|  | /* | 
|  | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it would be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write the Free Software Foundation, | 
|  | * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_types.h" | 
|  | #include "xfs_bit.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_inum.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_sb.h" | 
|  | #include "xfs_ag.h" | 
|  | #include "xfs_dir2.h" | 
|  | #include "xfs_dmapi.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_bmap_btree.h" | 
|  | #include "xfs_alloc_btree.h" | 
|  | #include "xfs_ialloc_btree.h" | 
|  | #include "xfs_btree.h" | 
|  | #include "xfs_dir2_sf.h" | 
|  | #include "xfs_attr_sf.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_dinode.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_mru_cache.h" | 
|  | #include "xfs_filestream.h" | 
|  | #include "xfs_vnodeops.h" | 
|  | #include "xfs_utils.h" | 
|  | #include "xfs_buf_item.h" | 
|  | #include "xfs_inode_item.h" | 
|  | #include "xfs_rw.h" | 
|  |  | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/freezer.h> | 
|  |  | 
|  | /* | 
|  | * Sync all the inodes in the given AG according to the | 
|  | * direction given by the flags. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_sync_inodes_ag( | 
|  | xfs_mount_t	*mp, | 
|  | int		ag, | 
|  | int		flags) | 
|  | { | 
|  | xfs_perag_t	*pag = &mp->m_perag[ag]; | 
|  | int		nr_found; | 
|  | uint32_t	first_index = 0; | 
|  | int		error = 0; | 
|  | int		last_error = 0; | 
|  | int		fflag = XFS_B_ASYNC; | 
|  |  | 
|  | if (flags & SYNC_DELWRI) | 
|  | fflag = XFS_B_DELWRI; | 
|  | if (flags & SYNC_WAIT) | 
|  | fflag = 0;		/* synchronous overrides all */ | 
|  |  | 
|  | do { | 
|  | struct inode	*inode; | 
|  | xfs_inode_t	*ip = NULL; | 
|  | int		lock_flags = XFS_ILOCK_SHARED; | 
|  |  | 
|  | /* | 
|  | * use a gang lookup to find the next inode in the tree | 
|  | * as the tree is sparse and a gang lookup walks to find | 
|  | * the number of objects requested. | 
|  | */ | 
|  | read_lock(&pag->pag_ici_lock); | 
|  | nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, | 
|  | (void**)&ip, first_index, 1); | 
|  |  | 
|  | if (!nr_found) { | 
|  | read_unlock(&pag->pag_ici_lock); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the index for the next lookup. Catch overflows | 
|  | * into the next AG range which can occur if we have inodes | 
|  | * in the last block of the AG and we are currently | 
|  | * pointing to the last inode. | 
|  | */ | 
|  | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); | 
|  | if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) { | 
|  | read_unlock(&pag->pag_ici_lock); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* nothing to sync during shutdown */ | 
|  | if (XFS_FORCED_SHUTDOWN(mp)) { | 
|  | read_unlock(&pag->pag_ici_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we can't get a reference on the inode, it must be | 
|  | * in reclaim. Leave it for the reclaim code to flush. | 
|  | */ | 
|  | inode = VFS_I(ip); | 
|  | if (!igrab(inode)) { | 
|  | read_unlock(&pag->pag_ici_lock); | 
|  | continue; | 
|  | } | 
|  | read_unlock(&pag->pag_ici_lock); | 
|  |  | 
|  | /* avoid new or bad inodes */ | 
|  | if (is_bad_inode(inode) || | 
|  | xfs_iflags_test(ip, XFS_INEW)) { | 
|  | IRELE(ip); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have to flush data or wait for I/O completion | 
|  | * we need to hold the iolock. | 
|  | */ | 
|  | if ((flags & SYNC_DELWRI) && VN_DIRTY(inode)) { | 
|  | xfs_ilock(ip, XFS_IOLOCK_SHARED); | 
|  | lock_flags |= XFS_IOLOCK_SHARED; | 
|  | error = xfs_flush_pages(ip, 0, -1, fflag, FI_NONE); | 
|  | if (flags & SYNC_IOWAIT) | 
|  | xfs_ioend_wait(ip); | 
|  | } | 
|  | xfs_ilock(ip, XFS_ILOCK_SHARED); | 
|  |  | 
