| /* | 
 |  * PPP async serial channel driver for Linux. | 
 |  * | 
 |  * Copyright 1999 Paul Mackerras. | 
 |  * | 
 |  *  This program is free software; you can redistribute it and/or | 
 |  *  modify it under the terms of the GNU General Public License | 
 |  *  as published by the Free Software Foundation; either version | 
 |  *  2 of the License, or (at your option) any later version. | 
 |  * | 
 |  * This driver provides the encapsulation and framing for sending | 
 |  * and receiving PPP frames over async serial lines.  It relies on | 
 |  * the generic PPP layer to give it frames to send and to process | 
 |  * received frames.  It implements the PPP line discipline. | 
 |  * | 
 |  * Part of the code in this driver was inspired by the old async-only | 
 |  * PPP driver, written by Michael Callahan and Al Longyear, and | 
 |  * subsequently hacked by Paul Mackerras. | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/tty.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/poll.h> | 
 | #include <linux/crc-ccitt.h> | 
 | #include <linux/ppp_defs.h> | 
 | #include <linux/if_ppp.h> | 
 | #include <linux/ppp_channel.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/init.h> | 
 | #include <linux/jiffies.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/string.h> | 
 |  | 
 | #define PPP_VERSION	"2.4.2" | 
 |  | 
 | #define OBUFSIZE	256 | 
 |  | 
 | /* Structure for storing local state. */ | 
 | struct asyncppp { | 
 | 	struct tty_struct *tty; | 
 | 	unsigned int	flags; | 
 | 	unsigned int	state; | 
 | 	unsigned int	rbits; | 
 | 	int		mru; | 
 | 	spinlock_t	xmit_lock; | 
 | 	spinlock_t	recv_lock; | 
 | 	unsigned long	xmit_flags; | 
 | 	u32		xaccm[8]; | 
 | 	u32		raccm; | 
 | 	unsigned int	bytes_sent; | 
 | 	unsigned int	bytes_rcvd; | 
 |  | 
 | 	struct sk_buff	*tpkt; | 
 | 	int		tpkt_pos; | 
 | 	u16		tfcs; | 
 | 	unsigned char	*optr; | 
 | 	unsigned char	*olim; | 
 | 	unsigned long	last_xmit; | 
 |  | 
 | 	struct sk_buff	*rpkt; | 
 | 	int		lcp_fcs; | 
 | 	struct sk_buff_head rqueue; | 
 |  | 
 | 	struct tasklet_struct tsk; | 
 |  | 
 | 	atomic_t	refcnt; | 
 | 	struct semaphore dead_sem; | 
 | 	struct ppp_channel chan;	/* interface to generic ppp layer */ | 
 | 	unsigned char	obuf[OBUFSIZE]; | 
 | }; | 
 |  | 
 | /* Bit numbers in xmit_flags */ | 
 | #define XMIT_WAKEUP	0 | 
 | #define XMIT_FULL	1 | 
 | #define XMIT_BUSY	2 | 
 |  | 
 | /* State bits */ | 
 | #define SC_TOSS		1 | 
 | #define SC_ESCAPE	2 | 
 | #define SC_PREV_ERROR	4 | 
 |  | 
 | /* Bits in rbits */ | 
 | #define SC_RCV_BITS	(SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP) | 
 |  | 
 | static int flag_time = HZ; | 
 | module_param(flag_time, int, 0); | 
 | MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_ALIAS_LDISC(N_PPP); | 
 |  | 
 | /* | 
 |  * Prototypes. | 
 |  */ | 
 | static int ppp_async_encode(struct asyncppp *ap); | 
 | static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb); | 
 | static int ppp_async_push(struct asyncppp *ap); | 
 | static void ppp_async_flush_output(struct asyncppp *ap); | 
 | static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf, | 
 | 			    char *flags, int count); | 
 | static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, | 
 | 			   unsigned long arg); | 
 | static void ppp_async_process(unsigned long arg); | 
 |  | 
 | static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, | 
 | 			   int len, int inbound); | 
 |  | 
 | static struct ppp_channel_ops async_ops = { | 
 | 	ppp_async_send, | 
 | 	ppp_async_ioctl | 
 | }; | 
 |  | 
 | /* | 
 |  * Routines implementing the PPP line discipline. | 
 |  */ | 
 |  | 
 | /* | 
 |  * We have a potential race on dereferencing tty->disc_data, | 
 |  * because the tty layer provides no locking at all - thus one | 
