Initial Contribution

msm-2.6.38: tag AU_LINUX_ANDROID_GINGERBREAD.02.03.04.00.142

Signed-off-by: Bryan Huntsman <bryanh@codeaurora.org>
diff --git a/arch/arm/mach-msm/clock-local.c b/arch/arm/mach-msm/clock-local.c
new file mode 100644
index 0000000..17f00d8
--- /dev/null
+++ b/arch/arm/mach-msm/clock-local.c
@@ -0,0 +1,978 @@
+/* Copyright (c) 2009-2011, Code Aurora Forum. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ */
+
+#define pr_fmt(fmt) "%s: " fmt, __func__
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/err.h>
+#include <linux/ctype.h>
+#include <linux/bitops.h>
+#include <linux/io.h>
+#include <linux/spinlock.h>
+#include <linux/delay.h>
+#include <linux/clk.h>
+
+#include <mach/msm_iomap.h>
+#include <mach/clk.h>
+#include <mach/scm-io.h>
+
+#include "clock.h"
+#include "clock-local.h"
+
+#ifdef CONFIG_MSM_SECURE_IO
+#undef readl_relaxed
+#undef writel_relaxed
+#define readl_relaxed secure_readl
+#define writel_relaxed secure_writel
+#endif
+
+/*
+ * When enabling/disabling a clock, check the halt bit up to this number
+ * number of times (with a 1 us delay in between) before continuing.
+ */
+#define HALT_CHECK_MAX_LOOPS	100
+/* For clock without halt checking, wait this long after enables/disables. */
+#define HALT_CHECK_DELAY_US	10
+
+DEFINE_SPINLOCK(local_clock_reg_lock);
+struct clk_freq_tbl local_dummy_freq = F_END;
+
+unsigned local_sys_vdd_votes[NUM_SYS_VDD_LEVELS];
+static DEFINE_SPINLOCK(sys_vdd_vote_lock);
+
+/*
+ * Common Set-Rate Functions
+ */
+
+/* For clocks with MND dividers. */
+void set_rate_mnd(struct rcg_clk *clk, struct clk_freq_tbl *nf)
+{
+	uint32_t ns_reg_val, ctl_reg_val;
+
+	/* Assert MND reset. */
+	ns_reg_val = readl_relaxed(clk->ns_reg);
+	ns_reg_val |= BIT(7);
+	writel_relaxed(ns_reg_val, clk->ns_reg);
+
+	/* Program M and D values. */
+	writel_relaxed(nf->md_val, clk->md_reg);
+
+	/* If the clock has a separate CC register, program it. */
+	if (clk->ns_reg != clk->b.ctl_reg) {
+		ctl_reg_val = readl_relaxed(clk->b.ctl_reg);
+		ctl_reg_val &= ~(clk->ctl_mask);
+		ctl_reg_val |= nf->ctl_val;
+		writel_relaxed(ctl_reg_val, clk->b.ctl_reg);
+	}
+
+	/* Deassert MND reset. */
+	ns_reg_val &= ~BIT(7);
+	writel_relaxed(ns_reg_val, clk->ns_reg);
+}
+
+void set_rate_nop(struct rcg_clk *clk, struct clk_freq_tbl *nf)
+{
+	/*
+	 * Nothing to do for fixed-rate or integer-divider clocks. Any settings
+	 * in NS registers are applied in the enable path, since power can be
+	 * saved by leaving an un-clocked or slowly-clocked source selected
+	 * until the clock is enabled.
+	 */
+}
+
+void set_rate_mnd_8(struct rcg_clk *clk, struct clk_freq_tbl *nf)
+{
+	uint32_t ctl_reg_val;
+
+	/* Assert MND reset. */
+	ctl_reg_val = readl_relaxed(clk->b.ctl_reg);
+	ctl_reg_val |= BIT(8);
+	writel_relaxed(ctl_reg_val, clk->b.ctl_reg);
+
+	/* Program M and D values. */
+	writel_relaxed(nf->md_val, clk->md_reg);
+
+	/* Program MN counter Enable and Mode. */
+	ctl_reg_val &= ~(clk->ctl_mask);
+	ctl_reg_val |= nf->ctl_val;
+	writel_relaxed(ctl_reg_val, clk->b.ctl_reg);
+
+	/* Deassert MND reset. */
+	ctl_reg_val &= ~BIT(8);
+	writel_relaxed(ctl_reg_val, clk->b.ctl_reg);
+}
+
+void set_rate_mnd_banked(struct rcg_clk *clk, struct clk_freq_tbl *nf)
+{
+	struct bank_masks *banks = clk->bank_masks;
+	const struct bank_mask_info *new_bank_masks;
+	const struct bank_mask_info *old_bank_masks;
+	uint32_t ns_reg_val, ctl_reg_val;
+	uint32_t bank_sel;
+
+	/*
+	 * Determine active bank and program the other one. If the clock is
+	 * off, program the active bank since bank switching won't work if
+	 * both banks aren't running.
