|  | /* | 
|  | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it would be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write the Free Software Foundation, | 
|  | * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_types.h" | 
|  | #include "xfs_acl.h" | 
|  | #include "xfs_bit.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_inum.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_sb.h" | 
|  | #include "xfs_ag.h" | 
|  | #include "xfs_dir2.h" | 
|  | #include "xfs_dmapi.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_bmap_btree.h" | 
|  | #include "xfs_alloc_btree.h" | 
|  | #include "xfs_ialloc_btree.h" | 
|  | #include "xfs_dir2_sf.h" | 
|  | #include "xfs_attr_sf.h" | 
|  | #include "xfs_dinode.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_btree.h" | 
|  | #include "xfs_ialloc.h" | 
|  | #include "xfs_quota.h" | 
|  | #include "xfs_utils.h" | 
|  | #include "xfs_trans_priv.h" | 
|  | #include "xfs_inode_item.h" | 
|  | #include "xfs_bmap.h" | 
|  | #include "xfs_btree_trace.h" | 
|  | #include "xfs_trace.h" | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Allocate and initialise an xfs_inode. | 
|  | */ | 
|  | STATIC struct xfs_inode * | 
|  | xfs_inode_alloc( | 
|  | struct xfs_mount	*mp, | 
|  | xfs_ino_t		ino) | 
|  | { | 
|  | struct xfs_inode	*ip; | 
|  |  | 
|  | /* | 
|  | * if this didn't occur in transactions, we could use | 
|  | * KM_MAYFAIL and return NULL here on ENOMEM. Set the | 
|  | * code up to do this anyway. | 
|  | */ | 
|  | ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); | 
|  | if (!ip) | 
|  | return NULL; | 
|  | if (inode_init_always(mp->m_super, VFS_I(ip))) { | 
|  | kmem_zone_free(xfs_inode_zone, ip); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ASSERT(atomic_read(&ip->i_iocount) == 0); | 
|  | ASSERT(atomic_read(&ip->i_pincount) == 0); | 
|  | ASSERT(!spin_is_locked(&ip->i_flags_lock)); | 
|  | ASSERT(completion_done(&ip->i_flush)); | 
|  | ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock)); | 
|  |  | 
|  | mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); | 
|  |  | 
|  | /* initialise the xfs inode */ | 
|  | ip->i_ino = ino; | 
|  | ip->i_mount = mp; | 
|  | memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); | 
|  | ip->i_afp = NULL; | 
|  | memset(&ip->i_df, 0, sizeof(xfs_ifork_t)); | 
|  | ip->i_flags = 0; | 
|  | ip->i_update_core = 0; | 
|  | ip->i_delayed_blks = 0; | 
|  | memset(&ip->i_d, 0, sizeof(xfs_icdinode_t)); | 
|  | ip->i_size = 0; | 
|  | ip->i_new_size = 0; | 
|  |  | 
|  | /* prevent anyone from using this yet */ | 
|  | VFS_I(ip)->i_state = I_NEW|I_LOCK; | 
|  |  | 
|  | return ip; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_inode_free( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | switch (ip->i_d.di_mode & S_IFMT) { | 
|  | case S_IFREG: | 
|  | case S_IFDIR: | 
|  | case S_IFLNK: | 
|  | xfs_idestroy_fork(ip, XFS_DATA_FORK); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ip->i_afp) | 
|  | xfs_idestroy_fork(ip, XFS_ATTR_FORK); | 
|  |  | 
|  | if (ip->i_itemp) { | 
|  | /* | 
|  | * Only if we are shutting down the fs will we see an | 
|  | * inode still in the AIL. If it is there, we should remove | 
|  | * it to prevent a use-after-free from occurring. | 
|  | */ | 
|  | xfs_log_item_t	*lip = &ip->i_itemp->ili_item; | 
|  | struct xfs_ail	*ailp = lip->li_ailp; | 
|  |  | 
|  | ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) || | 
|  | XFS_FORCED_SHUTDOWN(ip->i_mount)); | 
|  | if (lip->li_flags & XFS_LI_IN_AIL) { | 
|  | spin_lock(&ailp->xa_lock); | 
|  | if (lip->li_flags & XFS_LI_IN_AIL) | 