 |  * cpu could be running ppp_asynctty_receive while another | 
 |  * calls ppp_asynctty_close, which zeroes tty->disc_data and | 
 |  * frees the memory that ppp_asynctty_receive is using.  The best | 
 |  * way to fix this is to use a rwlock in the tty struct, but for now | 
 |  * we use a single global rwlock for all ttys in ppp line discipline. | 
 |  * | 
 |  * FIXME: this is no longer true. The _close path for the ldisc is | 
 |  * now guaranteed to be sane. | 
 |  */ | 
 | static DEFINE_RWLOCK(disc_data_lock); | 
 |  | 
 | static struct asyncppp *ap_get(struct tty_struct *tty) | 
 | { | 
 | 	struct asyncppp *ap; | 
 |  | 
 | 	read_lock(&disc_data_lock); | 
 | 	ap = tty->disc_data; | 
 | 	if (ap != NULL) | 
 | 		atomic_inc(&ap->refcnt); | 
 | 	read_unlock(&disc_data_lock); | 
 | 	return ap; | 
 | } | 
 |  | 
 | static void ap_put(struct asyncppp *ap) | 
 | { | 
 | 	if (atomic_dec_and_test(&ap->refcnt)) | 
 | 		up(&ap->dead_sem); | 
 | } | 
 |  | 
 | /* | 
 |  * Called when a tty is put into PPP line discipline. Called in process | 
 |  * context. | 
 |  */ | 
 | static int | 
 | ppp_asynctty_open(struct tty_struct *tty) | 
 | { | 
 | 	struct asyncppp *ap; | 
 | 	int err; | 
 |  | 
 | 	if (tty->ops->write == NULL) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	ap = kzalloc(sizeof(*ap), GFP_KERNEL); | 
 | 	if (!ap) | 
 | 		goto out; | 
 |  | 
 | 	/* initialize the asyncppp structure */ | 
 | 	ap->tty = tty; | 
 | 	ap->mru = PPP_MRU; | 
 | 	spin_lock_init(&ap->xmit_lock); | 
 | 	spin_lock_init(&ap->recv_lock); | 
 | 	ap->xaccm[0] = ~0U; | 
 | 	ap->xaccm[3] = 0x60000000U; | 
 | 	ap->raccm = ~0U; | 
 | 	ap->optr = ap->obuf; | 
 | 	ap->olim = ap->obuf; | 
 | 	ap->lcp_fcs = -1; | 
 |  | 
 | 	skb_queue_head_init(&ap->rqueue); | 
 | 	tasklet_init(&ap->tsk, ppp_async_process, (unsigned long) ap); | 
 |  | 
 | 	atomic_set(&ap->refcnt, 1); | 
 | 	init_MUTEX_LOCKED(&ap->dead_sem); | 
 |  | 
 | 	ap->chan.private = ap; | 
 | 	ap->chan.ops = &async_ops; | 
 | 	ap->chan.mtu = PPP_MRU; | 
 | 	err = ppp_register_channel(&ap->chan); | 
 | 	if (err) | 
 | 		goto out_free; | 
 |  | 
 | 	tty->disc_data = ap; | 
 | 	tty->receive_room = 65536; | 
 | 	return 0; | 
 |  | 
 |  out_free: | 
 | 	kfree(ap); | 
 |  out: | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Called when the tty is put into another line discipline | 
 |  * or it hangs up.  We have to wait for any cpu currently | 
 |  * executing in any of the other ppp_asynctty_* routines to | 
 |  * finish before we can call ppp_unregister_channel and free | 
 |  * the asyncppp struct.  This routine must be called from | 
 |  * process context, not interrupt or softirq context. | 
 |  */ | 
 | static void | 
 | ppp_asynctty_close(struct tty_struct *tty) | 
 | { | 
 | 	struct asyncppp *ap; | 
 |  | 
 | 	write_lock_irq(&disc_data_lock); | 
 | 	ap = tty->disc_data; | 
 | 	tty->disc_data = NULL; | 
 | 	write_unlock_irq(&disc_data_lock); | 
 | 	if (!ap) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * We have now ensured that nobody can start using ap from now | 
 | 	 * on, but we have to wait for all existing users to finish. | 
 | 	 * Note that ppp_unregister_channel ensures that no calls to | 
 | 	 * our channel ops (i.e. ppp_async_send/ioctl) are in progress | 
 | 	 * by the time it returns. | 
 | 	 */ | 
 | 	if (!atomic_dec_and_test(&ap->refcnt)) | 
 | 		down(&ap->dead_sem); | 
 | 	tasklet_kill(&ap->tsk); | 
 |  | 
 | 	ppp_unregister_channel(&ap->chan); | 
 | 	if (ap->rpkt) | 
 | 		kfree_skb(ap->rpkt); | 
 | 	skb_queue_purge(&ap->rqueue); | 
 | 	if (ap->tpkt) | 
 | 		kfree_skb(ap->tpkt); | 
 | 	kfree(ap); | 
 | } | 
 |  | 
 | /* | 
 |  * Called on tty hangup in process context. | 
 |  * | 
 |  * Wait for I/O to driver to complete and unregister PPP channel. | 