|  | if ((flags & SYNC_ATTR) && !xfs_inode_clean(ip)) { | 
|  | if (flags & SYNC_WAIT) { | 
|  | xfs_iflock(ip); | 
|  | if (!xfs_inode_clean(ip)) | 
|  | error = xfs_iflush(ip, XFS_IFLUSH_SYNC); | 
|  | else | 
|  | xfs_ifunlock(ip); | 
|  | } else if (xfs_iflock_nowait(ip)) { | 
|  | if (!xfs_inode_clean(ip)) | 
|  | error = xfs_iflush(ip, XFS_IFLUSH_DELWRI); | 
|  | else | 
|  | xfs_ifunlock(ip); | 
|  | } | 
|  | } | 
|  | xfs_iput(ip, lock_flags); | 
|  |  | 
|  | if (error) | 
|  | last_error = error; | 
|  | /* | 
|  | * bail out if the filesystem is corrupted. | 
|  | */ | 
|  | if (error == EFSCORRUPTED) | 
|  | return XFS_ERROR(error); | 
|  |  | 
|  | } while (nr_found); | 
|  |  | 
|  | return last_error; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_sync_inodes( | 
|  | xfs_mount_t	*mp, | 
|  | int		flags) | 
|  | { | 
|  | int		error; | 
|  | int		last_error; | 
|  | int		i; | 
|  | int		lflags = XFS_LOG_FORCE; | 
|  |  | 
|  | if (mp->m_flags & XFS_MOUNT_RDONLY) | 
|  | return 0; | 
|  | error = 0; | 
|  | last_error = 0; | 
|  |  | 
|  | if (flags & SYNC_WAIT) | 
|  | lflags |= XFS_LOG_SYNC; | 
|  |  | 
|  | for (i = 0; i < mp->m_sb.sb_agcount; i++) { | 
|  | if (!mp->m_perag[i].pag_ici_init) | 
|  | continue; | 
|  | error = xfs_sync_inodes_ag(mp, i, flags); | 
|  | if (error) | 
|  | last_error = error; | 
|  | if (error == EFSCORRUPTED) | 
|  | break; | 
|  | } | 
|  | if (flags & SYNC_DELWRI) | 
|  | xfs_log_force(mp, 0, lflags); | 
|  |  | 
|  | return XFS_ERROR(last_error); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_commit_dummy_trans( | 
|  | struct xfs_mount	*mp, | 
|  | uint			log_flags) | 
|  | { | 
|  | struct xfs_inode	*ip = mp->m_rootip; | 
|  | struct xfs_trans	*tp; | 
|  | int			error; | 
|  |  | 
|  | /* | 
|  | * Put a dummy transaction in the log to tell recovery | 
|  | * that all others are OK. | 
|  | */ | 
|  | tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1); | 
|  | error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0); | 
|  | if (error) { | 
|  | xfs_trans_cancel(tp, 0); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  |  | 
|  | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); | 
|  | xfs_trans_ihold(tp, ip); | 
|  | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
|  | /* XXX(hch): ignoring the error here.. */ | 
|  | error = xfs_trans_commit(tp, 0); | 
|  |  | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  |  | 
|  | xfs_log_force(mp, 0, log_flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_sync_fsdata( | 
|  | struct xfs_mount	*mp, | 
|  | int			flags) | 
|  | { | 
|  | struct xfs_buf		*bp; | 
|  | struct xfs_buf_log_item	*bip; | 
|  | int			error = 0; | 
|  |  | 
|  | /* | 
|  | * If this is xfssyncd() then only sync the superblock if we can | 
|  | * lock it without sleeping and it is not pinned. | 
|  | */ | 
|  | if (flags & SYNC_BDFLUSH) { | 
|  | ASSERT(!(flags & SYNC_WAIT)); | 
|  |  | 
|  | bp = xfs_getsb(mp, XFS_BUF_TRYLOCK); | 
|  | if (!bp) | 
|  | goto out; | 
|  |  | 
|  | bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *); | 
|  | if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp)) | 
|  | goto out_brelse; | 
|  | } else { | 
|  | bp = xfs_getsb(mp, 0); | 
|  |  | 
|  | /* | 
|  | * If the buffer is pinned then push on the log so we won't | 
|  | * get stuck waiting in the write for someone, maybe | 
|  | * ourselves, to flush the log. | 
|  | * | 
|  | * Even though we just pushed the log above, we did not have | 
|  | * the superblock buffer locked at that point so it can | 
|  | * become pinned in between there and here. | 
|  | */ | 
|  | if (XFS_BUF_ISPINNED(bp)) | 
|  | xfs_log_force(mp, 0, XFS_LOG_FORCE); | 
|  | } | 
|  |  | 
|  |  | 
|  | if (flags & SYNC_WAIT) | 
|  | XFS_BUF_UNASYNC(bp); | 
|  | else | 
|  | XFS_BUF_ASYNC(bp); | 
