | xprt = list_entry(serv->sv_tempsocks.prev, | 
|  | struct svc_xprt, | 
|  | xpt_list); | 
|  | set_bit(XPT_CLOSE, &xprt->xpt_flags); | 
|  | svc_xprt_get(xprt); | 
|  | } | 
|  | spin_unlock_bh(&serv->sv_lock); | 
|  |  | 
|  | if (xprt) { | 
|  | svc_xprt_enqueue(xprt); | 
|  | svc_xprt_put(xprt); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Receive the next request on any transport.  This code is carefully | 
|  | * organised not to touch any cachelines in the shared svc_serv | 
|  | * structure, only cachelines in the local svc_pool. | 
|  | */ | 
|  | int svc_recv(struct svc_rqst *rqstp, long timeout) | 
|  | { | 
|  | struct svc_xprt		*xprt = NULL; | 
|  | struct svc_serv		*serv = rqstp->rq_server; | 
|  | struct svc_pool		*pool = rqstp->rq_pool; | 
|  | int			len, i; | 
|  | int			pages; | 
|  | struct xdr_buf		*arg; | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | dprintk("svc: server %p waiting for data (to = %ld)\n", | 
|  | rqstp, timeout); | 
|  |  | 
|  | if (rqstp->rq_xprt) | 
|  | printk(KERN_ERR | 
|  | "svc_recv: service %p, transport not NULL!\n", | 
|  | rqstp); | 
|  | if (waitqueue_active(&rqstp->rq_wait)) | 
|  | printk(KERN_ERR | 
|  | "svc_recv: service %p, wait queue active!\n", | 
|  | rqstp); | 
|  |  | 
|  | /* now allocate needed pages.  If we get a failure, sleep briefly */ | 
|  | pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE; | 
|  | for (i = 0; i < pages ; i++) | 
|  | while (rqstp->rq_pages[i] == NULL) { | 
|  | struct page *p = alloc_page(GFP_KERNEL); | 
|  | if (!p) { | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | if (signalled() || kthread_should_stop()) { | 
|  | set_current_state(TASK_RUNNING); | 
|  | return -EINTR; | 
|  | } | 
|  | schedule_timeout(msecs_to_jiffies(500)); | 
|  | } | 
|  | rqstp->rq_pages[i] = p; | 
|  | } | 
|  | rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */ | 
|  | BUG_ON(pages >= RPCSVC_MAXPAGES); | 
|  |  | 
|  | /* Make arg->head point to first page and arg->pages point to rest */ | 
|  | arg = &rqstp->rq_arg; | 
|  | arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); | 
|  | arg->head[0].iov_len = PAGE_SIZE; | 
|  | arg->pages = rqstp->rq_pages + 1; | 
|  | arg->page_base = 0; | 
|  | /* save at least one page for response */ | 
|  | arg->page_len = (pages-2)*PAGE_SIZE; | 
|  | arg->len = (pages-1)*PAGE_SIZE; | 
|  | arg->tail[0].iov_len = 0; | 
|  |  | 
|  | try_to_freeze(); | 
|  | cond_resched(); | 
|  | if (signalled() || kthread_should_stop()) | 
|  | return -EINTR; | 
|  |  | 
|  | spin_lock_bh(&pool->sp_lock); | 
|  | xprt = svc_xprt_dequeue(pool); | 
|  | if (xprt) { | 
|  | rqstp->rq_xprt = xprt; | 
|  | svc_xprt_get(xprt); | 
|  | rqstp->rq_reserved = serv->sv_max_mesg; | 
|  | atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); | 
|  | } else { | 
|  | /* No data pending. Go to sleep */ | 
|  | svc_thread_enqueue(pool, rqstp); | 
|  |  | 
|  | /* | 
|  | * We have to be able to interrupt this wait | 
|  | * to bring down the daemons ... | 
|  | */ | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  |  | 
|  | /* | 
|  | * checking kthread_should_stop() here allows us to avoid | 
|  | * locking and signalling when stopping kthreads that call | 
|  | * svc_recv. If the thread has already been woken up, then | 
|  | * we can exit here without sleeping. If not, then it | 
|  | * it'll be woken up quickly during the schedule_timeout | 
|  | */ | 
|  | if (kthread_should_stop()) { | 
|  | set_current_state(TASK_RUNNING); | 
|  | spin_unlock_bh(&pool->sp_lock); | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | add_wait_queue(&rqstp->rq_wait, &wait); | 
