| /* | 
 |  * JFFS2 -- Journalling Flash File System, Version 2. | 
 |  * | 
 |  * Copyright (C) 2001-2003 Red Hat, Inc. | 
 |  * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de> | 
 |  * | 
 |  * Created by David Woodhouse <dwmw2@infradead.org> | 
 |  * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de> | 
 |  * | 
 |  * For licensing information, see the file 'LICENCE' in this directory. | 
 |  * | 
 |  * $Id: wbuf.c,v 1.100 2005/09/30 13:59:13 dedekind Exp $ | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/mtd/mtd.h> | 
 | #include <linux/crc32.h> | 
 | #include <linux/mtd/nand.h> | 
 | #include <linux/jiffies.h> | 
 |  | 
 | #include "nodelist.h" | 
 |  | 
 | /* For testing write failures */ | 
 | #undef BREAKME | 
 | #undef BREAKMEHEADER | 
 |  | 
 | #ifdef BREAKME | 
 | static unsigned char *brokenbuf; | 
 | #endif | 
 |  | 
 | #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) ) | 
 | #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) ) | 
 |  | 
 | /* max. erase failures before we mark a block bad */ | 
 | #define MAX_ERASE_FAILURES 	2 | 
 |  | 
 | struct jffs2_inodirty { | 
 | 	uint32_t ino; | 
 | 	struct jffs2_inodirty *next; | 
 | }; | 
 |  | 
 | static struct jffs2_inodirty inodirty_nomem; | 
 |  | 
 | static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino) | 
 | { | 
 | 	struct jffs2_inodirty *this = c->wbuf_inodes; | 
 |  | 
 | 	/* If a malloc failed, consider _everything_ dirty */ | 
 | 	if (this == &inodirty_nomem) | 
 | 		return 1; | 
 |  | 
 | 	/* If ino == 0, _any_ non-GC writes mean 'yes' */ | 
 | 	if (this && !ino) | 
 | 		return 1; | 
 |  | 
 | 	/* Look to see if the inode in question is pending in the wbuf */ | 
 | 	while (this) { | 
 | 		if (this->ino == ino) | 
 | 			return 1; | 
 | 		this = this->next; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c) | 
 | { | 
 | 	struct jffs2_inodirty *this; | 
 |  | 
 | 	this = c->wbuf_inodes; | 
 |  | 
 | 	if (this != &inodirty_nomem) { | 
 | 		while (this) { | 
 | 			struct jffs2_inodirty *next = this->next; | 
 | 			kfree(this); | 
 | 			this = next; | 
 | 		} | 
 | 	} | 
 | 	c->wbuf_inodes = NULL; | 
 | } | 
 |  | 
 | static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino) | 
 | { | 
 | 	struct jffs2_inodirty *new; | 
 |  | 
 | 	/* Mark the superblock dirty so that kupdated will flush... */ | 
 | 	jffs2_erase_pending_trigger(c); | 
 |  | 
 | 	if (jffs2_wbuf_pending_for_ino(c, ino)) | 
 | 		return; | 
 |  | 
 | 	new = kmalloc(sizeof(*new), GFP_KERNEL); | 
 | 	if (!new) { | 
 | 		D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n")); | 
 | 		jffs2_clear_wbuf_ino_list(c); | 
 | 		c->wbuf_inodes = &inodirty_nomem; | 
 | 		return; | 
 | 	} | 
 | 	new->ino = ino; | 
 | 	new->next = c->wbuf_inodes; | 
 | 	c->wbuf_inodes = new; | 
 | 	return; | 
 | } | 
 |  | 
 | static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c) | 
 | { | 
 | 	struct list_head *this, *next; | 
 | 	static int n; | 
 |  | 
 | 	if (list_empty(&c->erasable_pending_wbuf_list)) | 
 | 		return; | 
 |  | 
 | 	list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) { | 
 | 		struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
 |  | 
 | 		D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset)); | 
 | 		list_del(this); | 
 | 		if ((jiffies + (n++)) & 127) { | 
 | 			/* Most of the time, we just erase it immediately. Otherwise we | 
 | 			   spend ages scanning it on mount, etc. */ | 
 | 			D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); | 
 | 			list_add_tail(&jeb->list, &c->erase_pending_list); | 
 | 			c->nr_erasing_blocks++; | 
 | 			jffs2_erase_pending_trigger(c); | 
 | 		} else { | 
 | 			/* Sometimes, however, we leave it elsewhere so it doesn't get | 
 | 			   immediately reused, and we spread the load a bit. */ | 
 | 			D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); | 
 | 			list_add_tail(&jeb->list, &c->erasable_list); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #define REFILE_NOTEMPTY 0 | 
 | #define REFILE_ANYWAY   1 | 
 |  | 
 | static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty) | 
 | { | 
 | 	D1(printk("About to refile bad block at %08x\n", jeb->offset)); | 
 |  | 
 | 	/* File the existing block on the bad_used_list.... */ | 
 | 	if (c->nextblock == jeb) | 
 | 		c->nextblock = NULL; | 
 | 	else /* Not sure this should ever happen... need more coffee */ | 
 | 		list_del(&jeb->list); | 
 | 	if (jeb->first_node) { | 
 | 		D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset)); | 
 | 		list_add(&jeb->list, &c->bad_used_list); | 
 | 	} else { | 
 | 		BUG_ON(allow_empty == REFILE_NOTEMPTY); | 
 | 		/* It has to have had some nodes or we couldn't be here */ | 
 | 		D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset)); | 
 | 		list_add(&jeb->list, &c->erase_pending_list); | 
 | 		c->nr_erasing_blocks++; | 
 | 		jffs2_erase_pending_trigger(c); | 
 | 	} | 
 |  | 
 | 	/* Adjust its size counts accordingly */ | 
 | 	c->wasted_size += jeb->free_size; | 
 | 	c->free_size -= jeb->free_size; | 
 | 	jeb->wasted_size += jeb->free_size; | 
 | 	jeb->free_size = 0; | 
 |  | 
 | 	jffs2_dbg_dump_block_lists_nolock(c); | 
 | 	jffs2_dbg_acct_sanity_check_nolock(c,jeb); | 
 | 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb); | 
 | } | 
 |  | 
