|  | /****************************************************************************** | 
|  | * | 
|  | * This file is provided under a dual BSD/GPLv2 license.  When using or | 
|  | * redistributing this file, you may do so under either license. | 
|  | * | 
|  | * GPL LICENSE SUMMARY | 
|  | * | 
|  | * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of version 2 of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, | 
|  | * USA | 
|  | * | 
|  | * The full GNU General Public License is included in this distribution | 
|  | * in the file called LICENSE.GPL. | 
|  | * | 
|  | * Contact Information: | 
|  | *  Intel Linux Wireless <ilw@linux.intel.com> | 
|  | * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  | * | 
|  | * BSD LICENSE | 
|  | * | 
|  | * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved. | 
|  | * All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | *  * Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | *  * Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | *  * Neither the name Intel Corporation nor the names of its | 
|  | *    contributors may be used to endorse or promote products derived | 
|  | *    from this software without specific prior written permission. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | *****************************************************************************/ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <net/mac80211.h> | 
|  |  | 
|  | #include "iwl-dev.h" | 
|  | #include "iwl-core.h" | 
|  | #include "iwl-agn-calib.h" | 
|  | #include "iwl-trans.h" | 
|  | #include "iwl-agn.h" | 
|  |  | 
|  | /***************************************************************************** | 
|  | * INIT calibrations framework | 
|  | *****************************************************************************/ | 
|  |  | 
|  | struct statistics_general_data { | 
|  | u32 beacon_silence_rssi_a; | 
|  | u32 beacon_silence_rssi_b; | 
|  | u32 beacon_silence_rssi_c; | 
|  | u32 beacon_energy_a; | 
|  | u32 beacon_energy_b; | 
|  | u32 beacon_energy_c; | 
|  | }; | 
|  |  | 
|  | int iwl_send_calib_results(struct iwl_priv *priv) | 
|  | { | 
|  | int ret = 0; | 
|  | int i = 0; | 
|  |  | 
|  | struct iwl_host_cmd hcmd = { | 
|  | .id = REPLY_PHY_CALIBRATION_CMD, | 
|  | .flags = CMD_SYNC, | 
|  | }; | 
|  |  | 
|  | for (i = 0; i < IWL_CALIB_MAX; i++) { | 
|  | if ((BIT(i) & hw_params(priv).calib_init_cfg) && | 
|  | priv->calib_results[i].buf) { | 
|  | hcmd.len[0] = priv->calib_results[i].buf_len; | 
|  | hcmd.data[0] = priv->calib_results[i].buf; | 
|  | hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY; | 
|  | ret = iwl_trans_send_cmd(trans(priv), &hcmd); | 
|  | if (ret) { | 
|  | IWL_ERR(priv, "Error %d iteration %d\n", | 
|  | ret, i); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int iwl_calib_set(struct iwl_calib_result *res, const u8 *buf, int len) | 
|  | { | 
|  | if (res->buf_len != len) { | 
|  | kfree(res->buf); | 
|  | res->buf = kzalloc(len, GFP_ATOMIC); | 
|  | } | 
|  | if (unlikely(res->buf == NULL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | res->buf_len = len; | 
|  | memcpy(res->buf, buf, len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void iwl_calib_free_results(struct iwl_priv *priv) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < IWL_CALIB_MAX; i++) { | 
|  | kfree(priv->calib_results[i].buf); | 
|  | priv->calib_results[i].buf = NULL; | 
|  | priv->calib_results[i].buf_len = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /***************************************************************************** | 
|  | * RUNTIME calibrations framework | 
|  | *****************************************************************************/ | 
|  |  | 
|  | /* "false alarms" are signals that our DSP tries to lock onto, | 
|  | *   but then determines that they are either noise, or transmissions | 
|  | *   from a distant wireless network (also "noise", really) that get | 
|  | *   "stepped on" by stronger transmissions within our own network. | 
|  | * This algorithm attempts to set a sensitivity level that is high | 
|  | *   enough to receive all of our own network traffic, but not so | 
|  | *   high that our DSP gets too busy trying to lock onto non-network | 
|  | *   activity/noise. */ | 
|  | static int iwl_sens_energy_cck(struct iwl_priv *priv, | 
|  | u32 norm_fa, | 
|  | u32 rx_enable_time, | 
|  | struct statistics_general_data *rx_info) | 
|  | { | 
|  | u32 max_nrg_cck = 0; | 
|  | int i = 0; | 
|  | u8 max_silence_rssi = 0; | 
|  | u32 silence_ref = 0; | 
|  | u8 silence_rssi_a = 0; | 
|  | u8 silence_rssi_b = 0; | 
|  | u8 silence_rssi_c = 0; | 
|  | u32 val; | 
|  |  | 
|  | /* "false_alarms" values below are cross-multiplications to assess the | 
|  | *   numbers of false alarms within the measured period of actual Rx | 
|  | *   (Rx is off when we're txing), vs the min/max expected false alarms | 
|  | *   (some should be expected if rx is sensitive enough) in a | 
|  | *   hypothetical listening period of 200 time units (TU), 204.8 msec: | 
|  | * | 
|  | * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time | 
|  | * | 
|  | * */ | 
|  | u32 false_alarms = norm_fa * 200 * 1024; | 
|  | u32 max_false_alarms = MAX_FA_CCK * rx_enable_time; | 