|  | spin_unlock_bh(&pool->sp_lock); | 
|  |  | 
|  | schedule_timeout(timeout); | 
|  |  | 
|  | try_to_freeze(); | 
|  |  | 
|  | spin_lock_bh(&pool->sp_lock); | 
|  | remove_wait_queue(&rqstp->rq_wait, &wait); | 
|  |  | 
|  | xprt = rqstp->rq_xprt; | 
|  | if (!xprt) { | 
|  | svc_thread_dequeue(pool, rqstp); | 
|  | spin_unlock_bh(&pool->sp_lock); | 
|  | dprintk("svc: server %p, no data yet\n", rqstp); | 
|  | if (signalled() || kthread_should_stop()) | 
|  | return -EINTR; | 
|  | else | 
|  | return -EAGAIN; | 
|  | } | 
|  | } | 
|  | spin_unlock_bh(&pool->sp_lock); | 
|  |  | 
|  | len = 0; | 
|  | if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { | 
|  | dprintk("svc_recv: found XPT_CLOSE\n"); | 
|  | svc_delete_xprt(xprt); | 
|  | } else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { | 
|  | struct svc_xprt *newxpt; | 
|  | newxpt = xprt->xpt_ops->xpo_accept(xprt); | 
|  | if (newxpt) { | 
|  | /* | 
|  | * We know this module_get will succeed because the | 
|  | * listener holds a reference too | 
|  | */ | 
|  | __module_get(newxpt->xpt_class->xcl_owner); | 
|  | svc_check_conn_limits(xprt->xpt_server); | 
|  | spin_lock_bh(&serv->sv_lock); | 
|  | set_bit(XPT_TEMP, &newxpt->xpt_flags); | 
|  | list_add(&newxpt->xpt_list, &serv->sv_tempsocks); | 
|  | serv->sv_tmpcnt++; | 
|  | if (serv->sv_temptimer.function == NULL) { | 
|  | /* setup timer to age temp transports */ | 
|  | setup_timer(&serv->sv_temptimer, | 
|  | svc_age_temp_xprts, | 
|  | (unsigned long)serv); | 
|  | mod_timer(&serv->sv_temptimer, | 
|  | jiffies + svc_conn_age_period * HZ); | 
|  | } | 
|  | spin_unlock_bh(&serv->sv_lock); | 
|  | svc_xprt_received(newxpt); | 
|  | } | 
|  | svc_xprt_received(xprt); | 
|  | } else { | 
|  | dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n", | 
|  | rqstp, pool->sp_id, xprt, | 
|  | atomic_read(&xprt->xpt_ref.refcount)); | 
|  | rqstp->rq_deferred = svc_deferred_dequeue(xprt); | 
|  | if (rqstp->rq_deferred) { | 
|  | svc_xprt_received(xprt); | 
|  | len = svc_deferred_recv(rqstp); | 
|  | } else | 
|  | len = xprt->xpt_ops->xpo_recvfrom(rqstp); | 
|  | dprintk("svc: got len=%d\n", len); | 
|  | } | 
|  |  | 
|  | /* No data, incomplete (TCP) read, or accept() */ | 
|  | if (len == 0 || len == -EAGAIN) { | 
|  | rqstp->rq_res.len = 0; | 
|  | svc_xprt_release(rqstp); | 
|  | return -EAGAIN; | 
|  | } | 
|  | clear_bit(XPT_OLD, &xprt->xpt_flags); | 
|  |  | 
|  | rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp)); | 
|  | rqstp->rq_chandle.defer = svc_defer; | 
|  |  | 
|  | if (serv->sv_stats) | 
|  | serv->sv_stats->netcnt++; | 
|  | return len; | 
|  | } | 
|  | EXPORT_SYMBOL(svc_recv); | 
|  |  | 
|  | /* | 
|  | * Drop request | 
|  | */ | 
|  | void svc_drop(struct svc_rqst *rqstp) | 
|  | { | 
|  | dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt); | 
|  | svc_xprt_release(rqstp); | 
|  | } | 
|  | EXPORT_SYMBOL(svc_drop); | 
|  |  | 
|  | /* | 
|  | * Return reply to client. | 
|  | */ | 
|  | int svc_send(struct svc_rqst *rqstp) | 
|  | { | 
|  | struct svc_xprt	*xprt; | 
|  | int		len; | 
|  | struct xdr_buf	*xb; | 
|  |  | 
|  | xprt = rqstp->rq_xprt; | 
|  | if (!xprt) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* release the receive skb before sending the reply */ | 
|  | rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); | 
|  |  | 
|  | /* calculate over-all length */ | 
|  | xb = &rqstp->rq_res; | 
|  | xb->len = xb->head[0].iov_len + | 
|  | xb->page_len + | 
|  | xb->tail[0].iov_len; | 
|  |  | 
