| /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module | 
 |  * | 
 |  * This driver supports the memory controllers found on the Intel | 
 |  * processor family Sandy Bridge. | 
 |  * | 
 |  * This file may be distributed under the terms of the | 
 |  * GNU General Public License version 2 only. | 
 |  * | 
 |  * Copyright (c) 2011 by: | 
 |  *	 Mauro Carvalho Chehab <mchehab@redhat.com> | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/pci_ids.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/edac.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/bitmap.h> | 
 | #include <linux/math64.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/mce.h> | 
 |  | 
 | #include "edac_core.h" | 
 |  | 
 | /* Static vars */ | 
 | static LIST_HEAD(sbridge_edac_list); | 
 | static DEFINE_MUTEX(sbridge_edac_lock); | 
 | static int probed; | 
 |  | 
 | /* | 
 |  * Alter this version for the module when modifications are made | 
 |  */ | 
 | #define SBRIDGE_REVISION    " Ver: 1.0.0 " | 
 | #define EDAC_MOD_STR      "sbridge_edac" | 
 |  | 
 | /* | 
 |  * Debug macros | 
 |  */ | 
 | #define sbridge_printk(level, fmt, arg...)			\ | 
 | 	edac_printk(level, "sbridge", fmt, ##arg) | 
 |  | 
 | #define sbridge_mc_printk(mci, level, fmt, arg...)		\ | 
 | 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg) | 
 |  | 
 | /* | 
 |  * Get a bit field at register value <v>, from bit <lo> to bit <hi> | 
 |  */ | 
 | #define GET_BITFIELD(v, lo, hi)	\ | 
 | 	(((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo)) | 
 |  | 
 | /* | 
 |  * sbridge Memory Controller Registers | 
 |  */ | 
 |  | 
 | /* | 
 |  * FIXME: For now, let's order by device function, as it makes | 
 |  * easier for driver's development proccess. This table should be | 
 |  * moved to pci_id.h when submitted upstream | 
 |  */ | 
 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0	0x3cf4	/* 12.6 */ | 
 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1	0x3cf6	/* 12.7 */ | 
 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR		0x3cf5	/* 13.6 */ | 
 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0	0x3ca0	/* 14.0 */ | 
 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA	0x3ca8	/* 15.0 */ | 
 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS	0x3c71	/* 15.1 */ | 
 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0	0x3caa	/* 15.2 */ | 
 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1	0x3cab	/* 15.3 */ | 
 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2	0x3cac	/* 15.4 */ | 
 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3	0x3cad	/* 15.5 */ | 
 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO	0x3cb8	/* 17.0 */ | 
 |  | 
 | 	/* | 
 | 	 * Currently, unused, but will be needed in the future | 
 | 	 * implementations, as they hold the error counters | 
 | 	 */ | 
 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0	0x3c72	/* 16.2 */ | 
 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1	0x3c73	/* 16.3 */ | 
 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2	0x3c76	/* 16.6 */ | 
 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3	0x3c77	/* 16.7 */ | 
 |  | 
 | /* Devices 12 Function 6, Offsets 0x80 to 0xcc */ | 
 | static const u32 dram_rule[] = { | 
 | 	0x80, 0x88, 0x90, 0x98, 0xa0, | 
 | 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8, | 
 | }; | 
 | #define MAX_SAD		ARRAY_SIZE(dram_rule) | 
 |  | 
 | #define SAD_LIMIT(reg)		((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff) | 
 | #define DRAM_ATTR(reg)		GET_BITFIELD(reg, 2,  3) | 
 | #define INTERLEAVE_MODE(reg)	GET_BITFIELD(reg, 1,  1) | 
 | #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0) | 
 |  | 
 | static char *get_dram_attr(u32 reg) | 
 | { | 
 | 	switch(DRAM_ATTR(reg)) { | 
 | 		case 0: | 
 | 			return "DRAM"; | 
 | 		case 1: | 
 | 			return "MMCFG"; | 
 | 		case 2: | 
 | 			return "NXM"; | 
 | 		default: | 
 | 			return "unknown"; | 
 | 	} | 
 | } | 
 |  | 
 | static const u32 interleave_list[] = { | 
 | 	0x84, 0x8c, 0x94, 0x9c, 0xa4, | 
 | 	0xac, 0xb4, 0xbc, 0xc4, 0xcc, | 
 | }; | 
 | #define MAX_INTERLEAVE	ARRAY_SIZE(interleave_list) | 
 |  | 
 | #define SAD_PKG0(reg)		GET_BITFIELD(reg, 0, 2) | 
 | #define SAD_PKG1(reg)		GET_BITFIELD(reg, 3, 5) | 
 | #define SAD_PKG2(reg)		GET_BITFIELD(reg, 8, 10) | 
 | #define SAD_PKG3(reg)		GET_BITFIELD(reg, 11, 13) | 
 | #define SAD_PKG4(reg)		GET_BITFIELD(reg, 16, 18) | 
 | #define SAD_PKG5(reg)		GET_BITFIELD(reg, 19, 21) | 
 | #define SAD_PKG6(reg)		GET_BITFIELD(reg, 24, 26) | 
 | #define SAD_PKG7(reg)		GET_BITFIELD(reg, 27, 29) | 
 |  | 
 | static inline int sad_pkg(u32 reg, int interleave) | 
 | { | 
 | 	switch (interleave) { | 
 | 	case 0: | 
 | 		return SAD_PKG0(reg); | 
 | 	case 1: | 
 | 		return SAD_PKG1(reg); | 
 | 	case 2: | 
 | 		return SAD_PKG2(reg); | 
 | 	case 3: | 
 | 		return SAD_PKG3(reg); | 
 | 	case 4: | 
 | 		return SAD_PKG4(reg); | 
 | 	case 5: | 
 | 		return SAD_PKG5(reg); | 
 | 	case 6: | 
 | 		return SAD_PKG6(reg); | 
 | 	case 7: | 
 | 		return SAD_PKG7(reg); | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 | } | 
 |  | 
 | /* Devices 12 Function 7 */ | 
 |  | 
 | #define TOLM		0x80 | 
 | #define	TOHM		0x84 | 
 |  | 
 | #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff) | 
 | #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff) | 
 |  | 
 | /* Device 13 Function 6 */ | 
 |  | 
 | #define SAD_TARGET	0xf0 | 
 |  | 
 | #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11) | 
 |  | 
 | #define SAD_CONTROL	0xf4 | 
 |  | 
 | #define NODE_ID(reg)		GET_BITFIELD(reg, 0, 2) | 
 |  | 
 | /* Device 14 function 0 */ | 
 |  | 
 | static const u32 tad_dram_rule[] = { | 
 | 	0x40, 0x44, 0x48, 0x4c, | 
 | 	0x50, 0x54, 0x58, 0x5c, | 
 | 	0x60, 0x64, 0x68, 0x6c, | 
 | }; | 
 | #define MAX_TAD	ARRAY_SIZE(tad_dram_rule) | 
 |  | 
 | #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff) | 
 | #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11) | 
 | #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9) | 
 | #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7) | 
 | #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5) | 
 | #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3) | 
 | #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1) | 
 |  | 
 | /* Device 15, function 0 */ | 
 |  | 
 | #define MCMTR			0x7c | 
 |  | 
 | #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2) | 
 | #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1) | 
 | #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0) | 
 |  | 
 | /* Device 15, function 1 */ | 
 |  | 
 | #define RASENABLES		0xac | 
 | #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0) | 
 |  | 
 | /* Device 15, functions 2-5 */ | 
 |  | 
 | static const int mtr_regs[] = { | 
 | 	0x80, 0x84, 0x88, | 
 | }; | 
 |  | 
 | #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19) | 
 | #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14) | 
 | #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13) | 
 | #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4) | 
 | #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1) | 
 |  | 
 | static const u32 tad_ch_nilv_offset[] = { | 
 | 	0x90, 0x94, 0x98, 0x9c, | 
 | 	0xa0, 0xa4, 0xa8, 0xac, | 
 | 	0xb0, 0xb4, 0xb8, 0xbc, | 