|  | u32 min_false_alarms = MIN_FA_CCK * rx_enable_time; | 
|  | struct iwl_sensitivity_data *data = NULL; | 
|  | const struct iwl_sensitivity_ranges *ranges = hw_params(priv).sens; | 
|  |  | 
|  | data = &(priv->sensitivity_data); | 
|  |  | 
|  | data->nrg_auto_corr_silence_diff = 0; | 
|  |  | 
|  | /* Find max silence rssi among all 3 receivers. | 
|  | * This is background noise, which may include transmissions from other | 
|  | *    networks, measured during silence before our network's beacon */ | 
|  | silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a & | 
|  | ALL_BAND_FILTER) >> 8); | 
|  | silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b & | 
|  | ALL_BAND_FILTER) >> 8); | 
|  | silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c & | 
|  | ALL_BAND_FILTER) >> 8); | 
|  |  | 
|  | val = max(silence_rssi_b, silence_rssi_c); | 
|  | max_silence_rssi = max(silence_rssi_a, (u8) val); | 
|  |  | 
|  | /* Store silence rssi in 20-beacon history table */ | 
|  | data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi; | 
|  | data->nrg_silence_idx++; | 
|  | if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L) | 
|  | data->nrg_silence_idx = 0; | 
|  |  | 
|  | /* Find max silence rssi across 20 beacon history */ | 
|  | for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) { | 
|  | val = data->nrg_silence_rssi[i]; | 
|  | silence_ref = max(silence_ref, val); | 
|  | } | 
|  | IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n", | 
|  | silence_rssi_a, silence_rssi_b, silence_rssi_c, | 
|  | silence_ref); | 
|  |  | 
|  | /* Find max rx energy (min value!) among all 3 receivers, | 
|  | *   measured during beacon frame. | 
|  | * Save it in 10-beacon history table. */ | 
|  | i = data->nrg_energy_idx; | 
|  | val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c); | 
|  | data->nrg_value[i] = min(rx_info->beacon_energy_a, val); | 
|  |  | 
|  | data->nrg_energy_idx++; | 
|  | if (data->nrg_energy_idx >= 10) | 
|  | data->nrg_energy_idx = 0; | 
|  |  | 
|  | /* Find min rx energy (max value) across 10 beacon history. | 
|  | * This is the minimum signal level that we want to receive well. | 
|  | * Add backoff (margin so we don't miss slightly lower energy frames). | 
|  | * This establishes an upper bound (min value) for energy threshold. */ | 
|  | max_nrg_cck = data->nrg_value[0]; | 
|  | for (i = 1; i < 10; i++) | 
|  | max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i])); | 
|  | max_nrg_cck += 6; | 
|  |  | 
|  | IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n", | 
|  | rx_info->beacon_energy_a, rx_info->beacon_energy_b, | 
|  | rx_info->beacon_energy_c, max_nrg_cck - 6); | 
|  |  | 
|  | /* Count number of consecutive beacons with fewer-than-desired | 
|  | *   false alarms. */ | 
|  | if (false_alarms < min_false_alarms) | 
|  | data->num_in_cck_no_fa++; | 
|  | else | 
|  | data->num_in_cck_no_fa = 0; | 
|  | IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n", | 
|  | data->num_in_cck_no_fa); | 
|  |  | 
|  | /* If we got too many false alarms this time, reduce sensitivity */ | 
|  | if ((false_alarms > max_false_alarms) && | 
|  | (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) { | 
|  | IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n", | 
|  | false_alarms, max_false_alarms); | 
|  | IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n"); | 
|  | data->nrg_curr_state = IWL_FA_TOO_MANY; | 
|  | /* Store for "fewer than desired" on later beacon */ | 
|  | data->nrg_silence_ref = silence_ref; | 
|  |  | 
|  | /* increase energy threshold (reduce nrg value) | 
|  | *   to decrease sensitivity */ | 
|  | data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK; | 
|  | /* Else if we got fewer than desired, increase sensitivity */ | 
|  | } else if (false_alarms < min_false_alarms) { | 
|  | data->nrg_curr_state = IWL_FA_TOO_FEW; | 
|  |  | 
|  | /* Compare silence level with silence level for most recent | 
|  | *   healthy number or too many false alarms */ | 
|  | data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref - | 
|  | (s32)silence_ref; | 
|  |  | 
|  | IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n", | 
|  | false_alarms, min_false_alarms, | 
|  | data->nrg_auto_corr_silence_diff); | 
|  |  | 
|  | /* Increase value to increase sensitivity, but only if: | 
|  | * 1a) previous beacon did *not* have *too many* false alarms | 
|  | * 1b) AND there's a significant difference in Rx levels | 
|  | *      from a previous beacon with too many, or healthy # FAs | 
|  | * OR 2) We've seen a lot of beacons (100) with too few | 
|  | *       false alarms */ | 
|  | if ((data->nrg_prev_state != IWL_FA_TOO_MANY) && | 
|  | ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || | 
|  | (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { | 
|  |  | 
|  | IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n"); | 
|  | /* Increase nrg value to increase sensitivity */ | 
|  | val = data->nrg_th_cck + NRG_STEP_CCK; | 
|  | data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val); | 
|  | } else { | 
|  | IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n"); | 
|  | } | 
|  |  | 
|  | /* Else we got a healthy number of false alarms, keep status quo */ | 
