|  | /* | 
|  | * JFFS2 -- Journalling Flash File System, Version 2. | 
|  | * | 
|  | * Copyright (C) 2001-2003 Red Hat, Inc. | 
|  | * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de> | 
|  | * | 
|  | * Created by David Woodhouse <dwmw2@infradead.org> | 
|  | * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de> | 
|  | * | 
|  | * For licensing information, see the file 'LICENCE' in this directory. | 
|  | * | 
|  | * $Id: wbuf.c,v 1.100 2005/09/30 13:59:13 dedekind Exp $ | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/crc32.h> | 
|  | #include <linux/mtd/nand.h> | 
|  | #include <linux/jiffies.h> | 
|  |  | 
|  | #include "nodelist.h" | 
|  |  | 
|  | /* For testing write failures */ | 
|  | #undef BREAKME | 
|  | #undef BREAKMEHEADER | 
|  |  | 
|  | #ifdef BREAKME | 
|  | static unsigned char *brokenbuf; | 
|  | #endif | 
|  |  | 
|  | #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) ) | 
|  | #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) ) | 
|  |  | 
|  | /* max. erase failures before we mark a block bad */ | 
|  | #define MAX_ERASE_FAILURES 	2 | 
|  |  | 
|  | struct jffs2_inodirty { | 
|  | uint32_t ino; | 
|  | struct jffs2_inodirty *next; | 
|  | }; | 
|  |  | 
|  | static struct jffs2_inodirty inodirty_nomem; | 
|  |  | 
|  | static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino) | 
|  | { | 
|  | struct jffs2_inodirty *this = c->wbuf_inodes; | 
|  |  | 
|  | /* If a malloc failed, consider _everything_ dirty */ | 
|  | if (this == &inodirty_nomem) | 
|  | return 1; | 
|  |  | 
|  | /* If ino == 0, _any_ non-GC writes mean 'yes' */ | 
|  | if (this && !ino) | 
|  | return 1; | 
|  |  | 
|  | /* Look to see if the inode in question is pending in the wbuf */ | 
|  | while (this) { | 
|  | if (this->ino == ino) | 
|  | return 1; | 
|  | this = this->next; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c) | 
|  | { | 
|  | struct jffs2_inodirty *this; | 
|  |  | 
|  | this = c->wbuf_inodes; | 
|  |  | 
|  | if (this != &inodirty_nomem) { | 
|  | while (this) { | 
|  | struct jffs2_inodirty *next = this->next; | 
|  | kfree(this); | 
|  | this = next; | 
|  | } | 
|  | } | 
|  | c->wbuf_inodes = NULL; | 
|  | } | 
|  |  | 
|  | static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino) | 
|  | { | 
|  | struct jffs2_inodirty *new; | 
|  |  | 
|  | /* Mark the superblock dirty so that kupdated will flush... */ | 
|  | jffs2_erase_pending_trigger(c); | 
|  |  | 
|  | if (jffs2_wbuf_pending_for_ino(c, ino)) | 
|  | return; | 
|  |  | 
|  | new = kmalloc(sizeof(*new), GFP_KERNEL); | 
|  | if (!new) { | 
|  | D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n")); | 
|  | jffs2_clear_wbuf_ino_list(c); | 
|  | c->wbuf_inodes = &inodirty_nomem; | 
|  | return; | 
|  | } | 
|  | new->ino = ino; | 
|  | new->next = c->wbuf_inodes; | 
|  | c->wbuf_inodes = new; | 
|  | return; | 
|  | } | 
|  |  | 
|  | static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c) | 
|  | { | 
|  | struct list_head *this, *next; | 
|  | static int n; | 
|  |  | 
|  | if (list_empty(&c->erasable_pending_wbuf_list)) | 
|  | return; | 
|  |  | 
|  | list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) { | 
|  | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  |  | 
|  | D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset)); | 
|  | list_del(this); | 
|  | if ((jiffies + (n++)) & 127) { | 
|  | /* Most of the time, we just erase it immediately. Otherwise we | 
|  | spend ages scanning it on mount, etc. */ | 
|  | D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); | 
|  | list_add_tail(&jeb->list, &c->erase_pending_list); | 
|  | c->nr_erasing_blocks++; | 
|  | jffs2_erase_pending_trigger(c); | 
|  | } else { | 
|  | /* Sometimes, however, we leave it elsewhere so it doesn't get | 
|  | immediately reused, and we spread the load a bit. */ | 
|  | D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); | 
|  | list_add_tail(&jeb->list, &c->erasable_list); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #define REFILE_NOTEMPTY 0 | 
|  | #define REFILE_ANYWAY   1 | 
|  |  | 
|  | static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty) | 
|  | { | 
|  | D1(printk("About to refile bad block at %08x\n", jeb->offset)); | 
|  |  | 
|  | /* File the existing block on the bad_used_list.... */ | 
|  | if (c->nextblock == jeb) | 
|  | c->nextblock = NULL; | 
|  | else /* Not sure this should ever happen... need more coffee */ | 
|  | list_del(&jeb->list); | 
|  | if (jeb->first_node) { | 
|  | D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset)); | 
|  | list_add(&jeb->list, &c->bad_used_list); | 
|  | } else { | 
|  | BUG_ON(allow_empty == REFILE_NOTEMPTY); | 
|  | /* It has to have had some nodes or we couldn't be here */ | 
|  | D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset)); | 
|  | list_add(&jeb->list, &c->erase_pending_list); | 
|  | c->nr_erasing_blocks++; | 
|  | jffs2_erase_pending_trigger(c); | 
|  | } | 
|  |  | 
|  | /* Adjust its size counts accordingly */ | 
|  | c->wasted_size += jeb->free_size; | 
|  | c->free_size -= jeb->free_size; | 
|  | jeb->wasted_size += jeb->free_size; | 
|  | jeb->free_size = 0; | 
|  |  | 
|  | jffs2_dbg_dump_block_lists_nolock(c); | 