 | /* Recover from failure to write wbuf. Recover the nodes up to the | 
 |  * wbuf, not the one which we were starting to try to write. */ | 
 |  | 
 | static void jffs2_wbuf_recover(struct jffs2_sb_info *c) | 
 | { | 
 | 	struct jffs2_eraseblock *jeb, *new_jeb; | 
 | 	struct jffs2_raw_node_ref **first_raw, **raw; | 
 | 	size_t retlen; | 
 | 	int ret; | 
 | 	unsigned char *buf; | 
 | 	uint32_t start, end, ofs, len; | 
 |  | 
 | 	spin_lock(&c->erase_completion_lock); | 
 |  | 
 | 	jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; | 
 |  | 
 | 	jffs2_block_refile(c, jeb, REFILE_NOTEMPTY); | 
 |  | 
 | 	/* Find the first node to be recovered, by skipping over every | 
 | 	   node which ends before the wbuf starts, or which is obsolete. */ | 
 | 	first_raw = &jeb->first_node; | 
 | 	while (*first_raw && | 
 | 	       (ref_obsolete(*first_raw) || | 
 | 		(ref_offset(*first_raw)+ref_totlen(c, jeb, *first_raw)) < c->wbuf_ofs)) { | 
 | 		D1(printk(KERN_DEBUG "Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n", | 
 | 			  ref_offset(*first_raw), ref_flags(*first_raw), | 
 | 			  (ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw)), | 
 | 			  c->wbuf_ofs)); | 
 | 		first_raw = &(*first_raw)->next_phys; | 
 | 	} | 
 |  | 
 | 	if (!*first_raw) { | 
 | 		/* All nodes were obsolete. Nothing to recover. */ | 
 | 		D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n")); | 
 | 		spin_unlock(&c->erase_completion_lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	start = ref_offset(*first_raw); | 
 | 	end = ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw); | 
 |  | 
 | 	/* Find the last node to be recovered */ | 
 | 	raw = first_raw; | 
 | 	while ((*raw)) { | 
 | 		if (!ref_obsolete(*raw)) | 
 | 			end = ref_offset(*raw) + ref_totlen(c, jeb, *raw); | 
 |  | 
 | 		raw = &(*raw)->next_phys; | 
 | 	} | 
 | 	spin_unlock(&c->erase_completion_lock); | 
 |  | 
 | 	D1(printk(KERN_DEBUG "wbuf recover %08x-%08x\n", start, end)); | 
 |  | 
 | 	buf = NULL; | 
 | 	if (start < c->wbuf_ofs) { | 
 | 		/* First affected node was already partially written. | 
 | 		 * Attempt to reread the old data into our buffer. */ | 
 |  | 
 | 		buf = kmalloc(end - start, GFP_KERNEL); | 
 | 		if (!buf) { | 
 | 			printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n"); | 
 |  | 
 | 			goto read_failed; | 
 | 		} | 
 |  | 
 | 		/* Do the read... */ | 
 | 		if (jffs2_cleanmarker_oob(c)) | 
 | 			ret = c->mtd->read_ecc(c->mtd, start, c->wbuf_ofs - start, &retlen, buf, NULL, c->oobinfo); | 
 | 		else | 
 | 			ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf); | 
 |  | 
 | 		if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) { | 
 | 			/* ECC recovered */ | 
 | 			ret = 0; | 
 | 		} | 
 | 		if (ret || retlen != c->wbuf_ofs - start) { | 
 | 			printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n"); | 
 |  | 
 | 			kfree(buf); | 
 | 			buf = NULL; | 
 | 		read_failed: | 
 | 			first_raw = &(*first_raw)->next_phys; | 
 | 			/* If this was the only node to be recovered, give up */ | 
 | 			if (!(*first_raw)) | 
 | 				return; | 
 |  | 
 | 			/* It wasn't. Go on and try to recover nodes complete in the wbuf */ | 
 | 			start = ref_offset(*first_raw); | 
 | 		} else { | 
 | 			/* Read succeeded. Copy the remaining data from the wbuf */ | 
 | 			memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs); | 
 | 		} | 
 | 	} | 
 | 	/* OK... we're to rewrite (end-start) bytes of data from first_raw onwards. | 
 | 	   Either 'buf' contains the data, or we find it in the wbuf */ | 
 |  | 
 |  | 
 | 	/* ... and get an allocation of space from a shiny new block instead */ | 
 | 	ret = jffs2_reserve_space_gc(c, end-start, &ofs, &len, JFFS2_SUMMARY_NOSUM_SIZE); | 
 | 	if (ret) { | 
 | 		printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n"); | 
 | 		kfree(buf); | 
 | 		return; | 
 | 	} | 
 | 	if (end-start >= c->wbuf_pagesize) { | 
 | 		/* Need to do another write immediately, but it's possible | 
 | 		   that this is just because the wbuf itself is completely | 
 | 		   full, and there's nothing earlier read back from the | 
 | 		   flash. Hence 'buf' isn't necessarily what we're writing | 
 | 		   from. */ | 
 | 		unsigned char *rewrite_buf = buf?:c->wbuf; | 
 | 		uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize); | 
 |  | 
 | 		D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n", | 
 | 			  towrite, ofs)); | 
 |  | 
 | #ifdef BREAKMEHEADER | 
 | 		static int breakme; | 
 | 		if (breakme++ == 20) { | 
 | 			printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs); | 
 | 			breakme = 0; | 
 | 			c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen, | 
 | 					  brokenbuf, NULL, c->oobinfo); | 
 | 			ret = -EIO; | 
 | 		} else | 
 | #endif | 
 | 		if (jffs2_cleanmarker_oob(c)) | 
 | 			ret = c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen, | 
 | 						rewrite_buf, NULL, c->oobinfo); | 
 | 		else | 
 | 			ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, rewrite_buf); | 
 |  | 
 | 		if (ret || retlen != towrite) { | 
 | 			/* Argh. We tried. Really we did. */ | 
 | 			printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n"); | 
 | 			kfree(buf); | 
 |  | 
 | 			if (retlen) { | 
 | 				struct jffs2_raw_node_ref *raw2; | 
 |  | 
