|  | /** | 
|  | * eCryptfs: Linux filesystem encryption layer | 
|  | * | 
|  | * Copyright (C) 1997-2004 Erez Zadok | 
|  | * Copyright (C) 2001-2004 Stony Brook University | 
|  | * Copyright (C) 2004-2007 International Business Machines Corp. | 
|  | *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> | 
|  | *   		Michael C. Thompson <mcthomps@us.ibm.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation; either version 2 of the | 
|  | * License, or (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA | 
|  | * 02111-1307, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/key.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/crypto.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include "ecryptfs_kernel.h" | 
|  |  | 
|  | static int | 
|  | ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, | 
|  | struct page *dst_page, int dst_offset, | 
|  | struct page *src_page, int src_offset, int size, | 
|  | unsigned char *iv); | 
|  | static int | 
|  | ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, | 
|  | struct page *dst_page, int dst_offset, | 
|  | struct page *src_page, int src_offset, int size, | 
|  | unsigned char *iv); | 
|  |  | 
|  | /** | 
|  | * ecryptfs_to_hex | 
|  | * @dst: Buffer to take hex character representation of contents of | 
|  | *       src; must be at least of size (src_size * 2) | 
|  | * @src: Buffer to be converted to a hex string respresentation | 
|  | * @src_size: number of bytes to convert | 
|  | */ | 
|  | void ecryptfs_to_hex(char *dst, char *src, size_t src_size) | 
|  | { | 
|  | int x; | 
|  |  | 
|  | for (x = 0; x < src_size; x++) | 
|  | sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_from_hex | 
|  | * @dst: Buffer to take the bytes from src hex; must be at least of | 
|  | *       size (src_size / 2) | 
|  | * @src: Buffer to be converted from a hex string respresentation to raw value | 
|  | * @dst_size: size of dst buffer, or number of hex characters pairs to convert | 
|  | */ | 
|  | void ecryptfs_from_hex(char *dst, char *src, int dst_size) | 
|  | { | 
|  | int x; | 
|  | char tmp[3] = { 0, }; | 
|  |  | 
|  | for (x = 0; x < dst_size; x++) { | 
|  | tmp[0] = src[x * 2]; | 
|  | tmp[1] = src[x * 2 + 1]; | 
|  | dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_calculate_md5 - calculates the md5 of @src | 
|  | * @dst: Pointer to 16 bytes of allocated memory | 
|  | * @crypt_stat: Pointer to crypt_stat struct for the current inode | 
|  | * @src: Data to be md5'd | 
|  | * @len: Length of @src | 
|  | * | 
|  | * Uses the allocated crypto context that crypt_stat references to | 
|  | * generate the MD5 sum of the contents of src. | 
|  | */ | 
|  | static int ecryptfs_calculate_md5(char *dst, | 
|  | struct ecryptfs_crypt_stat *crypt_stat, | 
|  | char *src, int len) | 
|  | { | 
|  | struct scatterlist sg; | 
|  | struct hash_desc desc = { | 
|  | .tfm = crypt_stat->hash_tfm, | 
|  | .flags = CRYPTO_TFM_REQ_MAY_SLEEP | 
|  | }; | 
|  | int rc = 0; | 
|  |  | 
|  | mutex_lock(&crypt_stat->cs_hash_tfm_mutex); | 
|  | sg_init_one(&sg, (u8 *)src, len); | 
|  | if (!desc.tfm) { | 
|  | desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0, | 
|  | CRYPTO_ALG_ASYNC); | 
|  | if (IS_ERR(desc.tfm)) { | 
|  | rc = PTR_ERR(desc.tfm); | 
|  | ecryptfs_printk(KERN_ERR, "Error attempting to " | 
|  | "allocate crypto context; rc = [%d]\n", | 
|  | rc); | 
|  | goto out; | 
|  | } | 
|  | crypt_stat->hash_tfm = desc.tfm; | 
|  | } | 
|  | crypto_hash_init(&desc); | 
|  | crypto_hash_update(&desc, &sg, len); | 
|  | crypto_hash_final(&desc, dst); | 
|  | mutex_unlock(&crypt_stat->cs_hash_tfm_mutex); | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, | 
|  | char *cipher_name, | 
|  | char *chaining_modifier) | 
|  | { | 
|  | int cipher_name_len = strlen(cipher_name); | 
|  | int chaining_modifier_len = strlen(chaining_modifier); | 
|  | int algified_name_len; | 
|  | int rc; | 
|  |  | 
|  | algified_name_len = (chaining_modifier_len + cipher_name_len + 3); | 
|  | (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); | 
|  | if (!(*algified_name)) { | 
|  | rc = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | snprintf((*algified_name), algified_name_len, "%s(%s)", | 
|  | chaining_modifier, cipher_name); | 
|  | rc = 0; | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_derive_iv | 
|  | * @iv: destination for the derived iv vale | 
|  | * @crypt_stat: Pointer to crypt_stat struct for the current inode | 
|  | * @offset: Offset of the page whose's iv we are to derive | 
|  | * | 
|  | * Generate the initialization vector from the given root IV and page | 
|  | * offset. | 
|  | * | 
|  | * Returns zero on success; non-zero on error. | 
|  | */ | 
|  | static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, | 
|  | pgoff_t offset) | 
|  | { | 
|  | int rc = 0; | 
|  | char dst[MD5_DIGEST_SIZE]; | 
|  | char src[ECRYPTFS_MAX_IV_BYTES + 16]; | 
|  |  | 
|  | if (unlikely(ecryptfs_verbosity > 0)) { | 
|  | ecryptfs_printk(KERN_DEBUG, "root iv:\n"); | 
|  | ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); | 
|  | } | 
|  | /* TODO: It is probably secure to just cast the least | 
|  | * significant bits of the root IV into an unsigned long and | 
|  | * add the offset to that rather than go through all this | 
|  | * hashing business. -Halcrow */ | 
|  | memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); | 
|  | memset((src + crypt_stat->iv_bytes), 0, 16); | 
|  | snprintf((src + crypt_stat->iv_bytes), 16, "%ld", offset); | 
|  | if (unlikely(ecryptfs_verbosity > 0)) { | 
|  | ecryptfs_printk(KERN_DEBUG, "source:\n"); | 
|  | ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); | 
|  | } | 
|  | rc = ecryptfs_calculate_md5(dst, crypt_stat, src, | 
|  | (crypt_stat->iv_bytes + 16)); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_WARNING, "Error attempting to compute " | 
|  | "MD5 while generating IV for a page\n"); | 
|  | goto out; | 
|  | } | 
|  | memcpy(iv, dst, crypt_stat->iv_bytes); | 
|  | if (unlikely(ecryptfs_verbosity > 0)) { | 
|  | ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); | 
|  | ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); | 
|  | } | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_init_crypt_stat | 
|  | * @crypt_stat: Pointer to the crypt_stat struct to initialize. | 
|  | * | 
|  | * Initialize the crypt_stat structure. | 
|  | */ | 
|  | void | 
|  | ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) | 
|  | { | 
|  | memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); | 
|  | mutex_init(&crypt_stat->cs_mutex); | 
|  | mutex_init(&crypt_stat->cs_tfm_mutex); | 
|  | mutex_init(&crypt_stat->cs_hash_tfm_mutex); | 
|  | crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_destruct_crypt_stat | 
|  | * @crypt_stat: Pointer to the crypt_stat struct to initialize. | 
|  | * | 
|  | * Releases all memory associated with a crypt_stat struct. | 
|  | */ | 
|  | void ecryptfs_destruct_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) | 
|  | { | 
|  | if (crypt_stat->tfm) | 
|  | crypto_free_blkcipher(crypt_stat->tfm); | 
|  | if (crypt_stat->hash_tfm) | 
|  | crypto_free_hash(crypt_stat->hash_tfm); | 
|  | memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); | 
|  | } | 
|  |  | 
|  | void ecryptfs_destruct_mount_crypt_stat( | 
|  | struct ecryptfs_mount_crypt_stat *mount_crypt_stat) | 
|  | { | 
|  | if (mount_crypt_stat->global_auth_tok_key) | 
|  | key_put(mount_crypt_stat->global_auth_tok_key); | 
|  | if (mount_crypt_stat->global_key_tfm) | 
|  | crypto_free_blkcipher(mount_crypt_stat->global_key_tfm); | 
|  | memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * virt_to_scatterlist | 
|  | * @addr: Virtual address | 
|  | * @size: Size of data; should be an even multiple of the block size | 
|  | * @sg: Pointer to scatterlist array; set to NULL to obtain only | 
|  | *      the number of scatterlist structs required in array | 