|  | /* Grab mutex to serialize outgoing data. */ | 
|  | mutex_lock(&xprt->xpt_mutex); | 
|  | if (test_bit(XPT_DEAD, &xprt->xpt_flags)) | 
|  | len = -ENOTCONN; | 
|  | else | 
|  | len = xprt->xpt_ops->xpo_sendto(rqstp); | 
|  | mutex_unlock(&xprt->xpt_mutex); | 
|  | svc_xprt_release(rqstp); | 
|  |  | 
|  | if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) | 
|  | return 0; | 
|  | return len; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Timer function to close old temporary transports, using | 
|  | * a mark-and-sweep algorithm. | 
|  | */ | 
|  | static void svc_age_temp_xprts(unsigned long closure) | 
|  | { | 
|  | struct svc_serv *serv = (struct svc_serv *)closure; | 
|  | struct svc_xprt *xprt; | 
|  | struct list_head *le, *next; | 
|  | LIST_HEAD(to_be_aged); | 
|  |  | 
|  | dprintk("svc_age_temp_xprts\n"); | 
|  |  | 
|  | if (!spin_trylock_bh(&serv->sv_lock)) { | 
|  | /* busy, try again 1 sec later */ | 
|  | dprintk("svc_age_temp_xprts: busy\n"); | 
|  | mod_timer(&serv->sv_temptimer, jiffies + HZ); | 
|  | return; | 
|  | } | 
|  |  | 
|  | list_for_each_safe(le, next, &serv->sv_tempsocks) { | 
|  | xprt = list_entry(le, struct svc_xprt, xpt_list); | 
|  |  | 
|  | /* First time through, just mark it OLD. Second time | 
|  | * through, close it. */ | 
|  | if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) | 
|  | continue; | 
|  | if (atomic_read(&xprt->xpt_ref.refcount) > 1 | 
|  | || test_bit(XPT_BUSY, &xprt->xpt_flags)) | 
|  | continue; | 
|  | svc_xprt_get(xprt); | 
|  | list_move(le, &to_be_aged); | 
|  | set_bit(XPT_CLOSE, &xprt->xpt_flags); | 
|  | set_bit(XPT_DETACHED, &xprt->xpt_flags); | 
|  | } | 
|  | spin_unlock_bh(&serv->sv_lock); | 
|  |  | 
|  | while (!list_empty(&to_be_aged)) { | 
|  | le = to_be_aged.next; | 
|  | /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */ | 
|  | list_del_init(le); | 
|  | xprt = list_entry(le, struct svc_xprt, xpt_list); | 
|  |  | 
|  | dprintk("queuing xprt %p for closing\n", xprt); | 
|  |  | 
|  | /* a thread will dequeue and close it soon */ | 
|  | svc_xprt_enqueue(xprt); | 
|  | svc_xprt_put(xprt); | 
|  | } | 
|  |  | 
|  | mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove a dead transport | 
|  | */ | 
|  | void svc_delete_xprt(struct svc_xprt *xprt) | 
|  | { | 
|  | struct svc_serv	*serv = xprt->xpt_server; | 
|  |  | 
|  | dprintk("svc: svc_delete_xprt(%p)\n", xprt); | 
|  | xprt->xpt_ops->xpo_detach(xprt); | 
|  |  | 
|  | spin_lock_bh(&serv->sv_lock); | 
|  | if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags)) | 
|  | list_del_init(&xprt->xpt_list); | 
|  | /* | 
|  | * We used to delete the transport from whichever list | 
|  | * it's sk_xprt.xpt_ready node was on, but we don't actually | 
|  | * need to.  This is because the only time we're called | 
|  | * while still attached to a queue, the queue itself | 
|  | * is about to be destroyed (in svc_destroy). | 
|  | */ | 
|  | if (!test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) { | 
|  | BUG_ON(atomic_read(&xprt->xpt_ref.refcount) < 2); | 
|  | if (test_bit(XPT_TEMP, &xprt->xpt_flags)) | 
|  | serv->sv_tmpcnt--; | 
|  | svc_xprt_put(xprt); | 
|  | } | 
|  | spin_unlock_bh(&serv->sv_lock); | 
|  | } | 
|  |  | 
|  | void svc_close_xprt(struct svc_xprt *xprt) | 
|  | { | 
|  | set_bit(XPT_CLOSE, &xprt->xpt_flags); | 
|  | if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) | 
|  | /* someone else will have to effect the close */ | 
|  | return; | 
|  |  | 
|  | svc_xprt_get(xprt); | 
|  | svc_delete_xprt(xprt); | 
|  | clear_bit(XPT_BUSY, &xprt->xpt_flags); | 