|  |  | 
|  | return xfs_bwrite(mp, bp); | 
|  |  | 
|  | out_brelse: | 
|  | xfs_buf_relse(bp); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When remounting a filesystem read-only or freezing the filesystem, we have | 
|  | * two phases to execute. This first phase is syncing the data before we | 
|  | * quiesce the filesystem, and the second is flushing all the inodes out after | 
|  | * we've waited for all the transactions created by the first phase to | 
|  | * complete. The second phase ensures that the inodes are written to their | 
|  | * location on disk rather than just existing in transactions in the log. This | 
|  | * means after a quiesce there is no log replay required to write the inodes to | 
|  | * disk (this is the main difference between a sync and a quiesce). | 
|  | */ | 
|  | /* | 
|  | * First stage of freeze - no writers will make progress now we are here, | 
|  | * so we flush delwri and delalloc buffers here, then wait for all I/O to | 
|  | * complete.  Data is frozen at that point. Metadata is not frozen, | 
|  | * transactions can still occur here so don't bother flushing the buftarg | 
|  | * because it'll just get dirty again. | 
|  | */ | 
|  | int | 
|  | xfs_quiesce_data( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | /* push non-blocking */ | 
|  | xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_BDFLUSH); | 
|  | XFS_QM_DQSYNC(mp, SYNC_BDFLUSH); | 
|  | xfs_filestream_flush(mp); | 
|  |  | 
|  | /* push and block */ | 
|  | xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_WAIT|SYNC_IOWAIT); | 
|  | XFS_QM_DQSYNC(mp, SYNC_WAIT); | 
|  |  | 
|  | /* write superblock and hoover up shutdown errors */ | 
|  | error = xfs_sync_fsdata(mp, 0); | 
|  |  | 
|  | /* flush data-only devices */ | 
|  | if (mp->m_rtdev_targp) | 
|  | XFS_bflush(mp->m_rtdev_targp); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_quiesce_fs( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | int	count = 0, pincount; | 
|  |  | 
|  | xfs_flush_buftarg(mp->m_ddev_targp, 0); | 
|  | xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC); | 
|  |  | 
|  | /* | 
|  | * This loop must run at least twice.  The first instance of the loop | 
|  | * will flush most meta data but that will generate more meta data | 
|  | * (typically directory updates).  Which then must be flushed and | 
|  | * logged before we can write the unmount record. | 
|  | */ | 
|  | do { | 
|  | xfs_sync_inodes(mp, SYNC_ATTR|SYNC_WAIT); | 
|  | pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1); | 
|  | if (!pincount) { | 
|  | delay(50); | 
|  | count++; | 
|  | } | 
|  | } while (count < 2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Second stage of a quiesce. The data is already synced, now we have to take | 
|  | * care of the metadata. New transactions are already blocked, so we need to | 
|  | * wait for any remaining transactions to drain out before proceding. | 
|  | */ | 
|  | void | 
|  | xfs_quiesce_attr( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | int	error = 0; | 
|  |  | 
|  | /* wait for all modifications to complete */ | 
|  | while (atomic_read(&mp->m_active_trans) > 0) | 
|  | delay(100); | 
|  |  | 
|  | /* flush inodes and push all remaining buffers out to disk */ | 
|  | xfs_quiesce_fs(mp); | 
|  |  | 
|  | ASSERT_ALWAYS(atomic_read(&mp->m_active_trans) == 0); | 
|  |  | 
|  | /* Push the superblock and write an unmount record */ | 
|  | error = xfs_log_sbcount(mp, 1); | 
|  | if (error) | 
|  | xfs_fs_cmn_err(CE_WARN, mp, | 
|  | "xfs_attr_quiesce: failed to log sb changes. " | 
|  | "Frozen image may not be consistent."); | 
|  | xfs_log_unmount_write(mp); | 
|  | xfs_unmountfs_writesb(mp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enqueue a work item to be picked up by the vfs xfssyncd thread. | 