|  | * @sg_size: Max array size | 
|  | * | 
|  | * Fills in a scatterlist array with page references for a passed | 
|  | * virtual address. | 
|  | * | 
|  | * Returns the number of scatterlist structs in array used | 
|  | */ | 
|  | int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, | 
|  | int sg_size) | 
|  | { | 
|  | int i = 0; | 
|  | struct page *pg; | 
|  | int offset; | 
|  | int remainder_of_page; | 
|  |  | 
|  | while (size > 0 && i < sg_size) { | 
|  | pg = virt_to_page(addr); | 
|  | offset = offset_in_page(addr); | 
|  | if (sg) { | 
|  | sg[i].page = pg; | 
|  | sg[i].offset = offset; | 
|  | } | 
|  | remainder_of_page = PAGE_CACHE_SIZE - offset; | 
|  | if (size >= remainder_of_page) { | 
|  | if (sg) | 
|  | sg[i].length = remainder_of_page; | 
|  | addr += remainder_of_page; | 
|  | size -= remainder_of_page; | 
|  | } else { | 
|  | if (sg) | 
|  | sg[i].length = size; | 
|  | addr += size; | 
|  | size = 0; | 
|  | } | 
|  | i++; | 
|  | } | 
|  | if (size > 0) | 
|  | return -ENOMEM; | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * encrypt_scatterlist | 
|  | * @crypt_stat: Pointer to the crypt_stat struct to initialize. | 
|  | * @dest_sg: Destination of encrypted data | 
|  | * @src_sg: Data to be encrypted | 
|  | * @size: Length of data to be encrypted | 
|  | * @iv: iv to use during encryption | 
|  | * | 
|  | * Returns the number of bytes encrypted; negative value on error | 
|  | */ | 
|  | static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, | 
|  | struct scatterlist *dest_sg, | 
|  | struct scatterlist *src_sg, int size, | 
|  | unsigned char *iv) | 
|  | { | 
|  | struct blkcipher_desc desc = { | 
|  | .tfm = crypt_stat->tfm, | 
|  | .info = iv, | 
|  | .flags = CRYPTO_TFM_REQ_MAY_SLEEP | 
|  | }; | 
|  | int rc = 0; | 
|  |  | 
|  | BUG_ON(!crypt_stat || !crypt_stat->tfm | 
|  | || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); | 
|  | if (unlikely(ecryptfs_verbosity > 0)) { | 
|  | ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n", | 
|  | crypt_stat->key_size); | 
|  | ecryptfs_dump_hex(crypt_stat->key, | 
|  | crypt_stat->key_size); | 
|  | } | 
|  | /* Consider doing this once, when the file is opened */ | 
|  | mutex_lock(&crypt_stat->cs_tfm_mutex); | 
|  | rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, | 
|  | crypt_stat->key_size); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", | 
|  | rc); | 
|  | mutex_unlock(&crypt_stat->cs_tfm_mutex); | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size); | 
|  | crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size); | 
|  | mutex_unlock(&crypt_stat->cs_tfm_mutex); | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void | 
|  | ecryptfs_extent_to_lwr_pg_idx_and_offset(unsigned long *lower_page_idx, | 
|  | int *byte_offset, | 
|  | struct ecryptfs_crypt_stat *crypt_stat, | 
|  | unsigned long extent_num) | 
|  | { | 
|  | unsigned long lower_extent_num; | 
|  | int extents_occupied_by_headers_at_front; | 
|  | int bytes_occupied_by_headers_at_front; | 
|  | int extent_offset; | 
|  | int extents_per_page; | 
|  |  | 
|  | bytes_occupied_by_headers_at_front = | 
|  | ( crypt_stat->header_extent_size | 
|  | * crypt_stat->num_header_extents_at_front ); | 
|  | extents_occupied_by_headers_at_front = | 
|  | ( bytes_occupied_by_headers_at_front | 
|  | / crypt_stat->extent_size ); | 
|  | lower_extent_num = extents_occupied_by_headers_at_front + extent_num; | 
|  | extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size; | 
|  | (*lower_page_idx) = lower_extent_num / extents_per_page; | 
|  | extent_offset = lower_extent_num % extents_per_page; | 
|  | (*byte_offset) = extent_offset * crypt_stat->extent_size; | 
|  | ecryptfs_printk(KERN_DEBUG, " * crypt_stat->header_extent_size = " | 
|  | "[%d]\n", crypt_stat->header_extent_size); | 
|  | ecryptfs_printk(KERN_DEBUG, " * crypt_stat->" | 
|  | "num_header_extents_at_front = [%d]\n", | 
|  | crypt_stat->num_header_extents_at_front); | 
|  | ecryptfs_printk(KERN_DEBUG, " * extents_occupied_by_headers_at_" | 
|  | "front = [%d]\n", extents_occupied_by_headers_at_front); | 
|  | ecryptfs_printk(KERN_DEBUG, " * lower_extent_num = [0x%.16x]\n", | 
|  | lower_extent_num); | 
|  | ecryptfs_printk(KERN_DEBUG, " * extents_per_page = [%d]\n", | 
|  | extents_per_page); | 
|  | ecryptfs_printk(KERN_DEBUG, " * (*lower_page_idx) = [0x%.16x]\n", | 
|  | (*lower_page_idx)); | 
|  | ecryptfs_printk(KERN_DEBUG, " * extent_offset = [%d]\n", | 
|  | extent_offset); | 
|  | ecryptfs_printk(KERN_DEBUG, " * (*byte_offset) = [%d]\n", | 
|  | (*byte_offset)); | 
|  | } | 
|  |  | 
|  | static int ecryptfs_write_out_page(struct ecryptfs_page_crypt_context *ctx, | 
|  | struct page *lower_page, | 
|  | struct inode *lower_inode, | 
|  | int byte_offset_in_page, int bytes_to_write) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) { | 
|  | rc = ecryptfs_commit_lower_page(lower_page, lower_inode, | 
|  | ctx->param.lower_file, | 
|  | byte_offset_in_page, | 
|  | bytes_to_write); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_ERR, "Error calling lower " | 
|  | "commit; rc = [%d]\n", rc); | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | rc = ecryptfs_writepage_and_release_lower_page(lower_page, | 
|  | lower_inode, | 
|  | ctx->param.wbc); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_ERR, "Error calling lower " | 
|  | "writepage(); rc = [%d]\n", rc); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int ecryptfs_read_in_page(struct ecryptfs_page_crypt_context *ctx, | 
|  | struct page **lower_page, | 
|  | struct inode *lower_inode, | 
|  | unsigned long lower_page_idx, | 
|  | int byte_offset_in_page) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) { | 
|  | /* TODO: Limit this to only the data extents that are | 
|  | * needed */ | 
|  | rc = ecryptfs_get_lower_page(lower_page, lower_inode, | 
|  | ctx->param.lower_file, | 
|  | lower_page_idx, | 
|  | byte_offset_in_page, | 
|  | (PAGE_CACHE_SIZE | 
|  | - byte_offset_in_page)); | 
|  | if (rc) { | 
|  | ecryptfs_printk( | 
|  | KERN_ERR, "Error attempting to grab, map, " | 
|  | "and prepare_write lower page with index " | 
|  | "[0x%.16x]; rc = [%d]\n", lower_page_idx, rc); | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | *lower_page = grab_cache_page(lower_inode->i_mapping, | 
|  | lower_page_idx); | 
|  | if (!(*lower_page)) { | 
|  | rc = -EINVAL; | 
|  | ecryptfs_printk( | 
|  | KERN_ERR, "Error attempting to grab and map " | 
|  | "lower page with index [0x%.16x]; rc = [%d]\n", | 
|  | lower_page_idx, rc); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_encrypt_page | 
|  | * @ctx: The context of the page | 
|  | * | 
|  | * Encrypt an eCryptfs page. This is done on a per-extent basis. Note | 
|  | * that eCryptfs pages may straddle the lower pages -- for instance, | 
|  | * if the file was created on a machine with an 8K page size | 
|  | * (resulting in an 8K header), and then the file is copied onto a | 
|  | * host with a 32K page size, then when reading page 0 of the eCryptfs | 
|  | * file, 24K of page 0 of the lower file will be read and decrypted, | 
|  | * and then 8K of page 1 of the lower file will be read and decrypted. | 
|  | * | 
|  | * The actual operations performed on each page depends on the | 
|  | * contents of the ecryptfs_page_crypt_context struct. | 
|  | * | 
|  | * Returns zero on success; negative on error | 
|  | */ | 
|  | int ecryptfs_encrypt_page(struct ecryptfs_page_crypt_context *ctx) | 
|  | { | 
|  | char extent_iv[ECRYPTFS_MAX_IV_BYTES]; | 
|  | unsigned long base_extent; | 
|  | unsigned long extent_offset = 0; | 
|  | unsigned long lower_page_idx = 0; | 
|  | unsigned long prior_lower_page_idx = 0; | 
|  | struct page *lower_page; | 
|  | struct inode *lower_inode; | 
|  | struct ecryptfs_inode_info *inode_info; | 
|  | struct ecryptfs_crypt_stat *crypt_stat; | 