+	 */
+	ctl_reg_val = readl_relaxed(clk->b.ctl_reg);
+	bank_sel = !!(ctl_reg_val & banks->bank_sel_mask);
+	 /* If clock isn't running, don't switch banks. */
+	bank_sel ^= (!clk->enabled || clk->current_freq->freq_hz == 0);
+	if (bank_sel == 0) {
+		new_bank_masks = &banks->bank1_mask;
+		old_bank_masks = &banks->bank0_mask;
+	} else {
+		new_bank_masks = &banks->bank0_mask;
+		old_bank_masks = &banks->bank1_mask;
+	}
+
+	ns_reg_val = readl_relaxed(clk->ns_reg);
+
+	/* Assert bank MND reset. */
+	ns_reg_val |= new_bank_masks->rst_mask;
+	writel_relaxed(ns_reg_val, clk->ns_reg);
+
+	/*
+	 * Program NS only if the clock is enabled, since the NS will be set
+	 * as part of the enable procedure and should remain with a low-power
+	 * MUX input selected until then.
+	 */
+	if (clk->enabled) {
+		ns_reg_val &= ~(new_bank_masks->ns_mask);
+		ns_reg_val |= (nf->ns_val & new_bank_masks->ns_mask);
+		writel_relaxed(ns_reg_val, clk->ns_reg);
+	}
+
+	writel_relaxed(nf->md_val, new_bank_masks->md_reg);
+
+	/* Enable counter only if clock is enabled. */
+	if (clk->enabled)
+		ctl_reg_val |= new_bank_masks->mnd_en_mask;
+	else
+		ctl_reg_val &= ~(new_bank_masks->mnd_en_mask);
+
+	ctl_reg_val &= ~(new_bank_masks->mode_mask);
+	ctl_reg_val |= (nf->ctl_val & new_bank_masks->mode_mask);
+	writel_relaxed(ctl_reg_val, clk->b.ctl_reg);
+
+	/* Deassert bank MND reset. */
+	ns_reg_val &= ~(new_bank_masks->rst_mask);
+	writel_relaxed(ns_reg_val, clk->ns_reg);
+
+	/*
+	 * Switch to the new bank if clock is running.  If it isn't, then
+	 * no switch is necessary since we programmed the active bank.
+	 */
+	if (clk->enabled && clk->current_freq->freq_hz) {
+		ctl_reg_val ^= banks->bank_sel_mask;
+		writel_relaxed(ctl_reg_val, clk->b.ctl_reg);
+		/*
+		 * Wait at least 6 cycles of slowest bank's clock
+		 * for the glitch-free MUX to fully switch sources.
+		 */
+		mb();
+		udelay(1);
+
+		/* Disable old bank's MN counter. */
+		ctl_reg_val &= ~(old_bank_masks->mnd_en_mask);
+		writel_relaxed(ctl_reg_val, clk->b.ctl_reg);
+
+		/* Program old bank to a low-power source and divider. */
+		ns_reg_val &= ~(old_bank_masks->ns_mask);
+		ns_reg_val |= (clk->freq_tbl->ns_val & old_bank_masks->ns_mask);
+		writel_relaxed(ns_reg_val, clk->ns_reg);
+	}
+
+	/*
+	 * If this freq requires the MN counter to be enabled,
+	 * update the enable mask to match the current bank.
+	 */
+	if (nf->mnd_en_mask)
+		nf->mnd_en_mask = new_bank_masks->mnd_en_mask;
+	/* Update the NS mask to match the current bank. */
+	clk->ns_mask = new_bank_masks->ns_mask;
+}
+
+void set_rate_div_banked(struct rcg_clk *clk, struct clk_freq_tbl *nf)
+{
+	struct bank_masks *banks = clk->bank_masks;
+	const struct bank_mask_info *new_bank_masks;
+	const struct bank_mask_info *old_bank_masks;
+	uint32_t ns_reg_val, bank_sel;
+
+	/*
+	 * Determine active bank and program the other one. If the clock is
+	 * off, program the active bank since bank switching won't work if
+	 * both banks aren't running.