 | 				raw2 = jffs2_alloc_raw_node_ref(); | 
 | 				if (!raw2) | 
 | 					return; | 
 |  | 
 | 				raw2->flash_offset = ofs | REF_OBSOLETE; | 
 | 				raw2->__totlen = ref_totlen(c, jeb, *first_raw); | 
 | 				raw2->next_phys = NULL; | 
 | 				raw2->next_in_ino = NULL; | 
 |  | 
 | 				jffs2_add_physical_node_ref(c, raw2); | 
 | 			} | 
 | 			return; | 
 | 		} | 
 | 		printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs); | 
 |  | 
 | 		c->wbuf_len = (end - start) - towrite; | 
 | 		c->wbuf_ofs = ofs + towrite; | 
 | 		memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len); | 
 | 		/* Don't muck about with c->wbuf_inodes. False positives are harmless. */ | 
 | 		kfree(buf); | 
 | 	} else { | 
 | 		/* OK, now we're left with the dregs in whichever buffer we're using */ | 
 | 		if (buf) { | 
 | 			memcpy(c->wbuf, buf, end-start); | 
 | 			kfree(buf); | 
 | 		} else { | 
 | 			memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start); | 
 | 		} | 
 | 		c->wbuf_ofs = ofs; | 
 | 		c->wbuf_len = end - start; | 
 | 	} | 
 |  | 
 | 	/* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */ | 
 | 	new_jeb = &c->blocks[ofs / c->sector_size]; | 
 |  | 
 | 	spin_lock(&c->erase_completion_lock); | 
 | 	if (new_jeb->first_node) { | 
 | 		/* Odd, but possible with ST flash later maybe */ | 
 | 		new_jeb->last_node->next_phys = *first_raw; | 
 | 	} else { | 
 | 		new_jeb->first_node = *first_raw; | 
 | 	} | 
 |  | 
 | 	raw = first_raw; | 
 | 	while (*raw) { | 
 | 		uint32_t rawlen = ref_totlen(c, jeb, *raw); | 
 |  | 
 | 		D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n", | 
 | 			  rawlen, ref_offset(*raw), ref_flags(*raw), ofs)); | 
 |  | 
 | 		if (ref_obsolete(*raw)) { | 
 | 			/* Shouldn't really happen much */ | 
 | 			new_jeb->dirty_size += rawlen; | 
 | 			new_jeb->free_size -= rawlen; | 
 | 			c->dirty_size += rawlen; | 
 | 		} else { | 
 | 			new_jeb->used_size += rawlen; | 
 | 			new_jeb->free_size -= rawlen; | 
 | 			jeb->dirty_size += rawlen; | 
 | 			jeb->used_size  -= rawlen; | 
 | 			c->dirty_size += rawlen; | 
 | 		} | 
 | 		c->free_size -= rawlen; | 
 | 		(*raw)->flash_offset = ofs | ref_flags(*raw); | 
 | 		ofs += rawlen; | 
 | 		new_jeb->last_node = *raw; | 
 |  | 
 | 		raw = &(*raw)->next_phys; | 
 | 	} | 
 |  | 
 | 	/* Fix up the original jeb now it's on the bad_list */ | 
 | 	*first_raw = NULL; | 
 | 	if (first_raw == &jeb->first_node) { | 
 | 		jeb->last_node = NULL; | 
 | 		D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset)); | 
 | 		list_del(&jeb->list); | 
 | 		list_add(&jeb->list, &c->erase_pending_list); | 
 | 		c->nr_erasing_blocks++; | 
 | 		jffs2_erase_pending_trigger(c); | 
 | 	} | 
 | 	else | 
 | 		jeb->last_node = container_of(first_raw, struct jffs2_raw_node_ref, next_phys); | 
 |  | 
 | 	jffs2_dbg_acct_sanity_check_nolock(c, jeb); | 
 |         jffs2_dbg_acct_paranoia_check_nolock(c, jeb); | 
 |  | 
 | 	jffs2_dbg_acct_sanity_check_nolock(c, new_jeb); | 
 |         jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb); | 
 |  | 
 | 	spin_unlock(&c->erase_completion_lock); | 
 |  | 
 | 	D1(printk(KERN_DEBUG "wbuf recovery completed OK\n")); | 
 | } | 
 |  | 
 | /* Meaning of pad argument: | 
 |    0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway. | 
 |    1: Pad, do not adjust nextblock free_size | 
 |    2: Pad, adjust nextblock free_size | 
 | */ | 
 | #define NOPAD		0 | 
 | #define PAD_NOACCOUNT	1 | 
 | #define PAD_ACCOUNTING	2 | 
 |  | 
 | static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad) | 
 | { | 
 | 	int ret; | 
 | 	size_t retlen; | 
 |  | 
 | 	/* Nothing to do if not write-buffering the flash. In particular, we shouldn't | 
 | 	   del_timer() the timer we never initialised. */ | 
 | 	if (!jffs2_is_writebuffered(c)) | 
 | 		return 0; | 
 |  | 
 | 	if (!down_trylock(&c->alloc_sem)) { | 
 | 		up(&c->alloc_sem); | 
 | 		printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n"); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	if (!c->wbuf_len)	/* already checked c->wbuf above */ | 
 | 		return 0; | 
 |  | 
 | 	/* claim remaining space on the page | 
 | 	   this happens, if we have a change to a new block, | 
 | 	   or if fsync forces us to flush the writebuffer. | 
 | 	   if we have a switch to next page, we will not have | 
 | 	   enough remaining space for this. | 
 | 	*/ | 
 | 	if (pad ) { | 
 | 		c->wbuf_len = PAD(c->wbuf_len); | 
 |  | 
 | 		/* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR | 
 | 		   with 8 byte page size */ | 
 | 		memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len); | 
 |  | 
 | 		if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) { | 
 | 			struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len); | 
 | 			padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | 
 | 			padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING); | 
 | 			padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len); | 
 | 			padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4)); | 
 | 		} | 
 | 	} | 
 | 	/* else jffs2_flash_writev has actually filled in the rest of the | 
 | 	   buffer for us, and will deal with the node refs etc. later. */ | 
 |  | 
 | #ifdef BREAKME | 
 | 	static int breakme; | 
 | 	if (breakme++ == 20) { | 
 | 		printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs); | 