 |  * This is already done by the close routine, so just call that. | 
 |  */ | 
 | static int ppp_asynctty_hangup(struct tty_struct *tty) | 
 | { | 
 | 	ppp_asynctty_close(tty); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Read does nothing - no data is ever available this way. | 
 |  * Pppd reads and writes packets via /dev/ppp instead. | 
 |  */ | 
 | static ssize_t | 
 | ppp_asynctty_read(struct tty_struct *tty, struct file *file, | 
 | 		  unsigned char __user *buf, size_t count) | 
 | { | 
 | 	return -EAGAIN; | 
 | } | 
 |  | 
 | /* | 
 |  * Write on the tty does nothing, the packets all come in | 
 |  * from the ppp generic stuff. | 
 |  */ | 
 | static ssize_t | 
 | ppp_asynctty_write(struct tty_struct *tty, struct file *file, | 
 | 		   const unsigned char *buf, size_t count) | 
 | { | 
 | 	return -EAGAIN; | 
 | } | 
 |  | 
 | /* | 
 |  * Called in process context only. May be re-entered by multiple | 
 |  * ioctl calling threads. | 
 |  */ | 
 |  | 
 | static int | 
 | ppp_asynctty_ioctl(struct tty_struct *tty, struct file *file, | 
 | 		   unsigned int cmd, unsigned long arg) | 
 | { | 
 | 	struct asyncppp *ap = ap_get(tty); | 
 | 	int err, val; | 
 | 	int __user *p = (int __user *)arg; | 
 |  | 
 | 	if (!ap) | 
 | 		return -ENXIO; | 
 | 	err = -EFAULT; | 
 | 	switch (cmd) { | 
 | 	case PPPIOCGCHAN: | 
 | 		err = -ENXIO; | 
 | 		if (!ap) | 
 | 			break; | 
 | 		err = -EFAULT; | 
 | 		if (put_user(ppp_channel_index(&ap->chan), p)) | 
 | 			break; | 
 | 		err = 0; | 
 | 		break; | 
 |  | 
 | 	case PPPIOCGUNIT: | 
 | 		err = -ENXIO; | 
 | 		if (!ap) | 
 | 			break; | 
 | 		err = -EFAULT; | 
 | 		if (put_user(ppp_unit_number(&ap->chan), p)) | 
 | 			break; | 
 | 		err = 0; | 
 | 		break; | 
 |  | 
 | 	case TCFLSH: | 
 | 		/* flush our buffers and the serial port's buffer */ | 
 | 		if (arg == TCIOFLUSH || arg == TCOFLUSH) | 
 | 			ppp_async_flush_output(ap); | 
 | 		err = tty_perform_flush(tty, arg); | 
 | 		break; | 
 |  | 
 | 	case FIONREAD: | 
 | 		val = 0; | 
 | 		if (put_user(val, p)) | 
 | 			break; | 
 | 		err = 0; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		/* Try the various mode ioctls */ | 
 | 		err = tty_mode_ioctl(tty, file, cmd, arg); | 
 | 	} | 
 |  | 
 | 	ap_put(ap); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* No kernel lock - fine */ | 
 | static unsigned int | 
 | ppp_asynctty_poll(struct tty_struct *tty, struct file *file, poll_table *wait) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This can now be called from hard interrupt level as well | 
 |  * as soft interrupt level or mainline. | 
 |  */ | 
 | static void | 
 | ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf, | 
 | 		  char *cflags, int count) | 
 | { | 
 | 	struct asyncppp *ap = ap_get(tty); | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!ap) | 
 | 		return; | 
 | 	spin_lock_irqsave(&ap->recv_lock, flags); | 
 | 	ppp_async_input(ap, buf, cflags, count); | 
 | 	spin_unlock_irqrestore(&ap->recv_lock, flags); | 
 | 	if (!skb_queue_empty(&ap->rqueue)) | 
 | 		tasklet_schedule(&ap->tsk); | 
 | 	ap_put(ap); | 
 | 	tty_unthrottle(tty); | 
 | } | 
 |  | 
 | static void | 
 | ppp_asynctty_wakeup(struct tty_struct *tty) | 
 | { | 
 | 	struct asyncppp *ap = ap_get(tty); | 
 |  | 
 | 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); | 
 | 	if (!ap) | 
 | 		return; | 
 | 	set_bit(XMIT_WAKEUP, &ap->xmit_flags); | 
 | 	tasklet_schedule(&ap->tsk); | 
 | 	ap_put(ap); | 
 | } | 
 |  | 
 |  | 
 | static struct tty_ldisc ppp_ldisc = { | 
 | 	.owner  = THIS_MODULE, | 
 | 	.magic	= TTY_LDISC_MAGIC, | 
 | 	.name	= "ppp", | 
 | 	.open	= ppp_asynctty_open, | 
 | 	.close	= ppp_asynctty_close, | 
 | 	.hangup	= ppp_asynctty_hangup, | 
 | 	.read	= ppp_asynctty_read, | 
 | 	.write	= ppp_asynctty_write, | 
 | 	.ioctl	= ppp_asynctty_ioctl, | 