+	 */
+	ns_reg_val = readl_relaxed(clk->ns_reg);
+	bank_sel = !!(ns_reg_val & banks->bank_sel_mask);
+	 /* If clock isn't running, don't switch banks. */
+	bank_sel ^= (!clk->enabled || clk->current_freq->freq_hz == 0);
+	if (bank_sel == 0) {
+		new_bank_masks = &banks->bank1_mask;
+		old_bank_masks = &banks->bank0_mask;
+	} else {
+		new_bank_masks = &banks->bank0_mask;
+		old_bank_masks = &banks->bank1_mask;
+	}
+
+	/*
+	 * Program NS only if the clock is enabled, since the NS will be set
+	 * as part of the enable procedure and should remain with a low-power
+	 * MUX input selected until then.
+	 */
+	if (clk->enabled) {
+		ns_reg_val &= ~(new_bank_masks->ns_mask);
+		ns_reg_val |= (nf->ns_val & new_bank_masks->ns_mask);
+		writel_relaxed(ns_reg_val, clk->ns_reg);
+	}
+
+	/*
+	 * Switch to the new bank if clock is running.  If it isn't, then
+	 * no switch is necessary since we programmed the active bank.
+	 */
+	if (clk->enabled && clk->current_freq->freq_hz) {
+		ns_reg_val ^= banks->bank_sel_mask;
+		writel_relaxed(ns_reg_val, clk->ns_reg);
+		/*
+		 * Wait at least 6 cycles of slowest bank's clock
+		 * for the glitch-free MUX to fully switch sources.
+		 */
+		mb();
+		udelay(1);
+
+		/* Program old bank to a low-power source and divider. */
+		ns_reg_val &= ~(old_bank_masks->ns_mask);
+		ns_reg_val |= (clk->freq_tbl->ns_val & old_bank_masks->ns_mask);
+		writel_relaxed(ns_reg_val, clk->ns_reg);
+	}
+
+	/* Update the NS mask to match the current bank. */
+	clk->ns_mask = new_bank_masks->ns_mask;
+}
+
+int (*soc_update_sys_vdd)(enum sys_vdd_level level);
+
+/*
+ * SYS_VDD voting functions
+ */
+
+/* Update system voltage level given the current votes. */
+static int local_update_sys_vdd(void)
+{
+	static int cur_level = NUM_SYS_VDD_LEVELS;
+	int level, rc = 0;
+
+	if (local_sys_vdd_votes[HIGH])
+		level = HIGH;
+	else if (local_sys_vdd_votes[NOMINAL])
+		level = NOMINAL;
+	else if (local_sys_vdd_votes[LOW])
+		level = LOW;
+	else
+		level = NONE;
+
+	if (level == cur_level)
+		return rc;
+
+	rc = soc_update_sys_vdd(level);
+	if (!rc)
+		cur_level = level;
+
+	return rc;
+}
+
+/* Vote for a system voltage level. */
+int local_vote_sys_vdd(unsigned level)
+{
+	int rc = 0;
+	unsigned long flags;
+
+	/* Bounds checking. */
+	if (level >= ARRAY_SIZE(local_sys_vdd_votes))
+		return -EINVAL;
+
+	spin_lock_irqsave(&sys_vdd_vote_lock, flags);
+	local_sys_vdd_votes[level]++;
+	rc = local_update_sys_vdd();
+	if (rc)
+		local_sys_vdd_votes[level]--;
+	spin_unlock_irqrestore(&sys_vdd_vote_lock, flags);
+
+	return rc;
+}
+
+/* Remove vote for a system voltage level. */
+int local_unvote_sys_vdd(unsigned level)
+{
+	int rc = 0;
+	unsigned long flags;
+
+	/* Bounds checking. */
+	if (level >= ARRAY_SIZE(local_sys_vdd_votes))
+		return -EINVAL;
+
+	spin_lock_irqsave(&sys_vdd_vote_lock, flags);
+
+	if (WARN(!local_sys_vdd_votes[level],
+		"Reference counts are incorrect for level %d!\n", level))
+		goto out;
+
+	local_sys_vdd_votes[level]--;
+	rc = local_update_sys_vdd();
+	if (rc)
+		local_sys_vdd_votes[level]++;
+out:
+	spin_unlock_irqrestore(&sys_vdd_vote_lock, flags);
+	return rc;
+}
+/*
+ * Clock enable/disable functions
+ */
+
+/* Return non-zero if a clock status registers shows the clock is halted. */
+static int branch_clk_is_halted(const struct branch *clk)
+{
+	int invert = (clk->halt_check == ENABLE);
+	int status_bit = readl_relaxed(clk->halt_reg) & BIT(clk->halt_bit);
+	return invert ? !status_bit : status_bit;
+}
+
+static void __branch_clk_enable_reg(const struct branch *clk, const char *name)
+{
+	u32 reg_val;
+
+	if (clk->en_mask) {
+		reg_val = readl_relaxed(clk->ctl_reg);
+		reg_val |= clk->en_mask;
+		writel_relaxed(reg_val, clk->ctl_reg);
+	}
+
+	/*
+	 * Use a memory barrier since some halt status registers are
+	 * not within the same 1K segment as the branch/root enable
+	 * registers.  It's also needed in the udelay() case to ensure
+	 * the delay starts after the branch enable.