 | 		breakme = 0; | 
 | 		c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, | 
 | 					&retlen, brokenbuf, NULL, c->oobinfo); | 
 | 		ret = -EIO; | 
 | 	} else | 
 | #endif | 
 |  | 
 | 	if (jffs2_cleanmarker_oob(c)) | 
 | 		ret = c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf, NULL, c->oobinfo); | 
 | 	else | 
 | 		ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf); | 
 |  | 
 | 	if (ret || retlen != c->wbuf_pagesize) { | 
 | 		if (ret) | 
 | 			printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret); | 
 | 		else { | 
 | 			printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n", | 
 | 				retlen, c->wbuf_pagesize); | 
 | 			ret = -EIO; | 
 | 		} | 
 |  | 
 | 		jffs2_wbuf_recover(c); | 
 |  | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	spin_lock(&c->erase_completion_lock); | 
 |  | 
 | 	/* Adjust free size of the block if we padded. */ | 
 | 	if (pad) { | 
 | 		struct jffs2_eraseblock *jeb; | 
 |  | 
 | 		jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; | 
 |  | 
 | 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n", | 
 | 			  (jeb==c->nextblock)?"next":"", jeb->offset)); | 
 |  | 
 | 		/* wbuf_pagesize - wbuf_len is the amount of space that's to be | 
 | 		   padded. If there is less free space in the block than that, | 
 | 		   something screwed up */ | 
 | 		if (jeb->free_size < (c->wbuf_pagesize - c->wbuf_len)) { | 
 | 			printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n", | 
 | 			       c->wbuf_ofs, c->wbuf_len, c->wbuf_pagesize-c->wbuf_len); | 
 | 			printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n", | 
 | 			       jeb->offset, jeb->free_size); | 
 | 			BUG(); | 
 | 		} | 
 | 		jeb->free_size -= (c->wbuf_pagesize - c->wbuf_len); | 
 | 		c->free_size -= (c->wbuf_pagesize - c->wbuf_len); | 
 | 		jeb->wasted_size += (c->wbuf_pagesize - c->wbuf_len); | 
 | 		c->wasted_size += (c->wbuf_pagesize - c->wbuf_len); | 
 | 	} | 
 |  | 
 | 	/* Stick any now-obsoleted blocks on the erase_pending_list */ | 
 | 	jffs2_refile_wbuf_blocks(c); | 
 | 	jffs2_clear_wbuf_ino_list(c); | 
 | 	spin_unlock(&c->erase_completion_lock); | 
 |  | 
 | 	memset(c->wbuf,0xff,c->wbuf_pagesize); | 
 | 	/* adjust write buffer offset, else we get a non contiguous write bug */ | 
 | 	c->wbuf_ofs += c->wbuf_pagesize; | 
 | 	c->wbuf_len = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Trigger garbage collection to flush the write-buffer. | 
 |    If ino arg is zero, do it if _any_ real (i.e. not GC) writes are | 
 |    outstanding. If ino arg non-zero, do it only if a write for the | 
 |    given inode is outstanding. */ | 
 | int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino) | 
 | { | 
 | 	uint32_t old_wbuf_ofs; | 
 | 	uint32_t old_wbuf_len; | 
 | 	int ret = 0; | 
 |  | 
 | 	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino)); | 
 |  | 
 | 	if (!c->wbuf) | 
 | 		return 0; | 
 |  | 
 | 	down(&c->alloc_sem); | 
 | 	if (!jffs2_wbuf_pending_for_ino(c, ino)) { | 
 | 		D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino)); | 
 | 		up(&c->alloc_sem); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	old_wbuf_ofs = c->wbuf_ofs; | 
 | 	old_wbuf_len = c->wbuf_len; | 
 |  | 
 | 	if (c->unchecked_size) { | 
 | 		/* GC won't make any progress for a while */ | 
 | 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n")); | 
 | 		down_write(&c->wbuf_sem); | 
 | 		ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); | 
 | 		/* retry flushing wbuf in case jffs2_wbuf_recover | 
 | 		   left some data in the wbuf */ | 
 | 		if (ret) | 
 | 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); | 
 | 		up_write(&c->wbuf_sem); | 
 | 	} else while (old_wbuf_len && | 
 | 		      old_wbuf_ofs == c->wbuf_ofs) { | 
 |  | 
 | 		up(&c->alloc_sem); | 
 |  | 
 | 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n")); | 
 |  | 
 | 		ret = jffs2_garbage_collect_pass(c); | 
 | 		if (ret) { | 
 | 			/* GC failed. Flush it with padding instead */ | 
 | 			down(&c->alloc_sem); | 
 | 			down_write(&c->wbuf_sem); | 
 | 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); | 
 | 			/* retry flushing wbuf in case jffs2_wbuf_recover | 
 | 			   left some data in the wbuf */ | 
 | 			if (ret) | 
 | 				ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); | 
 | 			up_write(&c->wbuf_sem); | 
 | 			break; | 
 | 		} | 
 | 		down(&c->alloc_sem); | 
 | 	} | 
 |  | 
 | 	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n")); | 
 |  | 
 | 	up(&c->alloc_sem); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Pad write-buffer to end and write it, wasting space. */ | 
 | int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!c->wbuf) | 
 | 		return 0; | 
 |  | 
 | 	down_write(&c->wbuf_sem); | 
 | 	ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); | 
 | 	/* retry - maybe wbuf recover left some data in wbuf. */ | 
 | 	if (ret) | 
 | 		ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); | 
 | 	up_write(&c->wbuf_sem); | 
 |  | 
 | 	return ret; | 
 | } | 
 | int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino) | 
 | { | 
 | 	struct kvec outvecs[3]; | 
 | 	uint32_t totlen = 0; | 
 | 	uint32_t split_ofs = 0; | 
 | 	uint32_t old_totlen; | 
 | 	int ret, splitvec = -1; | 
 | 	int invec, outvec; | 