 | }; | 
 | #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29) | 
 | #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26) | 
 |  | 
 | static const u32 rir_way_limit[] = { | 
 | 	0x108, 0x10c, 0x110, 0x114, 0x118, | 
 | }; | 
 | #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit) | 
 |  | 
 | #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31) | 
 | #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29) | 
 | #define RIR_LIMIT(reg)		((GET_BITFIELD(reg,  1, 10) << 29)| 0x1fffffff) | 
 |  | 
 | #define MAX_RIR_WAY	8 | 
 |  | 
 | static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = { | 
 | 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c }, | 
 | 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c }, | 
 | 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c }, | 
 | 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c }, | 
 | 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc }, | 
 | }; | 
 |  | 
 | #define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19) | 
 | #define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14) | 
 |  | 
 | /* Device 16, functions 2-7 */ | 
 |  | 
 | /* | 
 |  * FIXME: Implement the error count reads directly | 
 |  */ | 
 |  | 
 | static const u32 correrrcnt[] = { | 
 | 	0x104, 0x108, 0x10c, 0x110, | 
 | }; | 
 |  | 
 | #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31) | 
 | #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30) | 
 | #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15) | 
 | #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14) | 
 |  | 
 | static const u32 correrrthrsld[] = { | 
 | 	0x11c, 0x120, 0x124, 0x128, | 
 | }; | 
 |  | 
 | #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30) | 
 | #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14) | 
 |  | 
 |  | 
 | /* Device 17, function 0 */ | 
 |  | 
 | #define RANK_CFG_A		0x0328 | 
 |  | 
 | #define IS_RDIMM_ENABLED(reg)		GET_BITFIELD(reg, 11, 11) | 
 |  | 
 | /* | 
 |  * sbridge structs | 
 |  */ | 
 |  | 
 | #define NUM_CHANNELS	4 | 
 | #define MAX_DIMMS	3		/* Max DIMMS per channel */ | 
 |  | 
 | struct sbridge_info { | 
 | 	u32	mcmtr; | 
 | }; | 
 |  | 
 | struct sbridge_channel { | 
 | 	u32		ranks; | 
 | 	u32		dimms; | 
 | }; | 
 |  | 
 | struct pci_id_descr { | 
 | 	int			dev; | 
 | 	int			func; | 
 | 	int 			dev_id; | 
 | 	int			optional; | 
 | }; | 
 |  | 
 | struct pci_id_table { | 
 | 	const struct pci_id_descr	*descr; | 
 | 	int				n_devs; | 
 | }; | 
 |  | 
 | struct sbridge_dev { | 
 | 	struct list_head	list; | 
 | 	u8			bus, mc; | 
 | 	u8			node_id, source_id; | 
 | 	struct pci_dev		**pdev; | 
 | 	int			n_devs; | 
 | 	struct mem_ctl_info	*mci; | 
 | }; | 
 |  | 
 | struct sbridge_pvt { | 
 | 	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras; | 
 | 	struct pci_dev		*pci_sad0, *pci_sad1, *pci_ha0; | 
 | 	struct pci_dev		*pci_br; | 
 | 	struct pci_dev		*pci_tad[NUM_CHANNELS]; | 
 |  | 
 | 	struct sbridge_dev	*sbridge_dev; | 
 |  | 
 | 	struct sbridge_info	info; | 
 | 	struct sbridge_channel	channel[NUM_CHANNELS]; | 
 |  | 
 | 	int 			csrow_map[NUM_CHANNELS][MAX_DIMMS]; | 
 |  | 
 | 	/* Memory type detection */ | 
 | 	bool			is_mirrored, is_lockstep, is_close_pg; | 
 |  | 
 | 	/* Fifo double buffers */ | 
 | 	struct mce		mce_entry[MCE_LOG_LEN]; | 
 | 	struct mce		mce_outentry[MCE_LOG_LEN]; | 
 |  | 
 | 	/* Fifo in/out counters */ | 
 | 	unsigned		mce_in, mce_out; | 
 |  | 
 | 	/* Count indicator to show errors not got */ | 
 | 	unsigned		mce_overrun; | 
 |  | 
 | 	/* Memory description */ | 
 | 	u64			tolm, tohm; | 
 | }; | 
 |  | 
 | #define PCI_DESCR(device, function, device_id)	\ | 
 | 	.dev = (device),			\ | 
 | 	.func = (function),			\ | 
 | 	.dev_id = (device_id) | 
 |  | 
 | static const struct pci_id_descr pci_dev_descr_sbridge[] = { | 
 | 		/* Processor Home Agent */ | 
 | 	{ PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)		}, | 
 |  | 
 | 		/* Memory controller */ | 
 | 	{ PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)		}, | 
 | 	{ PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS)		}, | 
 | 	{ PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0)	}, | 
 | 	{ PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1)	}, | 
 | 	{ PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2)	}, | 
 | 	{ PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3)	}, | 
 | 	{ PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO)	}, | 
 |  | 
 | 		/* System Address Decoder */ | 
 | 	{ PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0)		}, | 
 | 	{ PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1)		}, | 
 |  | 
 | 		/* Broadcast Registers */ | 
 | 	{ PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR)		}, | 
 | }; | 
 |  | 
 | #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) } | 
 | static const struct pci_id_table pci_dev_descr_sbridge_table[] = { | 
 | 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge), | 
 | 	{0,}			/* 0 terminated list. */ | 
 | }; | 
 |  | 
 | /* | 
 |  *	pci_device_id	table for which devices we are looking for | 
 |  */ | 
 | static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = { | 
 | 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)}, | 
 | 	{0,}			/* 0 terminated list. */ | 
 | }; | 
 |  | 
 |  | 
 | /**************************************************************************** | 
 | 			Anciliary status routines | 
 |  ****************************************************************************/ | 
 |  | 
 | static inline int numrank(u32 mtr) | 
 | { | 
 | 	int ranks = (1 << RANK_CNT_BITS(mtr)); | 
 |  | 
 | 	if (ranks > 4) { | 
 | 		debugf0("Invalid number of ranks: %d (max = 4) raw value = %x (%04x)", | 
 | 			ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return ranks; | 
 | } | 
 |  | 
 | static inline int numrow(u32 mtr) | 
 | { | 
 | 	int rows = (RANK_WIDTH_BITS(mtr) + 12); | 
 |  | 
 | 	if (rows < 13 || rows > 18) { | 
 | 		debugf0("Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)", | 
 | 			rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 1 << rows; | 
 | } | 
 |  | 
 | static inline int numcol(u32 mtr) | 
 | { | 
 | 	int cols = (COL_WIDTH_BITS(mtr) + 10); | 
 |  | 
 | 	if (cols > 12) { | 
 | 		debugf0("Invalid number of cols: %d (max = 4) raw value = %x (%04x)", | 
 | 			cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 1 << cols; | 
 | } | 
 |  | 
 | static struct sbridge_dev *get_sbridge_dev(u8 bus) | 
 | { | 
 | 	struct sbridge_dev *sbridge_dev; | 
 |  | 
 | 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { | 
 | 		if (sbridge_dev->bus == bus) | 
 | 			return sbridge_dev; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct sbridge_dev *alloc_sbridge_dev(u8 bus, | 
 | 					   const struct pci_id_table *table) | 
 | { | 
 | 	struct sbridge_dev *sbridge_dev; | 
 |  | 
 | 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL); | 
 | 	if (!sbridge_dev) | 
 | 		return NULL; | 
 |  | 
 | 	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs, | 
 | 				   GFP_KERNEL); | 
 | 	if (!sbridge_dev->pdev) { | 
 | 		kfree(sbridge_dev); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	sbridge_dev->bus = bus; | 
 | 	sbridge_dev->n_devs = table->n_devs; | 
