| /* | 
 |  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. | 
 |  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) | 
 |  * | 
 |  * Right now, I am very wasteful with the buffers.  I allocate memory | 
 |  * pages and then divide them into 2K frame buffers.  This way I know I | 
 |  * have buffers large enough to hold one frame within one buffer descriptor. | 
 |  * Once I get this working, I will use 64 or 128 byte CPM buffers, which | 
 |  * will be much more memory efficient and will easily handle lots of | 
 |  * small packets. | 
 |  * | 
 |  * Much better multiple PHY support by Magnus Damm. | 
 |  * Copyright (c) 2000 Ericsson Radio Systems AB. | 
 |  * | 
 |  * Support for FEC controller of ColdFire processors. | 
 |  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) | 
 |  * | 
 |  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) | 
 |  * Copyright (c) 2004-2006 Macq Electronique SA. | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/string.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/init.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/io.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/clk.h> | 
 | #include <linux/platform_device.h> | 
 |  | 
 | #include <asm/cacheflush.h> | 
 |  | 
 | #ifndef CONFIG_ARCH_MXC | 
 | #include <asm/coldfire.h> | 
 | #include <asm/mcfsim.h> | 
 | #endif | 
 |  | 
 | #include "fec.h" | 
 |  | 
 | #ifdef CONFIG_ARCH_MXC | 
 | #include <mach/hardware.h> | 
 | #define FEC_ALIGNMENT	0xf | 
 | #else | 
 | #define FEC_ALIGNMENT	0x3 | 
 | #endif | 
 |  | 
 | /* | 
 |  * Define the fixed address of the FEC hardware. | 
 |  */ | 
 | #if defined(CONFIG_M5272) | 
 | #define HAVE_mii_link_interrupt | 
 |  | 
 | static unsigned char	fec_mac_default[] = { | 
 | 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
 | }; | 
 |  | 
 | /* | 
 |  * Some hardware gets it MAC address out of local flash memory. | 
 |  * if this is non-zero then assume it is the address to get MAC from. | 
 |  */ | 
 | #if defined(CONFIG_NETtel) | 
 | #define	FEC_FLASHMAC	0xf0006006 | 
 | #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) | 
 | #define	FEC_FLASHMAC	0xf0006000 | 
 | #elif defined(CONFIG_CANCam) | 
 | #define	FEC_FLASHMAC	0xf0020000 | 
 | #elif defined (CONFIG_M5272C3) | 
 | #define	FEC_FLASHMAC	(0xffe04000 + 4) | 
 | #elif defined(CONFIG_MOD5272) | 
 | #define FEC_FLASHMAC 	0xffc0406b | 
 | #else | 
 | #define	FEC_FLASHMAC	0 | 
 | #endif | 
 | #endif /* CONFIG_M5272 */ | 
 |  | 
 | /* Forward declarations of some structures to support different PHYs */ | 
 |  | 
 | typedef struct { | 
 | 	uint mii_data; | 
 | 	void (*funct)(uint mii_reg, struct net_device *dev); | 
 | } phy_cmd_t; | 
 |  | 
 | typedef struct { | 
 | 	uint id; | 
 | 	char *name; | 
 |  | 
 | 	const phy_cmd_t *config; | 
 | 	const phy_cmd_t *startup; | 
 | 	const phy_cmd_t *ack_int; | 
 | 	const phy_cmd_t *shutdown; | 
 | } phy_info_t; | 
 |  | 
 | /* The number of Tx and Rx buffers.  These are allocated from the page | 
 |  * pool.  The code may assume these are power of two, so it it best | 
 |  * to keep them that size. | 
 |  * We don't need to allocate pages for the transmitter.  We just use | 
 |  * the skbuffer directly. | 
 |  */ | 
 | #define FEC_ENET_RX_PAGES	8 | 
 | #define FEC_ENET_RX_FRSIZE	2048 | 
 | #define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE) | 
 | #define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES) | 
 | #define FEC_ENET_TX_FRSIZE	2048 | 
 | #define FEC_ENET_TX_FRPPG	(PAGE_SIZE / FEC_ENET_TX_FRSIZE) | 
 | #define TX_RING_SIZE		16	/* Must be power of two */ | 
 | #define TX_RING_MOD_MASK	15	/*   for this to work */ | 
 |  | 
 | #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE) | 
 | #error "FEC: descriptor ring size constants too large" | 
 | #endif | 
 |  | 
 | /* Interrupt events/masks. */ | 
 | #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */ | 
 | #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */ | 
 | #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */ | 
 | #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */ | 
 | #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */ | 
 | #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */ | 
 | #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */ | 
 | #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */ | 
 | #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */ | 
 | #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */ | 
 |  | 
 | /* The FEC stores dest/src/type, data, and checksum for receive packets. | 
 |  */ | 
 | #define PKT_MAXBUF_SIZE		1518 | 
 | #define PKT_MINBUF_SIZE		64 | 
 | #define PKT_MAXBLR_SIZE		1520 | 
 |  | 
 |  | 
 | /* | 
 |  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame | 
 |  * size bits. Other FEC hardware does not, so we need to take that into | 
 |  * account when setting it. | 
 |  */ | 
 | #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ | 
 |     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC) | 
 | #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16) | 
 | #else | 
 | #define	OPT_FRAME_SIZE	0 | 
 | #endif | 
 |  | 
 | /* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and | 
 |  * tx_bd_base always point to the base of the buffer descriptors.  The | 
 |  * cur_rx and cur_tx point to the currently available buffer. | 
 |  * The dirty_tx tracks the current buffer that is being sent by the | 
 |  * controller.  The cur_tx and dirty_tx are equal under both completely | 
 |  * empty and completely full conditions.  The empty/ready indicator in | 
 |  * the buffer descriptor determines the actual condition. | 
 |  */ | 
 | struct fec_enet_private { | 
 | 	/* Hardware registers of the FEC device */ | 
 | 	void __iomem *hwp; | 
 |  | 
 | 	struct net_device *netdev; | 
 |  | 
 | 	struct clk *clk; | 
 |  | 
 | 	/* The saved address of a sent-in-place packet/buffer, for skfree(). */ | 
 | 	unsigned char *tx_bounce[TX_RING_SIZE]; | 
 | 	struct	sk_buff* tx_skbuff[TX_RING_SIZE]; | 
 | 	struct	sk_buff* rx_skbuff[RX_RING_SIZE]; | 
 | 	ushort	skb_cur; | 
 | 	ushort	skb_dirty; | 
 |  | 
 | 	/* CPM dual port RAM relative addresses */ | 
 | 	dma_addr_t	bd_dma; | 
 | 	/* Address of Rx and Tx buffers */ | 
 | 	struct bufdesc	*rx_bd_base; | 
 | 	struct bufdesc	*tx_bd_base; | 
 | 	/* The next free ring entry */ | 
 | 	struct bufdesc	*cur_rx, *cur_tx;  | 
 | 	/* The ring entries to be free()ed */ | 
 | 	struct bufdesc	*dirty_tx; | 
 |  | 
 | 	uint	tx_full; | 
 | 	/* hold while accessing the HW like ringbuffer for tx/rx but not MAC */ | 
 | 	spinlock_t hw_lock; | 
 | 	/* hold while accessing the mii_list_t() elements */ | 
 | 	spinlock_t mii_lock; | 
 |  | 
 | 	uint	phy_id; | 
 | 	uint	phy_id_done; | 
 | 	uint	phy_status; | 
 | 	uint	phy_speed; | 
 | 	phy_info_t const	*phy; | 
 | 	struct work_struct phy_task; | 
 |  | 
 | 	uint	sequence_done; | 
 | 	uint	mii_phy_task_queued; | 
 |  | 
 | 	uint	phy_addr; | 
 |  | 
 | 	int	index; | 
 | 	int	opened; | 
 | 	int	link; | 
 | 	int	old_link; | 
 | 	int	full_duplex; | 
 | }; | 
 |  | 
 | static void fec_enet_mii(struct net_device *dev); | 
 | static irqreturn_t fec_enet_interrupt(int irq, void * dev_id); | 
 | static void fec_enet_tx(struct net_device *dev); | 
 | static void fec_enet_rx(struct net_device *dev); | 
 | static int fec_enet_close(struct net_device *dev); | 
 | static void fec_restart(struct net_device *dev, int duplex); | 
 | static void fec_stop(struct net_device *dev); | 
 |  | 
 |  | 
 | /* MII processing.  We keep this as simple as possible.  Requests are | 
 |  * placed on the list (if there is room).  When the request is finished | 
 |  * by the MII, an optional function may be called. | 
 |  */ | 
 | typedef struct mii_list { | 
 | 	uint	mii_regval; | 
 | 	void	(*mii_func)(uint val, struct net_device *dev); | 
 | 	struct	mii_list *mii_next; | 
 | } mii_list_t; | 