|  | jffs2_dbg_acct_sanity_check_nolock(c,jeb); | 
|  | jffs2_dbg_acct_paranoia_check_nolock(c, jeb); | 
|  | } | 
|  |  | 
|  | /* Recover from failure to write wbuf. Recover the nodes up to the | 
|  | * wbuf, not the one which we were starting to try to write. */ | 
|  |  | 
|  | static void jffs2_wbuf_recover(struct jffs2_sb_info *c) | 
|  | { | 
|  | struct jffs2_eraseblock *jeb, *new_jeb; | 
|  | struct jffs2_raw_node_ref **first_raw, **raw; | 
|  | size_t retlen; | 
|  | int ret; | 
|  | unsigned char *buf; | 
|  | uint32_t start, end, ofs, len; | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; | 
|  |  | 
|  | jffs2_block_refile(c, jeb, REFILE_NOTEMPTY); | 
|  |  | 
|  | /* Find the first node to be recovered, by skipping over every | 
|  | node which ends before the wbuf starts, or which is obsolete. */ | 
|  | first_raw = &jeb->first_node; | 
|  | while (*first_raw && | 
|  | (ref_obsolete(*first_raw) || | 
|  | (ref_offset(*first_raw)+ref_totlen(c, jeb, *first_raw)) < c->wbuf_ofs)) { | 
|  | D1(printk(KERN_DEBUG "Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n", | 
|  | ref_offset(*first_raw), ref_flags(*first_raw), | 
|  | (ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw)), | 
|  | c->wbuf_ofs)); | 
|  | first_raw = &(*first_raw)->next_phys; | 
|  | } | 
|  |  | 
|  | if (!*first_raw) { | 
|  | /* All nodes were obsolete. Nothing to recover. */ | 
|  | D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n")); | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | start = ref_offset(*first_raw); | 
|  | end = ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw); | 
|  |  | 
|  | /* Find the last node to be recovered */ | 
|  | raw = first_raw; | 
|  | while ((*raw)) { | 
|  | if (!ref_obsolete(*raw)) | 
|  | end = ref_offset(*raw) + ref_totlen(c, jeb, *raw); | 
|  |  | 
|  | raw = &(*raw)->next_phys; | 
|  | } | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | D1(printk(KERN_DEBUG "wbuf recover %08x-%08x\n", start, end)); | 
|  |  | 
|  | buf = NULL; | 
|  | if (start < c->wbuf_ofs) { | 
|  | /* First affected node was already partially written. | 
|  | * Attempt to reread the old data into our buffer. */ | 
|  |  | 
|  | buf = kmalloc(end - start, GFP_KERNEL); | 
|  | if (!buf) { | 
|  | printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n"); | 
|  |  | 
|  | goto read_failed; | 
|  | } | 
|  |  | 
|  | /* Do the read... */ | 
|  | if (jffs2_cleanmarker_oob(c)) | 
|  | ret = c->mtd->read_ecc(c->mtd, start, c->wbuf_ofs - start, &retlen, buf, NULL, c->oobinfo); | 
|  | else | 
|  | ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf); | 
|  |  | 
|  | if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) { | 
|  | /* ECC recovered */ | 
|  | ret = 0; | 
|  | } | 
|  | if (ret || retlen != c->wbuf_ofs - start) { | 
|  | printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n"); | 
|  |  | 
|  | kfree(buf); | 
|  | buf = NULL; | 
|  | read_failed: | 
|  | first_raw = &(*first_raw)->next_phys; | 
|  | /* If this was the only node to be recovered, give up */ | 
|  | if (!(*first_raw)) | 
|  | return; | 
|  |  | 
|  | /* It wasn't. Go on and try to recover nodes complete in the wbuf */ | 
|  | start = ref_offset(*first_raw); | 
|  | } else { | 
|  | /* Read succeeded. Copy the remaining data from the wbuf */ | 
|  | memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs); | 
|  | } | 
|  | } | 
|  | /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards. | 
|  | Either 'buf' contains the data, or we find it in the wbuf */ | 
|  |  | 
|  |  | 
|  | /* ... and get an allocation of space from a shiny new block instead */ | 
|  | ret = jffs2_reserve_space_gc(c, end-start, &ofs, &len, JFFS2_SUMMARY_NOSUM_SIZE); | 
|  | if (ret) { | 
|  | printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n"); | 
|  | kfree(buf); | 
|  | return; | 
|  | } | 
|  | if (end-start >= c->wbuf_pagesize) { | 
|  | /* Need to do another write immediately, but it's possible | 
|  | that this is just because the wbuf itself is completely | 
|  | full, and there's nothing earlier read back from the | 
|  | flash. Hence 'buf' isn't necessarily what we're writing | 
|  | from. */ | 
|  | unsigned char *rewrite_buf = buf?:c->wbuf; | 
|  | uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize); | 
|  |  | 
|  | D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n", | 
|  | towrite, ofs)); | 
|  |  | 
|  | #ifdef BREAKMEHEADER | 
|  | static int breakme; | 
|  | if (breakme++ == 20) { | 
|  | printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs); | 
|  | breakme = 0; | 
|  | c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen, | 
|  | brokenbuf, NULL, c->oobinfo); | 
|  | ret = -EIO; | 
|  | } else | 
|  | #endif | 
|  | if (jffs2_cleanmarker_oob(c)) | 
|  | ret = c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen, | 
|  | rewrite_buf, NULL, c->oobinfo); | 
|  | else | 
|  | ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, rewrite_buf); | 
|  |  | 
|  | if (ret || retlen != towrite) { | 
|  | /* Argh. We tried. Really we did. */ | 
|  | printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n"); | 
|  | kfree(buf); | 
|  |  | 
|  | if (retlen) { | 
|  | struct jffs2_raw_node_ref *raw2; | 
|  |  | 