|  | xfs_trans_ail_delete(ailp, lip); | 
|  | else | 
|  | spin_unlock(&ailp->xa_lock); | 
|  | } | 
|  | xfs_inode_item_destroy(ip); | 
|  | ip->i_itemp = NULL; | 
|  | } | 
|  |  | 
|  | /* asserts to verify all state is correct here */ | 
|  | ASSERT(atomic_read(&ip->i_iocount) == 0); | 
|  | ASSERT(atomic_read(&ip->i_pincount) == 0); | 
|  | ASSERT(!spin_is_locked(&ip->i_flags_lock)); | 
|  | ASSERT(completion_done(&ip->i_flush)); | 
|  |  | 
|  | kmem_zone_free(xfs_inode_zone, ip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check the validity of the inode we just found it the cache | 
|  | */ | 
|  | static int | 
|  | xfs_iget_cache_hit( | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_inode	*ip, | 
|  | int			flags, | 
|  | int			lock_flags) __releases(pag->pag_ici_lock) | 
|  | { | 
|  | struct inode		*inode = VFS_I(ip); | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | int			error; | 
|  |  | 
|  | spin_lock(&ip->i_flags_lock); | 
|  |  | 
|  | /* | 
|  | * If we are racing with another cache hit that is currently | 
|  | * instantiating this inode or currently recycling it out of | 
|  | * reclaimabe state, wait for the initialisation to complete | 
|  | * before continuing. | 
|  | * | 
|  | * XXX(hch): eventually we should do something equivalent to | 
|  | *	     wait_on_inode to wait for these flags to be cleared | 
|  | *	     instead of polling for it. | 
|  | */ | 
|  | if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { | 
|  | trace_xfs_iget_skip(ip); | 
|  | XFS_STATS_INC(xs_ig_frecycle); | 
|  | error = EAGAIN; | 
|  | goto out_error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If lookup is racing with unlink return an error immediately. | 
|  | */ | 
|  | if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) { | 
|  | error = ENOENT; | 
|  | goto out_error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If IRECLAIMABLE is set, we've torn down the VFS inode already. | 
|  | * Need to carefully get it back into useable state. | 
|  | */ | 
|  | if (ip->i_flags & XFS_IRECLAIMABLE) { | 
|  | trace_xfs_iget_reclaim(ip); | 
|  |  | 
|  | /* | 
|  | * We need to set XFS_INEW atomically with clearing the | 
|  | * reclaimable tag so that we do have an indicator of the | 
|  | * inode still being initialized. | 
|  | */ | 
|  | ip->i_flags |= XFS_INEW; | 
|  | ip->i_flags &= ~XFS_IRECLAIMABLE; | 
|  | __xfs_inode_clear_reclaim_tag(mp, pag, ip); | 
|  |  | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | read_unlock(&pag->pag_ici_lock); | 
|  |  | 
|  | error = -inode_init_always(mp->m_super, inode); | 
|  | if (error) { | 
|  | /* | 
|  | * Re-initializing the inode failed, and we are in deep | 
|  | * trouble.  Try to re-add it to the reclaim list. | 
|  | */ | 
|  | read_lock(&pag->pag_ici_lock); | 
|  | spin_lock(&ip->i_flags_lock); | 
|  |  | 
|  | ip->i_flags &= ~XFS_INEW; | 
|  | ip->i_flags |= XFS_IRECLAIMABLE; | 
|  | __xfs_inode_set_reclaim_tag(pag, ip); | 
|  | trace_xfs_iget_reclaim(ip); | 
|  | goto out_error; | 
|  | } | 
|  | inode->i_state = I_LOCK|I_NEW; | 
|  | } else { | 
|  | /* If the VFS inode is being torn down, pause and try again. */ | 
|  | if (!igrab(inode)) { | 
|  | error = EAGAIN; | 
|  | goto out_error; | 
|  | } | 
|  |  | 
|  | /* We've got a live one. */ | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | read_unlock(&pag->pag_ici_lock); | 
|  | } | 
|  |  | 
|  | if (lock_flags != 0) | 
|  | xfs_ilock(ip, lock_flags); | 
|  |  | 
|  | xfs_iflags_clear(ip, XFS_ISTALE); | 
|  | XFS_STATS_INC(xs_ig_found); | 
|  |  | 
|  | trace_xfs_iget_found(ip); | 
|  | return 0; | 