 |  | 
 | #define		NMII	20 | 
 | static mii_list_t	mii_cmds[NMII]; | 
 | static mii_list_t	*mii_free; | 
 | static mii_list_t	*mii_head; | 
 | static mii_list_t	*mii_tail; | 
 |  | 
 | static int	mii_queue(struct net_device *dev, int request, | 
 | 				void (*func)(uint, struct net_device *)); | 
 |  | 
 | /* Make MII read/write commands for the FEC */ | 
 | #define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18)) | 
 | #define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | \ | 
 | 						(VAL & 0xffff)) | 
 | #define mk_mii_end	0 | 
 |  | 
 | /* Transmitter timeout */ | 
 | #define TX_TIMEOUT (2 * HZ) | 
 |  | 
 | /* Register definitions for the PHY */ | 
 |  | 
 | #define MII_REG_CR          0  /* Control Register                         */ | 
 | #define MII_REG_SR          1  /* Status Register                          */ | 
 | #define MII_REG_PHYIR1      2  /* PHY Identification Register 1            */ | 
 | #define MII_REG_PHYIR2      3  /* PHY Identification Register 2            */ | 
 | #define MII_REG_ANAR        4  /* A-N Advertisement Register               */ | 
 | #define MII_REG_ANLPAR      5  /* A-N Link Partner Ability Register        */ | 
 | #define MII_REG_ANER        6  /* A-N Expansion Register                   */ | 
 | #define MII_REG_ANNPTR      7  /* A-N Next Page Transmit Register          */ | 
 | #define MII_REG_ANLPRNPR    8  /* A-N Link Partner Received Next Page Reg. */ | 
 |  | 
 | /* values for phy_status */ | 
 |  | 
 | #define PHY_CONF_ANE	0x0001  /* 1 auto-negotiation enabled */ | 
 | #define PHY_CONF_LOOP	0x0002  /* 1 loopback mode enabled */ | 
 | #define PHY_CONF_SPMASK	0x00f0  /* mask for speed */ | 
 | #define PHY_CONF_10HDX	0x0010  /* 10 Mbit half duplex supported */ | 
 | #define PHY_CONF_10FDX	0x0020  /* 10 Mbit full duplex supported */ | 
 | #define PHY_CONF_100HDX	0x0040  /* 100 Mbit half duplex supported */ | 
 | #define PHY_CONF_100FDX	0x0080  /* 100 Mbit full duplex supported */ | 
 |  | 
 | #define PHY_STAT_LINK	0x0100  /* 1 up - 0 down */ | 
 | #define PHY_STAT_FAULT	0x0200  /* 1 remote fault */ | 
 | #define PHY_STAT_ANC	0x0400  /* 1 auto-negotiation complete	*/ | 
 | #define PHY_STAT_SPMASK	0xf000  /* mask for speed */ | 
 | #define PHY_STAT_10HDX	0x1000  /* 10 Mbit half duplex selected	*/ | 
 | #define PHY_STAT_10FDX	0x2000  /* 10 Mbit full duplex selected	*/ | 
 | #define PHY_STAT_100HDX	0x4000  /* 100 Mbit half duplex selected */ | 
 | #define PHY_STAT_100FDX	0x8000  /* 100 Mbit full duplex selected */ | 
 |  | 
 |  | 
 | static int | 
 | fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	struct bufdesc *bdp; | 
 | 	void *bufaddr; | 
 | 	unsigned short	status; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!fep->link) { | 
 | 		/* Link is down or autonegotiation is in progress. */ | 
 | 		return NETDEV_TX_BUSY; | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&fep->hw_lock, flags); | 
 | 	/* Fill in a Tx ring entry */ | 
 | 	bdp = fep->cur_tx; | 
 |  | 
 | 	status = bdp->cbd_sc; | 
 |  | 
 | 	if (status & BD_ENET_TX_READY) { | 
 | 		/* Ooops.  All transmit buffers are full.  Bail out. | 
 | 		 * This should not happen, since dev->tbusy should be set. | 
 | 		 */ | 
 | 		printk("%s: tx queue full!.\n", dev->name); | 
 | 		spin_unlock_irqrestore(&fep->hw_lock, flags); | 
 | 		return NETDEV_TX_BUSY; | 
 | 	} | 
 |  | 
 | 	/* Clear all of the status flags */ | 
 | 	status &= ~BD_ENET_TX_STATS; | 
 |  | 
 | 	/* Set buffer length and buffer pointer */ | 
 | 	bufaddr = skb->data; | 
 | 	bdp->cbd_datlen = skb->len; | 
 |  | 
 | 	/* | 
 | 	 * On some FEC implementations data must be aligned on | 
 | 	 * 4-byte boundaries. Use bounce buffers to copy data | 
 | 	 * and get it aligned. Ugh. | 
 | 	 */ | 
 | 	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) { | 
 | 		unsigned int index; | 
 | 		index = bdp - fep->tx_bd_base; | 
 | 		memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len); | 
 | 		bufaddr = fep->tx_bounce[index]; | 
 | 	} | 
 |  | 
 | 	/* Save skb pointer */ | 
 | 	fep->tx_skbuff[fep->skb_cur] = skb; | 
 |  | 
 | 	dev->stats.tx_bytes += skb->len; | 
 | 	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK; | 
 |  | 
 | 	/* Push the data cache so the CPM does not get stale memory | 
 | 	 * data. | 
 | 	 */ | 
 | 	bdp->cbd_bufaddr = dma_map_single(&dev->dev, bufaddr, | 
 | 			FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE); | 
 |  | 
 | 	/* Send it on its way.  Tell FEC it's ready, interrupt when done, | 
 | 	 * it's the last BD of the frame, and to put the CRC on the end. | 
 | 	 */ | 
 | 	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | 
 | 			| BD_ENET_TX_LAST | BD_ENET_TX_TC); | 
 | 	bdp->cbd_sc = status; | 
 |  | 
 | 	dev->trans_start = jiffies; | 
 |  | 
 | 	/* Trigger transmission start */ | 
 | 	writel(0, fep->hwp + FEC_X_DES_ACTIVE); | 
 |  | 
 | 	/* If this was the last BD in the ring, start at the beginning again. */ | 
 | 	if (status & BD_ENET_TX_WRAP) | 
 | 		bdp = fep->tx_bd_base; | 
 | 	else | 
 | 		bdp++; | 
 |  | 
 | 	if (bdp == fep->dirty_tx) { | 
 | 		fep->tx_full = 1; | 
 | 		netif_stop_queue(dev); | 
 | 	} | 
 |  | 
 | 	fep->cur_tx = bdp; | 
 |  | 
 | 	spin_unlock_irqrestore(&fep->hw_lock, flags); | 
 |  | 
 | 	return NETDEV_TX_OK; | 
 | } | 
 |  | 
 | static void | 
 | fec_timeout(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 |  | 
 | 	dev->stats.tx_errors++; | 
 |  | 
 | 	fec_restart(dev, fep->full_duplex); | 
 | 	netif_wake_queue(dev); | 
 | } | 
 |  | 
 | static irqreturn_t | 
 | fec_enet_interrupt(int irq, void * dev_id) | 
 | { | 
 | 	struct	net_device *dev = dev_id; | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	uint	int_events; | 
 | 	irqreturn_t ret = IRQ_NONE; | 
 |  | 
 | 	do { | 
 | 		int_events = readl(fep->hwp + FEC_IEVENT); | 
 | 		writel(int_events, fep->hwp + FEC_IEVENT); | 
 |  | 
 | 		if (int_events & FEC_ENET_RXF) { | 
 | 			ret = IRQ_HANDLED; | 
 | 			fec_enet_rx(dev); | 
 | 		} | 
 |  | 
 | 		/* Transmit OK, or non-fatal error. Update the buffer | 
 | 		 * descriptors. FEC handles all errors, we just discover | 
 | 		 * them as part of the transmit process. | 
 | 		 */ | 
 | 		if (int_events & FEC_ENET_TXF) { | 
 | 			ret = IRQ_HANDLED; | 
 | 			fec_enet_tx(dev); | 
 | 		} | 
 |  | 
 | 		if (int_events & FEC_ENET_MII) { | 
 | 			ret = IRQ_HANDLED; | 
 | 			fec_enet_mii(dev); | 
 | 		} | 
 |  | 
 | 	} while (int_events); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | fec_enet_tx(struct net_device *dev) | 
 | { | 
 | 	struct	fec_enet_private *fep; | 
 | 	struct bufdesc *bdp; | 
 | 	unsigned short status; | 
 | 	struct	sk_buff	*skb; | 
 |  | 
 | 	fep = netdev_priv(dev); | 
 | 	spin_lock(&fep->hw_lock); | 
 | 	bdp = fep->dirty_tx; | 
 |  | 
 | 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) { | 
 | 		if (bdp == fep->cur_tx && fep->tx_full == 0) | 
 | 			break; | 
 |  | 
 | 		dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE); | 
 | 		bdp->cbd_bufaddr = 0; | 
 |  | 
 | 		skb = fep->tx_skbuff[fep->skb_dirty]; | 
 | 		/* Check for errors. */ | 
 | 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | | 
 | 				   BD_ENET_TX_RL | BD_ENET_TX_UN | | 
 | 				   BD_ENET_TX_CSL)) { | 
 | 			dev->stats.tx_errors++; | 
 | 			if (status & BD_ENET_TX_HB)  /* No heartbeat */ | 
 | 				dev->stats.tx_heartbeat_errors++; | 
 | 			if (status & BD_ENET_TX_LC)  /* Late collision */ | 
 | 				dev->stats.tx_window_errors++; | 
 | 			if (status & BD_ENET_TX_RL)  /* Retrans limit */ | 
 | 				dev->stats.tx_aborted_errors++; | 
 | 			if (status & BD_ENET_TX_UN)  /* Underrun */ | 
 | 				dev->stats.tx_fifo_errors++; | 
 | 			if (status & BD_ENET_TX_CSL) /* Carrier lost */ | 
 | 				dev->stats.tx_carrier_errors++; | 
 | 		} else { | 
 | 			dev->stats.tx_packets++; | 
 | 		} | 
 |  | 
 | 		if (status & BD_ENET_TX_READY) | 
 | 			printk("HEY! Enet xmit interrupt and TX_READY.\n"); | 