 | 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list); | 
 |  | 
 | 	return sbridge_dev; | 
 | } | 
 |  | 
 | static void free_sbridge_dev(struct sbridge_dev *sbridge_dev) | 
 | { | 
 | 	list_del(&sbridge_dev->list); | 
 | 	kfree(sbridge_dev->pdev); | 
 | 	kfree(sbridge_dev); | 
 | } | 
 |  | 
 | /**************************************************************************** | 
 | 			Memory check routines | 
 |  ****************************************************************************/ | 
 | static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot, | 
 | 					  unsigned func) | 
 | { | 
 | 	struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus); | 
 | 	int i; | 
 |  | 
 | 	if (!sbridge_dev) | 
 | 		return NULL; | 
 |  | 
 | 	for (i = 0; i < sbridge_dev->n_devs; i++) { | 
 | 		if (!sbridge_dev->pdev[i]) | 
 | 			continue; | 
 |  | 
 | 		if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot && | 
 | 		    PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) { | 
 | 			debugf1("Associated %02x.%02x.%d with %p\n", | 
 | 				bus, slot, func, sbridge_dev->pdev[i]); | 
 | 			return sbridge_dev->pdev[i]; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * sbridge_get_active_channels() - gets the number of channels and csrows | 
 |  * bus:		Device bus | 
 |  * @channels:	Number of channels that will be returned | 
 |  * @csrows:	Number of csrows found | 
 |  * | 
 |  * Since EDAC core needs to know in advance the number of available channels | 
 |  * and csrows, in order to allocate memory for csrows/channels, it is needed | 
 |  * to run two similar steps. At the first step, implemented on this function, | 
 |  * it checks the number of csrows/channels present at one socket, identified | 
 |  * by the associated PCI bus. | 
 |  * this is used in order to properly allocate the size of mci components. | 
 |  * Note: one csrow is one dimm. | 
 |  */ | 
 | static int sbridge_get_active_channels(const u8 bus, unsigned *channels, | 
 | 				      unsigned *csrows) | 
 | { | 
 | 	struct pci_dev *pdev = NULL; | 
 | 	int i, j; | 
 | 	u32 mcmtr; | 
 |  | 
 | 	*channels = 0; | 
 | 	*csrows = 0; | 
 |  | 
 | 	pdev = get_pdev_slot_func(bus, 15, 0); | 
 | 	if (!pdev) { | 
 | 		sbridge_printk(KERN_ERR, "Couldn't find PCI device " | 
 | 					"%2x.%02d.%d!!!\n", | 
 | 					bus, 15, 0); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	pci_read_config_dword(pdev, MCMTR, &mcmtr); | 
 | 	if (!IS_ECC_ENABLED(mcmtr)) { | 
 | 		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < NUM_CHANNELS; i++) { | 
 | 		u32 mtr; | 
 |  | 
 | 		/* Device 15 functions 2 - 5  */ | 
 | 		pdev = get_pdev_slot_func(bus, 15, 2 + i); | 
 | 		if (!pdev) { | 
 | 			sbridge_printk(KERN_ERR, "Couldn't find PCI device " | 
 | 						 "%2x.%02d.%d!!!\n", | 
 | 						 bus, 15, 2 + i); | 
 | 			return -ENODEV; | 
 | 		} | 
 | 		(*channels)++; | 
 |  | 
 | 		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) { | 
 | 			pci_read_config_dword(pdev, mtr_regs[j], &mtr); | 
 | 			debugf1("Bus#%02x channel #%d  MTR%d = %x\n", bus, i, j, mtr); | 
 | 			if (IS_DIMM_PRESENT(mtr)) | 
 | 				(*csrows)++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	debugf0("Number of active channels: %d, number of active dimms: %d\n", | 
 | 		*channels, *csrows); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int get_dimm_config(const struct mem_ctl_info *mci) | 
 | { | 
 | 	struct sbridge_pvt *pvt = mci->pvt_info; | 
 | 	struct csrow_info *csr; | 
 | 	unsigned i, j, banks, ranks, rows, cols, npages; | 
 | 	u64 size; | 
 | 	int csrow = 0; | 
 | 	unsigned long last_page = 0; | 
 | 	u32 reg; | 
 | 	enum edac_type mode; | 
 | 	enum mem_type mtype; | 
 |  | 
 | 	pci_read_config_dword(pvt->pci_br, SAD_TARGET, ®); | 
 | 	pvt->sbridge_dev->source_id = SOURCE_ID(reg); | 
 |  | 
 | 	pci_read_config_dword(pvt->pci_br, SAD_CONTROL, ®); | 
 | 	pvt->sbridge_dev->node_id = NODE_ID(reg); | 
 | 	debugf0("mc#%d: Node ID: %d, source ID: %d\n", | 
 | 		pvt->sbridge_dev->mc, | 
 | 		pvt->sbridge_dev->node_id, | 
 | 		pvt->sbridge_dev->source_id); | 
 |  | 
 | 	pci_read_config_dword(pvt->pci_ras, RASENABLES, ®); | 
 | 	if (IS_MIRROR_ENABLED(reg)) { | 
 | 		debugf0("Memory mirror is enabled\n"); | 
 | 		pvt->is_mirrored = true; | 
 | 	} else { | 
 | 		debugf0("Memory mirror is disabled\n"); | 
 | 		pvt->is_mirrored = false; | 
 | 	} | 
 |  | 
 | 	pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr); | 
 | 	if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) { | 
 | 		debugf0("Lockstep is enabled\n"); | 
 | 		mode = EDAC_S8ECD8ED; | 
 | 		pvt->is_lockstep = true; | 
 | 	} else { | 
 | 		debugf0("Lockstep is disabled\n"); | 
 | 		mode = EDAC_S4ECD4ED; | 
 | 		pvt->is_lockstep = false; | 
 | 	} | 
 | 	if (IS_CLOSE_PG(pvt->info.mcmtr)) { | 
 | 		debugf0("address map is on closed page mode\n"); | 
 | 		pvt->is_close_pg = true; | 
 | 	} else { | 
 | 		debugf0("address map is on open page mode\n"); | 
 | 		pvt->is_close_pg = false; | 
 | 	} | 
 |  | 
 | 	pci_read_config_dword(pvt->pci_ddrio, RANK_CFG_A, ®); | 
 | 	if (IS_RDIMM_ENABLED(reg)) { | 
 | 		/* FIXME: Can also be LRDIMM */ | 
 | 		debugf0("Memory is registered\n"); | 
 | 		mtype = MEM_RDDR3; | 
 | 	} else { | 
 | 		debugf0("Memory is unregistered\n"); | 
 | 		mtype = MEM_DDR3; | 
 | 	} | 
 |  | 
 | 	/* On all supported DDR3 DIMM types, there are 8 banks available */ | 
 | 	banks = 8; | 
 |  | 
 | 	for (i = 0; i < NUM_CHANNELS; i++) { | 
 | 		u32 mtr; | 
 |  | 
 | 		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) { | 
 | 			pci_read_config_dword(pvt->pci_tad[i], | 
 | 					      mtr_regs[j], &mtr); | 
 | 			debugf4("Channel #%d  MTR%d = %x\n", i, j, mtr); | 
 | 			if (IS_DIMM_PRESENT(mtr)) { | 
 | 				pvt->channel[i].dimms++; | 
 |  | 
 | 				ranks = numrank(mtr); | 
 | 				rows = numrow(mtr); | 
 | 				cols = numcol(mtr); | 
 |  | 
 | 				/* DDR3 has 8 I/O banks */ | 
 | 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3); | 
 | 				npages = MiB_TO_PAGES(size); | 
 |  | 
 | 				debugf0("mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", | 
 | 					pvt->sbridge_dev->mc, i, j, | 
 | 					size, npages, | 
 | 					banks, ranks, rows, cols); | 
 | 				csr = &mci->csrows[csrow]; | 
 |  | 
 | 				csr->first_page = last_page; | 
 | 				csr->last_page = last_page + npages - 1; | 
 | 				csr->page_mask = 0UL;	/* Unused */ | 
 | 				csr->nr_pages = npages; | 
 | 				csr->grain = 32; | 
 | 				csr->csrow_idx = csrow; | 
 | 				csr->dtype = (banks == 8) ? DEV_X8 : DEV_X4; | 
 | 				csr->ce_count = 0; | 
 | 				csr->ue_count = 0; | 
 | 				csr->mtype = mtype; | 
 | 				csr->edac_mode = mode; | 
 | 				csr->nr_channels = 1; | 
 | 				csr->channels[0].chan_idx = i; | 
 | 				csr->channels[0].ce_count = 0; | 
 | 				pvt->csrow_map[i][j] = csrow; | 
 | 				snprintf(csr->channels[0].label, | 
 | 					 sizeof(csr->channels[0].label), | 
 | 					 "CPU_SrcID#%u_Channel#%u_DIMM#%u", | 
 | 					 pvt->sbridge_dev->source_id, i, j); | 
 | 				last_page += npages; | 
 | 				csrow++; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void get_memory_layout(const struct mem_ctl_info *mci) | 
 | { | 
 | 	struct sbridge_pvt *pvt = mci->pvt_info; | 
 | 	int i, j, k, n_sads, n_tads, sad_interl; | 
 | 	u32 reg; | 
 | 	u64 limit, prv = 0; | 
 | 	u64 tmp_mb; | 