|  |  | 
|  | out_error: | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | read_unlock(&pag->pag_ici_lock); | 
|  | return error; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | xfs_iget_cache_miss( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_perag	*pag, | 
|  | xfs_trans_t		*tp, | 
|  | xfs_ino_t		ino, | 
|  | struct xfs_inode	**ipp, | 
|  | xfs_daddr_t		bno, | 
|  | int			flags, | 
|  | int			lock_flags) | 
|  | { | 
|  | struct xfs_inode	*ip; | 
|  | int			error; | 
|  | unsigned long		first_index, mask; | 
|  | xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino); | 
|  |  | 
|  | ip = xfs_inode_alloc(mp, ino); | 
|  | if (!ip) | 
|  | return ENOMEM; | 
|  |  | 
|  | error = xfs_iread(mp, tp, ip, bno, flags); | 
|  | if (error) | 
|  | goto out_destroy; | 
|  |  | 
|  | xfs_itrace_entry(ip); | 
|  |  | 
|  | if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) { | 
|  | error = ENOENT; | 
|  | goto out_destroy; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Preload the radix tree so we can insert safely under the | 
|  | * write spinlock. Note that we cannot sleep inside the preload | 
|  | * region. | 
|  | */ | 
|  | if (radix_tree_preload(GFP_KERNEL)) { | 
|  | error = EAGAIN; | 
|  | goto out_destroy; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because the inode hasn't been added to the radix-tree yet it can't | 
|  | * be found by another thread, so we can do the non-sleeping lock here. | 
|  | */ | 
|  | if (lock_flags) { | 
|  | if (!xfs_ilock_nowait(ip, lock_flags)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1); | 
|  | first_index = agino & mask; | 
|  | write_lock(&pag->pag_ici_lock); | 
|  |  | 
|  | /* insert the new inode */ | 
|  | error = radix_tree_insert(&pag->pag_ici_root, agino, ip); | 
|  | if (unlikely(error)) { | 
|  | WARN_ON(error != -EEXIST); | 
|  | XFS_STATS_INC(xs_ig_dup); | 
|  | error = EAGAIN; | 
|  | goto out_preload_end; | 
|  | } | 
|  |  | 
|  | /* These values _must_ be set before releasing the radix tree lock! */ | 
|  | ip->i_udquot = ip->i_gdquot = NULL; | 
|  | xfs_iflags_set(ip, XFS_INEW); | 
|  |  | 
|  | write_unlock(&pag->pag_ici_lock); | 
|  | radix_tree_preload_end(); | 
|  |  | 
|  | trace_xfs_iget_alloc(ip); | 
|  | *ipp = ip; | 
|  | return 0; | 
|  |  | 
|  | out_preload_end: | 
|  | write_unlock(&pag->pag_ici_lock); | 
|  | radix_tree_preload_end(); | 
|  | if (lock_flags) | 
|  | xfs_iunlock(ip, lock_flags); | 
|  | out_destroy: | 
|  | __destroy_inode(VFS_I(ip)); | 
|  | xfs_inode_free(ip); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look up an inode by number in the given file system. | 
|  | * The inode is looked up in the cache held in each AG. | 
|  | * If the inode is found in the cache, initialise the vfs inode | 
|  | * if necessary. | 
|  | * | 
|  | * If it is not in core, read it in from the file system's device, | 
|  | * add it to the cache and initialise the vfs inode. | 
|  | * | 
|  | * The inode is locked according to the value of the lock_flags parameter. | 
|  | * This flag parameter indicates how and if the inode's IO lock and inode lock | 
|  | * should be taken. | 
|  | * | 
|  | * mp -- the mount point structure for the current file system.  It points | 
|  | *       to the inode hash table. | 
|  | * tp -- a pointer to the current transaction if there is one.  This is | 
|  | *       simply passed through to the xfs_iread() call. | 
|  | * ino -- the number of the inode desired.  This is the unique identifier | 
|  | *        within the file system for the inode being requested. | 
|  | * lock_flags -- flags indicating how to lock the inode.  See the comment | 