|  | int rc = 0; | 
|  | int lower_byte_offset = 0; | 
|  | int orig_byte_offset = 0; | 
|  | int num_extents_per_page; | 
|  | #define ECRYPTFS_PAGE_STATE_UNREAD    0 | 
|  | #define ECRYPTFS_PAGE_STATE_READ      1 | 
|  | #define ECRYPTFS_PAGE_STATE_MODIFIED  2 | 
|  | #define ECRYPTFS_PAGE_STATE_WRITTEN   3 | 
|  | int page_state; | 
|  |  | 
|  | lower_inode = ecryptfs_inode_to_lower(ctx->page->mapping->host); | 
|  | inode_info = ecryptfs_inode_to_private(ctx->page->mapping->host); | 
|  | crypt_stat = &inode_info->crypt_stat; | 
|  | if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { | 
|  | rc = ecryptfs_copy_page_to_lower(ctx->page, lower_inode, | 
|  | ctx->param.lower_file); | 
|  | if (rc) | 
|  | ecryptfs_printk(KERN_ERR, "Error attempting to copy " | 
|  | "page at index [0x%.16x]\n", | 
|  | ctx->page->index); | 
|  | goto out; | 
|  | } | 
|  | num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size; | 
|  | base_extent = (ctx->page->index * num_extents_per_page); | 
|  | page_state = ECRYPTFS_PAGE_STATE_UNREAD; | 
|  | while (extent_offset < num_extents_per_page) { | 
|  | ecryptfs_extent_to_lwr_pg_idx_and_offset( | 
|  | &lower_page_idx, &lower_byte_offset, crypt_stat, | 
|  | (base_extent + extent_offset)); | 
|  | if (prior_lower_page_idx != lower_page_idx | 
|  | && page_state == ECRYPTFS_PAGE_STATE_MODIFIED) { | 
|  | rc = ecryptfs_write_out_page(ctx, lower_page, | 
|  | lower_inode, | 
|  | orig_byte_offset, | 
|  | (PAGE_CACHE_SIZE | 
|  | - orig_byte_offset)); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_ERR, "Error attempting " | 
|  | "to write out page; rc = [%d]" | 
|  | "\n", rc); | 
|  | goto out; | 
|  | } | 
|  | page_state = ECRYPTFS_PAGE_STATE_WRITTEN; | 
|  | } | 
|  | if (page_state == ECRYPTFS_PAGE_STATE_UNREAD | 
|  | || page_state == ECRYPTFS_PAGE_STATE_WRITTEN) { | 
|  | rc = ecryptfs_read_in_page(ctx, &lower_page, | 
|  | lower_inode, lower_page_idx, | 
|  | lower_byte_offset); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_ERR, "Error attempting " | 
|  | "to read in lower page with " | 
|  | "index [0x%.16x]; rc = [%d]\n", | 
|  | lower_page_idx, rc); | 
|  | goto out; | 
|  | } | 
|  | orig_byte_offset = lower_byte_offset; | 
|  | prior_lower_page_idx = lower_page_idx; | 
|  | page_state = ECRYPTFS_PAGE_STATE_READ; | 
|  | } | 
|  | BUG_ON(!(page_state == ECRYPTFS_PAGE_STATE_MODIFIED | 
|  | || page_state == ECRYPTFS_PAGE_STATE_READ)); | 
|  | rc = ecryptfs_derive_iv(extent_iv, crypt_stat, | 
|  | (base_extent + extent_offset)); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_ERR, "Error attempting to " | 
|  | "derive IV for extent [0x%.16x]; " | 
|  | "rc = [%d]\n", | 
|  | (base_extent + extent_offset), rc); | 
|  | goto out; | 
|  | } | 
|  | if (unlikely(ecryptfs_verbosity > 0)) { | 
|  | ecryptfs_printk(KERN_DEBUG, "Encrypting extent " | 
|  | "with iv:\n"); | 
|  | ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); | 
|  | ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " | 
|  | "encryption:\n"); | 
|  | ecryptfs_dump_hex((char *) | 
|  | (page_address(ctx->page) | 
|  | + (extent_offset | 
|  | * crypt_stat->extent_size)), 8); | 
|  | } | 
|  | rc = ecryptfs_encrypt_page_offset( | 
|  | crypt_stat, lower_page, lower_byte_offset, ctx->page, | 
|  | (extent_offset * crypt_stat->extent_size), | 
|  | crypt_stat->extent_size, extent_iv); | 
|  | ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; " | 
|  | "rc = [%d]\n", | 
|  | (base_extent + extent_offset), rc); | 
|  | if (unlikely(ecryptfs_verbosity > 0)) { | 
|  | ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " | 
|  | "encryption:\n"); | 
|  | ecryptfs_dump_hex((char *)(page_address(lower_page) | 
|  | + lower_byte_offset), 8); | 
|  | } | 
|  | page_state = ECRYPTFS_PAGE_STATE_MODIFIED; | 
|  | extent_offset++; | 
|  | } | 
|  | BUG_ON(orig_byte_offset != 0); | 
|  | rc = ecryptfs_write_out_page(ctx, lower_page, lower_inode, 0, | 
|  | (lower_byte_offset | 
|  | + crypt_stat->extent_size)); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_ERR, "Error attempting to write out " | 
|  | "page; rc = [%d]\n", rc); | 
|  | goto out; | 
|  | } | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_decrypt_page | 
|  | * @file: The ecryptfs file | 
|  | * @page: The page in ecryptfs to decrypt | 
|  | * | 
|  | * Decrypt an eCryptfs page. This is done on a per-extent basis. Note | 
|  | * that eCryptfs pages may straddle the lower pages -- for instance, | 
|  | * if the file was created on a machine with an 8K page size | 
|  | * (resulting in an 8K header), and then the file is copied onto a | 
|  | * host with a 32K page size, then when reading page 0 of the eCryptfs | 
|  | * file, 24K of page 0 of the lower file will be read and decrypted, | 
|  | * and then 8K of page 1 of the lower file will be read and decrypted. | 
|  | * | 
|  | * Returns zero on success; negative on error | 
|  | */ | 
|  | int ecryptfs_decrypt_page(struct file *file, struct page *page) | 
|  | { | 
|  | char extent_iv[ECRYPTFS_MAX_IV_BYTES]; | 
|  | unsigned long base_extent; | 
|  | unsigned long extent_offset = 0; | 
|  | unsigned long lower_page_idx = 0; | 
|  | unsigned long prior_lower_page_idx = 0; | 
|  | struct page *lower_page; | 
|  | char *lower_page_virt = NULL; | 
|  | struct inode *lower_inode; | 
|  | struct ecryptfs_crypt_stat *crypt_stat; | 
|  | int rc = 0; | 
|  | int byte_offset; | 
|  | int num_extents_per_page; | 
|  | int page_state; | 
|  |  | 
|  | crypt_stat = &(ecryptfs_inode_to_private( | 
|  | page->mapping->host)->crypt_stat); | 
|  | lower_inode = ecryptfs_inode_to_lower(page->mapping->host); | 
|  | if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { | 
|  | rc = ecryptfs_do_readpage(file, page, page->index); | 
|  | if (rc) | 
|  | ecryptfs_printk(KERN_ERR, "Error attempting to copy " | 
|  | "page at index [0x%.16x]\n", | 
|  | page->index); | 
|  | goto out; | 
|  | } | 
|  | num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size; | 
|  | base_extent = (page->index * num_extents_per_page); | 
|  | lower_page_virt = kmem_cache_alloc(ecryptfs_lower_page_cache, | 
|  | GFP_KERNEL); | 
|  | if (!lower_page_virt) { | 
|  | rc = -ENOMEM; | 
|  | ecryptfs_printk(KERN_ERR, "Error getting page for encrypted " | 
|  | "lower page(s)\n"); | 
|  | goto out; | 
|  | } | 
|  | lower_page = virt_to_page(lower_page_virt); | 
|  | page_state = ECRYPTFS_PAGE_STATE_UNREAD; | 
|  | while (extent_offset < num_extents_per_page) { | 
|  | ecryptfs_extent_to_lwr_pg_idx_and_offset( | 
|  | &lower_page_idx, &byte_offset, crypt_stat, | 
|  | (base_extent + extent_offset)); | 
|  | if (prior_lower_page_idx != lower_page_idx | 
|  | || page_state == ECRYPTFS_PAGE_STATE_UNREAD) { | 
|  | rc = ecryptfs_do_readpage(file, lower_page, | 
|  | lower_page_idx); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_ERR, "Error reading " | 
|  | "lower encrypted page; rc = " | 
|  | "[%d]\n", rc); | 
|  | goto out; | 
|  | } | 
|  | prior_lower_page_idx = lower_page_idx; | 
|  | page_state = ECRYPTFS_PAGE_STATE_READ; | 
|  | } | 
|  | rc = ecryptfs_derive_iv(extent_iv, crypt_stat, | 
|  | (base_extent + extent_offset)); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_ERR, "Error attempting to " | 
|  | "derive IV for extent [0x%.16x]; rc = " | 
|  | "[%d]\n", | 
|  | (base_extent + extent_offset), rc); | 
|  | goto out; | 
|  | } | 
|  | if (unlikely(ecryptfs_verbosity > 0)) { | 
|  | ecryptfs_printk(KERN_DEBUG, "Decrypting extent " | 
|  | "with iv:\n"); | 
|  | ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); | 
|  | ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " | 
|  | "decryption:\n"); | 
|  | ecryptfs_dump_hex((lower_page_virt + byte_offset), 8); | 
|  | } | 
|  | rc = ecryptfs_decrypt_page_offset(crypt_stat, page, | 
|  | (extent_offset | 
|  | * crypt_stat->extent_size), | 
|  | lower_page, byte_offset, | 
|  | crypt_stat->extent_size, | 
|  | extent_iv); | 