 | 	.poll	= ppp_asynctty_poll, | 
 | 	.receive_buf = ppp_asynctty_receive, | 
 | 	.write_wakeup = ppp_asynctty_wakeup, | 
 | }; | 
 |  | 
 | static int __init | 
 | ppp_async_init(void) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = tty_register_ldisc(N_PPP, &ppp_ldisc); | 
 | 	if (err != 0) | 
 | 		printk(KERN_ERR "PPP_async: error %d registering line disc.\n", | 
 | 		       err); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * The following routines provide the PPP channel interface. | 
 |  */ | 
 | static int | 
 | ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg) | 
 | { | 
 | 	struct asyncppp *ap = chan->private; | 
 | 	void __user *argp = (void __user *)arg; | 
 | 	int __user *p = argp; | 
 | 	int err, val; | 
 | 	u32 accm[8]; | 
 |  | 
 | 	err = -EFAULT; | 
 | 	switch (cmd) { | 
 | 	case PPPIOCGFLAGS: | 
 | 		val = ap->flags | ap->rbits; | 
 | 		if (put_user(val, p)) | 
 | 			break; | 
 | 		err = 0; | 
 | 		break; | 
 | 	case PPPIOCSFLAGS: | 
 | 		if (get_user(val, p)) | 
 | 			break; | 
 | 		ap->flags = val & ~SC_RCV_BITS; | 
 | 		spin_lock_irq(&ap->recv_lock); | 
 | 		ap->rbits = val & SC_RCV_BITS; | 
 | 		spin_unlock_irq(&ap->recv_lock); | 
 | 		err = 0; | 
 | 		break; | 
 |  | 
 | 	case PPPIOCGASYNCMAP: | 
 | 		if (put_user(ap->xaccm[0], (u32 __user *)argp)) | 
 | 			break; | 
 | 		err = 0; | 
 | 		break; | 
 | 	case PPPIOCSASYNCMAP: | 
 | 		if (get_user(ap->xaccm[0], (u32 __user *)argp)) | 
 | 			break; | 
 | 		err = 0; | 
 | 		break; | 
 |  | 
 | 	case PPPIOCGRASYNCMAP: | 
 | 		if (put_user(ap->raccm, (u32 __user *)argp)) | 
 | 			break; | 
 | 		err = 0; | 
 | 		break; | 
 | 	case PPPIOCSRASYNCMAP: | 
 | 		if (get_user(ap->raccm, (u32 __user *)argp)) | 
 | 			break; | 
 | 		err = 0; | 
 | 		break; | 
 |  | 
 | 	case PPPIOCGXASYNCMAP: | 
 | 		if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm))) | 
 | 			break; | 
 | 		err = 0; | 
 | 		break; | 
 | 	case PPPIOCSXASYNCMAP: | 
 | 		if (copy_from_user(accm, argp, sizeof(accm))) | 
 | 			break; | 
 | 		accm[2] &= ~0x40000000U;	/* can't escape 0x5e */ | 
 | 		accm[3] |= 0x60000000U;		/* must escape 0x7d, 0x7e */ | 
 | 		memcpy(ap->xaccm, accm, sizeof(ap->xaccm)); | 
 | 		err = 0; | 
 | 		break; | 
 |  | 
 | 	case PPPIOCGMRU: | 
 | 		if (put_user(ap->mru, p)) | 
 | 			break; | 
 | 		err = 0; | 
 | 		break; | 
 | 	case PPPIOCSMRU: | 
 | 		if (get_user(val, p)) | 
 | 			break; | 
 | 		if (val < PPP_MRU) | 
 | 			val = PPP_MRU; | 
 | 		ap->mru = val; | 
 | 		err = 0; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		err = -ENOTTY; | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * This is called at softirq level to deliver received packets | 
 |  * to the ppp_generic code, and to tell the ppp_generic code | 
 |  * if we can accept more output now. | 
 |  */ | 
 | static void ppp_async_process(unsigned long arg) | 
 | { | 
 | 	struct asyncppp *ap = (struct asyncppp *) arg; | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	/* process received packets */ | 
 | 	while ((skb = skb_dequeue(&ap->rqueue)) != NULL) { | 
 | 		if (skb->cb[0]) | 
 | 			ppp_input_error(&ap->chan, 0); | 
 | 		ppp_input(&ap->chan, skb); | 
 | 	} | 
 |  | 
 | 	/* try to push more stuff out */ | 
 | 	if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap)) | 
 | 		ppp_output_wakeup(&ap->chan); | 
 | } | 
 |  | 
 | /* | 
 |  * Procedures for encapsulation and framing. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Procedure to encode the data for async serial transmission. | 
 |  * Does octet stuffing (escaping), puts the address/control bytes | 
 |  * on if A/C compression is disabled, and does protocol compression. | 
 |  * Assumes ap->tpkt != 0 on entry. | 
 |  * Returns 1 if we finished the current frame, 0 otherwise. | 
 |  */ | 
 |  | 