|  | *		 for xfs_ilock() for a list of valid values. | 
|  | * bno -- the block number starting the buffer containing the inode, | 
|  | *	  if known (as by bulkstat), else 0. | 
|  | */ | 
|  | int | 
|  | xfs_iget( | 
|  | xfs_mount_t	*mp, | 
|  | xfs_trans_t	*tp, | 
|  | xfs_ino_t	ino, | 
|  | uint		flags, | 
|  | uint		lock_flags, | 
|  | xfs_inode_t	**ipp, | 
|  | xfs_daddr_t	bno) | 
|  | { | 
|  | xfs_inode_t	*ip; | 
|  | int		error; | 
|  | xfs_perag_t	*pag; | 
|  | xfs_agino_t	agino; | 
|  |  | 
|  | /* the radix tree exists only in inode capable AGs */ | 
|  | if (XFS_INO_TO_AGNO(mp, ino) >= mp->m_maxagi) | 
|  | return EINVAL; | 
|  |  | 
|  | /* get the perag structure and ensure that it's inode capable */ | 
|  | pag = xfs_get_perag(mp, ino); | 
|  | if (!pag->pagi_inodeok) | 
|  | return EINVAL; | 
|  | ASSERT(pag->pag_ici_init); | 
|  | agino = XFS_INO_TO_AGINO(mp, ino); | 
|  |  | 
|  | again: | 
|  | error = 0; | 
|  | read_lock(&pag->pag_ici_lock); | 
|  | ip = radix_tree_lookup(&pag->pag_ici_root, agino); | 
|  |  | 
|  | if (ip) { | 
|  | error = xfs_iget_cache_hit(pag, ip, flags, lock_flags); | 
|  | if (error) | 
|  | goto out_error_or_again; | 
|  | } else { | 
|  | read_unlock(&pag->pag_ici_lock); | 
|  | XFS_STATS_INC(xs_ig_missed); | 
|  |  | 
|  | error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, bno, | 
|  | flags, lock_flags); | 
|  | if (error) | 
|  | goto out_error_or_again; | 
|  | } | 
|  | xfs_put_perag(mp, pag); | 
|  |  | 
|  | *ipp = ip; | 
|  |  | 
|  | ASSERT(ip->i_df.if_ext_max == | 
|  | XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t)); | 
|  | /* | 
|  | * If we have a real type for an on-disk inode, we can set ops(&unlock) | 
|  | * now.	 If it's a new inode being created, xfs_ialloc will handle it. | 
|  | */ | 
|  | if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0) | 
|  | xfs_setup_inode(ip); | 
|  | return 0; | 
|  |  | 
|  | out_error_or_again: | 
|  | if (error == EAGAIN) { | 
|  | delay(1); | 
|  | goto again; | 
|  | } | 
|  | xfs_put_perag(mp, pag); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decrement reference count of an inode structure and unlock it. | 
|  | * | 
|  | * ip -- the inode being released | 
|  | * lock_flags -- this parameter indicates the inode's locks to be | 
|  | *       to be released.  See the comment on xfs_iunlock() for a list | 
|  | *	 of valid values. | 
|  | */ | 
|  | void | 
|  | xfs_iput(xfs_inode_t	*ip, | 
|  | uint		lock_flags) | 
|  | { | 
|  | xfs_itrace_entry(ip); | 
|  | xfs_iunlock(ip, lock_flags); | 
|  | IRELE(ip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Special iput for brand-new inodes that are still locked | 
|  | */ | 
|  | void | 
|  | xfs_iput_new( | 
|  | xfs_inode_t	*ip, | 
|  | uint		lock_flags) | 
|  | { | 
|  | struct inode	*inode = VFS_I(ip); | 
|  |  | 
|  | xfs_itrace_entry(ip); | 
|  |  | 
|  | if ((ip->i_d.di_mode == 0)) { | 
|  | ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE)); | 
|  | make_bad_inode(inode); | 
|  | } | 
|  | if (inode->i_state & I_NEW) | 
|  | unlock_new_inode(inode); | 
|  | if (lock_flags) | 
|  | xfs_iunlock(ip, lock_flags); | 
|  | IRELE(ip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called free all the memory associated with an inode. | 
|  | * It must free the inode itself and any buffers allocated for | 
|  | * if_extents/if_data and if_broot.  It must also free the lock | 
|  | * associated with the inode. | 
|  | * | 
|  | * Note: because we don't initialise everything on reallocation out | 