 | 	size_t wbuf_retlen; | 
 | 	unsigned char *wbuf_ptr; | 
 | 	size_t donelen = 0; | 
 | 	uint32_t outvec_to = to; | 
 |  | 
 | 	/* If not NAND flash, don't bother */ | 
 | 	if (!jffs2_is_writebuffered(c)) | 
 | 		return jffs2_flash_direct_writev(c, invecs, count, to, retlen); | 
 |  | 
 | 	down_write(&c->wbuf_sem); | 
 |  | 
 | 	/* If wbuf_ofs is not initialized, set it to target address */ | 
 | 	if (c->wbuf_ofs == 0xFFFFFFFF) { | 
 | 		c->wbuf_ofs = PAGE_DIV(to); | 
 | 		c->wbuf_len = PAGE_MOD(to); | 
 | 		memset(c->wbuf,0xff,c->wbuf_pagesize); | 
 | 	} | 
 |  | 
 | 	/* Fixup the wbuf if we are moving to a new eraseblock.  The checks below | 
 | 	   fail for ECC'd NOR because cleanmarker == 16, so a block starts at | 
 | 	   xxx0010.  */ | 
 | 	if (jffs2_nor_ecc(c)) { | 
 | 		if (((c->wbuf_ofs % c->sector_size) == 0) && !c->wbuf_len) { | 
 | 			c->wbuf_ofs = PAGE_DIV(to); | 
 | 			c->wbuf_len = PAGE_MOD(to); | 
 | 			memset(c->wbuf,0xff,c->wbuf_pagesize); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Sanity checks on target address. | 
 | 	   It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs), | 
 | 	   and it's permitted to write at the beginning of a new | 
 | 	   erase block. Anything else, and you die. | 
 | 	   New block starts at xxx000c (0-b = block header) | 
 | 	*/ | 
 | 	if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) { | 
 | 		/* It's a write to a new block */ | 
 | 		if (c->wbuf_len) { | 
 | 			D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs)); | 
 | 			ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); | 
 | 			if (ret) { | 
 | 				/* the underlying layer has to check wbuf_len to do the cleanup */ | 
 | 				D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret)); | 
 | 				*retlen = 0; | 
 | 				goto exit; | 
 | 			} | 
 | 		} | 
 | 		/* set pointer to new block */ | 
 | 		c->wbuf_ofs = PAGE_DIV(to); | 
 | 		c->wbuf_len = PAGE_MOD(to); | 
 | 	} | 
 |  | 
 | 	if (to != PAD(c->wbuf_ofs + c->wbuf_len)) { | 
 | 		/* We're not writing immediately after the writebuffer. Bad. */ | 
 | 		printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to); | 
 | 		if (c->wbuf_len) | 
 | 			printk(KERN_CRIT "wbuf was previously %08x-%08x\n", | 
 | 					  c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	/* Note outvecs[3] above. We know count is never greater than 2 */ | 
 | 	if (count > 2) { | 
 | 		printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	invec = 0; | 
 | 	outvec = 0; | 
 |  | 
 | 	/* Fill writebuffer first, if already in use */ | 
 | 	if (c->wbuf_len) { | 
 | 		uint32_t invec_ofs = 0; | 
 |  | 
 | 		/* adjust alignment offset */ | 
 | 		if (c->wbuf_len != PAGE_MOD(to)) { | 
 | 			c->wbuf_len = PAGE_MOD(to); | 
 | 			/* take care of alignment to next page */ | 
 | 			if (!c->wbuf_len) | 
 | 				c->wbuf_len = c->wbuf_pagesize; | 
 | 		} | 
 |  | 
 | 		while(c->wbuf_len < c->wbuf_pagesize) { | 
 | 			uint32_t thislen; | 
 |  | 
 | 			if (invec == count) | 
 | 				goto alldone; | 
 |  | 
 | 			thislen = c->wbuf_pagesize - c->wbuf_len; | 
 |  | 
 | 			if (thislen >= invecs[invec].iov_len) | 
 | 				thislen = invecs[invec].iov_len; | 
 |  | 
 | 			invec_ofs = thislen; | 
 |  | 
 | 			memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen); | 
 | 			c->wbuf_len += thislen; | 
 | 			donelen += thislen; | 
 | 			/* Get next invec, if actual did not fill the buffer */ | 
 | 			if (c->wbuf_len < c->wbuf_pagesize) | 
 | 				invec++; | 
 | 		} | 
 |  | 
 | 		/* write buffer is full, flush buffer */ | 
 | 		ret = __jffs2_flush_wbuf(c, NOPAD); | 
 | 		if (ret) { | 
 | 			/* the underlying layer has to check wbuf_len to do the cleanup */ | 
 | 			D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret)); | 
 | 			/* Retlen zero to make sure our caller doesn't mark the space dirty. | 
 | 			   We've already done everything that's necessary */ | 
 | 			*retlen = 0; | 
 | 			goto exit; | 
 | 		} | 
 | 		outvec_to += donelen; | 
 | 		c->wbuf_ofs = outvec_to; | 
 |  | 
 | 		/* All invecs done ? */ | 
 | 		if (invec == count) | 
 | 			goto alldone; | 
 |  | 
 | 		/* Set up the first outvec, containing the remainder of the | 
 | 		   invec we partially used */ | 
 | 		if (invecs[invec].iov_len > invec_ofs) { | 
 | 			outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs; | 
 | 			totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs; | 
 | 			if (totlen > c->wbuf_pagesize) { | 
 | 				splitvec = outvec; | 
 | 				split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen); | 
 | 			} | 
 | 			outvec++; | 
 | 		} | 
 | 		invec++; | 
 | 	} | 
 |  | 
 | 	/* OK, now we've flushed the wbuf and the start of the bits | 
 | 	   we have been asked to write, now to write the rest.... */ | 
 |  | 
 | 	/* totlen holds the amount of data still to be written */ | 
 | 	old_totlen = totlen; | 
 | 	for ( ; invec < count; invec++,outvec++ ) { | 
 | 		outvecs[outvec].iov_base = invecs[invec].iov_base; | 
 | 		totlen += outvecs[outvec].iov_len = invecs[invec].iov_len; | 
 | 		if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) { | 
 | 			splitvec = outvec; | 
 | 			split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen); | 
 | 			old_totlen = totlen; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Now the outvecs array holds all the remaining data to write */ | 