|  | * Doing this has two advantages: | 
|  | * - It saves on stack space, which is tight in certain situations | 
|  | * - It can be used (with care) as a mechanism to avoid deadlocks. | 
|  | * Flushing while allocating in a full filesystem requires both. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_syncd_queue_work( | 
|  | struct xfs_mount *mp, | 
|  | void		*data, | 
|  | void		(*syncer)(struct xfs_mount *, void *)) | 
|  | { | 
|  | struct bhv_vfs_sync_work *work; | 
|  |  | 
|  | work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP); | 
|  | INIT_LIST_HEAD(&work->w_list); | 
|  | work->w_syncer = syncer; | 
|  | work->w_data = data; | 
|  | work->w_mount = mp; | 
|  | spin_lock(&mp->m_sync_lock); | 
|  | list_add_tail(&work->w_list, &mp->m_sync_list); | 
|  | spin_unlock(&mp->m_sync_lock); | 
|  | wake_up_process(mp->m_sync_task); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush delayed allocate data, attempting to free up reserved space | 
|  | * from existing allocations.  At this point a new allocation attempt | 
|  | * has failed with ENOSPC and we are in the process of scratching our | 
|  | * heads, looking about for more room... | 
|  | */ | 
|  | STATIC void | 
|  | xfs_flush_inode_work( | 
|  | struct xfs_mount *mp, | 
|  | void		*arg) | 
|  | { | 
|  | struct inode	*inode = arg; | 
|  | filemap_flush(inode->i_mapping); | 
|  | iput(inode); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_flush_inode( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | struct inode	*inode = VFS_I(ip); | 
|  |  | 
|  | igrab(inode); | 
|  | xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inode_work); | 
|  | delay(msecs_to_jiffies(500)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the "bigger hammer" version of xfs_flush_inode_work... | 
|  | * (IOW, "If at first you don't succeed, use a Bigger Hammer"). | 
|  | */ | 
|  | STATIC void | 
|  | xfs_flush_device_work( | 
|  | struct xfs_mount *mp, | 
|  | void		*arg) | 
|  | { | 
|  | struct inode	*inode = arg; | 
|  | sync_blockdev(mp->m_super->s_bdev); | 
|  | iput(inode); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_flush_device( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | struct inode	*inode = VFS_I(ip); | 
|  |  | 
|  | igrab(inode); | 
|  | xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_device_work); | 
|  | delay(msecs_to_jiffies(500)); | 
|  | xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Every sync period we need to unpin all items, reclaim inodes, sync | 
|  | * quota and write out the superblock. We might need to cover the log | 
|  | * to indicate it is idle. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_sync_worker( | 
|  | struct xfs_mount *mp, | 
|  | void		*unused) | 
|  | { | 
|  | int		error; | 
|  |  | 
|  | if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { | 
|  | xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); | 
|  | xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC); | 
|  | /* dgc: errors ignored here */ | 
|  | error = XFS_QM_DQSYNC(mp, SYNC_BDFLUSH); | 
|  | error = xfs_sync_fsdata(mp, SYNC_BDFLUSH); | 
|  | if (xfs_log_need_covered(mp)) | 
|  | error = xfs_commit_dummy_trans(mp, XFS_LOG_FORCE); | 
|  | } | 
|  | mp->m_sync_seq++; | 
|  | wake_up(&mp->m_wait_single_sync_task); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfssyncd( | 
|  | void			*arg) | 
|  | { | 
|  | struct xfs_mount	*mp = arg; | 
|  | long			timeleft; | 
|  | bhv_vfs_sync_work_t	*work, *n; | 
|  | LIST_HEAD		(tmp); | 
|  |  | 
|  | set_freezable(); | 
|  | timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10); | 
|  | for (;;) { | 
|  | timeleft = schedule_timeout_interruptible(timeleft); | 
|  | /* swsusp */ | 
|  | try_to_freeze(); | 
|  | if (kthread_should_stop() && list_empty(&mp->m_sync_list)) | 
|  | break; | 