|  | raw2 = jffs2_alloc_raw_node_ref(); | 
|  | if (!raw2) | 
|  | return; | 
|  |  | 
|  | raw2->flash_offset = ofs | REF_OBSOLETE; | 
|  | raw2->__totlen = ref_totlen(c, jeb, *first_raw); | 
|  | raw2->next_phys = NULL; | 
|  | raw2->next_in_ino = NULL; | 
|  |  | 
|  | jffs2_add_physical_node_ref(c, raw2); | 
|  | } | 
|  | return; | 
|  | } | 
|  | printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs); | 
|  |  | 
|  | c->wbuf_len = (end - start) - towrite; | 
|  | c->wbuf_ofs = ofs + towrite; | 
|  | memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len); | 
|  | /* Don't muck about with c->wbuf_inodes. False positives are harmless. */ | 
|  | kfree(buf); | 
|  | } else { | 
|  | /* OK, now we're left with the dregs in whichever buffer we're using */ | 
|  | if (buf) { | 
|  | memcpy(c->wbuf, buf, end-start); | 
|  | kfree(buf); | 
|  | } else { | 
|  | memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start); | 
|  | } | 
|  | c->wbuf_ofs = ofs; | 
|  | c->wbuf_len = end - start; | 
|  | } | 
|  |  | 
|  | /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */ | 
|  | new_jeb = &c->blocks[ofs / c->sector_size]; | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | if (new_jeb->first_node) { | 
|  | /* Odd, but possible with ST flash later maybe */ | 
|  | new_jeb->last_node->next_phys = *first_raw; | 
|  | } else { | 
|  | new_jeb->first_node = *first_raw; | 
|  | } | 
|  |  | 
|  | raw = first_raw; | 
|  | while (*raw) { | 
|  | uint32_t rawlen = ref_totlen(c, jeb, *raw); | 
|  |  | 
|  | D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n", | 
|  | rawlen, ref_offset(*raw), ref_flags(*raw), ofs)); | 
|  |  | 
|  | if (ref_obsolete(*raw)) { | 
|  | /* Shouldn't really happen much */ | 
|  | new_jeb->dirty_size += rawlen; | 
|  | new_jeb->free_size -= rawlen; | 
|  | c->dirty_size += rawlen; | 
|  | } else { | 
|  | new_jeb->used_size += rawlen; | 
|  | new_jeb->free_size -= rawlen; | 
|  | jeb->dirty_size += rawlen; | 
|  | jeb->used_size  -= rawlen; | 
|  | c->dirty_size += rawlen; | 
|  | } | 
|  | c->free_size -= rawlen; | 
|  | (*raw)->flash_offset = ofs | ref_flags(*raw); | 
|  | ofs += rawlen; | 
|  | new_jeb->last_node = *raw; | 
|  |  | 
|  | raw = &(*raw)->next_phys; | 
|  | } | 
|  |  | 
|  | /* Fix up the original jeb now it's on the bad_list */ | 
|  | *first_raw = NULL; | 
|  | if (first_raw == &jeb->first_node) { | 
|  | jeb->last_node = NULL; | 
|  | D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset)); | 
|  | list_del(&jeb->list); | 
|  | list_add(&jeb->list, &c->erase_pending_list); | 
|  | c->nr_erasing_blocks++; | 
|  | jffs2_erase_pending_trigger(c); | 
|  | } | 
|  | else | 
|  | jeb->last_node = container_of(first_raw, struct jffs2_raw_node_ref, next_phys); | 
|  |  | 
|  | jffs2_dbg_acct_sanity_check_nolock(c, jeb); | 
|  | jffs2_dbg_acct_paranoia_check_nolock(c, jeb); | 
|  |  | 
|  | jffs2_dbg_acct_sanity_check_nolock(c, new_jeb); | 
|  | jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb); | 
|  |  | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | D1(printk(KERN_DEBUG "wbuf recovery completed OK\n")); | 
|  | } | 
|  |  | 
|  | /* Meaning of pad argument: | 
|  | 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway. | 
|  | 1: Pad, do not adjust nextblock free_size | 
|  | 2: Pad, adjust nextblock free_size | 
|  | */ | 
|  | #define NOPAD		0 | 
|  | #define PAD_NOACCOUNT	1 | 
|  | #define PAD_ACCOUNTING	2 | 
|  |  | 
|  | static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad) | 
|  | { | 
|  | int ret; | 
|  | size_t retlen; | 
|  |  | 
|  | /* Nothing to do if not write-buffering the flash. In particular, we shouldn't | 
|  | del_timer() the timer we never initialised. */ | 
|  | if (!jffs2_is_writebuffered(c)) | 
|  | return 0; | 
|  |  | 
|  | if (!down_trylock(&c->alloc_sem)) { | 
|  | up(&c->alloc_sem); | 
|  | printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n"); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (!c->wbuf_len)	/* already checked c->wbuf above */ | 
|  | return 0; | 
|  |  | 
|  | /* claim remaining space on the page | 
|  | this happens, if we have a change to a new block, | 
|  | or if fsync forces us to flush the writebuffer. | 
|  | if we have a switch to next page, we will not have | 
|  | enough remaining space for this. | 
|  | */ | 
|  | if (pad ) { | 
|  | c->wbuf_len = PAD(c->wbuf_len); | 
|  |  | 
|  | /* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR | 
|  | with 8 byte page size */ | 
|  | memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len); | 
|  |  | 
|  | if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) { | 
|  | struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len); | 
|  | padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | 
|  | padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING); | 
|  | padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len); | 
|  | padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4)); | 
|  | } | 
|  | } | 
|  | /* else jffs2_flash_writev has actually filled in the rest of the | 
|  | buffer for us, and will deal with the node refs etc. later. */ | 
|  |  | 
|  | #ifdef BREAKME | 
|  | static int breakme; | 
|  | if (breakme++ == 20) { | 