|  | if (rc != crypt_stat->extent_size) { | 
|  | ecryptfs_printk(KERN_ERR, "Error attempting to " | 
|  | "decrypt extent [0x%.16x]\n", | 
|  | (base_extent + extent_offset)); | 
|  | goto out; | 
|  | } | 
|  | rc = 0; | 
|  | if (unlikely(ecryptfs_verbosity > 0)) { | 
|  | ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " | 
|  | "decryption:\n"); | 
|  | ecryptfs_dump_hex((char *)(page_address(page) | 
|  | + byte_offset), 8); | 
|  | } | 
|  | extent_offset++; | 
|  | } | 
|  | out: | 
|  | if (lower_page_virt) | 
|  | kmem_cache_free(ecryptfs_lower_page_cache, lower_page_virt); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * decrypt_scatterlist | 
|  | * | 
|  | * Returns the number of bytes decrypted; negative value on error | 
|  | */ | 
|  | static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, | 
|  | struct scatterlist *dest_sg, | 
|  | struct scatterlist *src_sg, int size, | 
|  | unsigned char *iv) | 
|  | { | 
|  | struct blkcipher_desc desc = { | 
|  | .tfm = crypt_stat->tfm, | 
|  | .info = iv, | 
|  | .flags = CRYPTO_TFM_REQ_MAY_SLEEP | 
|  | }; | 
|  | int rc = 0; | 
|  |  | 
|  | /* Consider doing this once, when the file is opened */ | 
|  | mutex_lock(&crypt_stat->cs_tfm_mutex); | 
|  | rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, | 
|  | crypt_stat->key_size); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", | 
|  | rc); | 
|  | mutex_unlock(&crypt_stat->cs_tfm_mutex); | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size); | 
|  | rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size); | 
|  | mutex_unlock(&crypt_stat->cs_tfm_mutex); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n", | 
|  | rc); | 
|  | goto out; | 
|  | } | 
|  | rc = size; | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_encrypt_page_offset | 
|  | * | 
|  | * Returns the number of bytes encrypted | 
|  | */ | 
|  | static int | 
|  | ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, | 
|  | struct page *dst_page, int dst_offset, | 
|  | struct page *src_page, int src_offset, int size, | 
|  | unsigned char *iv) | 
|  | { | 
|  | struct scatterlist src_sg, dst_sg; | 
|  |  | 
|  | src_sg.page = src_page; | 
|  | src_sg.offset = src_offset; | 
|  | src_sg.length = size; | 
|  | dst_sg.page = dst_page; | 
|  | dst_sg.offset = dst_offset; | 
|  | dst_sg.length = size; | 
|  | return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_decrypt_page_offset | 
|  | * | 
|  | * Returns the number of bytes decrypted | 
|  | */ | 
|  | static int | 
|  | ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, | 
|  | struct page *dst_page, int dst_offset, | 
|  | struct page *src_page, int src_offset, int size, | 
|  | unsigned char *iv) | 
|  | { | 
|  | struct scatterlist src_sg, dst_sg; | 
|  |  | 
|  | src_sg.page = src_page; | 
|  | src_sg.offset = src_offset; | 
|  | src_sg.length = size; | 
|  | dst_sg.page = dst_page; | 
|  | dst_sg.offset = dst_offset; | 
|  | dst_sg.length = size; | 
|  | return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); | 
|  | } | 
|  |  | 
|  | #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 | 
|  |  | 
|  | /** | 
|  | * ecryptfs_init_crypt_ctx | 
|  | * @crypt_stat: Uninitilized crypt stats structure | 
|  | * | 
|  | * Initialize the crypto context. | 
|  | * | 
|  | * TODO: Performance: Keep a cache of initialized cipher contexts; | 
|  | * only init if needed | 
|  | */ | 
|  | int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) | 
|  | { | 
|  | char *full_alg_name; | 
|  | int rc = -EINVAL; | 
|  |  | 
|  | if (!crypt_stat->cipher) { | 
|  | ecryptfs_printk(KERN_ERR, "No cipher specified\n"); | 
|  | goto out; | 
|  | } | 
|  | ecryptfs_printk(KERN_DEBUG, | 
|  | "Initializing cipher [%s]; strlen = [%d]; " | 
|  | "key_size_bits = [%d]\n", | 
|  | crypt_stat->cipher, (int)strlen(crypt_stat->cipher), | 
|  | crypt_stat->key_size << 3); | 
|  | if (crypt_stat->tfm) { | 
|  | rc = 0; | 
|  | goto out; | 
|  | } | 
|  | mutex_lock(&crypt_stat->cs_tfm_mutex); | 
|  | rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, | 
|  | crypt_stat->cipher, "cbc"); | 
|  | if (rc) | 
|  | goto out; | 
|  | crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0, | 
|  | CRYPTO_ALG_ASYNC); | 
|  | kfree(full_alg_name); | 
|  | if (IS_ERR(crypt_stat->tfm)) { | 
|  | rc = PTR_ERR(crypt_stat->tfm); | 
|  | ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " | 
|  | "Error initializing cipher [%s]\n", | 
|  | crypt_stat->cipher); | 
|  | mutex_unlock(&crypt_stat->cs_tfm_mutex); | 
|  | goto out; | 
|  | } | 
|  | crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY); | 
|  | mutex_unlock(&crypt_stat->cs_tfm_mutex); | 
|  | rc = 0; | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) | 
|  | { | 
|  | int extent_size_tmp; | 
|  |  | 
|  | crypt_stat->extent_mask = 0xFFFFFFFF; | 
|  | crypt_stat->extent_shift = 0; | 
|  | if (crypt_stat->extent_size == 0) | 
|  | return; | 
|  | extent_size_tmp = crypt_stat->extent_size; | 
|  | while ((extent_size_tmp & 0x01) == 0) { | 
|  | extent_size_tmp >>= 1; | 
|  | crypt_stat->extent_mask <<= 1; | 
|  | crypt_stat->extent_shift++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) | 
|  | { | 
|  | /* Default values; may be overwritten as we are parsing the | 
|  | * packets. */ | 
|  | crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; | 
|  | set_extent_mask_and_shift(crypt_stat); | 
|  | crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; | 
|  | if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) { | 
|  | crypt_stat->header_extent_size = | 
|  | ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; | 
|  | } else | 
|  | crypt_stat->header_extent_size = PAGE_CACHE_SIZE; | 
|  | if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) | 
|  | crypt_stat->num_header_extents_at_front = 0; | 
|  | else | 
|  | crypt_stat->num_header_extents_at_front = 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_compute_root_iv | 
|  | * @crypt_stats | 
|  | * | 
|  | * On error, sets the root IV to all 0's. | 
|  | */ | 
|  | int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) | 
|  | { | 
|  | int rc = 0; | 
|  | char dst[MD5_DIGEST_SIZE]; | 
|  |  | 
|  | BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); | 
|  | BUG_ON(crypt_stat->iv_bytes <= 0); | 
|  | if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { | 
|  | rc = -EINVAL; | 
|  | ecryptfs_printk(KERN_WARNING, "Session key not valid; " | 
|  | "cannot generate root IV\n"); | 
|  | goto out; | 
|  | } | 
|  | rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, | 
|  | crypt_stat->key_size); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_WARNING, "Error attempting to compute " | 
|  | "MD5 while generating root IV\n"); | 
|  | goto out; | 
|  | } | 
|  | memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); | 
|  | out: | 
|  | if (rc) { | 
|  | memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); | 
|  | crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) | 
|  | { | 
|  | get_random_bytes(crypt_stat->key, crypt_stat->key_size); | 
|  | crypt_stat->flags |= ECRYPTFS_KEY_VALID; | 
|  | ecryptfs_compute_root_iv(crypt_stat); | 
|  | if (unlikely(ecryptfs_verbosity > 0)) { | 
|  | ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); | 
|  | ecryptfs_dump_hex(crypt_stat->key, | 
|  | crypt_stat->key_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_copy_mount_wide_flags_to_inode_flags | 
|  | * | 
|  | * This function propagates the mount-wide flags to individual inode | 
|  | * flags. | 
|  | */ | 
|  | static void ecryptfs_copy_mount_wide_flags_to_inode_flags( | 
|  | struct ecryptfs_crypt_stat *crypt_stat, | 
|  | struct ecryptfs_mount_crypt_stat *mount_crypt_stat) | 
|  | { | 
|  | if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) | 
|  | crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; | 
|  | if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) | 
