| /* | 
 |  * Copyright 2010 Tilera Corporation. All Rights Reserved. | 
 |  * | 
 |  *   This program is free software; you can redistribute it and/or | 
 |  *   modify it under the terms of the GNU General Public License | 
 |  *   as published by the Free Software Foundation, version 2. | 
 |  * | 
 |  *   This program is distributed in the hope that it will be useful, but | 
 |  *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
 |  *   NON INFRINGEMENT.  See the GNU General Public License for | 
 |  *   more details. | 
 |  * | 
 |  * This code maintains the "home" for each page in the system. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/list.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/sysctl.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/timex.h> | 
 | #include <linux/cache.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/module.h> | 
 |  | 
 | #include <asm/page.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/homecache.h> | 
 |  | 
 | #include <arch/sim.h> | 
 |  | 
 | #include "migrate.h" | 
 |  | 
 |  | 
 | #if CHIP_HAS_COHERENT_LOCAL_CACHE() | 
 |  | 
 | /* | 
 |  * The noallocl2 option suppresses all use of the L2 cache to cache | 
 |  * locally from a remote home.  There's no point in using it if we | 
 |  * don't have coherent local caching, though. | 
 |  */ | 
 | static int __write_once noallocl2; | 
 | static int __init set_noallocl2(char *str) | 
 | { | 
 | 	noallocl2 = 1; | 
 | 	return 0; | 
 | } | 
 | early_param("noallocl2", set_noallocl2); | 
 |  | 
 | #else | 
 |  | 
 | #define noallocl2 0 | 
 |  | 
 | #endif | 
 |  | 
 | /* Provide no-op versions of these routines to keep flush_remote() cleaner. */ | 
 | #define mark_caches_evicted_start() 0 | 
 | #define mark_caches_evicted_finish(mask, timestamp) do {} while (0) | 
 |  | 
 |  | 
 | /* | 
 |  * Update the irq_stat for cpus that we are going to interrupt | 
 |  * with TLB or cache flushes.  Also handle removing dataplane cpus | 
 |  * from the TLB flush set, and setting dataplane_tlb_state instead. | 
 |  */ | 
 | static void hv_flush_update(const struct cpumask *cache_cpumask, | 
 | 			    struct cpumask *tlb_cpumask, | 
 | 			    unsigned long tlb_va, unsigned long tlb_length, | 
 | 			    HV_Remote_ASID *asids, int asidcount) | 
 | { | 
 | 	struct cpumask mask; | 
 | 	int i, cpu; | 
 |  | 
 | 	cpumask_clear(&mask); | 
 | 	if (cache_cpumask) | 
 | 		cpumask_or(&mask, &mask, cache_cpumask); | 
 | 	if (tlb_cpumask && tlb_length) { | 
 | 		cpumask_or(&mask, &mask, tlb_cpumask); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < asidcount; ++i) | 
 | 		cpumask_set_cpu(asids[i].y * smp_width + asids[i].x, &mask); | 
 |  | 
 | 	/* | 
 | 	 * Don't bother to update atomically; losing a count | 
 | 	 * here is not that critical. | 
 | 	 */ | 
 | 	for_each_cpu(cpu, &mask) | 
 | 		++per_cpu(irq_stat, cpu).irq_hv_flush_count; | 
 | } | 
 |  | 
 | /* | 
 |  * This wrapper function around hv_flush_remote() does several things: | 
 |  * | 
 |  *  - Provides a return value error-checking panic path, since | 