 | 	u32 mb, kb; | 
 | 	u32 rir_way; | 
 |  | 
 | 	/* | 
 | 	 * Step 1) Get TOLM/TOHM ranges | 
 | 	 */ | 
 |  | 
 | 	/* Address range is 32:28 */ | 
 | 	pci_read_config_dword(pvt->pci_sad1, TOLM, | 
 | 			      ®); | 
 | 	pvt->tolm = GET_TOLM(reg); | 
 | 	tmp_mb = (1 + pvt->tolm) >> 20; | 
 |  | 
 | 	mb = div_u64_rem(tmp_mb, 1000, &kb); | 
 | 	debugf0("TOLM: %u.%03u GB (0x%016Lx)\n", | 
 | 		mb, kb, (u64)pvt->tolm); | 
 |  | 
 | 	/* Address range is already 45:25 */ | 
 | 	pci_read_config_dword(pvt->pci_sad1, TOHM, | 
 | 			      ®); | 
 | 	pvt->tohm = GET_TOHM(reg); | 
 | 	tmp_mb = (1 + pvt->tohm) >> 20; | 
 |  | 
 | 	mb = div_u64_rem(tmp_mb, 1000, &kb); | 
 | 	debugf0("TOHM: %u.%03u GB (0x%016Lx)", | 
 | 		mb, kb, (u64)pvt->tohm); | 
 |  | 
 | 	/* | 
 | 	 * Step 2) Get SAD range and SAD Interleave list | 
 | 	 * TAD registers contain the interleave wayness. However, it | 
 | 	 * seems simpler to just discover it indirectly, with the | 
 | 	 * algorithm bellow. | 
 | 	 */ | 
 | 	prv = 0; | 
 | 	for (n_sads = 0; n_sads < MAX_SAD; n_sads++) { | 
 | 		/* SAD_LIMIT Address range is 45:26 */ | 
 | 		pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads], | 
 | 				      ®); | 
 | 		limit = SAD_LIMIT(reg); | 
 |  | 
 | 		if (!DRAM_RULE_ENABLE(reg)) | 
 | 			continue; | 
 |  | 
 | 		if (limit <= prv) | 
 | 			break; | 
 |  | 
 | 		tmp_mb = (limit + 1) >> 20; | 
 | 		mb = div_u64_rem(tmp_mb, 1000, &kb); | 
 | 		debugf0("SAD#%d %s up to %u.%03u GB (0x%016Lx) %s reg=0x%08x\n", | 
 | 			n_sads, | 
 | 			get_dram_attr(reg), | 
 | 			mb, kb, | 
 | 			((u64)tmp_mb) << 20L, | 
 | 			INTERLEAVE_MODE(reg) ? "Interleave: 8:6" : "Interleave: [8:6]XOR[18:16]", | 
 | 			reg); | 
 | 		prv = limit; | 
 |  | 
 | 		pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads], | 
 | 				      ®); | 
 | 		sad_interl = sad_pkg(reg, 0); | 
 | 		for (j = 0; j < 8; j++) { | 
 | 			if (j > 0 && sad_interl == sad_pkg(reg, j)) | 
 | 				break; | 
 |  | 
 | 			debugf0("SAD#%d, interleave #%d: %d\n", | 
 | 			n_sads, j, sad_pkg(reg, j)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Step 3) Get TAD range | 
 | 	 */ | 
 | 	prv = 0; | 
 | 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { | 
 | 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads], | 
 | 				      ®); | 
 | 		limit = TAD_LIMIT(reg); | 
 | 		if (limit <= prv) | 
 | 			break; | 
 | 		tmp_mb = (limit + 1) >> 20; | 
 |  | 
 | 		mb = div_u64_rem(tmp_mb, 1000, &kb); | 
 | 		debugf0("TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n", | 
 | 			n_tads, mb, kb, | 
 | 			((u64)tmp_mb) << 20L, | 
 | 			(u32)TAD_SOCK(reg), | 
 | 			(u32)TAD_CH(reg), | 
 | 			(u32)TAD_TGT0(reg), | 
 | 			(u32)TAD_TGT1(reg), | 
 | 			(u32)TAD_TGT2(reg), | 
 | 			(u32)TAD_TGT3(reg), | 
 | 			reg); | 
 | 		prv = limit; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Step 4) Get TAD offsets, per each channel | 
 | 	 */ | 
 | 	for (i = 0; i < NUM_CHANNELS; i++) { | 
 | 		if (!pvt->channel[i].dimms) | 
 | 			continue; | 
 | 		for (j = 0; j < n_tads; j++) { | 
 | 			pci_read_config_dword(pvt->pci_tad[i], | 
 | 					      tad_ch_nilv_offset[j], | 
 | 					      ®); | 
 | 			tmp_mb = TAD_OFFSET(reg) >> 20; | 
 | 			mb = div_u64_rem(tmp_mb, 1000, &kb); | 
 | 			debugf0("TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n", | 
 | 				i, j, | 
 | 				mb, kb, | 
 | 				((u64)tmp_mb) << 20L, | 
 | 				reg); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Step 6) Get RIR Wayness/Limit, per each channel | 
 | 	 */ | 
 | 	for (i = 0; i < NUM_CHANNELS; i++) { | 
 | 		if (!pvt->channel[i].dimms) | 
 | 			continue; | 
 | 		for (j = 0; j < MAX_RIR_RANGES; j++) { | 
 | 			pci_read_config_dword(pvt->pci_tad[i], | 
 | 					      rir_way_limit[j], | 
 | 					      ®); | 
 |  | 
 | 			if (!IS_RIR_VALID(reg)) | 
 | 				continue; | 
 |  | 
 | 			tmp_mb = RIR_LIMIT(reg) >> 20; | 
 | 			rir_way = 1 << RIR_WAY(reg); | 
 | 			mb = div_u64_rem(tmp_mb, 1000, &kb); | 
 | 			debugf0("CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n", | 
 | 				i, j, | 
 | 				mb, kb, | 
 | 				((u64)tmp_mb) << 20L, | 
 | 				rir_way, | 
 | 				reg); | 
 |  | 
 | 			for (k = 0; k < rir_way; k++) { | 
 | 				pci_read_config_dword(pvt->pci_tad[i], | 
 | 						      rir_offset[j][k], | 
 | 						      ®); | 
 | 				tmp_mb = RIR_OFFSET(reg) << 6; | 
 |  | 
 | 				mb = div_u64_rem(tmp_mb, 1000, &kb); | 
 | 				debugf0("CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n", | 
 | 					i, j, k, | 
 | 					mb, kb, | 
 | 					((u64)tmp_mb) << 20L, | 
 | 					(u32)RIR_RNK_TGT(reg), | 
 | 					reg); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | struct mem_ctl_info *get_mci_for_node_id(u8 node_id) | 
 | { | 
 | 	struct sbridge_dev *sbridge_dev; | 
 |  | 
 | 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { | 
 | 		if (sbridge_dev->node_id == node_id) | 
 | 			return sbridge_dev->mci; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int get_memory_error_data(struct mem_ctl_info *mci, | 
 | 				 u64 addr, | 
 | 				 u8 *socket, | 
 | 				 long *channel_mask, | 
 | 				 u8 *rank, | 
 | 				 char *area_type) | 
 | { | 
 | 	struct mem_ctl_info	*new_mci; | 
 | 	struct sbridge_pvt *pvt = mci->pvt_info; | 
 | 	char			msg[256]; | 
 | 	int 			n_rir, n_sads, n_tads, sad_way, sck_xch; | 
 | 	int			sad_interl, idx, base_ch; | 
 | 	int			interleave_mode; | 
 | 	unsigned		sad_interleave[MAX_INTERLEAVE]; | 
 | 	u32			reg; | 
 | 	u8			ch_way,sck_way; | 
 | 	u32			tad_offset; | 
 | 	u32			rir_way; | 
 | 	u32			mb, kb; | 
 | 	u64			ch_addr, offset, limit, prv = 0; | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * Step 0) Check if the address is at special memory ranges | 
 | 	 * The check bellow is probably enough to fill all cases where | 
 | 	 * the error is not inside a memory, except for the legacy | 
 | 	 * range (e. g. VGA addresses). It is unlikely, however, that the | 
 | 	 * memory controller would generate an error on that range. | 
 | 	 */ | 
 | 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) { | 
 | 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr); | 
 | 		edac_mc_handle_ce_no_info(mci, msg); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (addr >= (u64)pvt->tohm) { | 
 | 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr); | 
 | 		edac_mc_handle_ce_no_info(mci, msg); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Step 1) Get socket | 
 | 	 */ | 
 | 	for (n_sads = 0; n_sads < MAX_SAD; n_sads++) { | 
 | 		pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads], | 
 | 				      ®); | 
 |  | 
 | 		if (!DRAM_RULE_ENABLE(reg)) | 
 | 			continue; | 
 |  | 
 | 		limit = SAD_LIMIT(reg); | 
 | 		if (limit <= prv) { | 
 | 			sprintf(msg, "Can't discover the memory socket"); | 
 | 			edac_mc_handle_ce_no_info(mci, msg); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if  (addr <= limit) | 
 | 			break; | 
 | 		prv = limit; | 
 | 	} | 
 | 	if (n_sads == MAX_SAD) { | 
 | 		sprintf(msg, "Can't discover the memory socket"); | 
 | 		edac_mc_handle_ce_no_info(mci, msg); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	area_type = get_dram_attr(reg); | 
 | 	interleave_mode = INTERLEAVE_MODE(reg); | 
 |  | 
 | 	pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads], | 
 | 			      ®); | 