 |  | 
 | 		/* Deferred means some collisions occurred during transmit, | 
 | 		 * but we eventually sent the packet OK. | 
 | 		 */ | 
 | 		if (status & BD_ENET_TX_DEF) | 
 | 			dev->stats.collisions++; | 
 |  | 
 | 		/* Free the sk buffer associated with this last transmit */ | 
 | 		dev_kfree_skb_any(skb); | 
 | 		fep->tx_skbuff[fep->skb_dirty] = NULL; | 
 | 		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK; | 
 |  | 
 | 		/* Update pointer to next buffer descriptor to be transmitted */ | 
 | 		if (status & BD_ENET_TX_WRAP) | 
 | 			bdp = fep->tx_bd_base; | 
 | 		else | 
 | 			bdp++; | 
 |  | 
 | 		/* Since we have freed up a buffer, the ring is no longer full | 
 | 		 */ | 
 | 		if (fep->tx_full) { | 
 | 			fep->tx_full = 0; | 
 | 			if (netif_queue_stopped(dev)) | 
 | 				netif_wake_queue(dev); | 
 | 		} | 
 | 	} | 
 | 	fep->dirty_tx = bdp; | 
 | 	spin_unlock(&fep->hw_lock); | 
 | } | 
 |  | 
 |  | 
 | /* During a receive, the cur_rx points to the current incoming buffer. | 
 |  * When we update through the ring, if the next incoming buffer has | 
 |  * not been given to the system, we just set the empty indicator, | 
 |  * effectively tossing the packet. | 
 |  */ | 
 | static void | 
 | fec_enet_rx(struct net_device *dev) | 
 | { | 
 | 	struct	fec_enet_private *fep = netdev_priv(dev); | 
 | 	struct bufdesc *bdp; | 
 | 	unsigned short status; | 
 | 	struct	sk_buff	*skb; | 
 | 	ushort	pkt_len; | 
 | 	__u8 *data; | 
 |  | 
 | #ifdef CONFIG_M532x | 
 | 	flush_cache_all(); | 
 | #endif | 
 |  | 
 | 	spin_lock(&fep->hw_lock); | 
 |  | 
 | 	/* First, grab all of the stats for the incoming packet. | 
 | 	 * These get messed up if we get called due to a busy condition. | 
 | 	 */ | 
 | 	bdp = fep->cur_rx; | 
 |  | 
 | 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) { | 
 |  | 
 | 		/* Since we have allocated space to hold a complete frame, | 
 | 		 * the last indicator should be set. | 
 | 		 */ | 
 | 		if ((status & BD_ENET_RX_LAST) == 0) | 
 | 			printk("FEC ENET: rcv is not +last\n"); | 
 |  | 
 | 		if (!fep->opened) | 
 | 			goto rx_processing_done; | 
 |  | 
 | 		/* Check for errors. */ | 
 | 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | | 
 | 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) { | 
 | 			dev->stats.rx_errors++; | 
 | 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { | 
 | 				/* Frame too long or too short. */ | 
 | 				dev->stats.rx_length_errors++; | 
 | 			} | 
 | 			if (status & BD_ENET_RX_NO)	/* Frame alignment */ | 
 | 				dev->stats.rx_frame_errors++; | 
 | 			if (status & BD_ENET_RX_CR)	/* CRC Error */ | 
 | 				dev->stats.rx_crc_errors++; | 
 | 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */ | 
 | 				dev->stats.rx_fifo_errors++; | 
 | 		} | 
 |  | 
 | 		/* Report late collisions as a frame error. | 
 | 		 * On this error, the BD is closed, but we don't know what we | 
 | 		 * have in the buffer.  So, just drop this frame on the floor. | 
 | 		 */ | 
 | 		if (status & BD_ENET_RX_CL) { | 
 | 			dev->stats.rx_errors++; | 
 | 			dev->stats.rx_frame_errors++; | 
 | 			goto rx_processing_done; | 
 | 		} | 
 |  | 
 | 		/* Process the incoming frame. */ | 
 | 		dev->stats.rx_packets++; | 
 | 		pkt_len = bdp->cbd_datlen; | 
 | 		dev->stats.rx_bytes += pkt_len; | 
 | 		data = (__u8*)__va(bdp->cbd_bufaddr); | 
 |  | 
 | 	        dma_unmap_single(NULL, bdp->cbd_bufaddr, bdp->cbd_datlen, | 
 |         			DMA_FROM_DEVICE); | 
 |  | 
 | 		/* This does 16 byte alignment, exactly what we need. | 
 | 		 * The packet length includes FCS, but we don't want to | 
 | 		 * include that when passing upstream as it messes up | 
 | 		 * bridging applications. | 
 | 		 */ | 
 | 		skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN); | 
 |  | 
 | 		if (unlikely(!skb)) { | 
 | 			printk("%s: Memory squeeze, dropping packet.\n", | 
 | 					dev->name); | 
 | 			dev->stats.rx_dropped++; | 
 | 		} else { | 
 | 			skb_reserve(skb, NET_IP_ALIGN); | 
 | 			skb_put(skb, pkt_len - 4);	/* Make room */ | 
 | 			skb_copy_to_linear_data(skb, data, pkt_len - 4); | 
 | 			skb->protocol = eth_type_trans(skb, dev); | 
 | 			netif_rx(skb); | 
 | 		} | 
 |  | 
 |         	bdp->cbd_bufaddr = dma_map_single(NULL, data, bdp->cbd_datlen, | 
 | 			DMA_FROM_DEVICE); | 
 | rx_processing_done: | 
 | 		/* Clear the status flags for this buffer */ | 
 | 		status &= ~BD_ENET_RX_STATS; | 
 |  | 
 | 		/* Mark the buffer empty */ | 
 | 		status |= BD_ENET_RX_EMPTY; | 
 | 		bdp->cbd_sc = status; | 
 |  | 
 | 		/* Update BD pointer to next entry */ | 
 | 		if (status & BD_ENET_RX_WRAP) | 
 | 			bdp = fep->rx_bd_base; | 
 | 		else | 
 | 			bdp++; | 
 | 		/* Doing this here will keep the FEC running while we process | 
 | 		 * incoming frames.  On a heavily loaded network, we should be | 
 | 		 * able to keep up at the expense of system resources. | 
 | 		 */ | 
 | 		writel(0, fep->hwp + FEC_R_DES_ACTIVE); | 
 | 	} | 
 | 	fep->cur_rx = bdp; | 
 |  | 
 | 	spin_unlock(&fep->hw_lock); | 
 | } | 
 |  | 
 | /* called from interrupt context */ | 
 | static void | 
 | fec_enet_mii(struct net_device *dev) | 
 | { | 
 | 	struct	fec_enet_private *fep; | 
 | 	mii_list_t	*mip; | 
 |  | 
 | 	fep = netdev_priv(dev); | 
 | 	spin_lock(&fep->mii_lock); | 
 |  | 
 | 	if ((mip = mii_head) == NULL) { | 
 | 		printk("MII and no head!\n"); | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	if (mip->mii_func != NULL) | 
 | 		(*(mip->mii_func))(readl(fep->hwp + FEC_MII_DATA), dev); | 
 |  | 
 | 	mii_head = mip->mii_next; | 
 | 	mip->mii_next = mii_free; | 
 | 	mii_free = mip; | 
 |  | 
 | 	if ((mip = mii_head) != NULL) | 
 | 		writel(mip->mii_regval, fep->hwp + FEC_MII_DATA); | 
 |  | 
 | unlock: | 
 | 	spin_unlock(&fep->mii_lock); | 
 | } | 
 |  | 
 | static int | 
 | mii_queue_unlocked(struct net_device *dev, int regval, | 
 | 		void (*func)(uint, struct net_device *)) | 
 | { | 
 | 	struct fec_enet_private *fep; | 
 | 	mii_list_t	*mip; | 
 | 	int		retval; | 
 |  | 
 | 	/* Add PHY address to register command */ | 
 | 	fep = netdev_priv(dev); | 
 |  | 
 | 	regval |= fep->phy_addr << 23; | 
 | 	retval = 0; | 
 |  | 
 | 	if ((mip = mii_free) != NULL) { | 
 | 		mii_free = mip->mii_next; | 
 | 		mip->mii_regval = regval; | 
 | 		mip->mii_func = func; | 
 | 		mip->mii_next = NULL; | 
 | 		if (mii_head) { | 
 | 			mii_tail->mii_next = mip; | 
 | 			mii_tail = mip; | 
 | 		} else { | 
 | 			mii_head = mii_tail = mip; | 
 | 			writel(regval, fep->hwp + FEC_MII_DATA); | 
 | 		} | 
 | 	} else { | 
 | 		retval = 1; | 
 | 	} | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int | 
 | mii_queue(struct net_device *dev, int regval, | 
 | 		void (*func)(uint, struct net_device *)) | 
 | { | 
 | 	struct fec_enet_private *fep; | 
 | 	unsigned long   flags; | 
 | 	int             retval; | 
 | 	fep = netdev_priv(dev); | 
 | 	spin_lock_irqsave(&fep->mii_lock, flags); | 
 | 	retval = mii_queue_unlocked(dev, regval, func); | 
 | 	spin_unlock_irqrestore(&fep->mii_lock, flags); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c) | 
 | { | 
 | 	if(!c) | 
 | 		return; | 
 |  | 
 | 	for (; c->mii_data != mk_mii_end; c++) | 
 | 		mii_queue(dev, c->mii_data, c->funct); | 
 | } | 
 |  | 
 | static void mii_parse_sr(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	volatile uint *s = &(fep->phy_status); | 
 | 	uint status; | 
 |  | 
 | 	status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC); | 
 |  | 
 | 	if (mii_reg & 0x0004) | 
 | 		status |= PHY_STAT_LINK; | 
 | 	if (mii_reg & 0x0010) | 
 | 		status |= PHY_STAT_FAULT; | 
 | 	if (mii_reg & 0x0020) | 
 | 		status |= PHY_STAT_ANC; | 
 | 	*s = status; | 
 | } | 
 |  | 
 | static void mii_parse_cr(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	volatile uint *s = &(fep->phy_status); | 
 | 	uint status; | 
 |  | 
 | 	status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP); | 
 |  | 