 | #define PUT_BYTE(ap, buf, c, islcp)	do {		\ | 
 | 	if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\ | 
 | 		*buf++ = PPP_ESCAPE;			\ | 
 | 		*buf++ = c ^ 0x20;			\ | 
 | 	} else						\ | 
 | 		*buf++ = c;				\ | 
 | } while (0) | 
 |  | 
 | static int | 
 | ppp_async_encode(struct asyncppp *ap) | 
 | { | 
 | 	int fcs, i, count, c, proto; | 
 | 	unsigned char *buf, *buflim; | 
 | 	unsigned char *data; | 
 | 	int islcp; | 
 |  | 
 | 	buf = ap->obuf; | 
 | 	ap->olim = buf; | 
 | 	ap->optr = buf; | 
 | 	i = ap->tpkt_pos; | 
 | 	data = ap->tpkt->data; | 
 | 	count = ap->tpkt->len; | 
 | 	fcs = ap->tfcs; | 
 | 	proto = (data[0] << 8) + data[1]; | 
 |  | 
 | 	/* | 
 | 	 * LCP packets with code values between 1 (configure-reqest) | 
 | 	 * and 7 (code-reject) must be sent as though no options | 
 | 	 * had been negotiated. | 
 | 	 */ | 
 | 	islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7; | 
 |  | 
 | 	if (i == 0) { | 
 | 		if (islcp) | 
 | 			async_lcp_peek(ap, data, count, 0); | 
 |  | 
 | 		/* | 
 | 		 * Start of a new packet - insert the leading FLAG | 
 | 		 * character if necessary. | 
 | 		 */ | 
 | 		if (islcp || flag_time == 0 | 
 | 		    || time_after_eq(jiffies, ap->last_xmit + flag_time)) | 
 | 			*buf++ = PPP_FLAG; | 
 | 		ap->last_xmit = jiffies; | 
 | 		fcs = PPP_INITFCS; | 
 |  | 
 | 		/* | 
 | 		 * Put in the address/control bytes if necessary | 
 | 		 */ | 
 | 		if ((ap->flags & SC_COMP_AC) == 0 || islcp) { | 
 | 			PUT_BYTE(ap, buf, 0xff, islcp); | 
 | 			fcs = PPP_FCS(fcs, 0xff); | 
 | 			PUT_BYTE(ap, buf, 0x03, islcp); | 
 | 			fcs = PPP_FCS(fcs, 0x03); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Once we put in the last byte, we need to put in the FCS | 
 | 	 * and closing flag, so make sure there is at least 7 bytes | 
 | 	 * of free space in the output buffer. | 
 | 	 */ | 
 | 	buflim = ap->obuf + OBUFSIZE - 6; | 
 | 	while (i < count && buf < buflim) { | 
 | 		c = data[i++]; | 
 | 		if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT)) | 
 | 			continue;	/* compress protocol field */ | 
 | 		fcs = PPP_FCS(fcs, c); | 
 | 		PUT_BYTE(ap, buf, c, islcp); | 
 | 	} | 
 |  | 
 | 	if (i < count) { | 
 | 		/* | 
 | 		 * Remember where we are up to in this packet. | 
 | 		 */ | 
 | 		ap->olim = buf; | 
 | 		ap->tpkt_pos = i; | 
 | 		ap->tfcs = fcs; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We have finished the packet.  Add the FCS and flag. | 
 | 	 */ | 
 | 	fcs = ~fcs; | 
 | 	c = fcs & 0xff; | 
 | 	PUT_BYTE(ap, buf, c, islcp); | 
 | 	c = (fcs >> 8) & 0xff; | 
 | 	PUT_BYTE(ap, buf, c, islcp); | 
 | 	*buf++ = PPP_FLAG; | 
 | 	ap->olim = buf; | 
 |  | 
 | 	kfree_skb(ap->tpkt); | 
 | 	ap->tpkt = NULL; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Transmit-side routines. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Send a packet to the peer over an async tty line. | 
 |  * Returns 1 iff the packet was accepted. | 
 |  * If the packet was not accepted, we will call ppp_output_wakeup | 
 |  * at some later time. | 
 |  */ | 
 | static int | 
 | ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb) | 
 | { | 
 | 	struct asyncppp *ap = chan->private; | 
 |  | 
 | 	ppp_async_push(ap); | 
 |  | 
 | 	if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags)) | 
 | 		return 0;	/* already full */ | 
 | 	ap->tpkt = skb; | 
 | 	ap->tpkt_pos = 0; | 
 |  | 
 | 	ppp_async_push(ap); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Push as much data as possible out to the tty. | 
 |  */ | 
 | static int | 
 | ppp_async_push(struct asyncppp *ap) | 
 | { | 
 | 	int avail, sent, done = 0; | 
 | 	struct tty_struct *tty = ap->tty; | 
 | 	int tty_stuffed = 0; | 
 |  | 
 | 	/* | 
 | 	 * We can get called recursively here if the tty write | 
 | 	 * function calls our wakeup function.  This can happen | 