|  |  | 
|  | spin_lock(&mp->m_sync_lock); | 
|  | /* | 
|  | * We can get woken by laptop mode, to do a sync - | 
|  | * that's the (only!) case where the list would be | 
|  | * empty with time remaining. | 
|  | */ | 
|  | if (!timeleft || list_empty(&mp->m_sync_list)) { | 
|  | if (!timeleft) | 
|  | timeleft = xfs_syncd_centisecs * | 
|  | msecs_to_jiffies(10); | 
|  | INIT_LIST_HEAD(&mp->m_sync_work.w_list); | 
|  | list_add_tail(&mp->m_sync_work.w_list, | 
|  | &mp->m_sync_list); | 
|  | } | 
|  | list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list) | 
|  | list_move(&work->w_list, &tmp); | 
|  | spin_unlock(&mp->m_sync_lock); | 
|  |  | 
|  | list_for_each_entry_safe(work, n, &tmp, w_list) { | 
|  | (*work->w_syncer)(mp, work->w_data); | 
|  | list_del(&work->w_list); | 
|  | if (work == &mp->m_sync_work) | 
|  | continue; | 
|  | kmem_free(work); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_syncd_init( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | mp->m_sync_work.w_syncer = xfs_sync_worker; | 
|  | mp->m_sync_work.w_mount = mp; | 
|  | mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd"); | 
|  | if (IS_ERR(mp->m_sync_task)) | 
|  | return -PTR_ERR(mp->m_sync_task); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_syncd_stop( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | kthread_stop(mp->m_sync_task); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_reclaim_inode( | 
|  | xfs_inode_t	*ip, | 
|  | int		locked, | 
|  | int		sync_mode) | 
|  | { | 
|  | xfs_perag_t	*pag = xfs_get_perag(ip->i_mount, ip->i_ino); | 
|  |  | 
|  | /* The hash lock here protects a thread in xfs_iget_core from | 
|  | * racing with us on linking the inode back with a vnode. | 
|  | * Once we have the XFS_IRECLAIM flag set it will not touch | 
|  | * us. | 
|  | */ | 
|  | write_lock(&pag->pag_ici_lock); | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | if (__xfs_iflags_test(ip, XFS_IRECLAIM) || | 
|  | !__xfs_iflags_test(ip, XFS_IRECLAIMABLE)) { | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | write_unlock(&pag->pag_ici_lock); | 
|  | if (locked) { | 
|  | xfs_ifunlock(ip); | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | __xfs_iflags_set(ip, XFS_IRECLAIM); | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | write_unlock(&pag->pag_ici_lock); | 
|  | xfs_put_perag(ip->i_mount, pag); | 
|  |  | 
|  | /* | 
|  | * If the inode is still dirty, then flush it out.  If the inode | 
|  | * is not in the AIL, then it will be OK to flush it delwri as | 
|  | * long as xfs_iflush() does not keep any references to the inode. | 
|  | * We leave that decision up to xfs_iflush() since it has the | 
|  | * knowledge of whether it's OK to simply do a delwri flush of | 
|  | * the inode or whether we need to wait until the inode is | 
|  | * pulled from the AIL. | 
|  | * We get the flush lock regardless, though, just to make sure | 
|  | * we don't free it while it is being flushed. | 
|  | */ | 
|  | if (!locked) { | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | xfs_iflock(ip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In the case of a forced shutdown we rely on xfs_iflush() to | 
|  | * wait for the inode to be unpinned before returning an error. | 
|  | */ | 
|  | if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) { | 
|  | /* synchronize with xfs_iflush_done */ | 
|  | xfs_iflock(ip); | 
|  | xfs_ifunlock(ip); | 
|  | } | 
|  |  | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | xfs_ireclaim(ip); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We set the inode flag atomically with the radix tree tag. | 
|  | * Once we get tag lookups on the radix tree, this inode flag | 
|  | * can go away. | 
|  | */ | 
|  | void | 
|  | xfs_inode_set_reclaim_tag( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | xfs_mount_t	*mp = ip->i_mount; | 