|  | printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs); | 
|  | breakme = 0; | 
|  | c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, | 
|  | &retlen, brokenbuf, NULL, c->oobinfo); | 
|  | ret = -EIO; | 
|  | } else | 
|  | #endif | 
|  |  | 
|  | if (jffs2_cleanmarker_oob(c)) | 
|  | ret = c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf, NULL, c->oobinfo); | 
|  | else | 
|  | ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf); | 
|  |  | 
|  | if (ret || retlen != c->wbuf_pagesize) { | 
|  | if (ret) | 
|  | printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret); | 
|  | else { | 
|  | printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n", | 
|  | retlen, c->wbuf_pagesize); | 
|  | ret = -EIO; | 
|  | } | 
|  |  | 
|  | jffs2_wbuf_recover(c); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | /* Adjust free size of the block if we padded. */ | 
|  | if (pad) { | 
|  | struct jffs2_eraseblock *jeb; | 
|  |  | 
|  | jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; | 
|  |  | 
|  | D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n", | 
|  | (jeb==c->nextblock)?"next":"", jeb->offset)); | 
|  |  | 
|  | /* wbuf_pagesize - wbuf_len is the amount of space that's to be | 
|  | padded. If there is less free space in the block than that, | 
|  | something screwed up */ | 
|  | if (jeb->free_size < (c->wbuf_pagesize - c->wbuf_len)) { | 
|  | printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n", | 
|  | c->wbuf_ofs, c->wbuf_len, c->wbuf_pagesize-c->wbuf_len); | 
|  | printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n", | 
|  | jeb->offset, jeb->free_size); | 
|  | BUG(); | 
|  | } | 
|  | jeb->free_size -= (c->wbuf_pagesize - c->wbuf_len); | 
|  | c->free_size -= (c->wbuf_pagesize - c->wbuf_len); | 
|  | jeb->wasted_size += (c->wbuf_pagesize - c->wbuf_len); | 
|  | c->wasted_size += (c->wbuf_pagesize - c->wbuf_len); | 
|  | } | 
|  |  | 
|  | /* Stick any now-obsoleted blocks on the erase_pending_list */ | 
|  | jffs2_refile_wbuf_blocks(c); | 
|  | jffs2_clear_wbuf_ino_list(c); | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | memset(c->wbuf,0xff,c->wbuf_pagesize); | 
|  | /* adjust write buffer offset, else we get a non contiguous write bug */ | 
|  | c->wbuf_ofs += c->wbuf_pagesize; | 
|  | c->wbuf_len = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Trigger garbage collection to flush the write-buffer. | 
|  | If ino arg is zero, do it if _any_ real (i.e. not GC) writes are | 
|  | outstanding. If ino arg non-zero, do it only if a write for the | 
|  | given inode is outstanding. */ | 
|  | int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino) | 
|  | { | 
|  | uint32_t old_wbuf_ofs; | 
|  | uint32_t old_wbuf_len; | 
|  | int ret = 0; | 
|  |  | 
|  | D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino)); | 
|  |  | 
|  | if (!c->wbuf) | 
|  | return 0; | 
|  |  | 
|  | down(&c->alloc_sem); | 
|  | if (!jffs2_wbuf_pending_for_ino(c, ino)) { | 
|  | D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino)); | 
|  | up(&c->alloc_sem); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | old_wbuf_ofs = c->wbuf_ofs; | 
|  | old_wbuf_len = c->wbuf_len; | 
|  |  | 
|  | if (c->unchecked_size) { | 
|  | /* GC won't make any progress for a while */ | 
|  | D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n")); | 
|  | down_write(&c->wbuf_sem); | 
|  | ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); | 
|  | /* retry flushing wbuf in case jffs2_wbuf_recover | 
|  | left some data in the wbuf */ | 
|  | if (ret) | 
|  | ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); | 
|  | up_write(&c->wbuf_sem); | 
|  | } else while (old_wbuf_len && | 
|  | old_wbuf_ofs == c->wbuf_ofs) { | 
|  |  | 
|  | up(&c->alloc_sem); | 
|  |  | 
|  | D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n")); | 
|  |  | 
|  | ret = jffs2_garbage_collect_pass(c); | 
|  | if (ret) { | 
|  | /* GC failed. Flush it with padding instead */ | 
|  | down(&c->alloc_sem); | 
|  | down_write(&c->wbuf_sem); | 
|  | ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); | 
|  | /* retry flushing wbuf in case jffs2_wbuf_recover | 
|  | left some data in the wbuf */ | 
|  | if (ret) | 
|  | ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); | 
|  | up_write(&c->wbuf_sem); | 
|  | break; | 
|  | } | 
|  | down(&c->alloc_sem); | 
|  | } | 
|  |  | 
|  | D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n")); | 
|  |  | 
|  | up(&c->alloc_sem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Pad write-buffer to end and write it, wasting space. */ | 
|  | int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!c->wbuf) | 
|  | return 0; | 
|  |  | 
|  | down_write(&c->wbuf_sem); | 
|  | ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); | 
|  | /* retry - maybe wbuf recover left some data in wbuf. */ | 
|  | if (ret) | 
|  | ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); | 
|  | up_write(&c->wbuf_sem); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino) | 
|  | { | 
|  | struct kvec outvecs[3]; | 
|  | uint32_t totlen = 0; | 
|  | uint32_t split_ofs = 0; | 
|  | uint32_t old_totlen; | 
|  | int ret, splitvec = -1; | 
|  | int invec, outvec; | 
|  | size_t wbuf_retlen; | 
|  | unsigned char *wbuf_ptr; | 