 |  *    there's never any good reason for hv_flush_remote() to fail. | 
 |  *  - Accepts a 32-bit PFN rather than a 64-bit PA, which generally | 
 |  *    is the type that Linux wants to pass around anyway. | 
 |  *  - Centralizes the mark_caches_evicted() handling. | 
 |  *  - Canonicalizes that lengths of zero make cpumasks NULL. | 
 |  *  - Handles deferring TLB flushes for dataplane tiles. | 
 |  *  - Tracks remote interrupts in the per-cpu irq_cpustat_t. | 
 |  * | 
 |  * Note that we have to wait until the cache flush completes before | 
 |  * updating the per-cpu last_cache_flush word, since otherwise another | 
 |  * concurrent flush can race, conclude the flush has already | 
 |  * completed, and start to use the page while it's still dirty | 
 |  * remotely (running concurrently with the actual evict, presumably). | 
 |  */ | 
 | void flush_remote(unsigned long cache_pfn, unsigned long cache_control, | 
 | 		  const struct cpumask *cache_cpumask_orig, | 
 | 		  HV_VirtAddr tlb_va, unsigned long tlb_length, | 
 | 		  unsigned long tlb_pgsize, | 
 | 		  const struct cpumask *tlb_cpumask_orig, | 
 | 		  HV_Remote_ASID *asids, int asidcount) | 
 | { | 
 | 	int rc; | 
 | 	int timestamp = 0;  /* happy compiler */ | 
 | 	struct cpumask cache_cpumask_copy, tlb_cpumask_copy; | 
 | 	struct cpumask *cache_cpumask, *tlb_cpumask; | 
 | 	HV_PhysAddr cache_pa; | 
 | 	char cache_buf[NR_CPUS*5], tlb_buf[NR_CPUS*5]; | 
 |  | 
 | 	mb();   /* provided just to simplify "magic hypervisor" mode */ | 
 |  | 
 | 	/* | 
 | 	 * Canonicalize and copy the cpumasks. | 
 | 	 */ | 
 | 	if (cache_cpumask_orig && cache_control) { | 
 | 		cpumask_copy(&cache_cpumask_copy, cache_cpumask_orig); | 
 | 		cache_cpumask = &cache_cpumask_copy; | 
 | 	} else { | 
 | 		cpumask_clear(&cache_cpumask_copy); | 
 | 		cache_cpumask = NULL; | 
 | 	} | 
 | 	if (cache_cpumask == NULL) | 
 | 		cache_control = 0; | 
 | 	if (tlb_cpumask_orig && tlb_length) { | 
 | 		cpumask_copy(&tlb_cpumask_copy, tlb_cpumask_orig); | 
 | 		tlb_cpumask = &tlb_cpumask_copy; | 
 | 	} else { | 
 | 		cpumask_clear(&tlb_cpumask_copy); | 
 | 		tlb_cpumask = NULL; | 
 | 	} | 
 |  | 
 | 	hv_flush_update(cache_cpumask, tlb_cpumask, tlb_va, tlb_length, | 
 | 			asids, asidcount); | 
 | 	cache_pa = (HV_PhysAddr)cache_pfn << PAGE_SHIFT; | 
 | 	if (cache_control & HV_FLUSH_EVICT_L2) | 
 | 		timestamp = mark_caches_evicted_start(); | 
 | 	rc = hv_flush_remote(cache_pa, cache_control, | 
 | 			     cpumask_bits(cache_cpumask), | 
 | 			     tlb_va, tlb_length, tlb_pgsize, | 
 | 			     cpumask_bits(tlb_cpumask), | 
 | 			     asids, asidcount); | 
 | 	if (cache_control & HV_FLUSH_EVICT_L2) | 
 | 		mark_caches_evicted_finish(cache_cpumask, timestamp); | 
 | 	if (rc == 0) | 
 | 		return; | 
 | 	cpumask_scnprintf(cache_buf, sizeof(cache_buf), &cache_cpumask_copy); | 
 | 	cpumask_scnprintf(tlb_buf, sizeof(tlb_buf), &tlb_cpumask_copy); | 
 |  | 
 | 	pr_err("hv_flush_remote(%#llx, %#lx, %p [%s]," | 
 | 	       " %#lx, %#lx, %#lx, %p [%s], %p, %d) = %d\n", | 
 | 	       cache_pa, cache_control, cache_cpumask, cache_buf, | 
 | 	       (unsigned long)tlb_va, tlb_length, tlb_pgsize, | 