+	 */
+	mb();
+
+	/* Wait for clock to enable before returning. */
+	if (clk->halt_check == DELAY)
+		udelay(HALT_CHECK_DELAY_US);
+	else if (clk->halt_check == ENABLE || clk->halt_check == HALT
+			|| clk->halt_check == ENABLE_VOTED
+			|| clk->halt_check == HALT_VOTED) {
+		int count;
+
+		/* Wait up to HALT_CHECK_MAX_LOOPS for clock to enable. */
+		for (count = HALT_CHECK_MAX_LOOPS; branch_clk_is_halted(clk)
+					&& count > 0; count--)
+			udelay(1);
+		WARN(count == 0, "%s status stuck at 'off'", name);
+	}
+}
+
+/* Perform any register operations required to enable the clock. */
+static void __local_clk_enable_reg(struct rcg_clk *clk)
+{
+	u32 reg_val;
+	void __iomem *const reg = clk->b.ctl_reg;
+
+	WARN(clk->current_freq == &local_dummy_freq,
+		"Attempting to enable %s before setting its rate. "
+		"Set the rate first!\n", clk->c.dbg_name);
+
+	/*
+	 * Program the NS register, if applicable. NS registers are not
+	 * set in the set_rate path because power can be saved by deferring
+	 * the selection of a clocked source until the clock is enabled.
+	 */
+	if (clk->ns_mask) {
+		reg_val = readl_relaxed(clk->ns_reg);
+		reg_val &= ~(clk->ns_mask);
+		reg_val |= (clk->current_freq->ns_val & clk->ns_mask);
+		writel_relaxed(reg_val, clk->ns_reg);
+	}
+
+	/* Enable MN counter, if applicable. */
+	reg_val = readl_relaxed(reg);
+	if (clk->current_freq->mnd_en_mask) {
+		reg_val |= clk->current_freq->mnd_en_mask;
+		writel_relaxed(reg_val, reg);
+	}
+	/* Enable root. */
+	if (clk->root_en_mask) {
+		reg_val |= clk->root_en_mask;
+		writel_relaxed(reg_val, reg);
+	}
+	__branch_clk_enable_reg(&clk->b, clk->c.dbg_name);
+}
+
+/* Perform any register operations required to disable the branch. */
+static u32 __branch_clk_disable_reg(const struct branch *clk, const char *name)
+{
+	u32 reg_val;
+
+	reg_val = readl_relaxed(clk->ctl_reg);
+	if (clk->en_mask) {
+		reg_val &= ~(clk->en_mask);
+		writel_relaxed(reg_val, clk->ctl_reg);
+	}
+
+	/*
+	 * Use a memory barrier since some halt status registers are
+	 * not within the same K segment as the branch/root enable
+	 * registers.  It's also needed in the udelay() case to ensure
+	 * the delay starts after the branch disable.