|  | size_t donelen = 0; | 
|  | uint32_t outvec_to = to; | 
|  |  | 
|  | /* If not NAND flash, don't bother */ | 
|  | if (!jffs2_is_writebuffered(c)) | 
|  | return jffs2_flash_direct_writev(c, invecs, count, to, retlen); | 
|  |  | 
|  | down_write(&c->wbuf_sem); | 
|  |  | 
|  | /* If wbuf_ofs is not initialized, set it to target address */ | 
|  | if (c->wbuf_ofs == 0xFFFFFFFF) { | 
|  | c->wbuf_ofs = PAGE_DIV(to); | 
|  | c->wbuf_len = PAGE_MOD(to); | 
|  | memset(c->wbuf,0xff,c->wbuf_pagesize); | 
|  | } | 
|  |  | 
|  | /* Fixup the wbuf if we are moving to a new eraseblock.  The checks below | 
|  | fail for ECC'd NOR because cleanmarker == 16, so a block starts at | 
|  | xxx0010.  */ | 
|  | if (jffs2_nor_ecc(c)) { | 
|  | if (((c->wbuf_ofs % c->sector_size) == 0) && !c->wbuf_len) { | 
|  | c->wbuf_ofs = PAGE_DIV(to); | 
|  | c->wbuf_len = PAGE_MOD(to); | 
|  | memset(c->wbuf,0xff,c->wbuf_pagesize); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Sanity checks on target address. | 
|  | It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs), | 
|  | and it's permitted to write at the beginning of a new | 
|  | erase block. Anything else, and you die. | 
|  | New block starts at xxx000c (0-b = block header) | 
|  | */ | 
|  | if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) { | 
|  | /* It's a write to a new block */ | 
|  | if (c->wbuf_len) { | 
|  | D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs)); | 
|  | ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); | 
|  | if (ret) { | 
|  | /* the underlying layer has to check wbuf_len to do the cleanup */ | 
|  | D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret)); | 
|  | *retlen = 0; | 
|  | goto exit; | 
|  | } | 
|  | } | 
|  | /* set pointer to new block */ | 
|  | c->wbuf_ofs = PAGE_DIV(to); | 
|  | c->wbuf_len = PAGE_MOD(to); | 
|  | } | 
|  |  | 
|  | if (to != PAD(c->wbuf_ofs + c->wbuf_len)) { | 
|  | /* We're not writing immediately after the writebuffer. Bad. */ | 
|  | printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to); | 
|  | if (c->wbuf_len) | 
|  | printk(KERN_CRIT "wbuf was previously %08x-%08x\n", | 
|  | c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* Note outvecs[3] above. We know count is never greater than 2 */ | 
|  | if (count > 2) { | 
|  | printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | invec = 0; | 
|  | outvec = 0; | 
|  |  | 
|  | /* Fill writebuffer first, if already in use */ | 
|  | if (c->wbuf_len) { | 
|  | uint32_t invec_ofs = 0; | 
|  |  | 
|  | /* adjust alignment offset */ | 
|  | if (c->wbuf_len != PAGE_MOD(to)) { | 
|  | c->wbuf_len = PAGE_MOD(to); | 
|  | /* take care of alignment to next page */ | 
|  | if (!c->wbuf_len) | 
|  | c->wbuf_len = c->wbuf_pagesize; | 
|  | } | 
|  |  | 
|  | while(c->wbuf_len < c->wbuf_pagesize) { | 
|  | uint32_t thislen; | 
|  |  | 
|  | if (invec == count) | 
|  | goto alldone; | 
|  |  | 
|  | thislen = c->wbuf_pagesize - c->wbuf_len; | 
|  |  | 
|  | if (thislen >= invecs[invec].iov_len) | 
|  | thislen = invecs[invec].iov_len; | 
|  |  | 
|  | invec_ofs = thislen; | 
|  |  | 
|  | memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen); | 
|  | c->wbuf_len += thislen; | 
|  | donelen += thislen; | 
|  | /* Get next invec, if actual did not fill the buffer */ | 
|  | if (c->wbuf_len < c->wbuf_pagesize) | 
|  | invec++; | 
|  | } | 
|  |  | 
|  | /* write buffer is full, flush buffer */ | 
|  | ret = __jffs2_flush_wbuf(c, NOPAD); | 
|  | if (ret) { | 
|  | /* the underlying layer has to check wbuf_len to do the cleanup */ | 
|  | D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret)); | 
|  | /* Retlen zero to make sure our caller doesn't mark the space dirty. | 
|  | We've already done everything that's necessary */ | 
|  | *retlen = 0; | 
|  | goto exit; | 
|  | } | 
|  | outvec_to += donelen; | 
|  | c->wbuf_ofs = outvec_to; | 
|  |  | 
|  | /* All invecs done ? */ | 
|  | if (invec == count) | 
|  | goto alldone; | 
|  |  | 
|  | /* Set up the first outvec, containing the remainder of the | 
|  | invec we partially used */ | 
|  | if (invecs[invec].iov_len > invec_ofs) { | 
|  | outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs; | 
|  | totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs; | 
|  | if (totlen > c->wbuf_pagesize) { | 
|  | splitvec = outvec; | 
|  | split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen); | 
|  | } | 
|  | outvec++; | 
|  | } | 
|  | invec++; | 
|  | } | 
|  |  | 
|  | /* OK, now we've flushed the wbuf and the start of the bits | 
|  | we have been asked to write, now to write the rest.... */ | 
|  |  | 
|  | /* totlen holds the amount of data still to be written */ | 
|  | old_totlen = totlen; | 
|  | for ( ; invec < count; invec++,outvec++ ) { | 
|  | outvecs[outvec].iov_base = invecs[invec].iov_base; | 
|  | totlen += outvecs[outvec].iov_len = invecs[invec].iov_len; | 
|  | if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) { | 
|  | splitvec = outvec; | 
|  | split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen); | 
|  | old_totlen = totlen; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now the outvecs array holds all the remaining data to write */ | 