 | 	if (mii_reg & 0x1000) | 
 | 		status |= PHY_CONF_ANE; | 
 | 	if (mii_reg & 0x4000) | 
 | 		status |= PHY_CONF_LOOP; | 
 | 	*s = status; | 
 | } | 
 |  | 
 | static void mii_parse_anar(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	volatile uint *s = &(fep->phy_status); | 
 | 	uint status; | 
 |  | 
 | 	status = *s & ~(PHY_CONF_SPMASK); | 
 |  | 
 | 	if (mii_reg & 0x0020) | 
 | 		status |= PHY_CONF_10HDX; | 
 | 	if (mii_reg & 0x0040) | 
 | 		status |= PHY_CONF_10FDX; | 
 | 	if (mii_reg & 0x0080) | 
 | 		status |= PHY_CONF_100HDX; | 
 | 	if (mii_reg & 0x00100) | 
 | 		status |= PHY_CONF_100FDX; | 
 | 	*s = status; | 
 | } | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 | /* The Level one LXT970 is used by many boards				     */ | 
 |  | 
 | #define MII_LXT970_MIRROR    16  /* Mirror register           */ | 
 | #define MII_LXT970_IER       17  /* Interrupt Enable Register */ | 
 | #define MII_LXT970_ISR       18  /* Interrupt Status Register */ | 
 | #define MII_LXT970_CONFIG    19  /* Configuration Register    */ | 
 | #define MII_LXT970_CSR       20  /* Chip Status Register      */ | 
 |  | 
 | static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	volatile uint *s = &(fep->phy_status); | 
 | 	uint status; | 
 |  | 
 | 	status = *s & ~(PHY_STAT_SPMASK); | 
 | 	if (mii_reg & 0x0800) { | 
 | 		if (mii_reg & 0x1000) | 
 | 			status |= PHY_STAT_100FDX; | 
 | 		else | 
 | 			status |= PHY_STAT_100HDX; | 
 | 	} else { | 
 | 		if (mii_reg & 0x1000) | 
 | 			status |= PHY_STAT_10FDX; | 
 | 		else | 
 | 			status |= PHY_STAT_10HDX; | 
 | 	} | 
 | 	*s = status; | 
 | } | 
 |  | 
 | static phy_cmd_t const phy_cmd_lxt970_config[] = { | 
 | 		{ mk_mii_read(MII_REG_CR), mii_parse_cr }, | 
 | 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */ | 
 | 		{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL }, | 
 | 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_lxt970_ack_int[] = { | 
 | 		/* read SR and ISR to acknowledge */ | 
 | 		{ mk_mii_read(MII_REG_SR), mii_parse_sr }, | 
 | 		{ mk_mii_read(MII_LXT970_ISR), NULL }, | 
 |  | 
 | 		/* find out the current status */ | 
 | 		{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */ | 
 | 		{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_info_t const phy_info_lxt970 = { | 
 | 	.id = 0x07810000, | 
 | 	.name = "LXT970", | 
 | 	.config = phy_cmd_lxt970_config, | 
 | 	.startup = phy_cmd_lxt970_startup, | 
 | 	.ack_int = phy_cmd_lxt970_ack_int, | 
 | 	.shutdown = phy_cmd_lxt970_shutdown | 
 | }; | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 | /* The Level one LXT971 is used on some of my custom boards                  */ | 
 |  | 
 | /* register definitions for the 971 */ | 
 |  | 
 | #define MII_LXT971_PCR       16  /* Port Control Register     */ | 
 | #define MII_LXT971_SR2       17  /* Status Register 2         */ | 
 | #define MII_LXT971_IER       18  /* Interrupt Enable Register */ | 
 | #define MII_LXT971_ISR       19  /* Interrupt Status Register */ | 
 | #define MII_LXT971_LCR       20  /* LED Control Register      */ | 
 | #define MII_LXT971_TCR       30  /* Transmit Control Register */ | 
 |  | 
 | /* | 
 |  * I had some nice ideas of running the MDIO faster... | 
 |  * The 971 should support 8MHz and I tried it, but things acted really | 
 |  * weird, so 2.5 MHz ought to be enough for anyone... | 
 |  */ | 
 |  | 
 | static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	volatile uint *s = &(fep->phy_status); | 
 | 	uint status; | 
 |  | 
 | 	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC); | 
 |  | 
 | 	if (mii_reg & 0x0400) { | 
 | 		fep->link = 1; | 
 | 		status |= PHY_STAT_LINK; | 
 | 	} else { | 
 | 		fep->link = 0; | 
 | 	} | 
 | 	if (mii_reg & 0x0080) | 
 | 		status |= PHY_STAT_ANC; | 
 | 	if (mii_reg & 0x4000) { | 
 | 		if (mii_reg & 0x0200) | 
 | 			status |= PHY_STAT_100FDX; | 
 | 		else | 
 | 			status |= PHY_STAT_100HDX; | 
 | 	} else { | 
 | 		if (mii_reg & 0x0200) | 
 | 			status |= PHY_STAT_10FDX; | 
 | 		else | 
 | 			status |= PHY_STAT_10HDX; | 
 | 	} | 
 | 	if (mii_reg & 0x0008) | 
 | 		status |= PHY_STAT_FAULT; | 
 |  | 
 | 	*s = status; | 
 | } | 
 |  | 
 | static phy_cmd_t const phy_cmd_lxt971_config[] = { | 
 | 		/* limit to 10MBit because my prototype board | 
 | 		 * doesn't work with 100. */ | 
 | 		{ mk_mii_read(MII_REG_CR), mii_parse_cr }, | 
 | 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | 
 | 		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_lxt971_startup[] = {  /* enable interrupts */ | 
 | 		{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL }, | 
 | 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | 
 | 		{ mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */ | 
 | 		/* Somehow does the 971 tell me that the link is down | 
 | 		 * the first read after power-up. | 
 | 		 * read here to get a valid value in ack_int */ | 
 | 		{ mk_mii_read(MII_REG_SR), mii_parse_sr }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_lxt971_ack_int[] = { | 
 | 		/* acknowledge the int before reading status ! */ | 
 | 		{ mk_mii_read(MII_LXT971_ISR), NULL }, | 
 | 		/* find out the current status */ | 
 | 		{ mk_mii_read(MII_REG_SR), mii_parse_sr }, | 
 | 		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */ | 
 | 		{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_info_t const phy_info_lxt971 = { | 
 | 	.id = 0x0001378e, | 
 | 	.name = "LXT971", | 
 | 	.config = phy_cmd_lxt971_config, | 
 | 	.startup = phy_cmd_lxt971_startup, | 
 | 	.ack_int = phy_cmd_lxt971_ack_int, | 
 | 	.shutdown = phy_cmd_lxt971_shutdown | 
 | }; | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 | /* The Quality Semiconductor QS6612 is used on the RPX CLLF                  */ | 
 |  | 
 | /* register definitions */ | 
 |  | 
 | #define MII_QS6612_MCR       17  /* Mode Control Register      */ | 
 | #define MII_QS6612_FTR       27  /* Factory Test Register      */ | 
 | #define MII_QS6612_MCO       28  /* Misc. Control Register     */ | 
 | #define MII_QS6612_ISR       29  /* Interrupt Source Register  */ | 
 | #define MII_QS6612_IMR       30  /* Interrupt Mask Register    */ | 
 | #define MII_QS6612_PCR       31  /* 100BaseTx PHY Control Reg. */ | 
 |  | 
 | static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	volatile uint *s = &(fep->phy_status); | 
 | 	uint status; | 
 |  | 
 | 	status = *s & ~(PHY_STAT_SPMASK); | 
 |  | 
 | 	switch((mii_reg >> 2) & 7) { | 
 | 	case 1: status |= PHY_STAT_10HDX; break; | 
 | 	case 2: status |= PHY_STAT_100HDX; break; | 
 | 	case 5: status |= PHY_STAT_10FDX; break; | 
 | 	case 6: status |= PHY_STAT_100FDX; break; | 
 | } | 
 |  | 
 | 	*s = status; | 
 | } | 
 |  | 
 | static phy_cmd_t const phy_cmd_qs6612_config[] = { | 
 | 		/* The PHY powers up isolated on the RPX, | 
 | 		 * so send a command to allow operation. | 
 | 		 */ | 
 | 		{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL }, | 
 |  | 
 | 		/* parse cr and anar to get some info */ | 
 | 		{ mk_mii_read(MII_REG_CR), mii_parse_cr }, | 
 | 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_qs6612_startup[] = {  /* enable interrupts */ | 
 | 		{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL }, | 
 | 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_qs6612_ack_int[] = { | 
 | 		/* we need to read ISR, SR and ANER to acknowledge */ | 
 | 		{ mk_mii_read(MII_QS6612_ISR), NULL }, | 
 | 		{ mk_mii_read(MII_REG_SR), mii_parse_sr }, | 
 | 		{ mk_mii_read(MII_REG_ANER), NULL }, | 
 |  | 
 | 		/* read pcr to get info */ | 
 | 		{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */ | 
 | 		{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_info_t const phy_info_qs6612 = { | 
 | 	.id = 0x00181440, | 
 | 	.name = "QS6612", | 
 | 	.config = phy_cmd_qs6612_config, | 
 | 	.startup = phy_cmd_qs6612_startup, | 
 | 	.ack_int = phy_cmd_qs6612_ack_int, | 
 | 	.shutdown = phy_cmd_qs6612_shutdown | 