 | 	       tlb_cpumask, tlb_buf, | 
 | 	       asids, asidcount, rc); | 
 | 	panic("Unsafe to continue."); | 
 | } | 
 |  | 
 | void flush_remote_page(struct page *page, int order) | 
 | { | 
 | 	int i, pages = (1 << order); | 
 | 	for (i = 0; i < pages; ++i, ++page) { | 
 | 		void *p = kmap_atomic(page); | 
 | 		int hfh = 0; | 
 | 		int home = page_home(page); | 
 | #if CHIP_HAS_CBOX_HOME_MAP() | 
 | 		if (home == PAGE_HOME_HASH) | 
 | 			hfh = 1; | 
 | 		else | 
 | #endif | 
 | 			BUG_ON(home < 0 || home >= NR_CPUS); | 
 | 		finv_buffer_remote(p, PAGE_SIZE, hfh); | 
 | 		kunmap_atomic(p); | 
 | 	} | 
 | } | 
 |  | 
 | void homecache_evict(const struct cpumask *mask) | 
 | { | 
 | 	flush_remote(0, HV_FLUSH_EVICT_L2, mask, 0, 0, 0, NULL, NULL, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Return a mask of the cpus whose caches currently own these pages. | 
 |  * The return value is whether the pages are all coherently cached | 
 |  * (i.e. none are immutable, incoherent, or uncached). | 
 |  */ | 
 | static int homecache_mask(struct page *page, int pages, | 
 | 			  struct cpumask *home_mask) | 
 | { | 
 | 	int i; | 
 | 	int cached_coherently = 1; | 
 | 	cpumask_clear(home_mask); | 
 | 	for (i = 0; i < pages; ++i) { | 
 | 		int home = page_home(&page[i]); | 
 | 		if (home == PAGE_HOME_IMMUTABLE || | 
 | 		    home == PAGE_HOME_INCOHERENT) { | 
 | 			cpumask_copy(home_mask, cpu_possible_mask); | 
 | 			return 0; | 
 | 		} | 
 | #if CHIP_HAS_CBOX_HOME_MAP() | 
 | 		if (home == PAGE_HOME_HASH) { | 
 | 			cpumask_or(home_mask, home_mask, &hash_for_home_map); | 
 | 			continue; | 
 | 		} | 
 | #endif | 
 | 		if (home == PAGE_HOME_UNCACHED) { | 
 | 			cached_coherently = 0; | 
 | 			continue; | 
 | 		} | 
 | 		BUG_ON(home < 0 || home >= NR_CPUS); | 
 | 		cpumask_set_cpu(home, home_mask); | 
 | 	} | 
 | 	return cached_coherently; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the passed length, or zero if it's long enough that we | 
 |  * believe we should evict the whole L2 cache. | 
 |  */ | 
 | static unsigned long cache_flush_length(unsigned long length) | 
 | { | 
 | 	return (length >= CHIP_L2_CACHE_SIZE()) ? HV_FLUSH_EVICT_L2 : length; | 
 | } | 
 |  | 
 | /* Flush a page out of whatever cache(s) it is in. */ | 
 | void homecache_flush_cache(struct page *page, int order) | 
 | { | 
 | 	int pages = 1 << order; | 
 | 	int length = cache_flush_length(pages * PAGE_SIZE); | 
 | 	unsigned long pfn = page_to_pfn(page); | 
 | 	struct cpumask home_mask; | 
 |  | 
 | 	homecache_mask(page, pages, &home_mask); | 
 | 	flush_remote(pfn, length, &home_mask, 0, 0, 0, NULL, NULL, 0); | 
 | 	sim_validate_lines_evicted(PFN_PHYS(pfn), pages * PAGE_SIZE); | 
 | } | 
 |  | 
 |  | 
 | /* Report the home corresponding to a given PTE. */ | 
 | static int pte_to_home(pte_t pte) | 
 | { | 
 | 	if (hv_pte_get_nc(pte)) | 
 | 		return PAGE_HOME_IMMUTABLE; | 
 | 	switch (hv_pte_get_mode(pte)) { | 
 | 	case HV_PTE_MODE_CACHE_TILE_L3: | 
 | 		return get_remote_cache_cpu(pte); | 
 | 	case HV_PTE_MODE_CACHE_NO_L3: | 
 | 		return PAGE_HOME_INCOHERENT; | 