|  | } else { | 
|  | IWL_DEBUG_CALIB(priv, " FA in safe zone\n"); | 
|  | data->nrg_curr_state = IWL_FA_GOOD_RANGE; | 
|  |  | 
|  | /* Store for use in "fewer than desired" with later beacon */ | 
|  | data->nrg_silence_ref = silence_ref; | 
|  |  | 
|  | /* If previous beacon had too many false alarms, | 
|  | *   give it some extra margin by reducing sensitivity again | 
|  | *   (but don't go below measured energy of desired Rx) */ | 
|  | if (IWL_FA_TOO_MANY == data->nrg_prev_state) { | 
|  | IWL_DEBUG_CALIB(priv, "... increasing margin\n"); | 
|  | if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN)) | 
|  | data->nrg_th_cck -= NRG_MARGIN; | 
|  | else | 
|  | data->nrg_th_cck = max_nrg_cck; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Make sure the energy threshold does not go above the measured | 
|  | * energy of the desired Rx signals (reduced by backoff margin), | 
|  | * or else we might start missing Rx frames. | 
|  | * Lower value is higher energy, so we use max()! | 
|  | */ | 
|  | data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck); | 
|  | IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck); | 
|  |  | 
|  | data->nrg_prev_state = data->nrg_curr_state; | 
|  |  | 
|  | /* Auto-correlation CCK algorithm */ | 
|  | if (false_alarms > min_false_alarms) { | 
|  |  | 
|  | /* increase auto_corr values to decrease sensitivity | 
|  | * so the DSP won't be disturbed by the noise | 
|  | */ | 
|  | if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK) | 
|  | data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1; | 
|  | else { | 
|  | val = data->auto_corr_cck + AUTO_CORR_STEP_CCK; | 
|  | data->auto_corr_cck = | 
|  | min((u32)ranges->auto_corr_max_cck, val); | 
|  | } | 
|  | val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK; | 
|  | data->auto_corr_cck_mrc = | 
|  | min((u32)ranges->auto_corr_max_cck_mrc, val); | 
|  | } else if ((false_alarms < min_false_alarms) && | 
|  | ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || | 
|  | (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { | 
|  |  | 
|  | /* Decrease auto_corr values to increase sensitivity */ | 
|  | val = data->auto_corr_cck - AUTO_CORR_STEP_CCK; | 
|  | data->auto_corr_cck = | 
|  | max((u32)ranges->auto_corr_min_cck, val); | 
|  | val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK; | 
|  | data->auto_corr_cck_mrc = | 
|  | max((u32)ranges->auto_corr_min_cck_mrc, val); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv, | 
|  | u32 norm_fa, | 
|  | u32 rx_enable_time) | 
|  | { | 
|  | u32 val; | 
|  | u32 false_alarms = norm_fa * 200 * 1024; | 
|  | u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time; | 
|  | u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time; | 
|  | struct iwl_sensitivity_data *data = NULL; | 
|  | const struct iwl_sensitivity_ranges *ranges = hw_params(priv).sens; | 
|  |  | 
|  | data = &(priv->sensitivity_data); | 
|  |  | 
|  | /* If we got too many false alarms this time, reduce sensitivity */ | 
|  | if (false_alarms > max_false_alarms) { | 
|  |  | 
|  | IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n", | 
|  | false_alarms, max_false_alarms); | 
|  |  | 
|  | val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM; | 
|  | data->auto_corr_ofdm = | 
|  | min((u32)ranges->auto_corr_max_ofdm, val); | 
|  |  | 
|  | val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM; | 
|  | data->auto_corr_ofdm_mrc = | 
|  | min((u32)ranges->auto_corr_max_ofdm_mrc, val); | 
|  |  | 
|  | val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM; | 
|  | data->auto_corr_ofdm_x1 = | 
|  | min((u32)ranges->auto_corr_max_ofdm_x1, val); | 
|  |  | 
|  | val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM; | 
|  | data->auto_corr_ofdm_mrc_x1 = | 
|  | min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val); | 
|  | } | 
|  |  | 
|  | /* Else if we got fewer than desired, increase sensitivity */ | 
|  | else if (false_alarms < min_false_alarms) { | 
|  |  | 
|  | IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n", | 
|  | false_alarms, min_false_alarms); | 
|  |  | 
|  | val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM; | 
|  | data->auto_corr_ofdm = | 
|  | max((u32)ranges->auto_corr_min_ofdm, val); | 
|  |  | 
|  | val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM; | 
|  | data->auto_corr_ofdm_mrc = | 
|  | max((u32)ranges->auto_corr_min_ofdm_mrc, val); | 
|  |  | 
|  | val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM; | 
|  | data->auto_corr_ofdm_x1 = | 
|  | max((u32)ranges->auto_corr_min_ofdm_x1, val); | 
|  |  | 
|  | val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM; | 
|  | data->auto_corr_ofdm_mrc_x1 = | 
|  | max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val); | 
|  | } else { | 
|  | IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n", | 
|  | min_false_alarms, false_alarms, max_false_alarms); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv, | 
|  | struct iwl_sensitivity_data *data, | 
|  | __le16 *tbl) | 
|  | { | 
|  | tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] = | 
|  | cpu_to_le16((u16)data->auto_corr_ofdm); | 
|  | tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] = | 