|  | crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_set_default_crypt_stat_vals | 
|  | * @crypt_stat | 
|  | * | 
|  | * Default values in the event that policy does not override them. | 
|  | */ | 
|  | static void ecryptfs_set_default_crypt_stat_vals( | 
|  | struct ecryptfs_crypt_stat *crypt_stat, | 
|  | struct ecryptfs_mount_crypt_stat *mount_crypt_stat) | 
|  | { | 
|  | ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, | 
|  | mount_crypt_stat); | 
|  | ecryptfs_set_default_sizes(crypt_stat); | 
|  | strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); | 
|  | crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; | 
|  | crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); | 
|  | crypt_stat->file_version = ECRYPTFS_FILE_VERSION; | 
|  | crypt_stat->mount_crypt_stat = mount_crypt_stat; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_new_file_context | 
|  | * @ecryptfs_dentry | 
|  | * | 
|  | * If the crypto context for the file has not yet been established, | 
|  | * this is where we do that.  Establishing a new crypto context | 
|  | * involves the following decisions: | 
|  | *  - What cipher to use? | 
|  | *  - What set of authentication tokens to use? | 
|  | * Here we just worry about getting enough information into the | 
|  | * authentication tokens so that we know that they are available. | 
|  | * We associate the available authentication tokens with the new file | 
|  | * via the set of signatures in the crypt_stat struct.  Later, when | 
|  | * the headers are actually written out, we may again defer to | 
|  | * userspace to perform the encryption of the session key; for the | 
|  | * foreseeable future, this will be the case with public key packets. | 
|  | * | 
|  | * Returns zero on success; non-zero otherwise | 
|  | */ | 
|  | /* Associate an authentication token(s) with the file */ | 
|  | int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry) | 
|  | { | 
|  | int rc = 0; | 
|  | struct ecryptfs_crypt_stat *crypt_stat = | 
|  | &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; | 
|  | struct ecryptfs_mount_crypt_stat *mount_crypt_stat = | 
|  | &ecryptfs_superblock_to_private( | 
|  | ecryptfs_dentry->d_sb)->mount_crypt_stat; | 
|  | int cipher_name_len; | 
|  |  | 
|  | ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); | 
|  | /* See if there are mount crypt options */ | 
|  | if (mount_crypt_stat->global_auth_tok) { | 
|  | ecryptfs_printk(KERN_DEBUG, "Initializing context for new " | 
|  | "file using mount_crypt_stat\n"); | 
|  | crypt_stat->flags |= ECRYPTFS_ENCRYPTED; | 
|  | crypt_stat->flags |= ECRYPTFS_KEY_VALID; | 
|  | ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, | 
|  | mount_crypt_stat); | 
|  | memcpy(crypt_stat->keysigs[crypt_stat->num_keysigs++], | 
|  | mount_crypt_stat->global_auth_tok_sig, | 
|  | ECRYPTFS_SIG_SIZE_HEX); | 
|  | cipher_name_len = | 
|  | strlen(mount_crypt_stat->global_default_cipher_name); | 
|  | memcpy(crypt_stat->cipher, | 
|  | mount_crypt_stat->global_default_cipher_name, | 
|  | cipher_name_len); | 
|  | crypt_stat->cipher[cipher_name_len] = '\0'; | 
|  | crypt_stat->key_size = | 
|  | mount_crypt_stat->global_default_cipher_key_size; | 
|  | ecryptfs_generate_new_key(crypt_stat); | 
|  | } else | 
|  | /* We should not encounter this scenario since we | 
|  | * should detect lack of global_auth_tok at mount time | 
|  | * TODO: Applies to 0.1 release only; remove in future | 
|  | * release */ | 
|  | BUG(); | 
|  | rc = ecryptfs_init_crypt_ctx(crypt_stat); | 
|  | if (rc) | 
|  | ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " | 
|  | "context for cipher [%s]: rc = [%d]\n", | 
|  | crypt_stat->cipher, rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * contains_ecryptfs_marker - check for the ecryptfs marker | 
|  | * @data: The data block in which to check | 
|  | * | 
|  | * Returns one if marker found; zero if not found | 
|  | */ | 
|  | static int contains_ecryptfs_marker(char *data) | 
|  | { | 
|  | u32 m_1, m_2; | 
|  |  | 
|  | memcpy(&m_1, data, 4); | 
|  | m_1 = be32_to_cpu(m_1); | 
|  | memcpy(&m_2, (data + 4), 4); | 
|  | m_2 = be32_to_cpu(m_2); | 
|  | if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) | 
|  | return 1; | 
|  | ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " | 
|  | "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, | 
|  | MAGIC_ECRYPTFS_MARKER); | 
|  | ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " | 
|  | "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct ecryptfs_flag_map_elem { | 
|  | u32 file_flag; | 
|  | u32 local_flag; | 
|  | }; | 
|  |  | 
|  | /* Add support for additional flags by adding elements here. */ | 
|  | static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { | 
|  | {0x00000001, ECRYPTFS_ENABLE_HMAC}, | 
|  | {0x00000002, ECRYPTFS_ENCRYPTED}, | 
|  | {0x00000004, ECRYPTFS_METADATA_IN_XATTR} | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * ecryptfs_process_flags | 
|  | * @crypt_stat | 
|  | * @page_virt: Source data to be parsed | 
|  | * @bytes_read: Updated with the number of bytes read | 
|  | * | 
|  | * Returns zero on success; non-zero if the flag set is invalid | 
|  | */ | 
|  | static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, | 
|  | char *page_virt, int *bytes_read) | 
|  | { | 
|  | int rc = 0; | 
|  | int i; | 
|  | u32 flags; | 
|  |  | 
|  | memcpy(&flags, page_virt, 4); | 
|  | flags = be32_to_cpu(flags); | 
|  | for (i = 0; i < ((sizeof(ecryptfs_flag_map) | 
|  | / sizeof(struct ecryptfs_flag_map_elem))); i++) | 
|  | if (flags & ecryptfs_flag_map[i].file_flag) { | 
|  | crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; | 
|  | } else | 
|  | crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); | 
|  | /* Version is in top 8 bits of the 32-bit flag vector */ | 
|  | crypt_stat->file_version = ((flags >> 24) & 0xFF); | 
|  | (*bytes_read) = 4; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * write_ecryptfs_marker | 
|  | * @page_virt: The pointer to in a page to begin writing the marker | 
|  | * @written: Number of bytes written | 
|  | * | 
|  | * Marker = 0x3c81b7f5 | 
|  | */ | 
|  | static void write_ecryptfs_marker(char *page_virt, size_t *written) | 
|  | { | 
|  | u32 m_1, m_2; | 
|  |  | 
|  | get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); | 
|  | m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); | 
|  | m_1 = cpu_to_be32(m_1); | 
|  | memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); | 
|  | m_2 = cpu_to_be32(m_2); | 
|  | memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2, | 
|  | (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); | 
|  | (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; | 
|  | } | 
|  |  | 
|  | static void | 
|  | write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat, | 
|  | size_t *written) | 
|  | { | 
|  | u32 flags = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ((sizeof(ecryptfs_flag_map) | 
|  | / sizeof(struct ecryptfs_flag_map_elem))); i++) | 
|  | if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) | 
|  | flags |= ecryptfs_flag_map[i].file_flag; | 
|  | /* Version is in top 8 bits of the 32-bit flag vector */ | 
|  | flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); | 
|  | flags = cpu_to_be32(flags); | 
|  | memcpy(page_virt, &flags, 4); | 
|  | (*written) = 4; | 
|  | } | 
|  |  | 
|  | struct ecryptfs_cipher_code_str_map_elem { | 
|  | char cipher_str[16]; | 
|  | u16 cipher_code; | 
|  | }; | 
|  |  | 
|  | /* Add support for additional ciphers by adding elements here. The | 
|  | * cipher_code is whatever OpenPGP applicatoins use to identify the | 
|  | * ciphers. List in order of probability. */ | 
|  | static struct ecryptfs_cipher_code_str_map_elem | 
|  | ecryptfs_cipher_code_str_map[] = { | 
|  | {"aes",RFC2440_CIPHER_AES_128 }, | 
|  | {"blowfish", RFC2440_CIPHER_BLOWFISH}, | 