|  | xfs_perag_t	*pag = xfs_get_perag(mp, ip->i_ino); | 
|  |  | 
|  | read_lock(&pag->pag_ici_lock); | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | radix_tree_tag_set(&pag->pag_ici_root, | 
|  | XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); | 
|  | __xfs_iflags_set(ip, XFS_IRECLAIMABLE); | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | read_unlock(&pag->pag_ici_lock); | 
|  | xfs_put_perag(mp, pag); | 
|  | } | 
|  |  | 
|  | void | 
|  | __xfs_inode_clear_reclaim_tag( | 
|  | xfs_mount_t	*mp, | 
|  | xfs_perag_t	*pag, | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | radix_tree_tag_clear(&pag->pag_ici_root, | 
|  | XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_inode_clear_reclaim_tag( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | xfs_mount_t	*mp = ip->i_mount; | 
|  | xfs_perag_t	*pag = xfs_get_perag(mp, ip->i_ino); | 
|  |  | 
|  | read_lock(&pag->pag_ici_lock); | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | __xfs_inode_clear_reclaim_tag(mp, pag, ip); | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | read_unlock(&pag->pag_ici_lock); | 
|  | xfs_put_perag(mp, pag); | 
|  | } | 
|  |  | 
|  |  | 
|  | STATIC void | 
|  | xfs_reclaim_inodes_ag( | 
|  | xfs_mount_t	*mp, | 
|  | int		ag, | 
|  | int		noblock, | 
|  | int		mode) | 
|  | { | 
|  | xfs_inode_t	*ip = NULL; | 
|  | xfs_perag_t	*pag = &mp->m_perag[ag]; | 
|  | int		nr_found; | 
|  | uint32_t	first_index; | 
|  | int		skipped; | 
|  |  | 
|  | restart: | 
|  | first_index = 0; | 
|  | skipped = 0; | 
|  | do { | 
|  | /* | 
|  | * use a gang lookup to find the next inode in the tree | 
|  | * as the tree is sparse and a gang lookup walks to find | 
|  | * the number of objects requested. | 
|  | */ | 
|  | read_lock(&pag->pag_ici_lock); | 
|  | nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, | 
|  | (void**)&ip, first_index, 1, | 
|  | XFS_ICI_RECLAIM_TAG); | 
|  |  | 
|  | if (!nr_found) { | 
|  | read_unlock(&pag->pag_ici_lock); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the index for the next lookup. Catch overflows | 
|  | * into the next AG range which can occur if we have inodes | 
|  | * in the last block of the AG and we are currently | 
|  | * pointing to the last inode. | 
|  | */ | 
|  | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); | 
|  | if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) { | 
|  | read_unlock(&pag->pag_ici_lock); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* ignore if already under reclaim */ | 
|  | if (xfs_iflags_test(ip, XFS_IRECLAIM)) { | 
|  | read_unlock(&pag->pag_ici_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (noblock) { | 
|  | if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { | 
|  | read_unlock(&pag->pag_ici_lock); | 
|  | continue; | 
|  | } | 
|  | if (xfs_ipincount(ip) || | 
|  | !xfs_iflock_nowait(ip)) { | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | read_unlock(&pag->pag_ici_lock); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | read_unlock(&pag->pag_ici_lock); | 
|  |  | 
|  | /* | 
|  | * hmmm - this is an inode already in reclaim. Do | 
|  | * we even bother catching it here? | 
|  | */ | 
|  | if (xfs_reclaim_inode(ip, noblock, mode)) | 
|  | skipped++; | 
|  | } while (nr_found); | 
|  |  | 
|  | if (skipped) { | 
|  | delay(1); | 
|  | goto restart; | 
|  | } | 
|  | return; | 
|  |  | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_reclaim_inodes( | 
|  | xfs_mount_t	*mp, | 
|  | int		 noblock, | 
|  | int		mode) | 
|  | { | 
|  | int		i; | 
|  |  | 
|  | for (i = 0; i < mp->m_sb.sb_agcount; i++) { | 
|  | if (!mp->m_perag[i].pag_ici_init) | 
|  | continue; | 
|  | xfs_reclaim_inodes_ag(mp, i, noblock, mode); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  |