 | 	sad_interl = sad_pkg(reg, 0); | 
 | 	for (sad_way = 0; sad_way < 8; sad_way++) { | 
 | 		if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way)) | 
 | 			break; | 
 | 		sad_interleave[sad_way] = sad_pkg(reg, sad_way); | 
 | 		debugf0("SAD interleave #%d: %d\n", | 
 | 			sad_way, sad_interleave[sad_way]); | 
 | 	} | 
 | 	debugf0("mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n", | 
 | 		pvt->sbridge_dev->mc, | 
 | 		n_sads, | 
 | 		addr, | 
 | 		limit, | 
 | 		sad_way + 7, | 
 | 		interleave_mode ? "" : "XOR[18:16]"); | 
 | 	if (interleave_mode) | 
 | 		idx = ((addr >> 6) ^ (addr >> 16)) & 7; | 
 | 	else | 
 | 		idx = (addr >> 6) & 7; | 
 | 	switch (sad_way) { | 
 | 	case 1: | 
 | 		idx = 0; | 
 | 		break; | 
 | 	case 2: | 
 | 		idx = idx & 1; | 
 | 		break; | 
 | 	case 4: | 
 | 		idx = idx & 3; | 
 | 		break; | 
 | 	case 8: | 
 | 		break; | 
 | 	default: | 
 | 		sprintf(msg, "Can't discover socket interleave"); | 
 | 		edac_mc_handle_ce_no_info(mci, msg); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	*socket = sad_interleave[idx]; | 
 | 	debugf0("SAD interleave index: %d (wayness %d) = CPU socket %d\n", | 
 | 		idx, sad_way, *socket); | 
 |  | 
 | 	/* | 
 | 	 * Move to the proper node structure, in order to access the | 
 | 	 * right PCI registers | 
 | 	 */ | 
 | 	new_mci = get_mci_for_node_id(*socket); | 
 | 	if (!new_mci) { | 
 | 		sprintf(msg, "Struct for socket #%u wasn't initialized", | 
 | 			*socket); | 
 | 		edac_mc_handle_ce_no_info(mci, msg); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	mci = new_mci; | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	/* | 
 | 	 * Step 2) Get memory channel | 
 | 	 */ | 
 | 	prv = 0; | 
 | 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { | 
 | 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads], | 
 | 				      ®); | 
 | 		limit = TAD_LIMIT(reg); | 
 | 		if (limit <= prv) { | 
 | 			sprintf(msg, "Can't discover the memory channel"); | 
 | 			edac_mc_handle_ce_no_info(mci, msg); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if  (addr <= limit) | 
 | 			break; | 
 | 		prv = limit; | 
 | 	} | 
 | 	ch_way = TAD_CH(reg) + 1; | 
 | 	sck_way = TAD_SOCK(reg) + 1; | 
 | 	/* | 
 | 	 * FIXME: Is it right to always use channel 0 for offsets? | 
 | 	 */ | 
 | 	pci_read_config_dword(pvt->pci_tad[0], | 
 | 				tad_ch_nilv_offset[n_tads], | 
 | 				&tad_offset); | 
 |  | 
 | 	if (ch_way == 3) | 
 | 		idx = addr >> 6; | 
 | 	else | 
 | 		idx = addr >> (6 + sck_way); | 
 | 	idx = idx % ch_way; | 
 |  | 
 | 	/* | 
 | 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ??? | 
 | 	 */ | 
 | 	switch (idx) { | 
 | 	case 0: | 
 | 		base_ch = TAD_TGT0(reg); | 
 | 		break; | 
 | 	case 1: | 
 | 		base_ch = TAD_TGT1(reg); | 
 | 		break; | 
 | 	case 2: | 
 | 		base_ch = TAD_TGT2(reg); | 
 | 		break; | 
 | 	case 3: | 
 | 		base_ch = TAD_TGT3(reg); | 
 | 		break; | 
 | 	default: | 
 | 		sprintf(msg, "Can't discover the TAD target"); | 
 | 		edac_mc_handle_ce_no_info(mci, msg); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	*channel_mask = 1 << base_ch; | 
 |  | 
 | 	if (pvt->is_mirrored) { | 
 | 		*channel_mask |= 1 << ((base_ch + 2) % 4); | 
 | 		switch(ch_way) { | 
 | 		case 2: | 
 | 		case 4: | 
 | 			sck_xch = 1 << sck_way * (ch_way >> 1); | 
 | 			break; | 
 | 		default: | 
 | 			sprintf(msg, "Invalid mirror set. Can't decode addr"); | 
 | 			edac_mc_handle_ce_no_info(mci, msg); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} else | 
 | 		sck_xch = (1 << sck_way) * ch_way; | 
 |  | 
 | 	if (pvt->is_lockstep) | 
 | 		*channel_mask |= 1 << ((base_ch + 1) % 4); | 
 |  | 
 | 	offset = TAD_OFFSET(tad_offset); | 
 |  | 
 | 	debugf0("TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n", | 
 | 		n_tads, | 
 | 		addr, | 
 | 		limit, | 
 | 		(u32)TAD_SOCK(reg), | 
 | 		ch_way, | 
 | 		offset, | 
 | 		idx, | 
 | 		base_ch, | 
 | 		*channel_mask); | 
 |  | 
 | 	/* Calculate channel address */ | 
 | 	/* Remove the TAD offset */ | 
 |  | 
 | 	if (offset > addr) { | 
 | 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!", | 
 | 			offset, addr); | 
 | 		edac_mc_handle_ce_no_info(mci, msg); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	addr -= offset; | 
 | 	/* Store the low bits [0:6] of the addr */ | 
 | 	ch_addr = addr & 0x7f; | 
 | 	/* Remove socket wayness and remove 6 bits */ | 
 | 	addr >>= 6; | 
 | 	addr = div_u64(addr, sck_xch); | 
 | #if 0 | 
 | 	/* Divide by channel way */ | 
 | 	addr = addr / ch_way; | 
 | #endif | 
 | 	/* Recover the last 6 bits */ | 
 | 	ch_addr |= addr << 6; | 
 |  | 
 | 	/* | 
 | 	 * Step 3) Decode rank | 
 | 	 */ | 
 | 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) { | 
 | 		pci_read_config_dword(pvt->pci_tad[base_ch], | 
 | 				      rir_way_limit[n_rir], | 
 | 				      ®); | 
 |  | 
 | 		if (!IS_RIR_VALID(reg)) | 
 | 			continue; | 
 |  | 
 | 		limit = RIR_LIMIT(reg); | 
 | 		mb = div_u64_rem(limit >> 20, 1000, &kb); | 
 | 		debugf0("RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n", | 
 | 			n_rir, | 
 | 			mb, kb, | 
 | 			limit, | 
 | 			1 << RIR_WAY(reg)); | 
 | 		if  (ch_addr <= limit) | 
 | 			break; | 
 | 	} | 
 | 	if (n_rir == MAX_RIR_RANGES) { | 
 | 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx", | 
 | 			ch_addr); | 
 | 		edac_mc_handle_ce_no_info(mci, msg); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	rir_way = RIR_WAY(reg); | 
 | 	if (pvt->is_close_pg) | 
 | 		idx = (ch_addr >> 6); | 
 | 	else | 
 | 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */ | 
 | 	idx %= 1 << rir_way; | 
 |  | 
 | 	pci_read_config_dword(pvt->pci_tad[base_ch], | 
 | 			      rir_offset[n_rir][idx], | 
 | 			      ®); | 
 | 	*rank = RIR_RNK_TGT(reg); | 
 |  | 
 | 	debugf0("RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n", | 
 | 		n_rir, | 
 | 		ch_addr, | 
 | 		limit, | 
 | 		rir_way, | 
 | 		idx); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /**************************************************************************** | 
 | 	Device initialization routines: put/get, init/exit | 
 |  ****************************************************************************/ | 
 |  | 
 | /* | 
 |  *	sbridge_put_all_devices	'put' all the devices that we have | 
 |  *				reserved via 'get' | 
 |  */ | 
 | static void sbridge_put_devices(struct sbridge_dev *sbridge_dev) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	debugf0(__FILE__ ": %s()\n", __func__); | 
 | 	for (i = 0; i < sbridge_dev->n_devs; i++) { | 
 | 		struct pci_dev *pdev = sbridge_dev->pdev[i]; | 
 | 		if (!pdev) | 
 | 			continue; | 
 | 		debugf0("Removing dev %02x:%02x.%d\n", | 
 | 			pdev->bus->number, | 
 | 			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); | 
 | 		pci_dev_put(pdev); | 
 | 	} | 
 | } | 
 |  | 
 | static void sbridge_put_all_devices(void) | 
 | { | 
 | 	struct sbridge_dev *sbridge_dev, *tmp; | 
 |  | 
 | 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) { | 
 | 		sbridge_put_devices(sbridge_dev); | 
 | 		free_sbridge_dev(sbridge_dev); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  *	sbridge_get_all_devices	Find and perform 'get' operation on the MCH's | 
 |  *			device/functions we want to reference for this driver | 
 |  * | 
 |  *			Need to 'get' device 16 func 1 and func 2 | 
 |  */ | 