|  | {"des3_ede", RFC2440_CIPHER_DES3_EDE}, | 
|  | {"cast5", RFC2440_CIPHER_CAST_5}, | 
|  | {"twofish", RFC2440_CIPHER_TWOFISH}, | 
|  | {"cast6", RFC2440_CIPHER_CAST_6}, | 
|  | {"aes", RFC2440_CIPHER_AES_192}, | 
|  | {"aes", RFC2440_CIPHER_AES_256} | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * ecryptfs_code_for_cipher_string | 
|  | * @str: The string representing the cipher name | 
|  | * | 
|  | * Returns zero on no match, or the cipher code on match | 
|  | */ | 
|  | u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat) | 
|  | { | 
|  | int i; | 
|  | u16 code = 0; | 
|  | struct ecryptfs_cipher_code_str_map_elem *map = | 
|  | ecryptfs_cipher_code_str_map; | 
|  |  | 
|  | if (strcmp(crypt_stat->cipher, "aes") == 0) { | 
|  | switch (crypt_stat->key_size) { | 
|  | case 16: | 
|  | code = RFC2440_CIPHER_AES_128; | 
|  | break; | 
|  | case 24: | 
|  | code = RFC2440_CIPHER_AES_192; | 
|  | break; | 
|  | case 32: | 
|  | code = RFC2440_CIPHER_AES_256; | 
|  | } | 
|  | } else { | 
|  | for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) | 
|  | if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){ | 
|  | code = map[i].cipher_code; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return code; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_cipher_code_to_string | 
|  | * @str: Destination to write out the cipher name | 
|  | * @cipher_code: The code to convert to cipher name string | 
|  | * | 
|  | * Returns zero on success | 
|  | */ | 
|  | int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code) | 
|  | { | 
|  | int rc = 0; | 
|  | int i; | 
|  |  | 
|  | str[0] = '\0'; | 
|  | for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) | 
|  | if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) | 
|  | strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); | 
|  | if (str[0] == '\0') { | 
|  | ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " | 
|  | "[%d]\n", cipher_code); | 
|  | rc = -EINVAL; | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_read_header_region | 
|  | * @data | 
|  | * @dentry | 
|  | * @nd | 
|  | * | 
|  | * Returns zero on success; non-zero otherwise | 
|  | */ | 
|  | static int ecryptfs_read_header_region(char *data, struct dentry *dentry, | 
|  | struct vfsmount *mnt) | 
|  | { | 
|  | struct file *lower_file; | 
|  | mm_segment_t oldfs; | 
|  | int rc; | 
|  |  | 
|  | if ((rc = ecryptfs_open_lower_file(&lower_file, dentry, mnt, | 
|  | O_RDONLY))) { | 
|  | printk(KERN_ERR | 
|  | "Error opening lower_file to read header region\n"); | 
|  | goto out; | 
|  | } | 
|  | lower_file->f_pos = 0; | 
|  | oldfs = get_fs(); | 
|  | set_fs(get_ds()); | 
|  | /* For releases 0.1 and 0.2, all of the header information | 
|  | * fits in the first data extent-sized region. */ | 
|  | rc = lower_file->f_op->read(lower_file, (char __user *)data, | 
|  | ECRYPTFS_DEFAULT_EXTENT_SIZE, &lower_file->f_pos); | 
|  | set_fs(oldfs); | 
|  | if ((rc = ecryptfs_close_lower_file(lower_file))) { | 
|  | printk(KERN_ERR "Error closing lower_file\n"); | 
|  | goto out; | 
|  | } | 
|  | rc = 0; | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int ecryptfs_read_and_validate_header_region(char *data, struct dentry *dentry, | 
|  | struct vfsmount *mnt) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = ecryptfs_read_header_region(data, dentry, mnt); | 
|  | if (rc) | 
|  | goto out; | 
|  | if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) | 
|  | rc = -EINVAL; | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | ecryptfs_write_header_metadata(char *virt, | 
|  | struct ecryptfs_crypt_stat *crypt_stat, | 
|  | size_t *written) | 
|  | { | 
|  | u32 header_extent_size; | 
|  | u16 num_header_extents_at_front; | 
|  |  | 
|  | header_extent_size = (u32)crypt_stat->header_extent_size; | 
|  | num_header_extents_at_front = | 
|  | (u16)crypt_stat->num_header_extents_at_front; | 
|  | header_extent_size = cpu_to_be32(header_extent_size); | 
|  | memcpy(virt, &header_extent_size, 4); | 
|  | virt += 4; | 
|  | num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front); | 
|  | memcpy(virt, &num_header_extents_at_front, 2); | 
|  | (*written) = 6; | 
|  | } | 
|  |  | 
|  | struct kmem_cache *ecryptfs_header_cache_0; | 
|  | struct kmem_cache *ecryptfs_header_cache_1; | 
|  | struct kmem_cache *ecryptfs_header_cache_2; | 
|  |  | 
|  | /** | 
|  | * ecryptfs_write_headers_virt | 
|  | * @page_virt | 
|  | * @crypt_stat | 
|  | * @ecryptfs_dentry | 
|  | * | 
|  | * Format version: 1 | 
|  | * | 
|  | *   Header Extent: | 
|  | *     Octets 0-7:        Unencrypted file size (big-endian) | 
|  | *     Octets 8-15:       eCryptfs special marker | 
|  | *     Octets 16-19:      Flags | 
|  | *      Octet 16:         File format version number (between 0 and 255) | 
|  | *      Octets 17-18:     Reserved | 
|  | *      Octet 19:         Bit 1 (lsb): Reserved | 
|  | *                        Bit 2: Encrypted? | 
|  | *                        Bits 3-8: Reserved | 
|  | *     Octets 20-23:      Header extent size (big-endian) | 
|  | *     Octets 24-25:      Number of header extents at front of file | 
|  | *                        (big-endian) | 
|  | *     Octet  26:         Begin RFC 2440 authentication token packet set | 
|  | *   Data Extent 0: | 
|  | *     Lower data (CBC encrypted) | 
|  | *   Data Extent 1: | 
|  | *     Lower data (CBC encrypted) | 
|  | *   ... | 
|  | * | 
|  | * Returns zero on success | 
|  | */ | 
|  | static int ecryptfs_write_headers_virt(char *page_virt, size_t *size, | 
|  | struct ecryptfs_crypt_stat *crypt_stat, | 
|  | struct dentry *ecryptfs_dentry) | 
|  | { | 
|  | int rc; | 
|  | size_t written; | 
|  | size_t offset; | 
|  |  | 
|  | offset = ECRYPTFS_FILE_SIZE_BYTES; | 
|  | write_ecryptfs_marker((page_virt + offset), &written); | 
|  | offset += written; | 
|  | write_ecryptfs_flags((page_virt + offset), crypt_stat, &written); | 
|  | offset += written; | 
|  | ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, | 
|  | &written); | 
|  | offset += written; | 
|  | rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, | 
|  | ecryptfs_dentry, &written, | 
|  | PAGE_CACHE_SIZE - offset); | 
|  | if (rc) | 
|  | ecryptfs_printk(KERN_WARNING, "Error generating key packet " | 
|  | "set; rc = [%d]\n", rc); | 
|  | if (size) { | 
|  | offset += written; | 
|  | *size = offset; | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat, | 
|  | struct file *lower_file, | 
|  | char *page_virt) | 
|  | { | 
|  | mm_segment_t oldfs; | 
|  | int current_header_page; | 
|  | int header_pages; | 
|  | ssize_t size; | 
|  | int rc = 0; | 
|  |  | 
|  | lower_file->f_pos = 0; | 
|  | oldfs = get_fs(); | 
|  | set_fs(get_ds()); | 
|  | size = vfs_write(lower_file, (char __user *)page_virt, PAGE_CACHE_SIZE, | 
|  | &lower_file->f_pos); | 
|  | if (size < 0) { | 
|  | rc = (int)size; | 
|  | printk(KERN_ERR "Error attempting to write lower page; " | 
|  | "rc = [%d]\n", rc); | 
|  | set_fs(oldfs); | 
|  | goto out; | 
|  | } | 
|  | header_pages = ((crypt_stat->header_extent_size | 
|  | * crypt_stat->num_header_extents_at_front) | 
|  | / PAGE_CACHE_SIZE); | 
|  | memset(page_virt, 0, PAGE_CACHE_SIZE); | 
|  | current_header_page = 1; | 
|  | while (current_header_page < header_pages) { | 
|  | size = vfs_write(lower_file, (char __user *)page_virt, | 
|  | PAGE_CACHE_SIZE, &lower_file->f_pos); | 
|  | if (size < 0) { | 
|  | rc = (int)size; | 
|  | printk(KERN_ERR "Error attempting to write lower page; " | 
|  | "rc = [%d]\n", rc); | 
|  | set_fs(oldfs); | 
|  | goto out; | 
|  | } | 
|  | current_header_page++; | 
|  | } | 
|  | set_fs(oldfs); | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, | 
|  | struct ecryptfs_crypt_stat *crypt_stat, | 
|  | char *page_virt, size_t size) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt, | 
|  | size, 0); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_write_metadata | 