 | }; | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 | /* AMD AM79C874 phy                                                          */ | 
 |  | 
 | /* register definitions for the 874 */ | 
 |  | 
 | #define MII_AM79C874_MFR       16  /* Miscellaneous Feature Register */ | 
 | #define MII_AM79C874_ICSR      17  /* Interrupt/Status Register      */ | 
 | #define MII_AM79C874_DR        18  /* Diagnostic Register            */ | 
 | #define MII_AM79C874_PMLR      19  /* Power and Loopback Register    */ | 
 | #define MII_AM79C874_MCR       21  /* ModeControl Register           */ | 
 | #define MII_AM79C874_DC        23  /* Disconnect Counter             */ | 
 | #define MII_AM79C874_REC       24  /* Recieve Error Counter          */ | 
 |  | 
 | static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	volatile uint *s = &(fep->phy_status); | 
 | 	uint status; | 
 |  | 
 | 	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC); | 
 |  | 
 | 	if (mii_reg & 0x0080) | 
 | 		status |= PHY_STAT_ANC; | 
 | 	if (mii_reg & 0x0400) | 
 | 		status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX); | 
 | 	else | 
 | 		status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX); | 
 |  | 
 | 	*s = status; | 
 | } | 
 |  | 
 | static phy_cmd_t const phy_cmd_am79c874_config[] = { | 
 | 		{ mk_mii_read(MII_REG_CR), mii_parse_cr }, | 
 | 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | 
 | 		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_am79c874_startup[] = {  /* enable interrupts */ | 
 | 		{ mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL }, | 
 | 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | 
 | 		{ mk_mii_read(MII_REG_SR), mii_parse_sr }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_am79c874_ack_int[] = { | 
 | 		/* find out the current status */ | 
 | 		{ mk_mii_read(MII_REG_SR), mii_parse_sr }, | 
 | 		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr }, | 
 | 		/* we only need to read ISR to acknowledge */ | 
 | 		{ mk_mii_read(MII_AM79C874_ICSR), NULL }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */ | 
 | 		{ mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_info_t const phy_info_am79c874 = { | 
 | 	.id = 0x00022561, | 
 | 	.name = "AM79C874", | 
 | 	.config = phy_cmd_am79c874_config, | 
 | 	.startup = phy_cmd_am79c874_startup, | 
 | 	.ack_int = phy_cmd_am79c874_ack_int, | 
 | 	.shutdown = phy_cmd_am79c874_shutdown | 
 | }; | 
 |  | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 | /* Kendin KS8721BL phy                                                       */ | 
 |  | 
 | /* register definitions for the 8721 */ | 
 |  | 
 | #define MII_KS8721BL_RXERCR	21 | 
 | #define MII_KS8721BL_ICSR	27 | 
 | #define	MII_KS8721BL_PHYCR	31 | 
 |  | 
 | static phy_cmd_t const phy_cmd_ks8721bl_config[] = { | 
 | 		{ mk_mii_read(MII_REG_CR), mii_parse_cr }, | 
 | 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_ks8721bl_startup[] = {  /* enable interrupts */ | 
 | 		{ mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL }, | 
 | 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | 
 | 		{ mk_mii_read(MII_REG_SR), mii_parse_sr }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = { | 
 | 		/* find out the current status */ | 
 | 		{ mk_mii_read(MII_REG_SR), mii_parse_sr }, | 
 | 		/* we only need to read ISR to acknowledge */ | 
 | 		{ mk_mii_read(MII_KS8721BL_ICSR), NULL }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */ | 
 | 		{ mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_info_t const phy_info_ks8721bl = { | 
 | 	.id = 0x00022161, | 
 | 	.name = "KS8721BL", | 
 | 	.config = phy_cmd_ks8721bl_config, | 
 | 	.startup = phy_cmd_ks8721bl_startup, | 
 | 	.ack_int = phy_cmd_ks8721bl_ack_int, | 
 | 	.shutdown = phy_cmd_ks8721bl_shutdown | 
 | }; | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 | /* register definitions for the DP83848 */ | 
 |  | 
 | #define MII_DP8384X_PHYSTST    16  /* PHY Status Register */ | 
 |  | 
 | static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	volatile uint *s = &(fep->phy_status); | 
 |  | 
 | 	*s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC); | 
 |  | 
 | 	/* Link up */ | 
 | 	if (mii_reg & 0x0001) { | 
 | 		fep->link = 1; | 
 | 		*s |= PHY_STAT_LINK; | 
 | 	} else | 
 | 		fep->link = 0; | 
 | 	/* Status of link */ | 
 | 	if (mii_reg & 0x0010)   /* Autonegotioation complete */ | 
 | 		*s |= PHY_STAT_ANC; | 
 | 	if (mii_reg & 0x0002) {   /* 10MBps? */ | 
 | 		if (mii_reg & 0x0004)   /* Full Duplex? */ | 
 | 			*s |= PHY_STAT_10FDX; | 
 | 		else | 
 | 			*s |= PHY_STAT_10HDX; | 
 | 	} else {                  /* 100 Mbps? */ | 
 | 		if (mii_reg & 0x0004)   /* Full Duplex? */ | 
 | 			*s |= PHY_STAT_100FDX; | 
 | 		else | 
 | 			*s |= PHY_STAT_100HDX; | 
 | 	} | 
 | 	if (mii_reg & 0x0008) | 
 | 		*s |= PHY_STAT_FAULT; | 
 | } | 
 |  | 
 | static phy_info_t phy_info_dp83848= { | 
 | 	0x020005c9, | 
 | 	"DP83848", | 
 |  | 
 | 	(const phy_cmd_t []) {  /* config */ | 
 | 		{ mk_mii_read(MII_REG_CR), mii_parse_cr }, | 
 | 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | 
 | 		{ mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 }, | 
 | 		{ mk_mii_end, } | 
 | 	}, | 
 | 	(const phy_cmd_t []) {  /* startup - enable interrupts */ | 
 | 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | 
 | 		{ mk_mii_read(MII_REG_SR), mii_parse_sr }, | 
 | 		{ mk_mii_end, } | 
 | 	}, | 
 | 	(const phy_cmd_t []) { /* ack_int - never happens, no interrupt */ | 
 | 		{ mk_mii_end, } | 
 | 	}, | 
 | 	(const phy_cmd_t []) {  /* shutdown */ | 
 | 		{ mk_mii_end, } | 
 | 	}, | 
 | }; | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 |  | 
 | static phy_info_t const * const phy_info[] = { | 
 | 	&phy_info_lxt970, | 
 | 	&phy_info_lxt971, | 
 | 	&phy_info_qs6612, | 
 | 	&phy_info_am79c874, | 
 | 	&phy_info_ks8721bl, | 
 | 	&phy_info_dp83848, | 
 | 	NULL | 
 | }; | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 | #ifdef HAVE_mii_link_interrupt | 
 | static irqreturn_t | 
 | mii_link_interrupt(int irq, void * dev_id); | 
 |  | 
 | /* | 
 |  *	This is specific to the MII interrupt setup of the M5272EVB. | 
 |  */ | 
 | static void __inline__ fec_request_mii_intr(struct net_device *dev) | 
 | { | 
 | 	if (request_irq(66, mii_link_interrupt, IRQF_DISABLED, "fec(MII)", dev) != 0) | 
 | 		printk("FEC: Could not allocate fec(MII) IRQ(66)!\n"); | 
 | } | 
 |  | 
 | static void __inline__ fec_disable_phy_intr(struct net_device *dev) | 
 | { | 
 | 	free_irq(66, dev); | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_M5272 | 
 | static void __inline__ fec_get_mac(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	unsigned char *iap, tmpaddr[ETH_ALEN]; | 
 |  | 
 | 	if (FEC_FLASHMAC) { | 
 | 		/* | 
 | 		 * Get MAC address from FLASH. | 
 | 		 * If it is all 1's or 0's, use the default. | 
 | 		 */ | 
 | 		iap = (unsigned char *)FEC_FLASHMAC; | 
 | 		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && | 
 | 		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) | 
 | 			iap = fec_mac_default; | 
 | 		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && | 
 | 		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) | 
 | 			iap = fec_mac_default; | 
 | 	} else { | 
 | 		*((unsigned long *) &tmpaddr[0]) = readl(fep->hwp + FEC_ADDR_LOW); | 
 | 		*((unsigned short *) &tmpaddr[4]) = (readl(fep->hwp + FEC_ADDR_HIGH) >> 16); | 
 | 		iap = &tmpaddr[0]; | 
 | 	} | 
 |  | 
 | 	memcpy(dev->dev_addr, iap, ETH_ALEN); | 
 |  | 
 | 	/* Adjust MAC if using default MAC address */ | 
 | 	if (iap == fec_mac_default) | 
 | 		 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index; | 
 | } | 
 | #endif | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 |  | 
 | static void mii_display_status(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	volatile uint *s = &(fep->phy_status); | 
 |  | 
 | 	if (!fep->link && !fep->old_link) { | 