 | static int sbridge_get_onedevice(struct pci_dev **prev, | 
 | 				 u8 *num_mc, | 
 | 				 const struct pci_id_table *table, | 
 | 				 const unsigned devno) | 
 | { | 
 | 	struct sbridge_dev *sbridge_dev; | 
 | 	const struct pci_id_descr *dev_descr = &table->descr[devno]; | 
 |  | 
 | 	struct pci_dev *pdev = NULL; | 
 | 	u8 bus = 0; | 
 |  | 
 | 	sbridge_printk(KERN_INFO, | 
 | 		"Seeking for: dev %02x.%d PCI ID %04x:%04x\n", | 
 | 		dev_descr->dev, dev_descr->func, | 
 | 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | 
 |  | 
 | 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | 
 | 			      dev_descr->dev_id, *prev); | 
 |  | 
 | 	if (!pdev) { | 
 | 		if (*prev) { | 
 | 			*prev = pdev; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if (dev_descr->optional) | 
 | 			return 0; | 
 |  | 
 | 		if (devno == 0) | 
 | 			return -ENODEV; | 
 |  | 
 | 		sbridge_printk(KERN_INFO, | 
 | 			"Device not found: dev %02x.%d PCI ID %04x:%04x\n", | 
 | 			dev_descr->dev, dev_descr->func, | 
 | 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | 
 |  | 
 | 		/* End of list, leave */ | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	bus = pdev->bus->number; | 
 |  | 
 | 	sbridge_dev = get_sbridge_dev(bus); | 
 | 	if (!sbridge_dev) { | 
 | 		sbridge_dev = alloc_sbridge_dev(bus, table); | 
 | 		if (!sbridge_dev) { | 
 | 			pci_dev_put(pdev); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		(*num_mc)++; | 
 | 	} | 
 |  | 
 | 	if (sbridge_dev->pdev[devno]) { | 
 | 		sbridge_printk(KERN_ERR, | 
 | 			"Duplicated device for " | 
 | 			"dev %02x:%d.%d PCI ID %04x:%04x\n", | 
 | 			bus, dev_descr->dev, dev_descr->func, | 
 | 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | 
 | 		pci_dev_put(pdev); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	sbridge_dev->pdev[devno] = pdev; | 
 |  | 
 | 	/* Sanity check */ | 
 | 	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev || | 
 | 			PCI_FUNC(pdev->devfn) != dev_descr->func)) { | 
 | 		sbridge_printk(KERN_ERR, | 
 | 			"Device PCI ID %04x:%04x " | 
 | 			"has dev %02x:%d.%d instead of dev %02x:%02x.%d\n", | 
 | 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id, | 
 | 			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), | 
 | 			bus, dev_descr->dev, dev_descr->func); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* Be sure that the device is enabled */ | 
 | 	if (unlikely(pci_enable_device(pdev) < 0)) { | 
 | 		sbridge_printk(KERN_ERR, | 
 | 			"Couldn't enable " | 
 | 			"dev %02x:%d.%d PCI ID %04x:%04x\n", | 
 | 			bus, dev_descr->dev, dev_descr->func, | 
 | 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	debugf0("Detected dev %02x:%d.%d PCI ID %04x:%04x\n", | 
 | 		bus, dev_descr->dev, | 
 | 		dev_descr->func, | 
 | 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | 
 |  | 
 | 	/* | 
 | 	 * As stated on drivers/pci/search.c, the reference count for | 
 | 	 * @from is always decremented if it is not %NULL. So, as we need | 
 | 	 * to get all devices up to null, we need to do a get for the device | 
 | 	 */ | 
 | 	pci_dev_get(pdev); | 
 |  | 
 | 	*prev = pdev; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int sbridge_get_all_devices(u8 *num_mc) | 
 | { | 
 | 	int i, rc; | 
 | 	struct pci_dev *pdev = NULL; | 
 | 	const struct pci_id_table *table = pci_dev_descr_sbridge_table; | 
 |  | 
 | 	while (table && table->descr) { | 
 | 		for (i = 0; i < table->n_devs; i++) { | 
 | 			pdev = NULL; | 
 | 			do { | 
 | 				rc = sbridge_get_onedevice(&pdev, num_mc, | 
 | 							   table, i); | 
 | 				if (rc < 0) { | 
 | 					if (i == 0) { | 
 | 						i = table->n_devs; | 
 | 						break; | 
 | 					} | 
 | 					sbridge_put_all_devices(); | 
 | 					return -ENODEV; | 
 | 				} | 
 | 			} while (pdev); | 
 | 		} | 
 | 		table++; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mci_bind_devs(struct mem_ctl_info *mci, | 
 | 			 struct sbridge_dev *sbridge_dev) | 
 | { | 
 | 	struct sbridge_pvt *pvt = mci->pvt_info; | 
 | 	struct pci_dev *pdev; | 
 | 	int i, func, slot; | 
 |  | 
 | 	for (i = 0; i < sbridge_dev->n_devs; i++) { | 
 | 		pdev = sbridge_dev->pdev[i]; | 
 | 		if (!pdev) | 
 | 			continue; | 
 | 		slot = PCI_SLOT(pdev->devfn); | 
 | 		func = PCI_FUNC(pdev->devfn); | 
 | 		switch (slot) { | 
 | 		case 12: | 
 | 			switch (func) { | 
 | 			case 6: | 
 | 				pvt->pci_sad0 = pdev; | 
 | 				break; | 
 | 			case 7: | 
 | 				pvt->pci_sad1 = pdev; | 
 | 				break; | 
 | 			default: | 
 | 				goto error; | 
 | 			} | 
 | 			break; | 
 | 		case 13: | 
 | 			switch (func) { | 
 | 			case 6: | 
 | 				pvt->pci_br = pdev; | 
 | 				break; | 
 | 			default: | 
 | 				goto error; | 
 | 			} | 
 | 			break; | 
 | 		case 14: | 
 | 			switch (func) { | 
 | 			case 0: | 
 | 				pvt->pci_ha0 = pdev; | 
 | 				break; | 
 | 			default: | 
 | 				goto error; | 
 | 			} | 
 | 			break; | 
 | 		case 15: | 
 | 			switch (func) { | 
 | 			case 0: | 
 | 				pvt->pci_ta = pdev; | 
 | 				break; | 
 | 			case 1: | 
 | 				pvt->pci_ras = pdev; | 
 | 				break; | 
 | 			case 2: | 
 | 			case 3: | 
 | 			case 4: | 
 | 			case 5: | 
 | 				pvt->pci_tad[func - 2] = pdev; | 
 | 				break; | 
 | 			default: | 
 | 				goto error; | 
 | 			} | 
 | 			break; | 
 | 		case 17: | 
 | 			switch (func) { | 
 | 			case 0: | 
 | 				pvt->pci_ddrio = pdev; | 
 | 				break; | 
 | 			default: | 
 | 				goto error; | 
 | 			} | 
 | 			break; | 
 | 		default: | 
 | 			goto error; | 
 | 		} | 
 |  | 
 | 		debugf0("Associated PCI %02x.%02d.%d with dev = %p\n", | 
 | 			sbridge_dev->bus, | 
 | 			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), | 
 | 			pdev); | 
 | 	} | 
 |  | 
 | 	/* Check if everything were registered */ | 
 | 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 || | 
 | 	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta || | 
 | 	    !pvt->pci_ddrio) | 
 | 		goto enodev; | 
 |  | 
 | 	for (i = 0; i < NUM_CHANNELS; i++) { | 
 | 		if (!pvt->pci_tad[i]) | 
 | 			goto enodev; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | enodev: | 
 | 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); | 
 | 	return -ENODEV; | 
 |  | 
 | error: | 
 | 	sbridge_printk(KERN_ERR, "Device %d, function %d " | 
 | 		      "is out of the expected range\n", | 
 | 		      slot, func); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | /**************************************************************************** | 
 | 			Error check routines | 
 |  ****************************************************************************/ | 
 |  | 
 | /* | 
 |  * While Sandy Bridge has error count registers, SMI BIOS read values from | 
 |  * and resets the counters. So, they are not reliable for the OS to read | 
 |  * from them. So, we have no option but to just trust on whatever MCE is | 
 |  * telling us about the errors. | 
 |  */ | 
 | static void sbridge_mce_output_error(struct mem_ctl_info *mci, | 
 | 				    const struct mce *m) | 
 | { | 
 | 	struct mem_ctl_info *new_mci; | 
 | 	struct sbridge_pvt *pvt = mci->pvt_info; | 
 | 	char *type, *optype, *msg, *recoverable_msg; | 
 | 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); | 
 | 	bool overflow = GET_BITFIELD(m->status, 62, 62); | 
 | 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); | 