 | 	case HV_PTE_MODE_UNCACHED: | 
 | 		return PAGE_HOME_UNCACHED; | 
 | #if CHIP_HAS_CBOX_HOME_MAP() | 
 | 	case HV_PTE_MODE_CACHE_HASH_L3: | 
 | 		return PAGE_HOME_HASH; | 
 | #endif | 
 | 	} | 
 | 	panic("Bad PTE %#llx\n", pte.val); | 
 | } | 
 |  | 
 | /* Update the home of a PTE if necessary (can also be used for a pgprot_t). */ | 
 | pte_t pte_set_home(pte_t pte, int home) | 
 | { | 
 | 	/* Check for non-linear file mapping "PTEs" and pass them through. */ | 
 | 	if (pte_file(pte)) | 
 | 		return pte; | 
 |  | 
 | #if CHIP_HAS_MMIO() | 
 | 	/* Check for MMIO mappings and pass them through. */ | 
 | 	if (hv_pte_get_mode(pte) == HV_PTE_MODE_MMIO) | 
 | 		return pte; | 
 | #endif | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * Only immutable pages get NC mappings.  If we have a | 
 | 	 * non-coherent PTE, but the underlying page is not | 
 | 	 * immutable, it's likely the result of a forced | 
 | 	 * caching setting running up against ptrace setting | 
 | 	 * the page to be writable underneath.  In this case, | 
 | 	 * just keep the PTE coherent. | 
 | 	 */ | 
 | 	if (hv_pte_get_nc(pte) && home != PAGE_HOME_IMMUTABLE) { | 
 | 		pte = hv_pte_clear_nc(pte); | 
 | 		pr_err("non-immutable page incoherently referenced: %#llx\n", | 
 | 		       pte.val); | 
 | 	} | 
 |  | 
 | 	switch (home) { | 
 |  | 
 | 	case PAGE_HOME_UNCACHED: | 
 | 		pte = hv_pte_set_mode(pte, HV_PTE_MODE_UNCACHED); | 
 | 		break; | 
 |  | 
 | 	case PAGE_HOME_INCOHERENT: | 
 | 		pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_NO_L3); | 
 | 		break; | 
 |  | 
 | 	case PAGE_HOME_IMMUTABLE: | 
 | 		/* | 
 | 		 * We could home this page anywhere, since it's immutable, | 
 | 		 * but by default just home it to follow "hash_default". | 
 | 		 */ | 
 | 		BUG_ON(hv_pte_get_writable(pte)); | 
 | 		if (pte_get_forcecache(pte)) { | 
 | 			/* Upgrade "force any cpu" to "No L3" for immutable. */ | 
 | 			if (hv_pte_get_mode(pte) == HV_PTE_MODE_CACHE_TILE_L3 | 
 | 			    && pte_get_anyhome(pte)) { | 
 | 				pte = hv_pte_set_mode(pte, | 
 | 						      HV_PTE_MODE_CACHE_NO_L3); | 
 | 			} | 
 | 		} else | 
 | #if CHIP_HAS_CBOX_HOME_MAP() | 
 | 		if (hash_default) | 
 | 			pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_HASH_L3); | 
 | 		else | 
 | #endif | 
 | 			pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_NO_L3); | 
 | 		pte = hv_pte_set_nc(pte); | 
 | 		break; | 
 |  | 
 | #if CHIP_HAS_CBOX_HOME_MAP() | 
 | 	case PAGE_HOME_HASH: | 
 | 		pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_HASH_L3); | 
 | 		break; | 
 | #endif | 
 |  | 
 | 	default: | 
 | 		BUG_ON(home < 0 || home >= NR_CPUS || | 
 | 		       !cpu_is_valid_lotar(home)); | 
 | 		pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3); | 
 | 		pte = set_remote_cache_cpu(pte, home); | 
 | 		break; | 
 | 	} | 
 |  | 
 | #if CHIP_HAS_NC_AND_NOALLOC_BITS() | 
 | 	if (noallocl2) | 
 | 		pte = hv_pte_set_no_alloc_l2(pte); | 
 |  | 
 | 	/* Simplify "no local and no l3" to "uncached" */ | 
 | 	if (hv_pte_get_no_alloc_l2(pte) && hv_pte_get_no_alloc_l1(pte) && | 