 | 	/* Up to splitvec,split_ofs is to be written immediately. The rest | 
 | 	   goes into the (now-empty) wbuf */ | 
 |  | 
 | 	if (splitvec != -1) { | 
 | 		uint32_t remainder; | 
 |  | 
 | 		remainder = outvecs[splitvec].iov_len - split_ofs; | 
 | 		outvecs[splitvec].iov_len = split_ofs; | 
 |  | 
 | 		/* We did cross a page boundary, so we write some now */ | 
 | 		if (jffs2_cleanmarker_oob(c)) | 
 | 			ret = c->mtd->writev_ecc(c->mtd, outvecs, splitvec+1, outvec_to, &wbuf_retlen, NULL, c->oobinfo); | 
 | 		else | 
 | 			ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen); | 
 |  | 
 | 		if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) { | 
 | 			/* At this point we have no problem, | 
 | 			   c->wbuf is empty. However refile nextblock to avoid | 
 | 			   writing again to same address. | 
 | 			*/ | 
 | 			struct jffs2_eraseblock *jeb; | 
 |  | 
 | 			spin_lock(&c->erase_completion_lock); | 
 |  | 
 | 			jeb = &c->blocks[outvec_to / c->sector_size]; | 
 | 			jffs2_block_refile(c, jeb, REFILE_ANYWAY); | 
 |  | 
 | 			*retlen = 0; | 
 | 			spin_unlock(&c->erase_completion_lock); | 
 | 			goto exit; | 
 | 		} | 
 |  | 
 | 		donelen += wbuf_retlen; | 
 | 		c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen); | 
 |  | 
 | 		if (remainder) { | 
 | 			outvecs[splitvec].iov_base += split_ofs; | 
 | 			outvecs[splitvec].iov_len = remainder; | 
 | 		} else { | 
 | 			splitvec++; | 
 | 		} | 
 |  | 
 | 	} else { | 
 | 		splitvec = 0; | 
 | 	} | 
 |  | 
 | 	/* Now splitvec points to the start of the bits we have to copy | 
 | 	   into the wbuf */ | 
 | 	wbuf_ptr = c->wbuf; | 
 |  | 
 | 	for ( ; splitvec < outvec; splitvec++) { | 
 | 		/* Don't copy the wbuf into itself */ | 
 | 		if (outvecs[splitvec].iov_base == c->wbuf) | 
 | 			continue; | 
 | 		memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len); | 
 | 		wbuf_ptr += outvecs[splitvec].iov_len; | 
 | 		donelen += outvecs[splitvec].iov_len; | 
 | 	} | 
 | 	c->wbuf_len = wbuf_ptr - c->wbuf; | 
 |  | 
 | 	/* If there's a remainder in the wbuf and it's a non-GC write, | 
 | 	   remember that the wbuf affects this ino */ | 
 | alldone: | 
 | 	*retlen = donelen; | 
 |  | 
 | 	if (jffs2_sum_active()) { | 
 | 		int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to); | 
 | 		if (res) | 
 | 			return res; | 
 | 	} | 
 |  | 
 | 	if (c->wbuf_len && ino) | 
 | 		jffs2_wbuf_dirties_inode(c, ino); | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | exit: | 
 | 	up_write(&c->wbuf_sem); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  *	This is the entry for flash write. | 
 |  *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev | 
 | */ | 
 | int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf) | 
 | { | 
 | 	struct kvec vecs[1]; | 
 |  | 
 | 	if (!jffs2_is_writebuffered(c)) | 
 | 		return jffs2_flash_direct_write(c, ofs, len, retlen, buf); | 
 |  | 
 | 	vecs[0].iov_base = (unsigned char *) buf; | 
 | 	vecs[0].iov_len = len; | 
 | 	return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0); | 
 | } | 
 |  | 
 | /* | 
 | 	Handle readback from writebuffer and ECC failure return | 
 | */ | 
 | int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf) | 
 | { | 
 | 	loff_t	orbf = 0, owbf = 0, lwbf = 0; | 
 | 	int	ret; | 
 |  | 
 | 	if (!jffs2_is_writebuffered(c)) | 
 | 		return c->mtd->read(c->mtd, ofs, len, retlen, buf); | 
 |  | 
 | 	/* Read flash */ | 
 | 	down_read(&c->wbuf_sem); | 
 | 	if (jffs2_cleanmarker_oob(c)) | 
 | 		ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo); | 
 | 	else | 
 | 		ret = c->mtd->read(c->mtd, ofs, len, retlen, buf); | 
 |  | 
 | 	if ( (ret == -EBADMSG) && (*retlen == len) ) { | 
 | 		printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n", | 
 | 		       len, ofs); | 
 | 		/* | 
 | 		 * We have the raw data without ECC correction in the buffer, maybe | 
 | 		 * we are lucky and all data or parts are correct. We check the node. | 
 | 		 * If data are corrupted node check will sort it out. | 
 | 		 * We keep this block, it will fail on write or erase and the we | 
 | 		 * mark it bad. Or should we do that now? But we should give him a chance. | 
 | 		 * Maybe we had a system crash or power loss before the ecc write or | 
 | 		 * a erase was completed. | 
 | 		 * So we return success. :) | 
 | 		 */ | 
 | 	 	ret = 0; | 
 | 	} | 
 |  | 
 | 	/* if no writebuffer available or write buffer empty, return */ | 
 | 	if (!c->wbuf_pagesize || !c->wbuf_len) | 
 | 		goto exit; | 
 |  | 
 | 	/* if we read in a different block, return */ | 
 | 	if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs)) | 
 | 		goto exit; | 
 |  | 
 | 	if (ofs >= c->wbuf_ofs) { | 
 | 		owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */ | 
 | 		if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */ | 
 | 			goto exit; | 
 | 		lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */ | 
 | 		if (lwbf > len) | 
 | 			lwbf = len; | 
 | 	} else { | 
 | 		orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */ | 
 | 		if (orbf > len)			/* is write beyond write buffer ? */ | 
 | 			goto exit; | 
 | 		lwbf = len - orbf; 		/* number of bytes to copy */ | 
 | 		if (lwbf > c->wbuf_len) | 
 | 			lwbf = c->wbuf_len; | 
 | 	} | 
 | 	if (lwbf > 0) | 