 | 	bool recoverable = GET_BITFIELD(m->status, 56, 56); | 
 | 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); | 
 | 	u32 mscod = GET_BITFIELD(m->status, 16, 31); | 
 | 	u32 errcode = GET_BITFIELD(m->status, 0, 15); | 
 | 	u32 channel = GET_BITFIELD(m->status, 0, 3); | 
 | 	u32 optypenum = GET_BITFIELD(m->status, 4, 6); | 
 | 	long channel_mask, first_channel; | 
 | 	u8  rank, socket; | 
 | 	int csrow, rc, dimm; | 
 | 	char *area_type = "Unknown"; | 
 |  | 
 | 	if (ripv) | 
 | 		type = "NON_FATAL"; | 
 | 	else | 
 | 		type = "FATAL"; | 
 |  | 
 | 	/* | 
 | 	 * According with Table 15-9 of the Intel Archictecture spec vol 3A, | 
 | 	 * memory errors should fit in this mask: | 
 | 	 *	000f 0000 1mmm cccc (binary) | 
 | 	 * where: | 
 | 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors | 
 | 	 *	    won't be shown | 
 | 	 *	mmm = error type | 
 | 	 *	cccc = channel | 
 | 	 * If the mask doesn't match, report an error to the parsing logic | 
 | 	 */ | 
 | 	if (! ((errcode & 0xef80) == 0x80)) { | 
 | 		optype = "Can't parse: it is not a mem"; | 
 | 	} else { | 
 | 		switch (optypenum) { | 
 | 		case 0: | 
 | 			optype = "generic undef request"; | 
 | 			break; | 
 | 		case 1: | 
 | 			optype = "memory read"; | 
 | 			break; | 
 | 		case 2: | 
 | 			optype = "memory write"; | 
 | 			break; | 
 | 		case 3: | 
 | 			optype = "addr/cmd"; | 
 | 			break; | 
 | 		case 4: | 
 | 			optype = "memory scrubbing"; | 
 | 			break; | 
 | 		default: | 
 | 			optype = "reserved"; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rc = get_memory_error_data(mci, m->addr, &socket, | 
 | 				   &channel_mask, &rank, area_type); | 
 | 	if (rc < 0) | 
 | 		return; | 
 | 	new_mci = get_mci_for_node_id(socket); | 
 | 	if (!new_mci) { | 
 | 		edac_mc_handle_ce_no_info(mci, "Error: socket got corrupted!"); | 
 | 		return; | 
 | 	} | 
 | 	mci = new_mci; | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS); | 
 |  | 
 | 	if (rank < 4) | 
 | 		dimm = 0; | 
 | 	else if (rank < 8) | 
 | 		dimm = 1; | 
 | 	else | 
 | 		dimm = 2; | 
 |  | 
 | 	csrow = pvt->csrow_map[first_channel][dimm]; | 
 |  | 
 | 	if (uncorrected_error && recoverable) | 
 | 		recoverable_msg = " recoverable"; | 
 | 	else | 
 | 		recoverable_msg = ""; | 
 |  | 
 | 	/* | 
 | 	 * FIXME: What should we do with "channel" information on mcelog? | 
 | 	 * Probably, we can just discard it, as the channel information | 
 | 	 * comes from the get_memory_error_data() address decoding | 
 | 	 */ | 
 | 	msg = kasprintf(GFP_ATOMIC, | 
 | 			"%d %s error(s): %s on %s area %s%s: cpu=%d Err=%04x:%04x (ch=%d), " | 
 | 			"addr = 0x%08llx => socket=%d, Channel=%ld(mask=%ld), rank=%d\n", | 
 | 			core_err_cnt, | 
 | 			area_type, | 
 | 			optype, | 
 | 			type, | 
 | 			recoverable_msg, | 
 | 			overflow ? "OVERFLOW" : "", | 
 | 			m->cpu, | 
 | 			mscod, errcode, | 
 | 			channel,		/* 1111b means not specified */ | 
 | 			(long long) m->addr, | 
 | 			socket, | 
 | 			first_channel,		/* This is the real channel on SB */ | 
 | 			channel_mask, | 
 | 			rank); | 
 |  | 
 | 	debugf0("%s", msg); | 
 |  | 
 | 	/* Call the helper to output message */ | 
 | 	if (uncorrected_error) | 
 | 		edac_mc_handle_fbd_ue(mci, csrow, 0, 0, msg); | 
 | 	else | 
 | 		edac_mc_handle_fbd_ce(mci, csrow, 0, msg); | 
 |  | 
 | 	kfree(msg); | 
 | } | 
 |  | 
 | /* | 
 |  *	sbridge_check_error	Retrieve and process errors reported by the | 
 |  *				hardware. Called by the Core module. | 
 |  */ | 
 | static void sbridge_check_error(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct sbridge_pvt *pvt = mci->pvt_info; | 
 | 	int i; | 
 | 	unsigned count = 0; | 
 | 	struct mce *m; | 
 |  | 
 | 	/* | 
 | 	 * MCE first step: Copy all mce errors into a temporary buffer | 
 | 	 * We use a double buffering here, to reduce the risk of | 
 | 	 * loosing an error. | 
 | 	 */ | 
 | 	smp_rmb(); | 
 | 	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in) | 
 | 		% MCE_LOG_LEN; | 
 | 	if (!count) | 
 | 		return; | 
 |  | 
 | 	m = pvt->mce_outentry; | 
 | 	if (pvt->mce_in + count > MCE_LOG_LEN) { | 
 | 		unsigned l = MCE_LOG_LEN - pvt->mce_in; | 
 |  | 
 | 		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l); | 
 | 		smp_wmb(); | 
 | 		pvt->mce_in = 0; | 
 | 		count -= l; | 
 | 		m += l; | 
 | 	} | 
 | 	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count); | 
 | 	smp_wmb(); | 
 | 	pvt->mce_in += count; | 
 |  | 
 | 	smp_rmb(); | 
 | 	if (pvt->mce_overrun) { | 
 | 		sbridge_printk(KERN_ERR, "Lost %d memory errors\n", | 
 | 			      pvt->mce_overrun); | 
 | 		smp_wmb(); | 
 | 		pvt->mce_overrun = 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * MCE second step: parse errors and display | 
 | 	 */ | 
 | 	for (i = 0; i < count; i++) | 
 | 		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]); | 
 | } | 
 |  | 
 | /* | 
 |  * sbridge_mce_check_error	Replicates mcelog routine to get errors | 
 |  *				This routine simply queues mcelog errors, and | 
 |  *				return. The error itself should be handled later | 
 |  *				by sbridge_check_error. | 
 |  * WARNING: As this routine should be called at NMI time, extra care should | 
 |  * be taken to avoid deadlocks, and to be as fast as possible. | 
 |  */ | 
 | static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val, | 
 | 				   void *data) | 
 | { | 
 | 	struct mce *mce = (struct mce *)data; | 
 | 	struct mem_ctl_info *mci; | 
 | 	struct sbridge_pvt *pvt; | 
 |  | 
 | 	mci = get_mci_for_node_id(mce->socketid); | 
 | 	if (!mci) | 
 | 		return NOTIFY_BAD; | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	/* | 
 | 	 * Just let mcelog handle it if the error is | 
 | 	 * outside the memory controller. A memory error | 
 | 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. | 
 | 	 * bit 12 has an special meaning. | 
 | 	 */ | 
 | 	if ((mce->status & 0xefff) >> 7 != 1) | 
 | 		return NOTIFY_DONE; | 
 |  | 
 | 	printk("sbridge: HANDLING MCE MEMORY ERROR\n"); | 
 |  | 
 | 	printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n", | 
 | 	       mce->extcpu, mce->mcgstatus, mce->bank, mce->status); | 
 | 	printk("TSC %llx ", mce->tsc); | 
 | 	printk("ADDR %llx ", mce->addr); | 
 | 	printk("MISC %llx ", mce->misc); | 
 |  | 
 | 	printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n", | 
 | 		mce->cpuvendor, mce->cpuid, mce->time, | 
 | 		mce->socketid, mce->apicid); | 
 |  | 
 | 	/* Only handle if it is the right mc controller */ | 
 | 	if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc) | 
 | 		return NOTIFY_DONE; | 
 |  | 
 | 	smp_rmb(); | 
 | 	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) { | 
 | 		smp_wmb(); | 
 | 		pvt->mce_overrun++; | 
 | 		return NOTIFY_DONE; | 
 | 	} | 
 |  | 
 | 	/* Copy memory error at the ringbuffer */ | 
 | 	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce)); | 
 | 	smp_wmb(); | 
 | 	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN; | 
 |  | 
 | 	/* Handle fatal errors immediately */ | 
 | 	if (mce->mcgstatus & 1) | 
 | 		sbridge_check_error(mci); | 
 |  | 
 | 	/* Advice mcelog that the error were handled */ | 
 | 	return NOTIFY_STOP; | 
 | } | 
 |  | 
 | static struct notifier_block sbridge_mce_dec = { | 
 | 	.notifier_call      = sbridge_mce_check_error, | 
 | }; | 
 |  | 