 | 		/* Link is still down - don't print anything */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	printk("%s: status: ", dev->name); | 
 |  | 
 | 	if (!fep->link) { | 
 | 		printk("link down"); | 
 | 	} else { | 
 | 		printk("link up"); | 
 |  | 
 | 		switch(*s & PHY_STAT_SPMASK) { | 
 | 		case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break; | 
 | 		case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break; | 
 | 		case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break; | 
 | 		case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break; | 
 | 		default: | 
 | 			printk(", Unknown speed/duplex"); | 
 | 		} | 
 |  | 
 | 		if (*s & PHY_STAT_ANC) | 
 | 			printk(", auto-negotiation complete"); | 
 | 	} | 
 |  | 
 | 	if (*s & PHY_STAT_FAULT) | 
 | 		printk(", remote fault"); | 
 |  | 
 | 	printk(".\n"); | 
 | } | 
 |  | 
 | static void mii_display_config(struct work_struct *work) | 
 | { | 
 | 	struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task); | 
 | 	struct net_device *dev = fep->netdev; | 
 | 	uint status = fep->phy_status; | 
 |  | 
 | 	/* | 
 | 	** When we get here, phy_task is already removed from | 
 | 	** the workqueue.  It is thus safe to allow to reuse it. | 
 | 	*/ | 
 | 	fep->mii_phy_task_queued = 0; | 
 | 	printk("%s: config: auto-negotiation ", dev->name); | 
 |  | 
 | 	if (status & PHY_CONF_ANE) | 
 | 		printk("on"); | 
 | 	else | 
 | 		printk("off"); | 
 |  | 
 | 	if (status & PHY_CONF_100FDX) | 
 | 		printk(", 100FDX"); | 
 | 	if (status & PHY_CONF_100HDX) | 
 | 		printk(", 100HDX"); | 
 | 	if (status & PHY_CONF_10FDX) | 
 | 		printk(", 10FDX"); | 
 | 	if (status & PHY_CONF_10HDX) | 
 | 		printk(", 10HDX"); | 
 | 	if (!(status & PHY_CONF_SPMASK)) | 
 | 		printk(", No speed/duplex selected?"); | 
 |  | 
 | 	if (status & PHY_CONF_LOOP) | 
 | 		printk(", loopback enabled"); | 
 |  | 
 | 	printk(".\n"); | 
 |  | 
 | 	fep->sequence_done = 1; | 
 | } | 
 |  | 
 | static void mii_relink(struct work_struct *work) | 
 | { | 
 | 	struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task); | 
 | 	struct net_device *dev = fep->netdev; | 
 | 	int duplex; | 
 |  | 
 | 	/* | 
 | 	** When we get here, phy_task is already removed from | 
 | 	** the workqueue.  It is thus safe to allow to reuse it. | 
 | 	*/ | 
 | 	fep->mii_phy_task_queued = 0; | 
 | 	fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0; | 
 | 	mii_display_status(dev); | 
 | 	fep->old_link = fep->link; | 
 |  | 
 | 	if (fep->link) { | 
 | 		duplex = 0; | 
 | 		if (fep->phy_status | 
 | 		    & (PHY_STAT_100FDX | PHY_STAT_10FDX)) | 
 | 			duplex = 1; | 
 | 		fec_restart(dev, duplex); | 
 | 	} else | 
 | 		fec_stop(dev); | 
 | } | 
 |  | 
 | /* mii_queue_relink is called in interrupt context from mii_link_interrupt */ | 
 | static void mii_queue_relink(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 |  | 
 | 	/* | 
 | 	 * We cannot queue phy_task twice in the workqueue.  It | 
 | 	 * would cause an endless loop in the workqueue. | 
 | 	 * Fortunately, if the last mii_relink entry has not yet been | 
 | 	 * executed now, it will do the job for the current interrupt, | 
 | 	 * which is just what we want. | 
 | 	 */ | 
 | 	if (fep->mii_phy_task_queued) | 
 | 		return; | 
 |  | 
 | 	fep->mii_phy_task_queued = 1; | 
 | 	INIT_WORK(&fep->phy_task, mii_relink); | 
 | 	schedule_work(&fep->phy_task); | 
 | } | 
 |  | 
 | /* mii_queue_config is called in interrupt context from fec_enet_mii */ | 
 | static void mii_queue_config(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 |  | 
 | 	if (fep->mii_phy_task_queued) | 
 | 		return; | 
 |  | 
 | 	fep->mii_phy_task_queued = 1; | 
 | 	INIT_WORK(&fep->phy_task, mii_display_config); | 
 | 	schedule_work(&fep->phy_task); | 
 | } | 
 |  | 
 | phy_cmd_t const phy_cmd_relink[] = { | 
 | 	{ mk_mii_read(MII_REG_CR), mii_queue_relink }, | 
 | 	{ mk_mii_end, } | 
 | 	}; | 
 | phy_cmd_t const phy_cmd_config[] = { | 
 | 	{ mk_mii_read(MII_REG_CR), mii_queue_config }, | 
 | 	{ mk_mii_end, } | 
 | 	}; | 
 |  | 
 | /* Read remainder of PHY ID. */ | 
 | static void | 
 | mii_discover_phy3(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep; | 
 | 	int i; | 
 |  | 
 | 	fep = netdev_priv(dev); | 
 | 	fep->phy_id |= (mii_reg & 0xffff); | 
 | 	printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id); | 
 |  | 
 | 	for(i = 0; phy_info[i]; i++) { | 
 | 		if(phy_info[i]->id == (fep->phy_id >> 4)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (phy_info[i]) | 
 | 		printk(" -- %s\n", phy_info[i]->name); | 
 | 	else | 
 | 		printk(" -- unknown PHY!\n"); | 
 |  | 
 | 	fep->phy = phy_info[i]; | 
 | 	fep->phy_id_done = 1; | 
 | } | 
 |  | 
 | /* Scan all of the MII PHY addresses looking for someone to respond | 
 |  * with a valid ID.  This usually happens quickly. | 
 |  */ | 
 | static void | 
 | mii_discover_phy(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep; | 
 | 	uint phytype; | 
 |  | 
 | 	fep = netdev_priv(dev); | 
 |  | 
 | 	if (fep->phy_addr < 32) { | 
 | 		if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) { | 
 |  | 
 | 			/* Got first part of ID, now get remainder */ | 
 | 			fep->phy_id = phytype << 16; | 
 | 			mii_queue_unlocked(dev, mk_mii_read(MII_REG_PHYIR2), | 
 | 							mii_discover_phy3); | 
 | 		} else { | 
 | 			fep->phy_addr++; | 
 | 			mii_queue_unlocked(dev, mk_mii_read(MII_REG_PHYIR1), | 
 | 							mii_discover_phy); | 
 | 		} | 
 | 	} else { | 
 | 		printk("FEC: No PHY device found.\n"); | 
 | 		/* Disable external MII interface */ | 
 | 		writel(0, fep->hwp + FEC_MII_SPEED); | 
 | 		fep->phy_speed = 0; | 
 | #ifdef HAVE_mii_link_interrupt | 
 | 		fec_disable_phy_intr(dev); | 
 | #endif | 
 | 	} | 
 | } | 
 |  | 
 | /* This interrupt occurs when the PHY detects a link change */ | 
 | #ifdef HAVE_mii_link_interrupt | 
 | static irqreturn_t | 
 | mii_link_interrupt(int irq, void * dev_id) | 
 | { | 
 | 	struct	net_device *dev = dev_id; | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 |  | 
 | 	mii_do_cmd(dev, fep->phy->ack_int); | 
 | 	mii_do_cmd(dev, phy_cmd_relink);  /* restart and display status */ | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 | #endif | 
 |  | 
 | static void fec_enet_free_buffers(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	int i; | 
 | 	struct sk_buff *skb; | 
 | 	struct bufdesc	*bdp; | 
 |  | 
 | 	bdp = fep->rx_bd_base; | 
 | 	for (i = 0; i < RX_RING_SIZE; i++) { | 
 | 		skb = fep->rx_skbuff[i]; | 
 |  | 
 | 		if (bdp->cbd_bufaddr) | 
 | 			dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, | 
 | 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE); | 
 | 		if (skb) | 
 | 			dev_kfree_skb(skb); | 
 | 		bdp++; | 
 | 	} | 
 |  | 
 | 	bdp = fep->tx_bd_base; | 
 | 	for (i = 0; i < TX_RING_SIZE; i++) | 
 | 		kfree(fep->tx_bounce[i]); | 
 | } | 
 |  | 
 | static int fec_enet_alloc_buffers(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	int i; | 
 | 	struct sk_buff *skb; | 
 | 	struct bufdesc	*bdp; | 
 |  | 
 | 	bdp = fep->rx_bd_base; | 
 | 	for (i = 0; i < RX_RING_SIZE; i++) { | 
 | 		skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE); | 
 | 		if (!skb) { | 
 | 			fec_enet_free_buffers(dev); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		fep->rx_skbuff[i] = skb; | 
 |  | 
 | 		bdp->cbd_bufaddr = dma_map_single(&dev->dev, skb->data, | 
 | 				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE); | 
 | 		bdp->cbd_sc = BD_ENET_RX_EMPTY; | 
 | 		bdp++; | 
 | 	} | 
 |  | 
 | 	/* Set the last buffer to wrap. */ | 
 | 	bdp--; | 
 | 	bdp->cbd_sc |= BD_SC_WRAP; | 
 |  | 
 | 	bdp = fep->tx_bd_base; | 
 | 	for (i = 0; i < TX_RING_SIZE; i++) { | 
 | 		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); | 
 |  | 
 | 		bdp->cbd_sc = 0; | 
 | 		bdp->cbd_bufaddr = 0; | 
 | 		bdp++; | 
 | 	} | 
 |  | 
 | 	/* Set the last buffer to wrap. */ | 
 | 	bdp--; | 