|  | cpu_to_le16((u16)data->auto_corr_ofdm_mrc); | 
|  | tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] = | 
|  | cpu_to_le16((u16)data->auto_corr_ofdm_x1); | 
|  | tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] = | 
|  | cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1); | 
|  |  | 
|  | tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] = | 
|  | cpu_to_le16((u16)data->auto_corr_cck); | 
|  | tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] = | 
|  | cpu_to_le16((u16)data->auto_corr_cck_mrc); | 
|  |  | 
|  | tbl[HD_MIN_ENERGY_CCK_DET_INDEX] = | 
|  | cpu_to_le16((u16)data->nrg_th_cck); | 
|  | tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] = | 
|  | cpu_to_le16((u16)data->nrg_th_ofdm); | 
|  |  | 
|  | tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] = | 
|  | cpu_to_le16(data->barker_corr_th_min); | 
|  | tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] = | 
|  | cpu_to_le16(data->barker_corr_th_min_mrc); | 
|  | tbl[HD_OFDM_ENERGY_TH_IN_INDEX] = | 
|  | cpu_to_le16(data->nrg_th_cca); | 
|  |  | 
|  | IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n", | 
|  | data->auto_corr_ofdm, data->auto_corr_ofdm_mrc, | 
|  | data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1, | 
|  | data->nrg_th_ofdm); | 
|  |  | 
|  | IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n", | 
|  | data->auto_corr_cck, data->auto_corr_cck_mrc, | 
|  | data->nrg_th_cck); | 
|  | } | 
|  |  | 
|  | /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */ | 
|  | static int iwl_sensitivity_write(struct iwl_priv *priv) | 
|  | { | 
|  | struct iwl_sensitivity_cmd cmd; | 
|  | struct iwl_sensitivity_data *data = NULL; | 
|  | struct iwl_host_cmd cmd_out = { | 
|  | .id = SENSITIVITY_CMD, | 
|  | .len = { sizeof(struct iwl_sensitivity_cmd), }, | 
|  | .flags = CMD_ASYNC, | 
|  | .data = { &cmd, }, | 
|  | }; | 
|  |  | 
|  | data = &(priv->sensitivity_data); | 
|  |  | 
|  | memset(&cmd, 0, sizeof(cmd)); | 
|  |  | 
|  | iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]); | 
|  |  | 
|  | /* Update uCode's "work" table, and copy it to DSP */ | 
|  | cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE; | 
|  |  | 
|  | /* Don't send command to uCode if nothing has changed */ | 
|  | if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]), | 
|  | sizeof(u16)*HD_TABLE_SIZE)) { | 
|  | IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Copy table for comparison next time */ | 
|  | memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]), | 
|  | sizeof(u16)*HD_TABLE_SIZE); | 
|  |  | 
|  | return iwl_trans_send_cmd(trans(priv), &cmd_out); | 
|  | } | 
|  |  | 
|  | /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */ | 
|  | static int iwl_enhance_sensitivity_write(struct iwl_priv *priv) | 
|  | { | 
|  | struct iwl_enhance_sensitivity_cmd cmd; | 
|  | struct iwl_sensitivity_data *data = NULL; | 
|  | struct iwl_host_cmd cmd_out = { | 
|  | .id = SENSITIVITY_CMD, | 
|  | .len = { sizeof(struct iwl_enhance_sensitivity_cmd), }, | 
|  | .flags = CMD_ASYNC, | 
|  | .data = { &cmd, }, | 
|  | }; | 
|  |  | 
|  | data = &(priv->sensitivity_data); | 
|  |  | 
|  | memset(&cmd, 0, sizeof(cmd)); | 
|  |  | 
|  | iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]); | 
|  |  | 
|  | if (priv->cfg->base_params->hd_v2) { | 
|  | cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] = | 
|  | HD_INA_NON_SQUARE_DET_OFDM_DATA_V2; | 
|  | cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] = | 
|  | HD_INA_NON_SQUARE_DET_CCK_DATA_V2; | 
|  | cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] = | 
|  | HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2; | 
|  | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] = | 
|  | HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2; | 
|  | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = | 
|  | HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2; | 
|  | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] = | 
|  | HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2; | 
|  | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] = | 
|  | HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2; | 
|  | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] = | 
|  | HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2; | 
|  | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = | 
|  | HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2; | 
|  | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] = | 
|  | HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2; | 
|  | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] = | 
|  | HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2; | 
|  | } else { | 
|  | cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] = | 
|  | HD_INA_NON_SQUARE_DET_OFDM_DATA_V1; | 
|  | cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] = | 
|  | HD_INA_NON_SQUARE_DET_CCK_DATA_V1; | 
|  | cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] = | 
|  | HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1; | 
|  | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] = | 
|  | HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1; | 
|  | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = | 