|  | * @lower_file: The lower file struct, which was returned from dentry_open | 
|  | * | 
|  | * Write the file headers out.  This will likely involve a userspace | 
|  | * callout, in which the session key is encrypted with one or more | 
|  | * public keys and/or the passphrase necessary to do the encryption is | 
|  | * retrieved via a prompt.  Exactly what happens at this point should | 
|  | * be policy-dependent. | 
|  | * | 
|  | * Returns zero on success; non-zero on error | 
|  | */ | 
|  | int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry, | 
|  | struct file *lower_file) | 
|  | { | 
|  | struct ecryptfs_crypt_stat *crypt_stat; | 
|  | char *page_virt; | 
|  | size_t size; | 
|  | int rc = 0; | 
|  |  | 
|  | crypt_stat = &ecryptfs_inode_to_private( | 
|  | ecryptfs_dentry->d_inode)->crypt_stat; | 
|  | if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { | 
|  | if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { | 
|  | ecryptfs_printk(KERN_DEBUG, "Key is " | 
|  | "invalid; bailing out\n"); | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | rc = -EINVAL; | 
|  | ecryptfs_printk(KERN_WARNING, | 
|  | "Called with crypt_stat->encrypted == 0\n"); | 
|  | goto out; | 
|  | } | 
|  | /* Released in this function */ | 
|  | page_virt = kmem_cache_zalloc(ecryptfs_header_cache_0, GFP_USER); | 
|  | if (!page_virt) { | 
|  | ecryptfs_printk(KERN_ERR, "Out of memory\n"); | 
|  | rc = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | rc = ecryptfs_write_headers_virt(page_virt, &size, crypt_stat, | 
|  | ecryptfs_dentry); | 
|  | if (unlikely(rc)) { | 
|  | ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n"); | 
|  | memset(page_virt, 0, PAGE_CACHE_SIZE); | 
|  | goto out_free; | 
|  | } | 
|  | if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) | 
|  | rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, | 
|  | crypt_stat, page_virt, | 
|  | size); | 
|  | else | 
|  | rc = ecryptfs_write_metadata_to_contents(crypt_stat, lower_file, | 
|  | page_virt); | 
|  | if (rc) { | 
|  | printk(KERN_ERR "Error writing metadata out to lower file; " | 
|  | "rc = [%d]\n", rc); | 
|  | goto out_free; | 
|  | } | 
|  | out_free: | 
|  | kmem_cache_free(ecryptfs_header_cache_0, page_virt); | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 | 
|  | #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 | 
|  | static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, | 
|  | char *virt, int *bytes_read, | 
|  | int validate_header_size) | 
|  | { | 
|  | int rc = 0; | 
|  | u32 header_extent_size; | 
|  | u16 num_header_extents_at_front; | 
|  |  | 
|  | memcpy(&header_extent_size, virt, 4); | 
|  | header_extent_size = be32_to_cpu(header_extent_size); | 
|  | virt += 4; | 
|  | memcpy(&num_header_extents_at_front, virt, 2); | 
|  | num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front); | 
|  | crypt_stat->header_extent_size = (int)header_extent_size; | 
|  | crypt_stat->num_header_extents_at_front = | 
|  | (int)num_header_extents_at_front; | 
|  | (*bytes_read) = 6; | 
|  | if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) | 
|  | && ((crypt_stat->header_extent_size | 
|  | * crypt_stat->num_header_extents_at_front) | 
|  | < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { | 
|  | rc = -EINVAL; | 
|  | ecryptfs_printk(KERN_WARNING, "Invalid header extent size: " | 
|  | "[%d]\n", crypt_stat->header_extent_size); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * set_default_header_data | 
|  | * | 
|  | * For version 0 file format; this function is only for backwards | 
|  | * compatibility for files created with the prior versions of | 
|  | * eCryptfs. | 
|  | */ | 
|  | static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) | 
|  | { | 
|  | crypt_stat->header_extent_size = 4096; | 
|  | crypt_stat->num_header_extents_at_front = 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_read_headers_virt | 
|  | * | 
|  | * Read/parse the header data. The header format is detailed in the | 
|  | * comment block for the ecryptfs_write_headers_virt() function. | 
|  | * | 
|  | * Returns zero on success | 
|  | */ | 
|  | static int ecryptfs_read_headers_virt(char *page_virt, | 
|  | struct ecryptfs_crypt_stat *crypt_stat, | 
|  | struct dentry *ecryptfs_dentry, | 
|  | int validate_header_size) | 
|  | { | 
|  | int rc = 0; | 
|  | int offset; | 
|  | int bytes_read; | 
|  |  | 
|  | ecryptfs_set_default_sizes(crypt_stat); | 
|  | crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( | 
|  | ecryptfs_dentry->d_sb)->mount_crypt_stat; | 
|  | offset = ECRYPTFS_FILE_SIZE_BYTES; | 
|  | rc = contains_ecryptfs_marker(page_virt + offset); | 
|  | if (rc == 0) { | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; | 
|  | rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), | 
|  | &bytes_read); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); | 
|  | goto out; | 
|  | } | 
|  | if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { | 
|  | ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " | 
|  | "file version [%d] is supported by this " | 
|  | "version of eCryptfs\n", | 
|  | crypt_stat->file_version, | 
|  | ECRYPTFS_SUPPORTED_FILE_VERSION); | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | offset += bytes_read; | 
|  | if (crypt_stat->file_version >= 1) { | 
|  | rc = parse_header_metadata(crypt_stat, (page_virt + offset), | 
|  | &bytes_read, validate_header_size); | 
|  | if (rc) { | 
|  | ecryptfs_printk(KERN_WARNING, "Error reading header " | 
|  | "metadata; rc = [%d]\n", rc); | 
|  | } | 
|  | offset += bytes_read; | 
|  | } else | 
|  | set_default_header_data(crypt_stat); | 
|  | rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), | 
|  | ecryptfs_dentry); | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_read_xattr_region | 
|  | * | 
|  | * Attempts to read the crypto metadata from the extended attribute | 
|  | * region of the lower file. | 
|  | */ | 
|  | int ecryptfs_read_xattr_region(char *page_virt, struct dentry *ecryptfs_dentry) | 
|  | { | 
|  | ssize_t size; | 
|  | int rc = 0; | 
|  |  | 
|  | size = ecryptfs_getxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, | 
|  | page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); | 
|  | if (size < 0) { | 
|  | printk(KERN_DEBUG "Error attempting to read the [%s] " | 
|  | "xattr from the lower file; return value = [%zd]\n", | 
|  | ECRYPTFS_XATTR_NAME, size); | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int ecryptfs_read_and_validate_xattr_region(char *page_virt, | 
|  | struct dentry *ecryptfs_dentry) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry); | 
|  | if (rc) | 
|  | goto out; | 
|  | if (!contains_ecryptfs_marker(page_virt	+ ECRYPTFS_FILE_SIZE_BYTES)) { | 
|  | printk(KERN_WARNING "Valid data found in [%s] xattr, but " | 
|  | "the marker is invalid\n", ECRYPTFS_XATTR_NAME); | 
|  | rc = -EINVAL; | 
|  | } | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_read_metadata | 
|  | * | 
|  | * Common entry point for reading file metadata. From here, we could | 
|  | * retrieve the header information from the header region of the file, | 
|  | * the xattr region of the file, or some other repostory that is | 
|  | * stored separately from the file itself. The current implementation | 
|  | * supports retrieving the metadata information from the file contents | 
|  | * and from the xattr region. | 
|  | * | 
|  | * Returns zero if valid headers found and parsed; non-zero otherwise | 
|  | */ | 
|  | int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry, | 
|  | struct file *lower_file) | 
|  | { | 
|  | int rc = 0; | 
|  | char *page_virt = NULL; | 
|  | mm_segment_t oldfs; | 
|  | ssize_t bytes_read; | 
|  | struct ecryptfs_crypt_stat *crypt_stat = | 
|  | &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; | 
|  | struct ecryptfs_mount_crypt_stat *mount_crypt_stat = | 