+	 */
+	mb();
+
+	/* Wait for clock to disable before continuing. */
+	if (clk->halt_check == DELAY || clk->halt_check == ENABLE_VOTED
+				     || clk->halt_check == HALT_VOTED)
+		udelay(HALT_CHECK_DELAY_US);
+	else if (clk->halt_check == ENABLE || clk->halt_check == HALT) {
+		int count;
+
+		/* Wait up to HALT_CHECK_MAX_LOOPS for clock to disable. */
+		for (count = HALT_CHECK_MAX_LOOPS; !branch_clk_is_halted(clk)
+					&& count > 0; count--)
+			udelay(1);
+		WARN(count == 0, "%s status stuck at 'on'", name);
+	}
+
+	return reg_val;
+}
+
+/* Perform any register operations required to disable the generator. */
+static void __local_clk_disable_reg(struct rcg_clk *clk)
+{
+	void __iomem *const reg = clk->b.ctl_reg;
+	uint32_t reg_val;
+
+	reg_val = __branch_clk_disable_reg(&clk->b, clk->c.dbg_name);
+	/* Disable root. */
+	if (clk->root_en_mask) {
+		reg_val &= ~(clk->root_en_mask);
+		writel_relaxed(reg_val, reg);
+	}
+	/* Disable MN counter, if applicable. */
+	if (clk->current_freq->mnd_en_mask) {
+		reg_val &= ~(clk->current_freq->mnd_en_mask);
+		writel_relaxed(reg_val, reg);
+	}
+	/*
+	 * Program NS register to low-power value with an un-clocked or
+	 * slowly-clocked source selected.
+	 */
+	if (clk->ns_mask) {
+		reg_val = readl_relaxed(clk->ns_reg);
+		reg_val &= ~(clk->ns_mask);
+		reg_val |= (clk->freq_tbl->ns_val & clk->ns_mask);
+		writel_relaxed(reg_val, clk->ns_reg);
+	}
+}
+
+static int _local_clk_enable(struct rcg_clk *clk)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&local_clock_reg_lock, flags);
+	__local_clk_enable_reg(clk);
+	clk->enabled = true;
+	spin_unlock_irqrestore(&local_clock_reg_lock, flags);
+
+	return 0;
+}
+
+static void _local_clk_disable(struct rcg_clk *clk)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&local_clock_reg_lock, flags);
+	__local_clk_disable_reg(clk);
+	clk->enabled = false;
+	spin_unlock_irqrestore(&local_clock_reg_lock, flags);
+}
+
+/* Enable a clock and any related power rail. */
+int local_clk_enable(struct clk *c)
+{
+	int rc;
+	struct rcg_clk *clk = to_rcg_clk(c);
+
+	rc = local_vote_sys_vdd(clk->current_freq->sys_vdd);
+	if (rc)
+		goto err_vdd;
+	rc = clk_enable(clk->depends);
+	if (rc)
+		goto err_dep;
+	rc = _local_clk_enable(clk);
+	if (rc)
+		goto err_enable;
+	return rc;
+
+err_enable:
+	clk_disable(clk->depends);
+err_dep:
+	local_unvote_sys_vdd(clk->current_freq->sys_vdd);
+err_vdd:
+	return rc;
+}
+
+/* Disable a clock and any related power rail. */
+void local_clk_disable(struct clk *c)
+{
+	struct rcg_clk *clk = to_rcg_clk(c);
+
+	_local_clk_disable(clk);
+	clk_disable(clk->depends);
+	local_unvote_sys_vdd(clk->current_freq->sys_vdd);
+}
+
+/* Turn off a clock at boot, without checking refcounts or disabling depends. */
+void local_clk_auto_off(struct clk *c)
+{
+	_local_clk_disable(to_rcg_clk(c));
+}
+
+/*
+ * Frequency-related functions
+ */
+
+/* Set a clock's frequency. */
+static int _local_clk_set_rate(struct rcg_clk *clk, struct clk_freq_tbl *nf)
+{
+	struct clk_freq_tbl *cf;
+	int rc = 0;
+	struct clk *chld;
+	unsigned long flags;
+
+	spin_lock_irqsave(&clk->c.lock, flags);
+
+	/* Check if frequency is actually changed. */
+	cf = clk->current_freq;
+	if (nf == cf)
+		goto unlock;
+
+	if (clk->enabled) {
+		/* Vote for voltage and source for new freq. */
+		rc = local_vote_sys_vdd(nf->sys_vdd);
+		if (rc)
+			goto unlock;
+		rc = clk_enable(nf->src_clk);
+		if (rc) {
+			local_unvote_sys_vdd(nf->sys_vdd);
+			goto unlock;
+		}
+	}
+
+	spin_lock(&local_clock_reg_lock);
+
+	/* Disable branch if clock isn't dual-banked with a glitch-free MUX. */
+	if (clk->bank_masks == NULL) {
+		/* Disable all branches to prevent glitches. */
+		list_for_each_entry(chld, &clk->c.children, siblings) {
+			struct branch_clk *x = to_branch_clk(chld);
+			/*
+			 * We don't need to grab the child's lock because
+			 * we hold the local_clock_reg_lock and 'enabled' is
+			 * only modified within lock.