|  | HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1; | 
|  | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] = | 
|  | HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1; | 
|  | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] = | 
|  | HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1; | 
|  | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] = | 
|  | HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1; | 
|  | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = | 
|  | HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1; | 
|  | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] = | 
|  | HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1; | 
|  | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] = | 
|  | HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1; | 
|  | } | 
|  |  | 
|  | /* Update uCode's "work" table, and copy it to DSP */ | 
|  | cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE; | 
|  |  | 
|  | /* Don't send command to uCode if nothing has changed */ | 
|  | if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]), | 
|  | sizeof(u16)*HD_TABLE_SIZE) && | 
|  | !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX], | 
|  | &(priv->enhance_sensitivity_tbl[0]), | 
|  | sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) { | 
|  | IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Copy table for comparison next time */ | 
|  | memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]), | 
|  | sizeof(u16)*HD_TABLE_SIZE); | 
|  | memcpy(&(priv->enhance_sensitivity_tbl[0]), | 
|  | &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]), | 
|  | sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES); | 
|  |  | 
|  | return iwl_trans_send_cmd(trans(priv), &cmd_out); | 
|  | } | 
|  |  | 
|  | void iwl_init_sensitivity(struct iwl_priv *priv) | 
|  | { | 
|  | int ret = 0; | 
|  | int i; | 
|  | struct iwl_sensitivity_data *data = NULL; | 
|  | const struct iwl_sensitivity_ranges *ranges = hw_params(priv).sens; | 
|  |  | 
|  | if (priv->disable_sens_cal) | 
|  | return; | 
|  |  | 
|  | IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n"); | 
|  |  | 
|  | /* Clear driver's sensitivity algo data */ | 
|  | data = &(priv->sensitivity_data); | 
|  |  | 
|  | if (ranges == NULL) | 
|  | return; | 
|  |  | 
|  | memset(data, 0, sizeof(struct iwl_sensitivity_data)); | 
|  |  | 
|  | data->num_in_cck_no_fa = 0; | 
|  | data->nrg_curr_state = IWL_FA_TOO_MANY; | 
|  | data->nrg_prev_state = IWL_FA_TOO_MANY; | 
|  | data->nrg_silence_ref = 0; | 
|  | data->nrg_silence_idx = 0; | 
|  | data->nrg_energy_idx = 0; | 
|  |  | 
|  | for (i = 0; i < 10; i++) | 
|  | data->nrg_value[i] = 0; | 
|  |  | 
|  | for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) | 
|  | data->nrg_silence_rssi[i] = 0; | 
|  |  | 
|  | data->auto_corr_ofdm =  ranges->auto_corr_min_ofdm; | 
|  | data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc; | 
|  | data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1; | 
|  | data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1; | 
|  | data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF; | 
|  | data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc; | 
|  | data->nrg_th_cck = ranges->nrg_th_cck; | 
|  | data->nrg_th_ofdm = ranges->nrg_th_ofdm; | 
|  | data->barker_corr_th_min = ranges->barker_corr_th_min; | 
|  | data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc; | 
|  | data->nrg_th_cca = ranges->nrg_th_cca; | 
|  |  | 
|  | data->last_bad_plcp_cnt_ofdm = 0; | 
|  | data->last_fa_cnt_ofdm = 0; | 
|  | data->last_bad_plcp_cnt_cck = 0; | 
|  | data->last_fa_cnt_cck = 0; | 
|  |  | 
|  | if (priv->enhance_sensitivity_table) | 
|  | ret |= iwl_enhance_sensitivity_write(priv); | 
|  | else | 
|  | ret |= iwl_sensitivity_write(priv); | 
|  | IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret); | 
|  | } | 
|  |  | 
|  | void iwl_sensitivity_calibration(struct iwl_priv *priv) | 
|  | { | 
|  | u32 rx_enable_time; | 
|  | u32 fa_cck; | 
|  | u32 fa_ofdm; | 
|  | u32 bad_plcp_cck; | 
|  | u32 bad_plcp_ofdm; | 
|  | u32 norm_fa_ofdm; | 
|  | u32 norm_fa_cck; | 
|  | struct iwl_sensitivity_data *data = NULL; | 
|  | struct statistics_rx_non_phy *rx_info; | 
|  | struct statistics_rx_phy *ofdm, *cck; | 
|  | unsigned long flags; | 
|  | struct statistics_general_data statis; | 
|  |  | 
|  | if (priv->disable_sens_cal) | 
|  | return; | 
|  |  | 
|  | data = &(priv->sensitivity_data); | 
|  |  | 
|  | if (!iwl_is_any_associated(priv)) { | 
|  | IWL_DEBUG_CALIB(priv, "<< - not associated\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&priv->shrd->lock, flags); | 
|  | rx_info = &priv->statistics.rx_non_phy; | 
|  | ofdm = &priv->statistics.rx_ofdm; | 
|  | cck = &priv->statistics.rx_cck; | 
|  | if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { | 
|  | IWL_DEBUG_CALIB(priv, "<< invalid data.\n"); | 
|  | spin_unlock_irqrestore(&priv->shrd->lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Extract Statistics: */ | 
|  | rx_enable_time = le32_to_cpu(rx_info->channel_load); | 
|  | fa_cck = le32_to_cpu(cck->false_alarm_cnt); | 
|  | fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt); | 
|  | bad_plcp_cck = le32_to_cpu(cck->plcp_err); | 