|  | /* Up to splitvec,split_ofs is to be written immediately. The rest | 
|  | goes into the (now-empty) wbuf */ | 
|  |  | 
|  | if (splitvec != -1) { | 
|  | uint32_t remainder; | 
|  |  | 
|  | remainder = outvecs[splitvec].iov_len - split_ofs; | 
|  | outvecs[splitvec].iov_len = split_ofs; | 
|  |  | 
|  | /* We did cross a page boundary, so we write some now */ | 
|  | if (jffs2_cleanmarker_oob(c)) | 
|  | ret = c->mtd->writev_ecc(c->mtd, outvecs, splitvec+1, outvec_to, &wbuf_retlen, NULL, c->oobinfo); | 
|  | else | 
|  | ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen); | 
|  |  | 
|  | if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) { | 
|  | /* At this point we have no problem, | 
|  | c->wbuf is empty. However refile nextblock to avoid | 
|  | writing again to same address. | 
|  | */ | 
|  | struct jffs2_eraseblock *jeb; | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | jeb = &c->blocks[outvec_to / c->sector_size]; | 
|  | jffs2_block_refile(c, jeb, REFILE_ANYWAY); | 
|  |  | 
|  | *retlen = 0; | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | donelen += wbuf_retlen; | 
|  | c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen); | 
|  |  | 
|  | if (remainder) { | 
|  | outvecs[splitvec].iov_base += split_ofs; | 
|  | outvecs[splitvec].iov_len = remainder; | 
|  | } else { | 
|  | splitvec++; | 
|  | } | 
|  |  | 
|  | } else { | 
|  | splitvec = 0; | 
|  | } | 
|  |  | 
|  | /* Now splitvec points to the start of the bits we have to copy | 
|  | into the wbuf */ | 
|  | wbuf_ptr = c->wbuf; | 
|  |  | 
|  | for ( ; splitvec < outvec; splitvec++) { | 
|  | /* Don't copy the wbuf into itself */ | 
|  | if (outvecs[splitvec].iov_base == c->wbuf) | 
|  | continue; | 
|  | memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len); | 
|  | wbuf_ptr += outvecs[splitvec].iov_len; | 
|  | donelen += outvecs[splitvec].iov_len; | 
|  | } | 
|  | c->wbuf_len = wbuf_ptr - c->wbuf; | 
|  |  | 
|  | /* If there's a remainder in the wbuf and it's a non-GC write, | 
|  | remember that the wbuf affects this ino */ | 
|  | alldone: | 
|  | *retlen = donelen; | 
|  |  | 
|  | if (jffs2_sum_active()) { | 
|  | int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to); | 
|  | if (res) | 
|  | return res; | 
|  | } | 
|  |  | 
|  | if (c->wbuf_len && ino) | 
|  | jffs2_wbuf_dirties_inode(c, ino); | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | exit: | 
|  | up_write(&c->wbuf_sem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	This is the entry for flash write. | 
|  | *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev | 
|  | */ | 
|  | int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf) | 
|  | { | 
|  | struct kvec vecs[1]; | 
|  |  | 
|  | if (!jffs2_is_writebuffered(c)) | 
|  | return jffs2_flash_direct_write(c, ofs, len, retlen, buf); | 
|  |  | 
|  | vecs[0].iov_base = (unsigned char *) buf; | 
|  | vecs[0].iov_len = len; | 
|  | return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | Handle readback from writebuffer and ECC failure return | 
|  | */ | 
|  | int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf) | 
|  | { | 
|  | loff_t	orbf = 0, owbf = 0, lwbf = 0; | 
|  | int	ret; | 
|  |  | 
|  | if (!jffs2_is_writebuffered(c)) | 
|  | return c->mtd->read(c->mtd, ofs, len, retlen, buf); | 
|  |  | 
|  | /* Read flash */ | 
|  | down_read(&c->wbuf_sem); | 
|  | if (jffs2_cleanmarker_oob(c)) | 
|  | ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo); | 
|  | else | 
|  | ret = c->mtd->read(c->mtd, ofs, len, retlen, buf); | 
|  |  | 
|  | if ( (ret == -EBADMSG) && (*retlen == len) ) { | 
|  | printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n", | 
|  | len, ofs); | 
|  | /* | 
|  | * We have the raw data without ECC correction in the buffer, maybe | 
|  | * we are lucky and all data or parts are correct. We check the node. | 
|  | * If data are corrupted node check will sort it out. | 
|  | * We keep this block, it will fail on write or erase and the we | 
|  | * mark it bad. Or should we do that now? But we should give him a chance. | 
|  | * Maybe we had a system crash or power loss before the ecc write or | 
|  | * a erase was completed. | 
|  | * So we return success. :) | 
|  | */ | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | /* if no writebuffer available or write buffer empty, return */ | 
|  | if (!c->wbuf_pagesize || !c->wbuf_len) | 
|  | goto exit; | 
|  |  | 
|  | /* if we read in a different block, return */ | 
|  | if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs)) | 
|  | goto exit; | 
|  |  | 
|  | if (ofs >= c->wbuf_ofs) { | 
|  | owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */ | 
|  | if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */ | 
|  | goto exit; | 
|  | lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */ | 
|  | if (lwbf > len) | 
|  | lwbf = len; | 
|  | } else { | 
|  | orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */ | 
|  | if (orbf > len)			/* is write beyond write buffer ? */ | 
|  | goto exit; | 
|  | lwbf = len - orbf; 		/* number of bytes to copy */ | 
|  | if (lwbf > c->wbuf_len) | 
|  | lwbf = c->wbuf_len; | 
|  | } | 
|  | if (lwbf > 0) | 
|  | memcpy(buf+orbf,c->wbuf+owbf,lwbf); | 
|  |  | 
|  | exit: | 