 | 		memcpy(buf+orbf,c->wbuf+owbf,lwbf); | 
 |  | 
 | exit: | 
 | 	up_read(&c->wbuf_sem); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  *	Check, if the out of band area is empty | 
 |  */ | 
 | int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode) | 
 | { | 
 | 	unsigned char *buf; | 
 | 	int 	ret = 0; | 
 | 	int	i,len,page; | 
 | 	size_t  retlen; | 
 | 	int	oob_size; | 
 |  | 
 | 	/* allocate a buffer for all oob data in this sector */ | 
 | 	oob_size = c->mtd->oobsize; | 
 | 	len = 4 * oob_size; | 
 | 	buf = kmalloc(len, GFP_KERNEL); | 
 | 	if (!buf) { | 
 | 		printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	/* | 
 | 	 * if mode = 0, we scan for a total empty oob area, else we have | 
 | 	 * to take care of the cleanmarker in the first page of the block | 
 | 	*/ | 
 | 	ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf); | 
 | 	if (ret) { | 
 | 		D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (retlen < len) { | 
 | 		D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read " | 
 | 			  "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset)); | 
 | 		ret = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Special check for first page */ | 
 | 	for(i = 0; i < oob_size ; i++) { | 
 | 		/* Yeah, we know about the cleanmarker. */ | 
 | 		if (mode && i >= c->fsdata_pos && | 
 | 		    i < c->fsdata_pos + c->fsdata_len) | 
 | 			continue; | 
 |  | 
 | 		if (buf[i] != 0xFF) { | 
 | 			D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n", | 
 | 				  buf[i], i, jeb->offset)); | 
 | 			ret = 1; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* we know, we are aligned :) */ | 
 | 	for (page = oob_size; page < len; page += sizeof(long)) { | 
 | 		unsigned long dat = *(unsigned long *)(&buf[page]); | 
 | 		if(dat != -1) { | 
 | 			ret = 1; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	kfree(buf); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 | *	Scan for a valid cleanmarker and for bad blocks | 
 | *	For virtual blocks (concatenated physical blocks) check the cleanmarker | 
 | *	only in the first page of the first physical block, but scan for bad blocks in all | 
 | *	physical blocks | 
 | */ | 
 | int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) | 
 | { | 
 | 	struct jffs2_unknown_node n; | 
 | 	unsigned char buf[2 * NAND_MAX_OOBSIZE]; | 
 | 	unsigned char *p; | 
 | 	int ret, i, cnt, retval = 0; | 
 | 	size_t retlen, offset; | 
 | 	int oob_size; | 
 |  | 
 | 	offset = jeb->offset; | 
 | 	oob_size = c->mtd->oobsize; | 
 |  | 
 | 	/* Loop through the physical blocks */ | 
 | 	for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) { | 
 | 		/* Check first if the block is bad. */ | 
 | 		if (c->mtd->block_isbad (c->mtd, offset)) { | 
 | 			D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset)); | 
 | 			return 2; | 
 | 		} | 
 | 		/* | 
 | 		   *    We read oob data from page 0 and 1 of the block. | 
 | 		   *    page 0 contains cleanmarker and badblock info | 
 | 		   *    page 1 contains failure count of this block | 
 | 		 */ | 
 | 		ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf); | 
 |  | 
 | 		if (ret) { | 
 | 			D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); | 
 | 			return ret; | 
 | 		} | 
 | 		if (retlen < (oob_size << 1)) { | 
 | 			D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset)); | 
 | 			return -EIO; | 
 | 		} | 
 |  | 
 | 		/* Check cleanmarker only on the first physical block */ | 
 | 		if (!cnt) { | 
 | 			n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK); | 
 | 			n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER); | 
 | 			n.totlen = cpu_to_je32 (8); | 
 | 			p = (unsigned char *) &n; | 
 |  | 
 | 			for (i = 0; i < c->fsdata_len; i++) { | 
 | 				if (buf[c->fsdata_pos + i] != p[i]) { | 
 | 					retval = 1; | 
 | 				} | 
 | 			} | 
 | 			D1(if (retval == 1) { | 
 | 				printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset); | 
 | 				printk(KERN_WARNING "OOB at %08x was ", offset); | 
 | 				for (i=0; i < oob_size; i++) { | 
 | 					printk("%02x ", buf[i]); | 
 | 				} | 
 | 				printk("\n"); | 
 | 			}) | 
 | 		} | 
 | 		offset += c->mtd->erasesize; | 
 | 	} | 
 | 	return retval; | 
 | } | 
 |  | 
 | int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) | 
 | { | 
 | 	struct 	jffs2_unknown_node n; | 
 | 	int 	ret; | 
 | 	size_t 	retlen; | 
 |  | 
 | 	n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | 
 | 	n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER); | 
 | 	n.totlen = cpu_to_je32(8); | 
 |  | 
 | 	ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n); | 
 |  | 
 | 	if (ret) { | 
 | 		D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); | 
 | 		return ret; | 
 | 	} | 
 | 	if (retlen != c->fsdata_len) { | 
 | 		D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len)); | 
 | 		return ret; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * On NAND we try to mark this block bad. If the block was erased more | 
 |  * than MAX_ERASE_FAILURES we mark it finaly bad. | 
 |  * Don't care about failures. This block remains on the erase-pending | 
 |  * or badblock list as long as nobody manipulates the flash with | 
 |  * a bootloader or something like that. | 
 |  */ | 
 |  | 
 | int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset) | 