|  | svc_xprt_put(xprt); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(svc_close_xprt); | 
|  |  | 
|  | void svc_close_all(struct list_head *xprt_list) | 
|  | { | 
|  | struct svc_xprt *xprt; | 
|  | struct svc_xprt *tmp; | 
|  |  | 
|  | list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) { | 
|  | set_bit(XPT_CLOSE, &xprt->xpt_flags); | 
|  | if (test_bit(XPT_BUSY, &xprt->xpt_flags)) { | 
|  | /* Waiting to be processed, but no threads left, | 
|  | * So just remove it from the waiting list | 
|  | */ | 
|  | list_del_init(&xprt->xpt_ready); | 
|  | clear_bit(XPT_BUSY, &xprt->xpt_flags); | 
|  | } | 
|  | svc_close_xprt(xprt); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle defer and revisit of requests | 
|  | */ | 
|  |  | 
|  | static void svc_revisit(struct cache_deferred_req *dreq, int too_many) | 
|  | { | 
|  | struct svc_deferred_req *dr = | 
|  | container_of(dreq, struct svc_deferred_req, handle); | 
|  | struct svc_xprt *xprt = dr->xprt; | 
|  |  | 
|  | if (too_many) { | 
|  | svc_xprt_put(xprt); | 
|  | kfree(dr); | 
|  | return; | 
|  | } | 
|  | dprintk("revisit queued\n"); | 
|  | dr->xprt = NULL; | 
|  | spin_lock(&xprt->xpt_lock); | 
|  | list_add(&dr->handle.recent, &xprt->xpt_deferred); | 
|  | spin_unlock(&xprt->xpt_lock); | 
|  | set_bit(XPT_DEFERRED, &xprt->xpt_flags); | 
|  | svc_xprt_enqueue(xprt); | 
|  | svc_xprt_put(xprt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Save the request off for later processing. The request buffer looks | 
|  | * like this: | 
|  | * | 
|  | * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> | 
|  | * | 
|  | * This code can only handle requests that consist of an xprt-header | 
|  | * and rpc-header. | 
|  | */ | 
|  | static struct cache_deferred_req *svc_defer(struct cache_req *req) | 
|  | { | 
|  | struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); | 
|  | struct svc_deferred_req *dr; | 
|  |  | 
|  | if (rqstp->rq_arg.page_len) | 
|  | return NULL; /* if more than a page, give up FIXME */ | 
|  | if (rqstp->rq_deferred) { | 
|  | dr = rqstp->rq_deferred; | 
|  | rqstp->rq_deferred = NULL; | 
|  | } else { | 
|  | size_t skip; | 
|  | size_t size; | 
|  | /* FIXME maybe discard if size too large */ | 
|  | size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; | 
|  | dr = kmalloc(size, GFP_KERNEL); | 
|  | if (dr == NULL) | 
|  | return NULL; | 
|  |  | 
|  | dr->handle.owner = rqstp->rq_server; | 
|  | dr->prot = rqstp->rq_prot; | 
|  | memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); | 
|  | dr->addrlen = rqstp->rq_addrlen; | 
|  | dr->daddr = rqstp->rq_daddr; | 
|  | dr->argslen = rqstp->rq_arg.len >> 2; | 
|  | dr->xprt_hlen = rqstp->rq_xprt_hlen; | 
|  |  | 
|  | /* back up head to the start of the buffer and copy */ | 
|  | skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; | 
|  | memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, | 
|  | dr->argslen << 2); | 
|  | } | 
|  | svc_xprt_get(rqstp->rq_xprt); | 
|  | dr->xprt = rqstp->rq_xprt; | 
|  |  | 
|  | dr->handle.revisit = svc_revisit; | 
|  | return &dr->handle; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * recv data from a deferred request into an active one | 
|  | */ | 
|  | static int svc_deferred_recv(struct svc_rqst *rqstp) | 
|  | { | 
|  | struct svc_deferred_req *dr = rqstp->rq_deferred; | 
|  |  | 
|  | /* setup iov_base past transport header */ | 
|  | rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2); | 
|  | /* The iov_len does not include the transport header bytes */ | 
|  | rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen; | 