|  | * of the zone, we must ensure we nullify everything correctly before | 
|  | * freeing the structure. | 
|  | */ | 
|  | void | 
|  | xfs_ireclaim( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_perag	*pag; | 
|  |  | 
|  | XFS_STATS_INC(xs_ig_reclaims); | 
|  |  | 
|  | /* | 
|  | * Remove the inode from the per-AG radix tree.  It doesn't matter | 
|  | * if it was never added to it because radix_tree_delete can deal | 
|  | * with that case just fine. | 
|  | */ | 
|  | pag = xfs_get_perag(mp, ip->i_ino); | 
|  | write_lock(&pag->pag_ici_lock); | 
|  | radix_tree_delete(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino)); | 
|  | write_unlock(&pag->pag_ici_lock); | 
|  | xfs_put_perag(mp, pag); | 
|  |  | 
|  | /* | 
|  | * Here we do an (almost) spurious inode lock in order to coordinate | 
|  | * with inode cache radix tree lookups.  This is because the lookup | 
|  | * can reference the inodes in the cache without taking references. | 
|  | * | 
|  | * We make that OK here by ensuring that we wait until the inode is | 
|  | * unlocked after the lookup before we go ahead and free it.  We get | 
|  | * both the ilock and the iolock because the code may need to drop the | 
|  | * ilock one but will still hold the iolock. | 
|  | */ | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); | 
|  | xfs_qm_dqdetach(ip); | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); | 
|  |  | 
|  | xfs_inode_free(ip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a wrapper routine around the xfs_ilock() routine | 
|  | * used to centralize some grungy code.  It is used in places | 
|  | * that wish to lock the inode solely for reading the extents. | 
|  | * The reason these places can't just call xfs_ilock(SHARED) | 
|  | * is that the inode lock also guards to bringing in of the | 
|  | * extents from disk for a file in b-tree format.  If the inode | 
|  | * is in b-tree format, then we need to lock the inode exclusively | 
|  | * until the extents are read in.  Locking it exclusively all | 
|  | * the time would limit our parallelism unnecessarily, though. | 
|  | * What we do instead is check to see if the extents have been | 
|  | * read in yet, and only lock the inode exclusively if they | 
|  | * have not. | 
|  | * | 
|  | * The function returns a value which should be given to the | 
|  | * corresponding xfs_iunlock_map_shared().  This value is | 
|  | * the mode in which the lock was actually taken. | 
|  | */ | 
|  | uint | 
|  | xfs_ilock_map_shared( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | uint	lock_mode; | 
|  |  | 
|  | if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) && | 
|  | ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) { | 
|  | lock_mode = XFS_ILOCK_EXCL; | 
|  | } else { | 
|  | lock_mode = XFS_ILOCK_SHARED; | 
|  | } | 
|  |  | 
|  | xfs_ilock(ip, lock_mode); | 
|  |  | 
|  | return lock_mode; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is simply the unlock routine to go with xfs_ilock_map_shared(). | 
|  | * All it does is call xfs_iunlock() with the given lock_mode. | 
|  | */ | 
|  | void | 
|  | xfs_iunlock_map_shared( | 
|  | xfs_inode_t	*ip, | 
|  | unsigned int	lock_mode) | 
|  | { | 
|  | xfs_iunlock(ip, lock_mode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The xfs inode contains 2 locks: a multi-reader lock called the | 
|  | * i_iolock and a multi-reader lock called the i_lock.  This routine | 
|  | * allows either or both of the locks to be obtained. | 
|  | * | 
|  | * The 2 locks should always be ordered so that the IO lock is | 
|  | * obtained first in order to prevent deadlock. | 
|  | * | 