 | 	bdp->cbd_sc |= BD_SC_WRAP; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | fec_enet_open(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	int ret; | 
 |  | 
 | 	/* I should reset the ring buffers here, but I don't yet know | 
 | 	 * a simple way to do that. | 
 | 	 */ | 
 |  | 
 | 	ret = fec_enet_alloc_buffers(dev); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	fep->sequence_done = 0; | 
 | 	fep->link = 0; | 
 |  | 
 | 	fec_restart(dev, 1); | 
 |  | 
 | 	if (fep->phy) { | 
 | 		mii_do_cmd(dev, fep->phy->ack_int); | 
 | 		mii_do_cmd(dev, fep->phy->config); | 
 | 		mii_do_cmd(dev, phy_cmd_config);  /* display configuration */ | 
 |  | 
 | 		/* Poll until the PHY tells us its configuration | 
 | 		 * (not link state). | 
 | 		 * Request is initiated by mii_do_cmd above, but answer | 
 | 		 * comes by interrupt. | 
 | 		 * This should take about 25 usec per register at 2.5 MHz, | 
 | 		 * and we read approximately 5 registers. | 
 | 		 */ | 
 | 		while(!fep->sequence_done) | 
 | 			schedule(); | 
 |  | 
 | 		mii_do_cmd(dev, fep->phy->startup); | 
 | 	} | 
 |  | 
 | 	/* Set the initial link state to true. A lot of hardware | 
 | 	 * based on this device does not implement a PHY interrupt, | 
 | 	 * so we are never notified of link change. | 
 | 	 */ | 
 | 	fep->link = 1; | 
 |  | 
 | 	netif_start_queue(dev); | 
 | 	fep->opened = 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | fec_enet_close(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 |  | 
 | 	/* Don't know what to do yet. */ | 
 | 	fep->opened = 0; | 
 | 	netif_stop_queue(dev); | 
 | 	fec_stop(dev); | 
 |  | 
 |         fec_enet_free_buffers(dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Set or clear the multicast filter for this adaptor. | 
 |  * Skeleton taken from sunlance driver. | 
 |  * The CPM Ethernet implementation allows Multicast as well as individual | 
 |  * MAC address filtering.  Some of the drivers check to make sure it is | 
 |  * a group multicast address, and discard those that are not.  I guess I | 
 |  * will do the same for now, but just remove the test if you want | 
 |  * individual filtering as well (do the upper net layers want or support | 
 |  * this kind of feature?). | 
 |  */ | 
 |  | 
 | #define HASH_BITS	6		/* #bits in hash */ | 
 | #define CRC32_POLY	0xEDB88320 | 
 |  | 
 | static void set_multicast_list(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	struct dev_mc_list *dmi; | 
 | 	unsigned int i, j, bit, data, crc, tmp; | 
 | 	unsigned char hash; | 
 |  | 
 | 	if (dev->flags & IFF_PROMISC) { | 
 | 		tmp = readl(fep->hwp + FEC_R_CNTRL); | 
 | 		tmp |= 0x8; | 
 | 		writel(tmp, fep->hwp + FEC_R_CNTRL); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	tmp = readl(fep->hwp + FEC_R_CNTRL); | 
 | 	tmp &= ~0x8; | 
 | 	writel(tmp, fep->hwp + FEC_R_CNTRL); | 
 |  | 
 | 	if (dev->flags & IFF_ALLMULTI) { | 
 | 		/* Catch all multicast addresses, so set the | 
 | 		 * filter to all 1's | 
 | 		 */ | 
 | 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); | 
 | 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Clear filter and add the addresses in hash register | 
 | 	 */ | 
 | 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); | 
 | 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW); | 
 |  | 
 | 	dmi = dev->mc_list; | 
 |  | 
 | 	for (j = 0; j < dev->mc_count; j++, dmi = dmi->next) { | 
 | 		/* Only support group multicast for now */ | 
 | 		if (!(dmi->dmi_addr[0] & 1)) | 
 | 			continue; | 
 |  | 
 | 		/* calculate crc32 value of mac address */ | 
 | 		crc = 0xffffffff; | 
 |  | 
 | 		for (i = 0; i < dmi->dmi_addrlen; i++) { | 
 | 			data = dmi->dmi_addr[i]; | 
 | 			for (bit = 0; bit < 8; bit++, data >>= 1) { | 
 | 				crc = (crc >> 1) ^ | 
 | 				(((crc ^ data) & 1) ? CRC32_POLY : 0); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* only upper 6 bits (HASH_BITS) are used | 
 | 		 * which point to specific bit in he hash registers | 
 | 		 */ | 
 | 		hash = (crc >> (32 - HASH_BITS)) & 0x3f; | 
 |  | 
 | 		if (hash > 31) { | 
 | 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH); | 
 | 			tmp |= 1 << (hash - 32); | 
 | 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); | 
 | 		} else { | 
 | 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW); | 
 | 			tmp |= 1 << hash; | 
 | 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* Set a MAC change in hardware. */ | 
 | static int | 
 | fec_set_mac_address(struct net_device *dev, void *p) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	struct sockaddr *addr = p; | 
 |  | 
 | 	if (!is_valid_ether_addr(addr->sa_data)) | 
 | 		return -EADDRNOTAVAIL; | 
 |  | 
 | 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); | 
 |  | 
 | 	writel(dev->dev_addr[3] | (dev->dev_addr[2] << 8) | | 
 | 		(dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24), | 
 | 		fep->hwp + FEC_ADDR_LOW); | 
 | 	writel((dev->dev_addr[5] << 16) | (dev->dev_addr[4] << 24), | 
 | 		fep + FEC_ADDR_HIGH); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct net_device_ops fec_netdev_ops = { | 
 | 	.ndo_open		= fec_enet_open, | 
 | 	.ndo_stop		= fec_enet_close, | 
 | 	.ndo_start_xmit		= fec_enet_start_xmit, | 
 | 	.ndo_set_multicast_list = set_multicast_list, | 
 | 	.ndo_change_mtu		= eth_change_mtu, | 
 | 	.ndo_validate_addr	= eth_validate_addr, | 
 | 	.ndo_tx_timeout		= fec_timeout, | 
 | 	.ndo_set_mac_address	= fec_set_mac_address, | 
 | }; | 
 |  | 
 |  /* | 
 |   * XXX:  We need to clean up on failure exits here. | 
 |   * | 
 |   * index is only used in legacy code | 
 |   */ | 
 | int __init fec_enet_init(struct net_device *dev, int index) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	struct bufdesc *cbd_base; | 
 | 	int i; | 
 |  | 
 | 	/* Allocate memory for buffer descriptors. */ | 
 | 	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma, | 
 | 			GFP_KERNEL); | 
 | 	if (!cbd_base) { | 
 | 		printk("FEC: allocate descriptor memory failed?\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	spin_lock_init(&fep->hw_lock); | 
 | 	spin_lock_init(&fep->mii_lock); | 
 |  | 
 | 	fep->index = index; | 
 | 	fep->hwp = (void __iomem *)dev->base_addr; | 
 | 	fep->netdev = dev; | 
 |  | 
 | 	/* Set the Ethernet address */ | 
 | #ifdef CONFIG_M5272 | 
 | 	fec_get_mac(dev); | 
 | #else | 
 | 	{ | 
 | 		unsigned long l; | 
 | 		l = readl(fep->hwp + FEC_ADDR_LOW); | 
 | 		dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24); | 
 | 		dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16); | 
 | 		dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8); | 
 | 		dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0); | 
 | 		l = readl(fep->hwp + FEC_ADDR_HIGH); | 
 | 		dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24); | 
 | 		dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* Set receive and transmit descriptor base. */ | 
 | 	fep->rx_bd_base = cbd_base; | 
 | 	fep->tx_bd_base = cbd_base + RX_RING_SIZE; | 
 |  | 
 | #ifdef HAVE_mii_link_interrupt | 
 | 	fec_request_mii_intr(dev); | 
 | #endif | 
 | 	/* The FEC Ethernet specific entries in the device structure */ | 
 | 	dev->watchdog_timeo = TX_TIMEOUT; | 
 | 	dev->netdev_ops = &fec_netdev_ops; | 
 |  | 
 | 	for (i=0; i<NMII-1; i++) | 
 | 		mii_cmds[i].mii_next = &mii_cmds[i+1]; | 
 | 	mii_free = mii_cmds; | 
 |  | 
 | 	/* Set MII speed to 2.5 MHz */ | 
 | 	fep->phy_speed = ((((clk_get_rate(fep->clk) / 2 + 4999999) | 
 | 					/ 2500000) / 2) & 0x3F) << 1; | 
 | 	fec_restart(dev, 0); | 
 |  | 
 | 	/* Queue up command to detect the PHY and initialize the | 
 | 	 * remainder of the interface. | 
 | 	 */ | 
 | 	fep->phy_id_done = 0; | 
 | 	fep->phy_addr = 0; | 
 | 	mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* This function is called to start or restart the FEC during a link | 
 |  * change.  This only happens when switching between half and full | 
 |  * duplex. | 
 |  */ | 
 | static void | 