|  | up_read(&c->wbuf_sem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Check, if the out of band area is empty | 
|  | */ | 
|  | int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode) | 
|  | { | 
|  | unsigned char *buf; | 
|  | int 	ret = 0; | 
|  | int	i,len,page; | 
|  | size_t  retlen; | 
|  | int	oob_size; | 
|  |  | 
|  | /* allocate a buffer for all oob data in this sector */ | 
|  | oob_size = c->mtd->oobsize; | 
|  | len = 4 * oob_size; | 
|  | buf = kmalloc(len, GFP_KERNEL); | 
|  | if (!buf) { | 
|  | printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | /* | 
|  | * if mode = 0, we scan for a total empty oob area, else we have | 
|  | * to take care of the cleanmarker in the first page of the block | 
|  | */ | 
|  | ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf); | 
|  | if (ret) { | 
|  | D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (retlen < len) { | 
|  | D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read " | 
|  | "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset)); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Special check for first page */ | 
|  | for(i = 0; i < oob_size ; i++) { | 
|  | /* Yeah, we know about the cleanmarker. */ | 
|  | if (mode && i >= c->fsdata_pos && | 
|  | i < c->fsdata_pos + c->fsdata_len) | 
|  | continue; | 
|  |  | 
|  | if (buf[i] != 0xFF) { | 
|  | D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n", | 
|  | buf[i], i, jeb->offset)); | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* we know, we are aligned :) */ | 
|  | for (page = oob_size; page < len; page += sizeof(long)) { | 
|  | unsigned long dat = *(unsigned long *)(&buf[page]); | 
|  | if(dat != -1) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | kfree(buf); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Scan for a valid cleanmarker and for bad blocks | 
|  | *	For virtual blocks (concatenated physical blocks) check the cleanmarker | 
|  | *	only in the first page of the first physical block, but scan for bad blocks in all | 
|  | *	physical blocks | 
|  | */ | 
|  | int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) | 
|  | { | 
|  | struct jffs2_unknown_node n; | 
|  | unsigned char buf[2 * NAND_MAX_OOBSIZE]; | 
|  | unsigned char *p; | 
|  | int ret, i, cnt, retval = 0; | 
|  | size_t retlen, offset; | 
|  | int oob_size; | 
|  |  | 
|  | offset = jeb->offset; | 
|  | oob_size = c->mtd->oobsize; | 
|  |  | 
|  | /* Loop through the physical blocks */ | 
|  | for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) { | 
|  | /* Check first if the block is bad. */ | 
|  | if (c->mtd->block_isbad (c->mtd, offset)) { | 
|  | D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset)); | 
|  | return 2; | 
|  | } | 
|  | /* | 
|  | *    We read oob data from page 0 and 1 of the block. | 
|  | *    page 0 contains cleanmarker and badblock info | 
|  | *    page 1 contains failure count of this block | 
|  | */ | 
|  | ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf); | 
|  |  | 
|  | if (ret) { | 
|  | D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); | 
|  | return ret; | 
|  | } | 
|  | if (retlen < (oob_size << 1)) { | 
|  | D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset)); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* Check cleanmarker only on the first physical block */ | 
|  | if (!cnt) { | 
|  | n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK); | 
|  | n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER); | 
|  | n.totlen = cpu_to_je32 (8); | 
|  | p = (unsigned char *) &n; | 
|  |  | 
|  | for (i = 0; i < c->fsdata_len; i++) { | 
|  | if (buf[c->fsdata_pos + i] != p[i]) { | 
|  | retval = 1; | 
|  | } | 
|  | } | 
|  | D1(if (retval == 1) { | 
|  | printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset); | 
|  | printk(KERN_WARNING "OOB at %08x was ", offset); | 
|  | for (i=0; i < oob_size; i++) { | 
|  | printk("%02x ", buf[i]); | 
|  | } | 
|  | printk("\n"); | 
|  | }) | 
|  | } | 
|  | offset += c->mtd->erasesize; | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) | 
|  | { | 
|  | struct 	jffs2_unknown_node n; | 
|  | int 	ret; | 
|  | size_t 	retlen; | 
|  |  | 
|  | n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | 
|  | n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER); | 
|  | n.totlen = cpu_to_je32(8); | 
|  |  | 
|  | ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n); | 
|  |  | 
|  | if (ret) { | 
|  | D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); | 
|  | return ret; | 
|  | } | 
|  | if (retlen != c->fsdata_len) { | 
|  | D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len)); | 
|  | return ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On NAND we try to mark this block bad. If the block was erased more | 
|  | * than MAX_ERASE_FAILURES we mark it finaly bad. | 
|  | * Don't care about failures. This block remains on the erase-pending | 
|  | * or badblock list as long as nobody manipulates the flash with | 
|  | * a bootloader or something like that. | 
|  | */ | 
|  |  | 
|  | int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset) | 
|  | { | 
|  | int 	ret; | 
|  |  | 
|  | /* if the count is < max, we try to write the counter to the 2nd page oob area */ | 