 | 	 * for example on a pty with both the master and slave | 
 | 	 * set to PPP line discipline. | 
 | 	 * We use the XMIT_BUSY bit to detect this and get out, | 
 | 	 * leaving the XMIT_WAKEUP bit set to tell the other | 
 | 	 * instance that it may now be able to write more now. | 
 | 	 */ | 
 | 	if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) | 
 | 		return 0; | 
 | 	spin_lock_bh(&ap->xmit_lock); | 
 | 	for (;;) { | 
 | 		if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags)) | 
 | 			tty_stuffed = 0; | 
 | 		if (!tty_stuffed && ap->optr < ap->olim) { | 
 | 			avail = ap->olim - ap->optr; | 
 | 			set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); | 
 | 			sent = tty->ops->write(tty, ap->optr, avail); | 
 | 			if (sent < 0) | 
 | 				goto flush;	/* error, e.g. loss of CD */ | 
 | 			ap->optr += sent; | 
 | 			if (sent < avail) | 
 | 				tty_stuffed = 1; | 
 | 			continue; | 
 | 		} | 
 | 		if (ap->optr >= ap->olim && ap->tpkt) { | 
 | 			if (ppp_async_encode(ap)) { | 
 | 				/* finished processing ap->tpkt */ | 
 | 				clear_bit(XMIT_FULL, &ap->xmit_flags); | 
 | 				done = 1; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 | 		/* | 
 | 		 * We haven't made any progress this time around. | 
 | 		 * Clear XMIT_BUSY to let other callers in, but | 
 | 		 * after doing so we have to check if anyone set | 
 | 		 * XMIT_WAKEUP since we last checked it.  If they | 
 | 		 * did, we should try again to set XMIT_BUSY and go | 
 | 		 * around again in case XMIT_BUSY was still set when | 
 | 		 * the other caller tried. | 
 | 		 */ | 
 | 		clear_bit(XMIT_BUSY, &ap->xmit_flags); | 
 | 		/* any more work to do? if not, exit the loop */ | 
 | 		if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags) | 
 | 		      || (!tty_stuffed && ap->tpkt))) | 
 | 			break; | 
 | 		/* more work to do, see if we can do it now */ | 
 | 		if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) | 
 | 			break; | 
 | 	} | 
 | 	spin_unlock_bh(&ap->xmit_lock); | 
 | 	return done; | 
 |  | 
 | flush: | 
 | 	clear_bit(XMIT_BUSY, &ap->xmit_flags); | 
 | 	if (ap->tpkt) { | 
 | 		kfree_skb(ap->tpkt); | 
 | 		ap->tpkt = NULL; | 
 | 		clear_bit(XMIT_FULL, &ap->xmit_flags); | 
 | 		done = 1; | 
 | 	} | 
 | 	ap->optr = ap->olim; | 
 | 	spin_unlock_bh(&ap->xmit_lock); | 
 | 	return done; | 
 | } | 
 |  | 
 | /* | 
 |  * Flush output from our internal buffers. | 
 |  * Called for the TCFLSH ioctl. Can be entered in parallel | 
 |  * but this is covered by the xmit_lock. | 
 |  */ | 
 | static void | 
 | ppp_async_flush_output(struct asyncppp *ap) | 
 | { | 
 | 	int done = 0; | 
 |  | 
 | 	spin_lock_bh(&ap->xmit_lock); | 
 | 	ap->optr = ap->olim; | 
 | 	if (ap->tpkt != NULL) { | 
 | 		kfree_skb(ap->tpkt); | 
 | 		ap->tpkt = NULL; | 
 | 		clear_bit(XMIT_FULL, &ap->xmit_flags); | 
 | 		done = 1; | 
 | 	} | 
 | 	spin_unlock_bh(&ap->xmit_lock); | 
 | 	if (done) | 
 | 		ppp_output_wakeup(&ap->chan); | 
 | } | 
 |  | 
 | /* | 
 |  * Receive-side routines. | 
 |  */ | 
 |  | 
 | /* see how many ordinary chars there are at the start of buf */ | 
 | static inline int | 
 | scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count) | 
 | { | 
 | 	int i, c; | 
 |  | 
 | 	for (i = 0; i < count; ++i) { | 
 | 		c = buf[i]; | 
 | 		if (c == PPP_ESCAPE || c == PPP_FLAG | 
 | 		    || (c < 0x20 && (ap->raccm & (1 << c)) != 0)) | 
 | 			break; | 
 | 	} | 
 | 	return i; | 
 | } | 
 |  | 
 | /* called when a flag is seen - do end-of-packet processing */ | 
 | static void | 
 | process_input_packet(struct asyncppp *ap) | 
 | { | 
 | 	struct sk_buff *skb; | 
 | 	unsigned char *p; | 
 | 	unsigned int len, fcs, proto; | 
 |  | 
 | 	skb = ap->rpkt; | 
 | 	if (ap->state & (SC_TOSS | SC_ESCAPE)) | 
 | 		goto err; | 
 |  | 
 | 	if (skb == NULL) | 