|  | * ip -- the inode being locked | 
|  | * lock_flags -- this parameter indicates the inode's locks | 
|  | *       to be locked.  It can be: | 
|  | *		XFS_IOLOCK_SHARED, | 
|  | *		XFS_IOLOCK_EXCL, | 
|  | *		XFS_ILOCK_SHARED, | 
|  | *		XFS_ILOCK_EXCL, | 
|  | *		XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED, | 
|  | *		XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL, | 
|  | *		XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED, | 
|  | *		XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL | 
|  | */ | 
|  | void | 
|  | xfs_ilock( | 
|  | xfs_inode_t		*ip, | 
|  | uint			lock_flags) | 
|  | { | 
|  | /* | 
|  | * You can't set both SHARED and EXCL for the same lock, | 
|  | * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, | 
|  | * and XFS_ILOCK_EXCL are valid values to set in lock_flags. | 
|  | */ | 
|  | ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != | 
|  | (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); | 
|  | ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != | 
|  | (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); | 
|  | ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); | 
|  |  | 
|  | if (lock_flags & XFS_IOLOCK_EXCL) | 
|  | mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); | 
|  | else if (lock_flags & XFS_IOLOCK_SHARED) | 
|  | mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); | 
|  |  | 
|  | if (lock_flags & XFS_ILOCK_EXCL) | 
|  | mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); | 
|  | else if (lock_flags & XFS_ILOCK_SHARED) | 
|  | mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); | 
|  |  | 
|  | trace_xfs_ilock(ip, lock_flags, _RET_IP_); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is just like xfs_ilock(), except that the caller | 
|  | * is guaranteed not to sleep.  It returns 1 if it gets | 
|  | * the requested locks and 0 otherwise.  If the IO lock is | 
|  | * obtained but the inode lock cannot be, then the IO lock | 
|  | * is dropped before returning. | 
|  | * | 
|  | * ip -- the inode being locked | 
|  | * lock_flags -- this parameter indicates the inode's locks to be | 
|  | *       to be locked.  See the comment for xfs_ilock() for a list | 
|  | *	 of valid values. | 
|  | */ | 
|  | int | 
|  | xfs_ilock_nowait( | 
|  | xfs_inode_t		*ip, | 
|  | uint			lock_flags) | 
|  | { | 
|  | /* | 
|  | * You can't set both SHARED and EXCL for the same lock, | 
|  | * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, | 
|  | * and XFS_ILOCK_EXCL are valid values to set in lock_flags. | 
|  | */ | 
|  | ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != | 
|  | (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); | 
|  | ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != | 
|  | (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); | 
|  | ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); | 
|  |  | 
|  | if (lock_flags & XFS_IOLOCK_EXCL) { | 
|  | if (!mrtryupdate(&ip->i_iolock)) | 
|  | goto out; | 
|  | } else if (lock_flags & XFS_IOLOCK_SHARED) { | 
|  | if (!mrtryaccess(&ip->i_iolock)) | 
|  | goto out; | 
|  | } | 
|  | if (lock_flags & XFS_ILOCK_EXCL) { | 
|  | if (!mrtryupdate(&ip->i_lock)) | 
|  | goto out_undo_iolock; | 
|  | } else if (lock_flags & XFS_ILOCK_SHARED) { | 
|  | if (!mrtryaccess(&ip->i_lock)) | 
|  | goto out_undo_iolock; | 
|  | } | 
|  | trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); | 
|  | return 1; | 
|  |  | 
|  | out_undo_iolock: | 
|  | if (lock_flags & XFS_IOLOCK_EXCL) | 
|  | mrunlock_excl(&ip->i_iolock); | 
|  | else if (lock_flags & XFS_IOLOCK_SHARED) | 