+			 */
+			if (x->enabled)
+				__branch_clk_disable_reg(&x->b, x->c.dbg_name);
+		}
+		if (clk->enabled)
+			__local_clk_disable_reg(clk);
+	}
+
+	/* Perform clock-specific frequency switch operations. */
+	BUG_ON(!clk->set_rate);
+	clk->set_rate(clk, nf);
+
+	/*
+	 * Current freq must be updated before __local_clk_enable_reg()
+	 * is called to make sure the MNCNTR_EN bit is set correctly.
+	 */
+	clk->current_freq = nf;
+
+	/* Enable any clocks that were disabled. */
+	if (clk->bank_masks == NULL) {
+		if (clk->enabled)
+			__local_clk_enable_reg(clk);
+		/* Enable only branches that were ON before. */
+		list_for_each_entry(chld, &clk->c.children, siblings) {
+			struct branch_clk *x = to_branch_clk(chld);
+			if (x->enabled)
+				__branch_clk_enable_reg(&x->b, x->c.dbg_name);
+		}
+	}
+
+	spin_unlock(&local_clock_reg_lock);
+
+	/* Release requirements of the old freq. */
+	if (clk->enabled) {
+		clk_disable(cf->src_clk);
+		local_unvote_sys_vdd(cf->sys_vdd);
+	}
+unlock:
+	spin_unlock_irqrestore(&clk->c.lock, flags);
+
+	return rc;
+}
+
+/* Set a clock to an exact rate. */
+int local_clk_set_rate(struct clk *c, unsigned rate)
+{
+	struct rcg_clk *clk = to_rcg_clk(c);
+	struct clk_freq_tbl *nf;
+
+	for (nf = clk->freq_tbl; nf->freq_hz != FREQ_END
+			&& nf->freq_hz != rate; nf++)
+		;
+
+	if (nf->freq_hz == FREQ_END)
+		return -EINVAL;
+
+	return _local_clk_set_rate(clk, nf);
+}
+
+/* Set a clock to a rate greater than some minimum. */
+int local_clk_set_min_rate(struct clk *c, unsigned rate)
+{
+	struct rcg_clk *clk = to_rcg_clk(c);
+	struct clk_freq_tbl *nf;
+
+	for (nf = clk->freq_tbl; nf->freq_hz != FREQ_END
+			&& nf->freq_hz < rate; nf++)
+		;
+
+	if (nf->freq_hz == FREQ_END)
+		return -EINVAL;
+
+	return _local_clk_set_rate(clk, nf);
+}
+
+/* Set a clock to a maximum rate. */
+int local_clk_set_max_rate(struct clk *clk, unsigned rate)
+{
+	return -EPERM;
+}
+
+/* Get the currently-set rate of a clock in Hz. */
+unsigned local_clk_get_rate(struct clk *c)
+{
+	struct rcg_clk *clk = to_rcg_clk(c);
+	unsigned long flags;
+	unsigned ret = 0;
+
+	spin_lock_irqsave(&local_clock_reg_lock, flags);
+	ret = clk->current_freq->freq_hz;
+	spin_unlock_irqrestore(&local_clock_reg_lock, flags);
+
+	/*
+	 * Return 0 if the rate has never been set. Might not be correct,
+	 * but it's good enough.