 | 		return;		/* 0-length packet */ | 
 |  | 
 | 	/* check the FCS */ | 
 | 	p = skb->data; | 
 | 	len = skb->len; | 
 | 	if (len < 3) | 
 | 		goto err;	/* too short */ | 
 | 	fcs = PPP_INITFCS; | 
 | 	for (; len > 0; --len) | 
 | 		fcs = PPP_FCS(fcs, *p++); | 
 | 	if (fcs != PPP_GOODFCS) | 
 | 		goto err;	/* bad FCS */ | 
 | 	skb_trim(skb, skb->len - 2); | 
 |  | 
 | 	/* check for address/control and protocol compression */ | 
 | 	p = skb->data; | 
 | 	if (p[0] == PPP_ALLSTATIONS) { | 
 | 		/* chop off address/control */ | 
 | 		if (p[1] != PPP_UI || skb->len < 3) | 
 | 			goto err; | 
 | 		p = skb_pull(skb, 2); | 
 | 	} | 
 | 	proto = p[0]; | 
 | 	if (proto & 1) { | 
 | 		/* protocol is compressed */ | 
 | 		skb_push(skb, 1)[0] = 0; | 
 | 	} else { | 
 | 		if (skb->len < 2) | 
 | 			goto err; | 
 | 		proto = (proto << 8) + p[1]; | 
 | 		if (proto == PPP_LCP) | 
 | 			async_lcp_peek(ap, p, skb->len, 1); | 
 | 	} | 
 |  | 
 | 	/* queue the frame to be processed */ | 
 | 	skb->cb[0] = ap->state; | 
 | 	skb_queue_tail(&ap->rqueue, skb); | 
 | 	ap->rpkt = NULL; | 
 | 	ap->state = 0; | 
 | 	return; | 
 |  | 
 |  err: | 
 | 	/* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */ | 
 | 	ap->state = SC_PREV_ERROR; | 
 | 	if (skb) { | 
 | 		/* make skb appear as freshly allocated */ | 
 | 		skb_trim(skb, 0); | 
 | 		skb_reserve(skb, - skb_headroom(skb)); | 
 | 	} | 
 | } | 
 |  | 
 | /* Called when the tty driver has data for us. Runs parallel with the | 
 |    other ldisc functions but will not be re-entered */ | 
 |  | 
 | static void | 
 | ppp_async_input(struct asyncppp *ap, const unsigned char *buf, | 
 | 		char *flags, int count) | 
 | { | 
 | 	struct sk_buff *skb; | 
 | 	int c, i, j, n, s, f; | 
 | 	unsigned char *sp; | 
 |  | 
 | 	/* update bits used for 8-bit cleanness detection */ | 
 | 	if (~ap->rbits & SC_RCV_BITS) { | 
 | 		s = 0; | 
 | 		for (i = 0; i < count; ++i) { | 
 | 			c = buf[i]; | 
 | 			if (flags && flags[i] != 0) | 
 | 				continue; | 
 | 			s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0; | 
 | 			c = ((c >> 4) ^ c) & 0xf; | 
 | 			s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP; | 
 | 		} | 
 | 		ap->rbits |= s; | 
 | 	} | 
 |  | 
 | 	while (count > 0) { | 
 | 		/* scan through and see how many chars we can do in bulk */ | 
 | 		if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE) | 
 | 			n = 1; | 
 | 		else | 
 | 			n = scan_ordinary(ap, buf, count); | 
 |  | 
 | 		f = 0; | 
 | 		if (flags && (ap->state & SC_TOSS) == 0) { | 
 | 			/* check the flags to see if any char had an error */ | 
 | 			for (j = 0; j < n; ++j) | 
 | 				if ((f = flags[j]) != 0) | 
 | 					break; | 
 | 		} | 
 | 		if (f != 0) { | 
 | 			/* start tossing */ | 
 | 			ap->state |= SC_TOSS; | 
 |  | 
 | 		} else if (n > 0 && (ap->state & SC_TOSS) == 0) { | 
 | 			/* stuff the chars in the skb */ | 
 | 			skb = ap->rpkt; | 
 | 			if (!skb) { | 
 | 				skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2); | 
 | 				if (!skb) | 
 | 					goto nomem; | 
 |  				ap->rpkt = skb; | 
 |  			} | 
 |  			if (skb->len == 0) { | 
 |  				/* Try to get the payload 4-byte aligned. | 
 |  				 * This should match the | 
 |  				 * PPP_ALLSTATIONS/PPP_UI/compressed tests in | 
 |  				 * process_input_packet, but we do not have | 
 |  				 * enough chars here to test buf[1] and buf[2]. | 
 |  				 */ | 
 | 				if (buf[0] != PPP_ALLSTATIONS) | 
 | 					skb_reserve(skb, 2 + (buf[0] & 1)); | 
 | 			} | 
 | 			if (n > skb_tailroom(skb)) { | 
 | 				/* packet overflowed MRU */ | 
 | 				ap->state |= SC_TOSS; | 
 | 			} else { | 
 | 				sp = skb_put(skb, n); | 
 | 				memcpy(sp, buf, n); | 
 | 				if (ap->state & SC_ESCAPE) { | 
 | 					sp[0] ^= 0x20; | 
 | 					ap->state &= ~SC_ESCAPE; | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (n >= count) | 