 | 	    hv_pte_get_mode(pte) == HV_PTE_MODE_CACHE_NO_L3) { | 
 | 		pte = hv_pte_set_mode(pte, HV_PTE_MODE_UNCACHED); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* Checking this case here gives a better panic than from the hv. */ | 
 | 	BUG_ON(hv_pte_get_mode(pte) == 0); | 
 |  | 
 | 	return pte; | 
 | } | 
 | EXPORT_SYMBOL(pte_set_home); | 
 |  | 
 | /* | 
 |  * The routines in this section are the "static" versions of the normal | 
 |  * dynamic homecaching routines; they just set the home cache | 
 |  * of a kernel page once, and require a full-chip cache/TLB flush, | 
 |  * so they're not suitable for anything but infrequent use. | 
 |  */ | 
 |  | 
 | #if CHIP_HAS_CBOX_HOME_MAP() | 
 | static inline int initial_page_home(void) { return PAGE_HOME_HASH; } | 
 | #else | 
 | static inline int initial_page_home(void) { return 0; } | 
 | #endif | 
 |  | 
 | int page_home(struct page *page) | 
 | { | 
 | 	if (PageHighMem(page)) { | 
 | 		return initial_page_home(); | 
 | 	} else { | 
 | 		unsigned long kva = (unsigned long)page_address(page); | 
 | 		return pte_to_home(*virt_to_pte(NULL, kva)); | 
 | 	} | 
 | } | 
 |  | 
 | void homecache_change_page_home(struct page *page, int order, int home) | 
 | { | 
 | 	int i, pages = (1 << order); | 
 | 	unsigned long kva; | 
 |  | 
 | 	BUG_ON(PageHighMem(page)); | 
 | 	BUG_ON(page_count(page) > 1); | 
 | 	BUG_ON(page_mapcount(page) != 0); | 
 | 	kva = (unsigned long) page_address(page); | 
 | 	flush_remote(0, HV_FLUSH_EVICT_L2, &cpu_cacheable_map, | 
 | 		     kva, pages * PAGE_SIZE, PAGE_SIZE, cpu_online_mask, | 
 | 		     NULL, 0); | 
 |  | 
 | 	for (i = 0; i < pages; ++i, kva += PAGE_SIZE) { | 
 | 		pte_t *ptep = virt_to_pte(NULL, kva); | 
 | 		pte_t pteval = *ptep; | 
 | 		BUG_ON(!pte_present(pteval) || pte_huge(pteval)); | 
 | 		__set_pte(ptep, pte_set_home(pteval, home)); | 
 | 	} | 
 | } | 
 |  | 
 | struct page *homecache_alloc_pages(gfp_t gfp_mask, | 
 | 				   unsigned int order, int home) | 
 | { | 
 | 	struct page *page; | 
 | 	BUG_ON(gfp_mask & __GFP_HIGHMEM);   /* must be lowmem */ | 
 | 	page = alloc_pages(gfp_mask, order); | 
 | 	if (page) | 
 | 		homecache_change_page_home(page, order, home); | 
 | 	return page; | 
 | } | 
 | EXPORT_SYMBOL(homecache_alloc_pages); | 
 |  | 
 | struct page *homecache_alloc_pages_node(int nid, gfp_t gfp_mask, | 
 | 					unsigned int order, int home) | 
 | { | 
 | 	struct page *page; | 
 | 	BUG_ON(gfp_mask & __GFP_HIGHMEM);   /* must be lowmem */ | 
 | 	page = alloc_pages_node(nid, gfp_mask, order); | 
 | 	if (page) | 
 | 		homecache_change_page_home(page, order, home); | 
 | 	return page; | 
 | } | 
 |  | 
 | void homecache_free_pages(unsigned long addr, unsigned int order) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	if (addr == 0) | 
 | 		return; | 
 |  | 
 | 	VM_BUG_ON(!virt_addr_valid((void *)addr)); | 
 | 	page = virt_to_page((void *)addr); | 
 | 	if (put_page_testzero(page)) { | 
 | 		int pages = (1 << order); | 
 | 		homecache_change_page_home(page, order, initial_page_home()); | 
 | 		while (pages--) | 
 | 			__free_page(page++); | 
 | 	} | 
 | } |