 | /**************************************************************************** | 
 | 			EDAC register/unregister logic | 
 |  ****************************************************************************/ | 
 |  | 
 | static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev) | 
 | { | 
 | 	struct mem_ctl_info *mci = sbridge_dev->mci; | 
 | 	struct sbridge_pvt *pvt; | 
 |  | 
 | 	if (unlikely(!mci || !mci->pvt_info)) { | 
 | 		debugf0("MC: " __FILE__ ": %s(): dev = %p\n", | 
 | 			__func__, &sbridge_dev->pdev[0]->dev); | 
 |  | 
 | 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n", | 
 | 		__func__, mci, &sbridge_dev->pdev[0]->dev); | 
 |  | 
 | 	/* Remove MC sysfs nodes */ | 
 | 	edac_mc_del_mc(mci->dev); | 
 |  | 
 | 	debugf1("%s: free mci struct\n", mci->ctl_name); | 
 | 	kfree(mci->ctl_name); | 
 | 	edac_mc_free(mci); | 
 | 	sbridge_dev->mci = NULL; | 
 | } | 
 |  | 
 | static int sbridge_register_mci(struct sbridge_dev *sbridge_dev) | 
 | { | 
 | 	struct mem_ctl_info *mci; | 
 | 	struct sbridge_pvt *pvt; | 
 | 	int rc, channels, csrows; | 
 |  | 
 | 	/* Check the number of active and not disabled channels */ | 
 | 	rc = sbridge_get_active_channels(sbridge_dev->bus, &channels, &csrows); | 
 | 	if (unlikely(rc < 0)) | 
 | 		return rc; | 
 |  | 
 | 	/* allocate a new MC control structure */ | 
 | 	mci = edac_mc_alloc(sizeof(*pvt), csrows, channels, sbridge_dev->mc); | 
 | 	if (unlikely(!mci)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n", | 
 | 		__func__, mci, &sbridge_dev->pdev[0]->dev); | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 | 	memset(pvt, 0, sizeof(*pvt)); | 
 |  | 
 | 	/* Associate sbridge_dev and mci for future usage */ | 
 | 	pvt->sbridge_dev = sbridge_dev; | 
 | 	sbridge_dev->mci = mci; | 
 |  | 
 | 	mci->mtype_cap = MEM_FLAG_DDR3; | 
 | 	mci->edac_ctl_cap = EDAC_FLAG_NONE; | 
 | 	mci->edac_cap = EDAC_FLAG_NONE; | 
 | 	mci->mod_name = "sbridge_edac.c"; | 
 | 	mci->mod_ver = SBRIDGE_REVISION; | 
 | 	mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx); | 
 | 	mci->dev_name = pci_name(sbridge_dev->pdev[0]); | 
 | 	mci->ctl_page_to_phys = NULL; | 
 |  | 
 | 	/* Set the function pointer to an actual operation function */ | 
 | 	mci->edac_check = sbridge_check_error; | 
 |  | 
 | 	/* Store pci devices at mci for faster access */ | 
 | 	rc = mci_bind_devs(mci, sbridge_dev); | 
 | 	if (unlikely(rc < 0)) | 
 | 		goto fail0; | 
 |  | 
 | 	/* Get dimm basic config and the memory layout */ | 
 | 	get_dimm_config(mci); | 
 | 	get_memory_layout(mci); | 
 |  | 
 | 	/* record ptr to the generic device */ | 
 | 	mci->dev = &sbridge_dev->pdev[0]->dev; | 
 |  | 
 | 	/* add this new MC control structure to EDAC's list of MCs */ | 
 | 	if (unlikely(edac_mc_add_mc(mci))) { | 
 | 		debugf0("MC: " __FILE__ | 
 | 			": %s(): failed edac_mc_add_mc()\n", __func__); | 
 | 		rc = -EINVAL; | 
 | 		goto fail0; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail0: | 
 | 	kfree(mci->ctl_name); | 
 | 	edac_mc_free(mci); | 
 | 	sbridge_dev->mci = NULL; | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  *	sbridge_probe	Probe for ONE instance of device to see if it is | 
 |  *			present. | 
 |  *	return: | 
 |  *		0 for FOUND a device | 
 |  *		< 0 for error code | 
 |  */ | 
 |  | 
 | static int __devinit sbridge_probe(struct pci_dev *pdev, | 
 | 				  const struct pci_device_id *id) | 
 | { | 
 | 	int rc; | 
 | 	u8 mc, num_mc = 0; | 
 | 	struct sbridge_dev *sbridge_dev; | 
 |  | 
 | 	/* get the pci devices we want to reserve for our use */ | 
 | 	mutex_lock(&sbridge_edac_lock); | 
 |  | 
 | 	/* | 
 | 	 * All memory controllers are allocated at the first pass. | 
 | 	 */ | 
 | 	if (unlikely(probed >= 1)) { | 
 | 		mutex_unlock(&sbridge_edac_lock); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	probed++; | 
 |  | 
 | 	rc = sbridge_get_all_devices(&num_mc); | 
 | 	if (unlikely(rc < 0)) | 
 | 		goto fail0; | 
 | 	mc = 0; | 
 |  | 
 | 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { | 
 | 		debugf0("Registering MC#%d (%d of %d)\n", mc, mc + 1, num_mc); | 
 | 		sbridge_dev->mc = mc++; | 
 | 		rc = sbridge_register_mci(sbridge_dev); | 
 | 		if (unlikely(rc < 0)) | 
 | 			goto fail1; | 
 | 	} | 
 |  | 
 | 	sbridge_printk(KERN_INFO, "Driver loaded.\n"); | 
 |  | 
 | 	mutex_unlock(&sbridge_edac_lock); | 
 | 	return 0; | 
 |  | 
 | fail1: | 
 | 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) | 
 | 		sbridge_unregister_mci(sbridge_dev); | 
 |  | 
 | 	sbridge_put_all_devices(); | 
 | fail0: | 
 | 	mutex_unlock(&sbridge_edac_lock); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  *	sbridge_remove	destructor for one instance of device | 
 |  * | 
 |  */ | 
 | static void __devexit sbridge_remove(struct pci_dev *pdev) | 
 | { | 
 | 	struct sbridge_dev *sbridge_dev; | 
 |  | 
 | 	debugf0(__FILE__ ": %s()\n", __func__); | 
 |  | 
 | 	/* | 
 | 	 * we have a trouble here: pdev value for removal will be wrong, since | 
 | 	 * it will point to the X58 register used to detect that the machine | 
 | 	 * is a Nehalem or upper design. However, due to the way several PCI | 
 | 	 * devices are grouped together to provide MC functionality, we need | 
 | 	 * to use a different method for releasing the devices | 
 | 	 */ | 
 |  | 
 | 	mutex_lock(&sbridge_edac_lock); | 
 |  | 
 | 	if (unlikely(!probed)) { | 
 | 		mutex_unlock(&sbridge_edac_lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) | 
 | 		sbridge_unregister_mci(sbridge_dev); | 
 |  | 
 | 	/* Release PCI resources */ | 
 | 	sbridge_put_all_devices(); | 
 |  | 
 | 	probed--; | 
 |  | 
 | 	mutex_unlock(&sbridge_edac_lock); | 
 | } | 
 |  | 
 | MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl); | 
 |  | 
 | /* | 
 |  *	sbridge_driver	pci_driver structure for this module | 
 |  * | 
 |  */ | 
 | static struct pci_driver sbridge_driver = { | 
 | 	.name     = "sbridge_edac", | 
 | 	.probe    = sbridge_probe, | 
 | 	.remove   = __devexit_p(sbridge_remove), | 
 | 	.id_table = sbridge_pci_tbl, | 
 | }; | 
 |  | 
 | /* | 
 |  *	sbridge_init		Module entry function | 
 |  *			Try to initialize this module for its devices | 
 |  */ | 
 | static int __init sbridge_init(void) | 
 | { | 
 | 	int pci_rc; | 
 |  | 
 | 	debugf2("MC: " __FILE__ ": %s()\n", __func__); | 
 |  | 
 | 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */ | 
 | 	opstate_init(); | 
 |  | 
 | 	pci_rc = pci_register_driver(&sbridge_driver); | 
 |  | 
 | 	if (pci_rc >= 0) { | 
 | 		mce_register_decode_chain(&sbridge_mce_dec); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n", | 
 | 		      pci_rc); | 
 |  | 
 | 	return pci_rc; | 
 | } | 
 |  | 
 | /* | 
 |  *	sbridge_exit()	Module exit function | 
 |  *			Unregister the driver | 
 |  */ | 
 | static void __exit sbridge_exit(void) | 
 | { | 
 | 	debugf2("MC: " __FILE__ ": %s()\n", __func__); | 
 | 	pci_unregister_driver(&sbridge_driver); | 
 | 	mce_unregister_decode_chain(&sbridge_mce_dec); | 
 | } | 
 |  | 
 | module_init(sbridge_init); | 
 | module_exit(sbridge_exit); | 
 |  | 
 | module_param(edac_op_state, int, 0444); | 
 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>"); | 
 | MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); | 
 | MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - " | 
 | 		   SBRIDGE_REVISION); |