|  | bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err); | 
|  |  | 
|  | statis.beacon_silence_rssi_a = | 
|  | le32_to_cpu(rx_info->beacon_silence_rssi_a); | 
|  | statis.beacon_silence_rssi_b = | 
|  | le32_to_cpu(rx_info->beacon_silence_rssi_b); | 
|  | statis.beacon_silence_rssi_c = | 
|  | le32_to_cpu(rx_info->beacon_silence_rssi_c); | 
|  | statis.beacon_energy_a = | 
|  | le32_to_cpu(rx_info->beacon_energy_a); | 
|  | statis.beacon_energy_b = | 
|  | le32_to_cpu(rx_info->beacon_energy_b); | 
|  | statis.beacon_energy_c = | 
|  | le32_to_cpu(rx_info->beacon_energy_c); | 
|  |  | 
|  | spin_unlock_irqrestore(&priv->shrd->lock, flags); | 
|  |  | 
|  | IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time); | 
|  |  | 
|  | if (!rx_enable_time) { | 
|  | IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* These statistics increase monotonically, and do not reset | 
|  | *   at each beacon.  Calculate difference from last value, or just | 
|  | *   use the new statistics value if it has reset or wrapped around. */ | 
|  | if (data->last_bad_plcp_cnt_cck > bad_plcp_cck) | 
|  | data->last_bad_plcp_cnt_cck = bad_plcp_cck; | 
|  | else { | 
|  | bad_plcp_cck -= data->last_bad_plcp_cnt_cck; | 
|  | data->last_bad_plcp_cnt_cck += bad_plcp_cck; | 
|  | } | 
|  |  | 
|  | if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm) | 
|  | data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm; | 
|  | else { | 
|  | bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm; | 
|  | data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm; | 
|  | } | 
|  |  | 
|  | if (data->last_fa_cnt_ofdm > fa_ofdm) | 
|  | data->last_fa_cnt_ofdm = fa_ofdm; | 
|  | else { | 
|  | fa_ofdm -= data->last_fa_cnt_ofdm; | 
|  | data->last_fa_cnt_ofdm += fa_ofdm; | 
|  | } | 
|  |  | 
|  | if (data->last_fa_cnt_cck > fa_cck) | 
|  | data->last_fa_cnt_cck = fa_cck; | 
|  | else { | 
|  | fa_cck -= data->last_fa_cnt_cck; | 
|  | data->last_fa_cnt_cck += fa_cck; | 
|  | } | 
|  |  | 
|  | /* Total aborted signal locks */ | 
|  | norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm; | 
|  | norm_fa_cck = fa_cck + bad_plcp_cck; | 
|  |  | 
|  | IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck, | 
|  | bad_plcp_cck, fa_ofdm, bad_plcp_ofdm); | 
|  |  | 
|  | iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time); | 
|  | iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis); | 
|  | if (priv->enhance_sensitivity_table) | 
|  | iwl_enhance_sensitivity_write(priv); | 
|  | else | 
|  | iwl_sensitivity_write(priv); | 
|  | } | 
|  |  | 
|  | static inline u8 find_first_chain(u8 mask) | 
|  | { | 
|  | if (mask & ANT_A) | 
|  | return CHAIN_A; | 
|  | if (mask & ANT_B) | 
|  | return CHAIN_B; | 
|  | return CHAIN_C; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Run disconnected antenna algorithm to find out which antennas are | 
|  | * disconnected. | 
|  | */ | 
|  | static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig, | 
|  | struct iwl_chain_noise_data *data) | 
|  | { | 
|  | u32 active_chains = 0; | 
|  | u32 max_average_sig; | 
|  | u16 max_average_sig_antenna_i; | 
|  | u8 num_tx_chains; | 
|  | u8 first_chain; | 
|  | u16 i = 0; | 
|  |  | 
|  | average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS; | 
|  | average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS; | 
|  | average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS; | 
|  |  | 
|  | if (average_sig[0] >= average_sig[1]) { | 
|  | max_average_sig = average_sig[0]; | 
|  | max_average_sig_antenna_i = 0; | 
|  | active_chains = (1 << max_average_sig_antenna_i); | 
|  | } else { | 
|  | max_average_sig = average_sig[1]; | 
|  | max_average_sig_antenna_i = 1; | 
|  | active_chains = (1 << max_average_sig_antenna_i); | 
|  | } | 
|  |  | 
|  | if (average_sig[2] >= max_average_sig) { | 
|  | max_average_sig = average_sig[2]; | 
|  | max_average_sig_antenna_i = 2; | 
|  | active_chains = (1 << max_average_sig_antenna_i); | 
|  | } | 
|  |  | 
|  | IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n", | 
|  | average_sig[0], average_sig[1], average_sig[2]); | 
|  | IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n", | 
|  | max_average_sig, max_average_sig_antenna_i); | 
|  |  | 
|  | /* Compare signal strengths for all 3 receivers. */ | 
|  | for (i = 0; i < NUM_RX_CHAINS; i++) { | 
|  | if (i != max_average_sig_antenna_i) { | 
|  | s32 rssi_delta = (max_average_sig - average_sig[i]); | 
|  |  | 
|  | /* If signal is very weak, compared with | 
|  | * strongest, mark it as disconnected. */ | 
|  | if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS) | 
|  | data->disconn_array[i] = 1; | 
|  | else | 
|  | active_chains |= (1 << i); | 
|  | IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  " | 
|  | "disconn_array[i] = %d\n", | 
|  | i, rssi_delta, data->disconn_array[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The above algorithm sometimes fails when the ucode | 
|  | * reports 0 for all chains. It's not clear why that | 
|  | * happens to start with, but it is then causing trouble | 
|  | * because this can make us enable more chains than the | 
|  | * hardware really has. | 
|  | * | 
|  | * To be safe, simply mask out any chains that we know | 