 | 			break; | 
 |  | 
 | 		c = buf[n]; | 
 | 		if (flags != NULL && flags[n] != 0) { | 
 | 			ap->state |= SC_TOSS; | 
 | 		} else if (c == PPP_FLAG) { | 
 | 			process_input_packet(ap); | 
 | 		} else if (c == PPP_ESCAPE) { | 
 | 			ap->state |= SC_ESCAPE; | 
 | 		} else if (I_IXON(ap->tty)) { | 
 | 			if (c == START_CHAR(ap->tty)) | 
 | 				start_tty(ap->tty); | 
 | 			else if (c == STOP_CHAR(ap->tty)) | 
 | 				stop_tty(ap->tty); | 
 | 		} | 
 | 		/* otherwise it's a char in the recv ACCM */ | 
 | 		++n; | 
 |  | 
 | 		buf += n; | 
 | 		if (flags) | 
 | 			flags += n; | 
 | 		count -= n; | 
 | 	} | 
 | 	return; | 
 |  | 
 |  nomem: | 
 | 	printk(KERN_ERR "PPPasync: no memory (input pkt)\n"); | 
 | 	ap->state |= SC_TOSS; | 
 | } | 
 |  | 
 | /* | 
 |  * We look at LCP frames going past so that we can notice | 
 |  * and react to the LCP configure-ack from the peer. | 
 |  * In the situation where the peer has been sent a configure-ack | 
 |  * already, LCP is up once it has sent its configure-ack | 
 |  * so the immediately following packet can be sent with the | 
 |  * configured LCP options.  This allows us to process the following | 
 |  * packet correctly without pppd needing to respond quickly. | 
 |  * | 
 |  * We only respond to the received configure-ack if we have just | 
 |  * sent a configure-request, and the configure-ack contains the | 
 |  * same data (this is checked using a 16-bit crc of the data). | 
 |  */ | 
 | #define CONFREQ		1	/* LCP code field values */ | 
 | #define CONFACK		2 | 
 | #define LCP_MRU		1	/* LCP option numbers */ | 
 | #define LCP_ASYNCMAP	2 | 
 |  | 
 | static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, | 
 | 			   int len, int inbound) | 
 | { | 
 | 	int dlen, fcs, i, code; | 
 | 	u32 val; | 
 |  | 
 | 	data += 2;		/* skip protocol bytes */ | 
 | 	len -= 2; | 
 | 	if (len < 4)		/* 4 = code, ID, length */ | 
 | 		return; | 
 | 	code = data[0]; | 
 | 	if (code != CONFACK && code != CONFREQ) | 
 | 		return; | 
 | 	dlen = (data[2] << 8) + data[3]; | 
 | 	if (len < dlen) | 
 | 		return;		/* packet got truncated or length is bogus */ | 
 |  | 
 | 	if (code == (inbound? CONFACK: CONFREQ)) { | 
 | 		/* | 
 | 		 * sent confreq or received confack: | 
 | 		 * calculate the crc of the data from the ID field on. | 
 | 		 */ | 
 | 		fcs = PPP_INITFCS; | 
 | 		for (i = 1; i < dlen; ++i) | 
 | 			fcs = PPP_FCS(fcs, data[i]); | 
 |  | 
 | 		if (!inbound) { | 
 | 			/* outbound confreq - remember the crc for later */ | 
 | 			ap->lcp_fcs = fcs; | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* received confack, check the crc */ | 
 | 		fcs ^= ap->lcp_fcs; | 
 | 		ap->lcp_fcs = -1; | 
 | 		if (fcs != 0) | 
 | 			return; | 
 | 	} else if (inbound) | 
 | 		return;	/* not interested in received confreq */ | 
 |  | 
 | 	/* process the options in the confack */ | 
 | 	data += 4; | 
 | 	dlen -= 4; | 
 | 	/* data[0] is code, data[1] is length */ | 
 | 	while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) { | 
 | 		switch (data[0]) { | 
 | 		case LCP_MRU: | 
 | 			val = (data[2] << 8) + data[3]; | 
 | 			if (inbound) | 
 | 				ap->mru = val; | 
 | 			else | 
 | 				ap->chan.mtu = val; | 
 | 			break; | 
 | 		case LCP_ASYNCMAP: | 
 | 			val = (data[2] << 24) + (data[3] << 16) | 
 | 				+ (data[4] << 8) + data[5]; | 
 | 			if (inbound) | 
 | 				ap->raccm = val; | 
 | 			else | 
 | 				ap->xaccm[0] = val; | 
 | 			break; | 
 | 		} | 
 | 		dlen -= data[1]; | 
 | 		data += data[1]; | 
 | 	} | 
 | } | 
 |  | 
 | static void __exit ppp_async_cleanup(void) | 
 | { | 
 | 	if (tty_unregister_ldisc(N_PPP) != 0) | 
 | 		printk(KERN_ERR "failed to unregister PPP line discipline\n"); | 
 | } | 
 |  | 
 | module_init(ppp_async_init); | 
 | module_exit(ppp_async_cleanup); |