 | { | 
 | 	int 	ret; | 
 |  | 
 | 	/* if the count is < max, we try to write the counter to the 2nd page oob area */ | 
 | 	if( ++jeb->bad_count < MAX_ERASE_FAILURES) | 
 | 		return 0; | 
 |  | 
 | 	if (!c->mtd->block_markbad) | 
 | 		return 1; // What else can we do? | 
 |  | 
 | 	D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset)); | 
 | 	ret = c->mtd->block_markbad(c->mtd, bad_offset); | 
 |  | 
 | 	if (ret) { | 
 | 		D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); | 
 | 		return ret; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | #define NAND_JFFS2_OOB16_FSDALEN	8 | 
 |  | 
 | static struct nand_oobinfo jffs2_oobinfo_docecc = { | 
 | 	.useecc = MTD_NANDECC_PLACE, | 
 | 	.eccbytes = 6, | 
 | 	.eccpos = {0,1,2,3,4,5} | 
 | }; | 
 |  | 
 |  | 
 | static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c) | 
 | { | 
 | 	struct nand_oobinfo *oinfo = &c->mtd->oobinfo; | 
 |  | 
 | 	/* Do this only, if we have an oob buffer */ | 
 | 	if (!c->mtd->oobsize) | 
 | 		return 0; | 
 |  | 
 | 	/* Cleanmarker is out-of-band, so inline size zero */ | 
 | 	c->cleanmarker_size = 0; | 
 |  | 
 | 	/* Should we use autoplacement ? */ | 
 | 	if (oinfo && oinfo->useecc == MTD_NANDECC_AUTOPLACE) { | 
 | 		D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n")); | 
 | 		/* Get the position of the free bytes */ | 
 | 		if (!oinfo->oobfree[0][1]) { | 
 | 			printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n"); | 
 | 			return -ENOSPC; | 
 | 		} | 
 | 		c->fsdata_pos = oinfo->oobfree[0][0]; | 
 | 		c->fsdata_len = oinfo->oobfree[0][1]; | 
 | 		if (c->fsdata_len > 8) | 
 | 			c->fsdata_len = 8; | 
 | 	} else { | 
 | 		/* This is just a legacy fallback and should go away soon */ | 
 | 		switch(c->mtd->ecctype) { | 
 | 		case MTD_ECC_RS_DiskOnChip: | 
 | 			printk(KERN_WARNING "JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n"); | 
 | 			c->oobinfo = &jffs2_oobinfo_docecc; | 
 | 			c->fsdata_pos = 6; | 
 | 			c->fsdata_len = NAND_JFFS2_OOB16_FSDALEN; | 
 | 			c->badblock_pos = 15; | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n")); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int jffs2_nand_flash_setup(struct jffs2_sb_info *c) | 
 | { | 
 | 	int res; | 
 |  | 
 | 	/* Initialise write buffer */ | 
 | 	init_rwsem(&c->wbuf_sem); | 
 | 	c->wbuf_pagesize = c->mtd->oobblock; | 
 | 	c->wbuf_ofs = 0xFFFFFFFF; | 
 |  | 
 | 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
 | 	if (!c->wbuf) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	res = jffs2_nand_set_oobinfo(c); | 
 |  | 
 | #ifdef BREAKME | 
 | 	if (!brokenbuf) | 
 | 		brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
 | 	if (!brokenbuf) { | 
 | 		kfree(c->wbuf); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	memset(brokenbuf, 0xdb, c->wbuf_pagesize); | 
 | #endif | 
 | 	return res; | 
 | } | 
 |  | 
 | void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c) | 
 | { | 
 | 	kfree(c->wbuf); | 
 | } | 
 |  | 
 | int jffs2_dataflash_setup(struct jffs2_sb_info *c) { | 
 | 	c->cleanmarker_size = 0;		/* No cleanmarkers needed */ | 
 |  | 
 | 	/* Initialize write buffer */ | 
 | 	init_rwsem(&c->wbuf_sem); | 
 |  | 
 |  | 
 | 	c->wbuf_pagesize =  c->mtd->erasesize; | 
 |  | 
 | 	/* Find a suitable c->sector_size | 
 | 	 * - Not too much sectors | 
 | 	 * - Sectors have to be at least 4 K + some bytes | 
 | 	 * - All known dataflashes have erase sizes of 528 or 1056 | 
 | 	 * - we take at least 8 eraseblocks and want to have at least 8K size | 
 | 	 * - The concatenation should be a power of 2 | 
 | 	*/ | 
 |  | 
 | 	c->sector_size = 8 * c->mtd->erasesize; | 
 |  | 
 | 	while (c->sector_size < 8192) { | 
 | 		c->sector_size *= 2; | 
 | 	} | 
 |  | 
 | 	/* It may be necessary to adjust the flash size */ | 
 | 	c->flash_size = c->mtd->size; | 
 |  | 
 | 	if ((c->flash_size % c->sector_size) != 0) { | 
 | 		c->flash_size = (c->flash_size / c->sector_size) * c->sector_size; | 
 | 		printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size); | 
 | 	}; | 
 |  | 
 | 	c->wbuf_ofs = 0xFFFFFFFF; | 
 | 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
 | 	if (!c->wbuf) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) { | 
 | 	kfree(c->wbuf); | 
 | } | 
 |  | 
 | int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) { | 
 | 	/* Cleanmarker is actually larger on the flashes */ | 
 | 	c->cleanmarker_size = 16; | 
 |  | 
 | 	/* Initialize write buffer */ | 
 | 	init_rwsem(&c->wbuf_sem); | 
 | 	c->wbuf_pagesize = c->mtd->eccsize; | 
 | 	c->wbuf_ofs = 0xFFFFFFFF; | 
 |  | 
 | 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
 | 	if (!c->wbuf) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c) { | 
 | 	kfree(c->wbuf); | 
 | } | 
 |  | 
 | int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) { | 
 | 	/* Cleanmarker currently occupies a whole programming region */ | 
 | 	c->cleanmarker_size = MTD_PROGREGION_SIZE(c->mtd); | 
 |  | 
 | 	/* Initialize write buffer */ | 
 | 	init_rwsem(&c->wbuf_sem); | 
 | 	c->wbuf_pagesize = MTD_PROGREGION_SIZE(c->mtd); | 
 | 	c->wbuf_ofs = 0xFFFFFFFF; | 
 |  | 
 | 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
 | 	if (!c->wbuf) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) { | 
 | 	kfree(c->wbuf); | 
 | } |