+	 */
+	if (ret == FREQ_END)
+		ret = 0;
+
+	return ret;
+}
+
+/* Check if a clock is currently enabled. */
+int local_clk_is_enabled(struct clk *clk)
+{
+	return to_rcg_clk(clk)->enabled;
+}
+
+/* Return a supported rate that's at least the specified rate. */
+long local_clk_round_rate(struct clk *c, unsigned rate)
+{
+	struct rcg_clk *clk = to_rcg_clk(c);
+	struct clk_freq_tbl *f;
+
+	for (f = clk->freq_tbl; f->freq_hz != FREQ_END; f++)
+		if (f->freq_hz >= rate)
+			return f->freq_hz;
+
+	return -EPERM;
+}
+
+bool local_clk_is_local(struct clk *clk)
+{
+	return true;
+}
+
+/* Return the nth supported frequency for a given clock. */
+int local_clk_list_rate(struct clk *c, unsigned n)
+{
+	struct rcg_clk *clk = to_rcg_clk(c);
+
+	if (!clk->freq_tbl || clk->freq_tbl->freq_hz == FREQ_END)
+		return -ENXIO;
+
+	return (clk->freq_tbl + n)->freq_hz;
+}
+
+struct clk *local_clk_get_parent(struct clk *clk)
+{
+	return to_rcg_clk(clk)->current_freq->src_clk;
+}
+
+static int pll_vote_clk_enable(struct clk *clk)
+{
+	u32 ena;
+	unsigned long flags;
+	struct pll_vote_clk *pll = to_pll_vote_clk(clk);
+
+	spin_lock_irqsave(&local_clock_reg_lock, flags);
+	ena = readl_relaxed(pll->en_reg);
+	ena |= pll->en_mask;
+	writel_relaxed(ena, pll->en_reg);
+	spin_unlock_irqrestore(&local_clock_reg_lock, flags);
+
+	/* Wait until PLL is enabled */
+	while ((readl_relaxed(pll->status_reg) & BIT(16)) == 0)
+		cpu_relax();
+
+	return 0;
+}
+
+static void pll_vote_clk_disable(struct clk *clk)
+{
+	u32 ena;
+	unsigned long flags;
+	struct pll_vote_clk *pll = to_pll_vote_clk(clk);
+
+	spin_lock_irqsave(&local_clock_reg_lock, flags);
+	ena = readl_relaxed(pll->en_reg);
+	ena &= ~(pll->en_mask);
+	writel_relaxed(ena, pll->en_reg);
+	spin_unlock_irqrestore(&local_clock_reg_lock, flags);
+}
+
+static unsigned pll_vote_clk_get_rate(struct clk *clk)
+{
+	struct pll_vote_clk *pll = to_pll_vote_clk(clk);
+	return pll->rate;
+}
+
+static struct clk *pll_vote_clk_get_parent(struct clk *clk)
+{
+	struct pll_vote_clk *pll = to_pll_vote_clk(clk);
+	return pll->parent;
+}
+
+static int pll_vote_clk_is_enabled(struct clk *clk)
+{
+	struct pll_vote_clk *pll = to_pll_vote_clk(clk);
+	return !!(readl_relaxed(pll->status_reg) & BIT(16));
+}
+
+struct clk_ops clk_ops_pll_vote = {
+	.enable = pll_vote_clk_enable,
+	.disable = pll_vote_clk_disable,
+	.is_enabled = pll_vote_clk_is_enabled,
+	.get_rate = pll_vote_clk_get_rate,
+	.get_parent = pll_vote_clk_get_parent,
+	.is_local = local_clk_is_local,
+};
+
+static int pll_clk_enable(struct clk *clk)
+{
+	u32 mode;
+	unsigned long flags;
+	struct pll_clk *pll = to_pll_clk(clk);
+
+	spin_lock_irqsave(&local_clock_reg_lock, flags);
+	mode = readl_relaxed(pll->mode_reg);
+	/* Disable PLL bypass mode. */
+	mode |= BIT(1);
+	writel_relaxed(mode, pll->mode_reg);
+
+	/*
+	 * H/W requires a 5us delay between disabling the bypass and
+	 * de-asserting the reset. Delay 10us just to be safe.
+	 */
+	mb();
+	udelay(10);
+
+	/* De-assert active-low PLL reset. */
+	mode |= BIT(2);
+	writel_relaxed(mode, pll->mode_reg);
+
+	/* Wait until PLL is locked. */
+	mb();
+	udelay(50);
+
+	/* Enable PLL output. */
+	mode |= BIT(0);
+	writel_relaxed(mode, pll->mode_reg);
+
+	spin_unlock_irqrestore(&local_clock_reg_lock, flags);
+	return 0;
+}
+
+static void pll_clk_disable(struct clk *clk)
+{
+	u32 mode;
+	unsigned long flags;
+	struct pll_clk *pll = to_pll_clk(clk);
+
+	/*
+	 * Disable the PLL output, disable test mode, enable
+	 * the bypass mode, and assert the reset.