|  | &ecryptfs_superblock_to_private( | 
|  | ecryptfs_dentry->d_sb)->mount_crypt_stat; | 
|  |  | 
|  | ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, | 
|  | mount_crypt_stat); | 
|  | /* Read the first page from the underlying file */ | 
|  | page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER); | 
|  | if (!page_virt) { | 
|  | rc = -ENOMEM; | 
|  | ecryptfs_printk(KERN_ERR, "Unable to allocate page_virt\n"); | 
|  | goto out; | 
|  | } | 
|  | lower_file->f_pos = 0; | 
|  | oldfs = get_fs(); | 
|  | set_fs(get_ds()); | 
|  | bytes_read = lower_file->f_op->read(lower_file, | 
|  | (char __user *)page_virt, | 
|  | ECRYPTFS_DEFAULT_EXTENT_SIZE, | 
|  | &lower_file->f_pos); | 
|  | set_fs(oldfs); | 
|  | if (bytes_read != ECRYPTFS_DEFAULT_EXTENT_SIZE) { | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, | 
|  | ecryptfs_dentry, | 
|  | ECRYPTFS_VALIDATE_HEADER_SIZE); | 
|  | if (rc) { | 
|  | rc = ecryptfs_read_xattr_region(page_virt, | 
|  | ecryptfs_dentry); | 
|  | if (rc) { | 
|  | printk(KERN_DEBUG "Valid eCryptfs headers not found in " | 
|  | "file header region or xattr region\n"); | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, | 
|  | ecryptfs_dentry, | 
|  | ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); | 
|  | if (rc) { | 
|  | printk(KERN_DEBUG "Valid eCryptfs headers not found in " | 
|  | "file xattr region either\n"); | 
|  | rc = -EINVAL; | 
|  | } | 
|  | if (crypt_stat->mount_crypt_stat->flags | 
|  | & ECRYPTFS_XATTR_METADATA_ENABLED) { | 
|  | crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; | 
|  | } else { | 
|  | printk(KERN_WARNING "Attempt to access file with " | 
|  | "crypto metadata only in the extended attribute " | 
|  | "region, but eCryptfs was mounted without " | 
|  | "xattr support enabled. eCryptfs will not treat " | 
|  | "this like an encrypted file.\n"); | 
|  | rc = -EINVAL; | 
|  | } | 
|  | } | 
|  | out: | 
|  | if (page_virt) { | 
|  | memset(page_virt, 0, PAGE_CACHE_SIZE); | 
|  | kmem_cache_free(ecryptfs_header_cache_1, page_virt); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_encode_filename - converts a plaintext file name to cipher text | 
|  | * @crypt_stat: The crypt_stat struct associated with the file anem to encode | 
|  | * @name: The plaintext name | 
|  | * @length: The length of the plaintext | 
|  | * @encoded_name: The encypted name | 
|  | * | 
|  | * Encrypts and encodes a filename into something that constitutes a | 
|  | * valid filename for a filesystem, with printable characters. | 
|  | * | 
|  | * We assume that we have a properly initialized crypto context, | 
|  | * pointed to by crypt_stat->tfm. | 
|  | * | 
|  | * TODO: Implement filename decoding and decryption here, in place of | 
|  | * memcpy. We are keeping the framework around for now to (1) | 
|  | * facilitate testing of the components needed to implement filename | 
|  | * encryption and (2) to provide a code base from which other | 
|  | * developers in the community can easily implement this feature. | 
|  | * | 
|  | * Returns the length of encoded filename; negative if error | 
|  | */ | 
|  | int | 
|  | ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat, | 
|  | const char *name, int length, char **encoded_name) | 
|  | { | 
|  | int error = 0; | 
|  |  | 
|  | (*encoded_name) = kmalloc(length + 2, GFP_KERNEL); | 
|  | if (!(*encoded_name)) { | 
|  | error = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | /* TODO: Filename encryption is a scheduled feature for a | 
|  | * future version of eCryptfs. This function is here only for | 
|  | * the purpose of providing a framework for other developers | 
|  | * to easily implement filename encryption. Hint: Replace this | 
|  | * memcpy() with a call to encrypt and encode the | 
|  | * filename, the set the length accordingly. */ | 
|  | memcpy((void *)(*encoded_name), (void *)name, length); | 
|  | (*encoded_name)[length] = '\0'; | 
|  | error = length + 1; | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_decode_filename - converts the cipher text name to plaintext | 
|  | * @crypt_stat: The crypt_stat struct associated with the file | 
|  | * @name: The filename in cipher text | 
|  | * @length: The length of the cipher text name | 
|  | * @decrypted_name: The plaintext name | 
|  | * | 
|  | * Decodes and decrypts the filename. | 
|  | * | 
|  | * We assume that we have a properly initialized crypto context, | 
|  | * pointed to by crypt_stat->tfm. | 
|  | * | 
|  | * TODO: Implement filename decoding and decryption here, in place of | 
|  | * memcpy. We are keeping the framework around for now to (1) | 
|  | * facilitate testing of the components needed to implement filename | 
|  | * encryption and (2) to provide a code base from which other | 
|  | * developers in the community can easily implement this feature. | 
|  | * | 
|  | * Returns the length of decoded filename; negative if error | 
|  | */ | 
|  | int | 
|  | ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat, | 
|  | const char *name, int length, char **decrypted_name) | 
|  | { | 
|  | int error = 0; | 
|  |  | 
|  | (*decrypted_name) = kmalloc(length + 2, GFP_KERNEL); | 
|  | if (!(*decrypted_name)) { | 
|  | error = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | /* TODO: Filename encryption is a scheduled feature for a | 
|  | * future version of eCryptfs. This function is here only for | 
|  | * the purpose of providing a framework for other developers | 
|  | * to easily implement filename encryption. Hint: Replace this | 
|  | * memcpy() with a call to decode and decrypt the | 
|  | * filename, the set the length accordingly. */ | 
|  | memcpy((void *)(*decrypted_name), (void *)name, length); | 
|  | (*decrypted_name)[length + 1] = '\0';	/* Only for convenience | 
|  | * in printing out the | 
|  | * string in debug | 
|  | * messages */ | 
|  | error = length; | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ecryptfs_process_cipher - Perform cipher initialization. | 
|  | * @key_tfm: Crypto context for key material, set by this function | 
|  | * @cipher_name: Name of the cipher | 
|  | * @key_size: Size of the key in bytes | 
|  | * | 
|  | * Returns zero on success. Any crypto_tfm structs allocated here | 
|  | * should be released by other functions, such as on a superblock put | 
|  | * event, regardless of whether this function succeeds for fails. | 
|  | */ | 
|  | int | 
|  | ecryptfs_process_cipher(struct crypto_blkcipher **key_tfm, char *cipher_name, | 
|  | size_t *key_size) | 
|  | { | 
|  | char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; | 
|  | char *full_alg_name; | 
|  | int rc; | 
|  |  | 
|  | *key_tfm = NULL; | 
|  | if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { | 
|  | rc = -EINVAL; | 
|  | printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum " | 
|  | "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); | 
|  | goto out; | 
|  | } | 
|  | rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, | 
|  | "ecb"); | 
|  | if (rc) | 
|  | goto out; | 
|  | *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); | 
|  | kfree(full_alg_name); | 
|  | if (IS_ERR(*key_tfm)) { | 
|  | rc = PTR_ERR(*key_tfm); | 
|  | printk(KERN_ERR "Unable to allocate crypto cipher with name " | 
|  | "[%s]; rc = [%d]\n", cipher_name, rc); | 
|  | goto out; | 
|  | } | 
|  | crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY); | 
|  | if (*key_size == 0) { | 
|  | struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm); | 
|  |  | 
|  | *key_size = alg->max_keysize; | 
|  | } | 
|  | get_random_bytes(dummy_key, *key_size); | 
|  | rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size); | 
|  | if (rc) { | 
|  | printk(KERN_ERR "Error attempting to set key of size [%Zd] for " | 
|  | "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc); | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | out: | 
|  | return rc; | 
|  | } |