 | fec_restart(struct net_device *dev, int duplex) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	struct bufdesc *bdp; | 
 | 	int i; | 
 |  | 
 | 	/* Whack a reset.  We should wait for this. */ | 
 | 	writel(1, fep->hwp + FEC_ECNTRL); | 
 | 	udelay(10); | 
 |  | 
 | 	/* Clear any outstanding interrupt. */ | 
 | 	writel(0xffc00000, fep->hwp + FEC_IEVENT); | 
 |  | 
 | 	/* Reset all multicast.	*/ | 
 | 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); | 
 | 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW); | 
 | #ifndef CONFIG_M5272 | 
 | 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); | 
 | 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW); | 
 | #endif | 
 |  | 
 | 	/* Set maximum receive buffer size. */ | 
 | 	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE); | 
 |  | 
 | 	/* Set receive and transmit descriptor base. */ | 
 | 	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START); | 
 | 	writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE, | 
 | 			fep->hwp + FEC_X_DES_START); | 
 |  | 
 | 	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; | 
 | 	fep->cur_rx = fep->rx_bd_base; | 
 |  | 
 | 	/* Reset SKB transmit buffers. */ | 
 | 	fep->skb_cur = fep->skb_dirty = 0; | 
 | 	for (i = 0; i <= TX_RING_MOD_MASK; i++) { | 
 | 		if (fep->tx_skbuff[i]) { | 
 | 			dev_kfree_skb_any(fep->tx_skbuff[i]); | 
 | 			fep->tx_skbuff[i] = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Initialize the receive buffer descriptors. */ | 
 | 	bdp = fep->rx_bd_base; | 
 | 	for (i = 0; i < RX_RING_SIZE; i++) { | 
 |  | 
 | 		/* Initialize the BD for every fragment in the page. */ | 
 | 		bdp->cbd_sc = BD_ENET_RX_EMPTY; | 
 | 		bdp++; | 
 | 	} | 
 |  | 
 | 	/* Set the last buffer to wrap */ | 
 | 	bdp--; | 
 | 	bdp->cbd_sc |= BD_SC_WRAP; | 
 |  | 
 | 	/* ...and the same for transmit */ | 
 | 	bdp = fep->tx_bd_base; | 
 | 	for (i = 0; i < TX_RING_SIZE; i++) { | 
 |  | 
 | 		/* Initialize the BD for every fragment in the page. */ | 
 | 		bdp->cbd_sc = 0; | 
 | 		bdp->cbd_bufaddr = 0; | 
 | 		bdp++; | 
 | 	} | 
 |  | 
 | 	/* Set the last buffer to wrap */ | 
 | 	bdp--; | 
 | 	bdp->cbd_sc |= BD_SC_WRAP; | 
 |  | 
 | 	/* Enable MII mode */ | 
 | 	if (duplex) { | 
 | 		/* MII enable / FD enable */ | 
 | 		writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL); | 
 | 		writel(0x04, fep->hwp + FEC_X_CNTRL); | 
 | 	} else { | 
 | 		/* MII enable / No Rcv on Xmit */ | 
 | 		writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL); | 
 | 		writel(0x0, fep->hwp + FEC_X_CNTRL); | 
 | 	} | 
 | 	fep->full_duplex = duplex; | 
 |  | 
 | 	/* Set MII speed */ | 
 | 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); | 
 |  | 
 | 	/* And last, enable the transmit and receive processing */ | 
 | 	writel(2, fep->hwp + FEC_ECNTRL); | 
 | 	writel(0, fep->hwp + FEC_R_DES_ACTIVE); | 
 |  | 
 | 	/* Enable interrupts we wish to service */ | 
 | 	writel(FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII, | 
 | 			fep->hwp + FEC_IMASK); | 
 | } | 
 |  | 
 | static void | 
 | fec_stop(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 |  | 
 | 	/* We cannot expect a graceful transmit stop without link !!! */ | 
 | 	if (fep->link) { | 
 | 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ | 
 | 		udelay(10); | 
 | 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) | 
 | 			printk("fec_stop : Graceful transmit stop did not complete !\n"); | 
 | 	} | 
 |  | 
 | 	/* Whack a reset.  We should wait for this. */ | 
 | 	writel(1, fep->hwp + FEC_ECNTRL); | 
 | 	udelay(10); | 
 |  | 
 | 	/* Clear outstanding MII command interrupts. */ | 
 | 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); | 
 |  | 
 | 	writel(FEC_ENET_MII, fep->hwp + FEC_IMASK); | 
 | 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); | 
 | } | 
 |  | 
 | static int __devinit | 
 | fec_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct fec_enet_private *fep; | 
 | 	struct net_device *ndev; | 
 | 	int i, irq, ret = 0; | 
 | 	struct resource *r; | 
 |  | 
 | 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
 | 	if (!r) | 
 | 		return -ENXIO; | 
 |  | 
 | 	r = request_mem_region(r->start, resource_size(r), pdev->name); | 
 | 	if (!r) | 
 | 		return -EBUSY; | 
 |  | 
 | 	/* Init network device */ | 
 | 	ndev = alloc_etherdev(sizeof(struct fec_enet_private)); | 
 | 	if (!ndev) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	SET_NETDEV_DEV(ndev, &pdev->dev); | 
 |  | 
 | 	/* setup board info structure */ | 
 | 	fep = netdev_priv(ndev); | 
 | 	memset(fep, 0, sizeof(*fep)); | 
 |  | 
 | 	ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r)); | 
 |  | 
 | 	if (!ndev->base_addr) { | 
 | 		ret = -ENOMEM; | 
 | 		goto failed_ioremap; | 
 | 	} | 
 |  | 
 | 	platform_set_drvdata(pdev, ndev); | 
 |  | 
 | 	/* This device has up to three irqs on some platforms */ | 
 | 	for (i = 0; i < 3; i++) { | 
 | 		irq = platform_get_irq(pdev, i); | 
 | 		if (i && irq < 0) | 
 | 			break; | 
 | 		ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev); | 
 | 		if (ret) { | 
 | 			while (i >= 0) { | 
 | 				irq = platform_get_irq(pdev, i); | 
 | 				free_irq(irq, ndev); | 
 | 				i--; | 
 | 			} | 
 | 			goto failed_irq; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	fep->clk = clk_get(&pdev->dev, "fec_clk"); | 
 | 	if (IS_ERR(fep->clk)) { | 
 | 		ret = PTR_ERR(fep->clk); | 
 | 		goto failed_clk; | 
 | 	} | 
 | 	clk_enable(fep->clk); | 
 |  | 
 | 	ret = fec_enet_init(ndev, 0); | 
 | 	if (ret) | 
 | 		goto failed_init; | 
 |  | 
 | 	ret = register_netdev(ndev); | 
 | 	if (ret) | 
 | 		goto failed_register; | 
 |  | 
 | 	return 0; | 
 |  | 
 | failed_register: | 
 | failed_init: | 
 | 	clk_disable(fep->clk); | 
 | 	clk_put(fep->clk); | 
 | failed_clk: | 
 | 	for (i = 0; i < 3; i++) { | 
 | 		irq = platform_get_irq(pdev, i); | 
 | 		if (irq > 0) | 
 | 			free_irq(irq, ndev); | 
 | 	} | 
 | failed_irq: | 
 | 	iounmap((void __iomem *)ndev->base_addr); | 
 | failed_ioremap: | 
 | 	free_netdev(ndev); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __devexit | 
 | fec_drv_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct net_device *ndev = platform_get_drvdata(pdev); | 
 | 	struct fec_enet_private *fep = netdev_priv(ndev); | 
 |  | 
 | 	platform_set_drvdata(pdev, NULL); | 
 |  | 
 | 	fec_stop(ndev); | 
 | 	clk_disable(fep->clk); | 
 | 	clk_put(fep->clk); | 
 | 	iounmap((void __iomem *)ndev->base_addr); | 
 | 	unregister_netdev(ndev); | 
 | 	free_netdev(ndev); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | fec_suspend(struct platform_device *dev, pm_message_t state) | 
 | { | 
 | 	struct net_device *ndev = platform_get_drvdata(dev); | 
 | 	struct fec_enet_private *fep; | 
 |  | 
 | 	if (ndev) { | 
 | 		fep = netdev_priv(ndev); | 
 | 		if (netif_running(ndev)) { | 
 | 			netif_device_detach(ndev); | 
 | 			fec_stop(ndev); | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | fec_resume(struct platform_device *dev) | 
 | { | 
 | 	struct net_device *ndev = platform_get_drvdata(dev); | 
 |  | 
 | 	if (ndev) { | 
 | 		if (netif_running(ndev)) { | 
 | 			fec_enet_init(ndev, 0); | 
 | 			netif_device_attach(ndev); | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct platform_driver fec_driver = { | 
 | 	.driver	= { | 
 | 		.name    = "fec", | 
 | 		.owner	 = THIS_MODULE, | 
 | 	}, | 
 | 	.probe   = fec_probe, | 
 | 	.remove  = __devexit_p(fec_drv_remove), | 
 | 	.suspend = fec_suspend, | 
 | 	.resume  = fec_resume, | 
 | }; | 
 |  | 
 | static int __init | 
 | fec_enet_module_init(void) | 
 | { | 
 | 	printk(KERN_INFO "FEC Ethernet Driver\n"); | 
 |  | 
 | 	return platform_driver_register(&fec_driver); | 
 | } | 
 |  | 
 | static void __exit | 
 | fec_enet_cleanup(void) | 
 | { | 
 | 	platform_driver_unregister(&fec_driver); | 
 | } | 
 |  | 
 | module_exit(fec_enet_cleanup); | 
 | module_init(fec_enet_module_init); | 
 |  | 
 | MODULE_LICENSE("GPL"); |