|  | * are not on the device. | 
|  | */ | 
|  | active_chains &= hw_params(priv).valid_rx_ant; | 
|  |  | 
|  | num_tx_chains = 0; | 
|  | for (i = 0; i < NUM_RX_CHAINS; i++) { | 
|  | /* loops on all the bits of | 
|  | * priv->hw_setting.valid_tx_ant */ | 
|  | u8 ant_msk = (1 << i); | 
|  | if (!(hw_params(priv).valid_tx_ant & ant_msk)) | 
|  | continue; | 
|  |  | 
|  | num_tx_chains++; | 
|  | if (data->disconn_array[i] == 0) | 
|  | /* there is a Tx antenna connected */ | 
|  | break; | 
|  | if (num_tx_chains == hw_params(priv).tx_chains_num && | 
|  | data->disconn_array[i]) { | 
|  | /* | 
|  | * If all chains are disconnected | 
|  | * connect the first valid tx chain | 
|  | */ | 
|  | first_chain = | 
|  | find_first_chain(priv->cfg->valid_tx_ant); | 
|  | data->disconn_array[first_chain] = 0; | 
|  | active_chains |= BIT(first_chain); | 
|  | IWL_DEBUG_CALIB(priv, | 
|  | "All Tx chains are disconnected W/A - declare %d as connected\n", | 
|  | first_chain); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (active_chains != hw_params(priv).valid_rx_ant && | 
|  | active_chains != priv->chain_noise_data.active_chains) | 
|  | IWL_DEBUG_CALIB(priv, | 
|  | "Detected that not all antennas are connected! " | 
|  | "Connected: %#x, valid: %#x.\n", | 
|  | active_chains, | 
|  | hw_params(priv).valid_rx_ant); | 
|  |  | 
|  | /* Save for use within RXON, TX, SCAN commands, etc. */ | 
|  | data->active_chains = active_chains; | 
|  | IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n", | 
|  | active_chains); | 
|  | } | 
|  |  | 
|  | static void iwlagn_gain_computation(struct iwl_priv *priv, | 
|  | u32 average_noise[NUM_RX_CHAINS], | 
|  | u16 min_average_noise_antenna_i, | 
|  | u32 min_average_noise, | 
|  | u8 default_chain) | 
|  | { | 
|  | int i; | 
|  | s32 delta_g; | 
|  | struct iwl_chain_noise_data *data = &priv->chain_noise_data; | 
|  |  | 
|  | /* | 
|  | * Find Gain Code for the chains based on "default chain" | 
|  | */ | 
|  | for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) { | 
|  | if ((data->disconn_array[i])) { | 
|  | data->delta_gain_code[i] = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | delta_g = (priv->cfg->base_params->chain_noise_scale * | 
|  | ((s32)average_noise[default_chain] - | 
|  | (s32)average_noise[i])) / 1500; | 
|  |  | 
|  | /* bound gain by 2 bits value max, 3rd bit is sign */ | 
|  | data->delta_gain_code[i] = | 
|  | min(abs(delta_g), | 
|  | (long) CHAIN_NOISE_MAX_DELTA_GAIN_CODE); | 
|  |  | 
|  | if (delta_g < 0) | 
|  | /* | 
|  | * set negative sign ... | 
|  | * note to Intel developers:  This is uCode API format, | 
|  | *   not the format of any internal device registers. | 
|  | *   Do not change this format for e.g. 6050 or similar | 
|  | *   devices.  Change format only if more resolution | 
|  | *   (i.e. more than 2 bits magnitude) is needed. | 
|  | */ | 
|  | data->delta_gain_code[i] |= (1 << 2); | 
|  | } | 
|  |  | 
|  | IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d  ANT_C = %d\n", | 
|  | data->delta_gain_code[1], data->delta_gain_code[2]); | 
|  |  | 
|  | if (!data->radio_write) { | 
|  | struct iwl_calib_chain_noise_gain_cmd cmd; | 
|  |  | 
|  | memset(&cmd, 0, sizeof(cmd)); | 
|  |  | 
|  | iwl_set_calib_hdr(&cmd.hdr, | 
|  | priv->phy_calib_chain_noise_gain_cmd); | 
|  | cmd.delta_gain_1 = data->delta_gain_code[1]; | 
|  | cmd.delta_gain_2 = data->delta_gain_code[2]; | 
|  | iwl_trans_send_cmd_pdu(trans(priv), REPLY_PHY_CALIBRATION_CMD, | 
|  | CMD_ASYNC, sizeof(cmd), &cmd); | 
|  |  | 
|  | data->radio_write = 1; | 
|  | data->state = IWL_CHAIN_NOISE_CALIBRATED; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Accumulate 16 beacons of signal and noise statistics for each of | 
|  | *   3 receivers/antennas/rx-chains, then figure out: | 
|  | * 1)  Which antennas are connected. | 
|  | * 2)  Differential rx gain settings to balance the 3 receivers. | 
|  | */ | 
|  | void iwl_chain_noise_calibration(struct iwl_priv *priv) | 
|  | { | 
|  | struct iwl_chain_noise_data *data = NULL; | 
|  |  | 
|  | u32 chain_noise_a; | 
|  | u32 chain_noise_b; | 
|  | u32 chain_noise_c; | 
|  | u32 chain_sig_a; | 
|  | u32 chain_sig_b; | 
|  | u32 chain_sig_c; | 
|  | u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; | 
|  | u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; | 
|  | u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE; | 
|  | u16 min_average_noise_antenna_i = INITIALIZATION_VALUE; | 
|  | u16 i = 0; | 
|  | u16 rxon_chnum = INITIALIZATION_VALUE; | 
|  | u16 stat_chnum = INITIALIZATION_VALUE; | 
|  | u8 rxon_band24; | 
|  | u8 stat_band24; | 
|  | unsigned long flags; | 
|  | struct statistics_rx_non_phy *rx_info; | 
|  |  | 
|  | /* | 
|  | * MULTI-FIXME: | 
|  | * When we support multiple interfaces on different channels, | 
|  | * this must be modified/fixed. | 
|  | */ | 
|  | struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS]; | 
|  |  | 
|  | if (priv->disable_chain_noise_cal) | 
|  | return; | 
|  |  | 
|  | data = &(priv->chain_noise_data); | 
|  |  | 
|  | /* | 
|  | * Accumulate just the first "chain_noise_num_beacons" after | 
|  | * the first association, then we're done forever. | 
|  | */ | 