|  | rqstp->rq_arg.page_len = 0; | 
|  | /* The rq_arg.len includes the transport header bytes */ | 
|  | rqstp->rq_arg.len     = dr->argslen<<2; | 
|  | rqstp->rq_prot        = dr->prot; | 
|  | memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); | 
|  | rqstp->rq_addrlen     = dr->addrlen; | 
|  | /* Save off transport header len in case we get deferred again */ | 
|  | rqstp->rq_xprt_hlen   = dr->xprt_hlen; | 
|  | rqstp->rq_daddr       = dr->daddr; | 
|  | rqstp->rq_respages    = rqstp->rq_pages; | 
|  | return (dr->argslen<<2) - dr->xprt_hlen; | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) | 
|  | { | 
|  | struct svc_deferred_req *dr = NULL; | 
|  |  | 
|  | if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) | 
|  | return NULL; | 
|  | spin_lock(&xprt->xpt_lock); | 
|  | clear_bit(XPT_DEFERRED, &xprt->xpt_flags); | 
|  | if (!list_empty(&xprt->xpt_deferred)) { | 
|  | dr = list_entry(xprt->xpt_deferred.next, | 
|  | struct svc_deferred_req, | 
|  | handle.recent); | 
|  | list_del_init(&dr->handle.recent); | 
|  | set_bit(XPT_DEFERRED, &xprt->xpt_flags); | 
|  | } | 
|  | spin_unlock(&xprt->xpt_lock); | 
|  | return dr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the transport instance pointer for the endpoint accepting | 
|  | * connections/peer traffic from the specified transport class, | 
|  | * address family and port. | 
|  | * | 
|  | * Specifying 0 for the address family or port is effectively a | 
|  | * wild-card, and will result in matching the first transport in the | 
|  | * service's list that has a matching class name. | 
|  | */ | 
|  | struct svc_xprt *svc_find_xprt(struct svc_serv *serv, char *xcl_name, | 
|  | int af, int port) | 
|  | { | 
|  | struct svc_xprt *xprt; | 
|  | struct svc_xprt *found = NULL; | 
|  |  | 
|  | /* Sanity check the args */ | 
|  | if (!serv || !xcl_name) | 
|  | return found; | 
|  |  | 
|  | spin_lock_bh(&serv->sv_lock); | 
|  | list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { | 
|  | if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) | 
|  | continue; | 
|  | if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) | 
|  | continue; | 
|  | if (port && port != svc_xprt_local_port(xprt)) | 
|  | continue; | 
|  | found = xprt; | 
|  | svc_xprt_get(xprt); | 
|  | break; | 
|  | } | 
|  | spin_unlock_bh(&serv->sv_lock); | 
|  | return found; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(svc_find_xprt); | 
|  |  | 
|  | /* | 
|  | * Format a buffer with a list of the active transports. A zero for | 
|  | * the buflen parameter disables target buffer overflow checking. | 
|  | */ | 
|  | int svc_xprt_names(struct svc_serv *serv, char *buf, int buflen) | 
|  | { | 
|  | struct svc_xprt *xprt; | 
|  | char xprt_str[64]; | 
|  | int totlen = 0; | 
|  | int len; | 
|  |  | 
|  | /* Sanity check args */ | 
|  | if (!serv) | 
|  | return 0; | 
|  |  | 
|  | spin_lock_bh(&serv->sv_lock); | 
|  | list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { | 
|  | len = snprintf(xprt_str, sizeof(xprt_str), | 
|  | "%s %d\n", xprt->xpt_class->xcl_name, | 
|  | svc_xprt_local_port(xprt)); | 
|  | /* If the string was truncated, replace with error string */ | 
|  | if (len >= sizeof(xprt_str)) | 
|  | strcpy(xprt_str, "name-too-long\n"); | 
|  | /* Don't overflow buffer */ | 
|  | len = strlen(xprt_str); | 
|  | if (buflen && (len + totlen >= buflen)) | 
|  | break; | 
|  | strcpy(buf+totlen, xprt_str); | 
|  | totlen += len; | 
|  | } | 
|  | spin_unlock_bh(&serv->sv_lock); | 
|  | return totlen; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(svc_xprt_names); |