+	 */
+	spin_lock_irqsave(&local_clock_reg_lock, flags);
+	mode = readl_relaxed(pll->mode_reg);
+	mode &= ~BM(3, 0);
+	writel_relaxed(mode, pll->mode_reg);
+	spin_unlock_irqrestore(&local_clock_reg_lock, flags);
+}
+
+static unsigned pll_clk_get_rate(struct clk *clk)
+{
+	struct pll_clk *pll = to_pll_clk(clk);
+	return pll->rate;
+}
+
+static struct clk *pll_clk_get_parent(struct clk *clk)
+{
+	struct pll_clk *pll = to_pll_clk(clk);
+	return pll->parent;
+}
+
+struct clk_ops clk_ops_pll = {
+	.enable = pll_clk_enable,
+	.disable = pll_clk_disable,
+	.get_rate = pll_clk_get_rate,
+	.get_parent = pll_clk_get_parent,
+	.is_local = local_clk_is_local,
+};
+
+struct clk_ops clk_ops_gnd = {
+	.get_rate = fixed_clk_get_rate,
+	.is_local = local_clk_is_local,
+};
+
+struct fixed_clk gnd_clk = {
+	.c = {
+		.dbg_name = "ground_clk",
+		.ops = &clk_ops_gnd,
+		CLK_INIT(gnd_clk.c),
+	},
+};
+
+struct clk_ops clk_ops_measure = {
+	.is_local = local_clk_is_local,
+};
+
+int branch_clk_enable(struct clk *clk)
+{
+	unsigned long flags;
+	struct branch_clk *branch = to_branch_clk(clk);
+
+	spin_lock_irqsave(&local_clock_reg_lock, flags);
+	__branch_clk_enable_reg(&branch->b, branch->c.dbg_name);
+	branch->enabled = true;
+	spin_unlock_irqrestore(&local_clock_reg_lock, flags);
+
+	return 0;
+}
+
+void branch_clk_disable(struct clk *clk)
+{
+	unsigned long flags;
+	struct branch_clk *branch = to_branch_clk(clk);
+
+	spin_lock_irqsave(&local_clock_reg_lock, flags);
+	__branch_clk_disable_reg(&branch->b, branch->c.dbg_name);
+	branch->enabled = false;
+	spin_unlock_irqrestore(&local_clock_reg_lock, flags);
+}
+
+struct clk *branch_clk_get_parent(struct clk *clk)
+{
+	struct branch_clk *branch = to_branch_clk(clk);
+	return branch->parent;
+}
+
+int branch_clk_set_parent(struct clk *clk, struct clk *parent)
+{
+	/*
+	 * We setup the parent pointer at init time in msm_clock_init().
+	 * This check is to make sure drivers can't change the parent.
+	 */
+	if (parent && list_empty(&clk->siblings)) {
+		list_add(&clk->siblings, &parent->children);
+		return 0;
+	}
+	return -EINVAL;
+}
+
+int branch_clk_is_enabled(struct clk *clk)
+{
+	struct branch_clk *branch = to_branch_clk(clk);
+	return branch->enabled;
+}
+
+void branch_clk_auto_off(struct clk *clk)
+{
+	struct branch_clk *branch = to_branch_clk(clk);
+	unsigned long flags;
+
+	spin_lock_irqsave(&local_clock_reg_lock, flags);
+	__branch_clk_disable_reg(&branch->b, branch->c.dbg_name);
+	spin_unlock_irqrestore(&local_clock_reg_lock, flags);
+}
+
+int branch_reset(struct branch *clk, enum clk_reset_action action)
+{
+	int ret = 0;
+	u32 reg_val;
+	unsigned long flags;
+
+	if (!clk->reset_reg)
+		return -EPERM;
+
+	spin_lock_irqsave(&local_clock_reg_lock, flags);
+
+	reg_val = readl_relaxed(clk->reset_reg);
+	switch (action) {
+	case CLK_RESET_ASSERT:
+		reg_val |= clk->reset_mask;
+		break;
+	case CLK_RESET_DEASSERT:
+		reg_val &= ~(clk->reset_mask);
+		break;
+	default:
+		ret = -EINVAL;
+	}
+	writel_relaxed(reg_val, clk->reset_reg);
+
+	spin_unlock_irqrestore(&local_clock_reg_lock, flags);
+
+	/* Make sure write is issued before returning. */
+	mb();
+
+	return ret;
+}
+
+int branch_clk_reset(struct clk *clk, enum clk_reset_action action)
+{
+	return branch_reset(&to_branch_clk(clk)->b, action);
+}