|  | if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) { | 
|  | if (data->state == IWL_CHAIN_NOISE_ALIVE) | 
|  | IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&priv->shrd->lock, flags); | 
|  |  | 
|  | rx_info = &priv->statistics.rx_non_phy; | 
|  |  | 
|  | if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { | 
|  | IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n"); | 
|  | spin_unlock_irqrestore(&priv->shrd->lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK); | 
|  | rxon_chnum = le16_to_cpu(ctx->staging.channel); | 
|  | stat_band24 = | 
|  | !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK); | 
|  | stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16; | 
|  |  | 
|  | /* Make sure we accumulate data for just the associated channel | 
|  | *   (even if scanning). */ | 
|  | if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) { | 
|  | IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n", | 
|  | rxon_chnum, rxon_band24); | 
|  | spin_unlock_irqrestore(&priv->shrd->lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  Accumulate beacon statistics values across | 
|  | * "chain_noise_num_beacons" | 
|  | */ | 
|  | chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) & | 
|  | IN_BAND_FILTER; | 
|  | chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) & | 
|  | IN_BAND_FILTER; | 
|  | chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) & | 
|  | IN_BAND_FILTER; | 
|  |  | 
|  | chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER; | 
|  | chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER; | 
|  | chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER; | 
|  |  | 
|  | spin_unlock_irqrestore(&priv->shrd->lock, flags); | 
|  |  | 
|  | data->beacon_count++; | 
|  |  | 
|  | data->chain_noise_a = (chain_noise_a + data->chain_noise_a); | 
|  | data->chain_noise_b = (chain_noise_b + data->chain_noise_b); | 
|  | data->chain_noise_c = (chain_noise_c + data->chain_noise_c); | 
|  |  | 
|  | data->chain_signal_a = (chain_sig_a + data->chain_signal_a); | 
|  | data->chain_signal_b = (chain_sig_b + data->chain_signal_b); | 
|  | data->chain_signal_c = (chain_sig_c + data->chain_signal_c); | 
|  |  | 
|  | IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n", | 
|  | rxon_chnum, rxon_band24, data->beacon_count); | 
|  | IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n", | 
|  | chain_sig_a, chain_sig_b, chain_sig_c); | 
|  | IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n", | 
|  | chain_noise_a, chain_noise_b, chain_noise_c); | 
|  |  | 
|  | /* If this is the "chain_noise_num_beacons", determine: | 
|  | * 1)  Disconnected antennas (using signal strengths) | 
|  | * 2)  Differential gain (using silence noise) to balance receivers */ | 
|  | if (data->beacon_count != IWL_CAL_NUM_BEACONS) | 
|  | return; | 
|  |  | 
|  | /* Analyze signal for disconnected antenna */ | 
|  | if (priv->cfg->bt_params && | 
|  | priv->cfg->bt_params->advanced_bt_coexist) { | 
|  | /* Disable disconnected antenna algorithm for advanced | 
|  | bt coex, assuming valid antennas are connected */ | 
|  | data->active_chains = hw_params(priv).valid_rx_ant; | 
|  | for (i = 0; i < NUM_RX_CHAINS; i++) | 
|  | if (!(data->active_chains & (1<<i))) | 
|  | data->disconn_array[i] = 1; | 
|  | } else | 
|  | iwl_find_disconn_antenna(priv, average_sig, data); | 
|  |  | 
|  | /* Analyze noise for rx balance */ | 
|  | average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS; | 
|  | average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS; | 
|  | average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS; | 
|  |  | 
|  | for (i = 0; i < NUM_RX_CHAINS; i++) { | 
|  | if (!(data->disconn_array[i]) && | 
|  | (average_noise[i] <= min_average_noise)) { | 
|  | /* This means that chain i is active and has | 
|  | * lower noise values so far: */ | 
|  | min_average_noise = average_noise[i]; | 
|  | min_average_noise_antenna_i = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n", | 
|  | average_noise[0], average_noise[1], | 
|  | average_noise[2]); | 
|  |  | 
|  | IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n", | 
|  | min_average_noise, min_average_noise_antenna_i); | 
|  |  | 
|  | iwlagn_gain_computation(priv, average_noise, | 
|  | min_average_noise_antenna_i, min_average_noise, | 
|  | find_first_chain(priv->cfg->valid_rx_ant)); | 
|  |  | 
|  | /* Some power changes may have been made during the calibration. | 
|  | * Update and commit the RXON | 
|  | */ | 
|  | iwl_update_chain_flags(priv); | 
|  |  | 
|  | data->state = IWL_CHAIN_NOISE_DONE; | 
|  | iwl_power_update_mode(priv, false); | 
|  | } | 
|  |  | 
|  | void iwl_reset_run_time_calib(struct iwl_priv *priv) | 
|  | { | 
|  | int i; | 
|  | memset(&(priv->sensitivity_data), 0, | 
|  | sizeof(struct iwl_sensitivity_data)); | 
|  | memset(&(priv->chain_noise_data), 0, | 
|  | sizeof(struct iwl_chain_noise_data)); | 
|  | for (i = 0; i < NUM_RX_CHAINS; i++) | 
|  | priv->chain_noise_data.delta_gain_code[i] = | 
|  | CHAIN_NOISE_DELTA_GAIN_INIT_VAL; | 
|  |  | 
|  | /* Ask for statistics now, the uCode will send notification | 
|  | * periodically after association */ | 
|  | iwl_send_statistics_request(priv, CMD_ASYNC, true); | 
|  | } |