|  | mrunlock_shared(&ip->i_iolock); | 
|  | out: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_iunlock() is used to drop the inode locks acquired with | 
|  | * xfs_ilock() and xfs_ilock_nowait().  The caller must pass | 
|  | * in the flags given to xfs_ilock() or xfs_ilock_nowait() so | 
|  | * that we know which locks to drop. | 
|  | * | 
|  | * ip -- the inode being unlocked | 
|  | * lock_flags -- this parameter indicates the inode's locks to be | 
|  | *       to be unlocked.  See the comment for xfs_ilock() for a list | 
|  | *	 of valid values for this parameter. | 
|  | * | 
|  | */ | 
|  | void | 
|  | xfs_iunlock( | 
|  | xfs_inode_t		*ip, | 
|  | uint			lock_flags) | 
|  | { | 
|  | /* | 
|  | * You can't set both SHARED and EXCL for the same lock, | 
|  | * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, | 
|  | * and XFS_ILOCK_EXCL are valid values to set in lock_flags. | 
|  | */ | 
|  | ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != | 
|  | (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); | 
|  | ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != | 
|  | (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); | 
|  | ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY | | 
|  | XFS_LOCK_DEP_MASK)) == 0); | 
|  | ASSERT(lock_flags != 0); | 
|  |  | 
|  | if (lock_flags & XFS_IOLOCK_EXCL) | 
|  | mrunlock_excl(&ip->i_iolock); | 
|  | else if (lock_flags & XFS_IOLOCK_SHARED) | 
|  | mrunlock_shared(&ip->i_iolock); | 
|  |  | 
|  | if (lock_flags & XFS_ILOCK_EXCL) | 
|  | mrunlock_excl(&ip->i_lock); | 
|  | else if (lock_flags & XFS_ILOCK_SHARED) | 
|  | mrunlock_shared(&ip->i_lock); | 
|  |  | 
|  | if ((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) && | 
|  | !(lock_flags & XFS_IUNLOCK_NONOTIFY) && ip->i_itemp) { | 
|  | /* | 
|  | * Let the AIL know that this item has been unlocked in case | 
|  | * it is in the AIL and anyone is waiting on it.  Don't do | 
|  | * this if the caller has asked us not to. | 
|  | */ | 
|  | xfs_trans_unlocked_item(ip->i_itemp->ili_item.li_ailp, | 
|  | (xfs_log_item_t*)(ip->i_itemp)); | 
|  | } | 
|  | trace_xfs_iunlock(ip, lock_flags, _RET_IP_); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * give up write locks.  the i/o lock cannot be held nested | 
|  | * if it is being demoted. | 
|  | */ | 
|  | void | 
|  | xfs_ilock_demote( | 
|  | xfs_inode_t		*ip, | 
|  | uint			lock_flags) | 
|  | { | 
|  | ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)); | 
|  | ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); | 
|  |  | 
|  | if (lock_flags & XFS_ILOCK_EXCL) | 
|  | mrdemote(&ip->i_lock); | 
|  | if (lock_flags & XFS_IOLOCK_EXCL) | 
|  | mrdemote(&ip->i_iolock); | 
|  |  | 
|  | trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG | 
|  | /* | 
|  | * Debug-only routine, without additional rw_semaphore APIs, we can | 
|  | * now only answer requests regarding whether we hold the lock for write | 
|  | * (reader state is outside our visibility, we only track writer state). | 
|  | * | 
|  | * Note: this means !xfs_isilocked would give false positives, so don't do that. | 
|  | */ | 
|  | int | 
|  | xfs_isilocked( | 
|  | xfs_inode_t		*ip, | 
|  | uint			lock_flags) | 
|  | { | 
|  | if ((lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) == | 
|  | XFS_ILOCK_EXCL) { | 
|  | if (!ip->i_lock.mr_writer) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if ((lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) == | 
|  | XFS_IOLOCK_EXCL) { | 
|  | if (!ip->i_iolock.mr_writer) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | #endif |