|  | if( ++jeb->bad_count < MAX_ERASE_FAILURES) | 
|  | return 0; | 
|  |  | 
|  | if (!c->mtd->block_markbad) | 
|  | return 1; // What else can we do? | 
|  |  | 
|  | D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset)); | 
|  | ret = c->mtd->block_markbad(c->mtd, bad_offset); | 
|  |  | 
|  | if (ret) { | 
|  | D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); | 
|  | return ret; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #define NAND_JFFS2_OOB16_FSDALEN	8 | 
|  |  | 
|  | static struct nand_oobinfo jffs2_oobinfo_docecc = { | 
|  | .useecc = MTD_NANDECC_PLACE, | 
|  | .eccbytes = 6, | 
|  | .eccpos = {0,1,2,3,4,5} | 
|  | }; | 
|  |  | 
|  |  | 
|  | static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c) | 
|  | { | 
|  | struct nand_oobinfo *oinfo = &c->mtd->oobinfo; | 
|  |  | 
|  | /* Do this only, if we have an oob buffer */ | 
|  | if (!c->mtd->oobsize) | 
|  | return 0; | 
|  |  | 
|  | /* Cleanmarker is out-of-band, so inline size zero */ | 
|  | c->cleanmarker_size = 0; | 
|  |  | 
|  | /* Should we use autoplacement ? */ | 
|  | if (oinfo && oinfo->useecc == MTD_NANDECC_AUTOPLACE) { | 
|  | D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n")); | 
|  | /* Get the position of the free bytes */ | 
|  | if (!oinfo->oobfree[0][1]) { | 
|  | printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n"); | 
|  | return -ENOSPC; | 
|  | } | 
|  | c->fsdata_pos = oinfo->oobfree[0][0]; | 
|  | c->fsdata_len = oinfo->oobfree[0][1]; | 
|  | if (c->fsdata_len > 8) | 
|  | c->fsdata_len = 8; | 
|  | } else { | 
|  | /* This is just a legacy fallback and should go away soon */ | 
|  | switch(c->mtd->ecctype) { | 
|  | case MTD_ECC_RS_DiskOnChip: | 
|  | printk(KERN_WARNING "JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n"); | 
|  | c->oobinfo = &jffs2_oobinfo_docecc; | 
|  | c->fsdata_pos = 6; | 
|  | c->fsdata_len = NAND_JFFS2_OOB16_FSDALEN; | 
|  | c->badblock_pos = 15; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n")); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int jffs2_nand_flash_setup(struct jffs2_sb_info *c) | 
|  | { | 
|  | int res; | 
|  |  | 
|  | /* Initialise write buffer */ | 
|  | init_rwsem(&c->wbuf_sem); | 
|  | c->wbuf_pagesize = c->mtd->oobblock; | 
|  | c->wbuf_ofs = 0xFFFFFFFF; | 
|  |  | 
|  | c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
|  | if (!c->wbuf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | res = jffs2_nand_set_oobinfo(c); | 
|  |  | 
|  | #ifdef BREAKME | 
|  | if (!brokenbuf) | 
|  | brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
|  | if (!brokenbuf) { | 
|  | kfree(c->wbuf); | 
|  | return -ENOMEM; | 
|  | } | 
|  | memset(brokenbuf, 0xdb, c->wbuf_pagesize); | 
|  | #endif | 
|  | return res; | 
|  | } | 
|  |  | 
|  | void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c) | 
|  | { | 
|  | kfree(c->wbuf); | 
|  | } | 
|  |  | 
|  | int jffs2_dataflash_setup(struct jffs2_sb_info *c) { | 
|  | c->cleanmarker_size = 0;		/* No cleanmarkers needed */ | 
|  |  | 
|  | /* Initialize write buffer */ | 
|  | init_rwsem(&c->wbuf_sem); | 
|  |  | 
|  |  | 
|  | c->wbuf_pagesize =  c->mtd->erasesize; | 
|  |  | 
|  | /* Find a suitable c->sector_size | 
|  | * - Not too much sectors | 
|  | * - Sectors have to be at least 4 K + some bytes | 
|  | * - All known dataflashes have erase sizes of 528 or 1056 | 
|  | * - we take at least 8 eraseblocks and want to have at least 8K size | 
|  | * - The concatenation should be a power of 2 | 
|  | */ | 
|  |  | 
|  | c->sector_size = 8 * c->mtd->erasesize; | 
|  |  | 
|  | while (c->sector_size < 8192) { | 
|  | c->sector_size *= 2; | 
|  | } | 
|  |  | 
|  | /* It may be necessary to adjust the flash size */ | 
|  | c->flash_size = c->mtd->size; | 
|  |  | 
|  | if ((c->flash_size % c->sector_size) != 0) { | 
|  | c->flash_size = (c->flash_size / c->sector_size) * c->sector_size; | 
|  | printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size); | 
|  | }; | 
|  |  | 
|  | c->wbuf_ofs = 0xFFFFFFFF; | 
|  | c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
|  | if (!c->wbuf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) { | 
|  | kfree(c->wbuf); | 
|  | } | 
|  |  | 
|  | int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) { | 
|  | /* Cleanmarker is actually larger on the flashes */ | 
|  | c->cleanmarker_size = 16; | 
|  |  | 
|  | /* Initialize write buffer */ | 
|  | init_rwsem(&c->wbuf_sem); | 
|  | c->wbuf_pagesize = c->mtd->eccsize; | 
|  | c->wbuf_ofs = 0xFFFFFFFF; | 
|  |  | 
|  | c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
|  | if (!c->wbuf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c) { | 
|  | kfree(c->wbuf); | 
|  | } | 
|  |  | 
|  | int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) { | 
|  | /* Cleanmarker currently occupies a whole programming region */ | 
|  | c->cleanmarker_size = MTD_PROGREGION_SIZE(c->mtd); | 
|  |  | 
|  | /* Initialize write buffer */ | 
|  | init_rwsem(&c->wbuf_sem); | 
|  | c->wbuf_pagesize = MTD_PROGREGION_SIZE(c->mtd); | 
|  | c->wbuf_ofs = 0xFFFFFFFF; | 
|  |  | 
|  | c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
|  | if (!c->wbuf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) { | 
|  | kfree(c->wbuf); | 
|  | } |