| /* | 
 |  * Copyright 2010 Tilera Corporation. All Rights Reserved. | 
 |  * | 
 |  *   This program is free software; you can redistribute it and/or | 
 |  *   modify it under the terms of the GNU General Public License | 
 |  *   as published by the Free Software Foundation, version 2. | 
 |  * | 
 |  *   This program is distributed in the hope that it will be useful, but | 
 |  *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
 |  *   NON INFRINGEMENT.  See the GNU General Public License for | 
 |  *   more details. | 
 |  */ | 
 |  | 
 | #include <linux/cache.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mm.h> | 
 | #include <asm/atomic.h> | 
 | #include <asm/futex.h> | 
 | #include <arch/chip.h> | 
 |  | 
 | /* See <asm/atomic_32.h> */ | 
 | #if ATOMIC_LOCKS_FOUND_VIA_TABLE() | 
 |  | 
 | /* | 
 |  * A block of memory containing locks for atomic ops. Each instance of this | 
 |  * struct will be homed on a different CPU. | 
 |  */ | 
 | struct atomic_locks_on_cpu { | 
 | 	int lock[ATOMIC_HASH_L2_SIZE]; | 
 | } __attribute__((aligned(ATOMIC_HASH_L2_SIZE * 4))); | 
 |  | 
 | static DEFINE_PER_CPU(struct atomic_locks_on_cpu, atomic_lock_pool); | 
 |  | 
 | /* The locks we'll use until __init_atomic_per_cpu is called. */ | 
 | static struct atomic_locks_on_cpu __initdata initial_atomic_locks; | 
 |  | 
 | /* Hash into this vector to get a pointer to lock for the given atomic. */ | 
 | struct atomic_locks_on_cpu *atomic_lock_ptr[ATOMIC_HASH_L1_SIZE] | 
 | 	__write_once = { | 
 | 	[0 ... ATOMIC_HASH_L1_SIZE-1] (&initial_atomic_locks) | 
 | }; | 
 |  | 
 | #else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */ | 
 |  | 
 | /* This page is remapped on startup to be hash-for-home. */ | 
 | int atomic_locks[PAGE_SIZE / sizeof(int) /* Only ATOMIC_HASH_SIZE is used */] | 
 |   __attribute__((aligned(PAGE_SIZE), section(".bss.page_aligned"))); | 
 |  | 
 | #endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */ | 
 |  | 
 | static inline int *__atomic_hashed_lock(volatile void *v) | 
 | { | 
 | 	/* NOTE: this code must match "sys_cmpxchg" in kernel/intvec.S */ | 
 | #if ATOMIC_LOCKS_FOUND_VIA_TABLE() | 
 | 	unsigned long i = | 
 | 		(unsigned long) v & ((PAGE_SIZE-1) & -sizeof(long long)); | 
 | 	unsigned long n = __insn_crc32_32(0, i); | 
 |  | 
 | 	/* Grab high bits for L1 index. */ | 
 | 	unsigned long l1_index = n >> ((sizeof(n) * 8) - ATOMIC_HASH_L1_SHIFT); | 
 | 	/* Grab low bits for L2 index. */ | 
 | 	unsigned long l2_index = n & (ATOMIC_HASH_L2_SIZE - 1); | 
 |  | 
 | 	return &atomic_lock_ptr[l1_index]->lock[l2_index]; | 
 | #else | 
 | 	/* | 
 | 	 * Use bits [3, 3 + ATOMIC_HASH_SHIFT) as the lock index. | 
 | 	 * Using mm works here because atomic_locks is page aligned. | 
 | 	 */ | 
 | 	unsigned long ptr = __insn_mm((unsigned long)v >> 1, | 
 | 				      (unsigned long)atomic_locks, | 
 | 				      2, (ATOMIC_HASH_SHIFT + 2) - 1); | 
 | 	return (int *)ptr; | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* Return whether the passed pointer is a valid atomic lock pointer. */ | 
 | static int is_atomic_lock(int *p) | 
 | { | 
 | #if ATOMIC_LOCKS_FOUND_VIA_TABLE() | 
 | 	int i; | 
 | 	for (i = 0; i < ATOMIC_HASH_L1_SIZE; ++i) { | 
 |  | 
 | 		if (p >= &atomic_lock_ptr[i]->lock[0] && | 
 | 		    p < &atomic_lock_ptr[i]->lock[ATOMIC_HASH_L2_SIZE]) { | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | #else | 
 | 	return p >= &atomic_locks[0] && p < &atomic_locks[ATOMIC_HASH_SIZE]; | 
 | #endif | 
 | } | 
 |  | 
 | void __atomic_fault_unlock(int *irqlock_word) | 
 | { | 
 | 	BUG_ON(!is_atomic_lock(irqlock_word)); | 
 | 	BUG_ON(*irqlock_word != 1); | 
 | 	*irqlock_word = 0; | 
 | } | 
 |  | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | static inline int *__atomic_setup(volatile void *v) | 
 | { | 
 | 	/* Issue a load to the target to bring it into cache. */ | 
 | 	*(volatile int *)v; | 
 | 	return __atomic_hashed_lock(v); | 
 | } | 
 |  | 
 | int _atomic_xchg(atomic_t *v, int n) | 
 | { | 
 | 	return __atomic_xchg(&v->counter, __atomic_setup(v), n).val; | 
 | } | 
 | EXPORT_SYMBOL(_atomic_xchg); | 
 |  | 
 | int _atomic_xchg_add(atomic_t *v, int i) | 
 | { | 
 | 	return __atomic_xchg_add(&v->counter, __atomic_setup(v), i).val; | 
 | } | 
 | EXPORT_SYMBOL(_atomic_xchg_add); | 
 |  | 
 | int _atomic_xchg_add_unless(atomic_t *v, int a, int u) | 
 | { | 
 | 	/* | 
 | 	 * Note: argument order is switched here since it is easier | 
 | 	 * to use the first argument consistently as the "old value" | 
 | 	 * in the assembly, as is done for _atomic_cmpxchg(). | 
 | 	 */ | 
 | 	return __atomic_xchg_add_unless(&v->counter, __atomic_setup(v), u, a) | 
 | 		.val; | 
 | } | 
 | EXPORT_SYMBOL(_atomic_xchg_add_unless); | 
 |  | 
 | int _atomic_cmpxchg(atomic_t *v, int o, int n) | 
 | { | 
 | 	return __atomic_cmpxchg(&v->counter, __atomic_setup(v), o, n).val; | 
 | } | 
 | EXPORT_SYMBOL(_atomic_cmpxchg); | 
 |  | 
 | unsigned long _atomic_or(volatile unsigned long *p, unsigned long mask) | 
 | { | 
 | 	return __atomic_or((int *)p, __atomic_setup(p), mask).val; | 
 | } | 
 | EXPORT_SYMBOL(_atomic_or); | 
 |  | 
 | unsigned long _atomic_andn(volatile unsigned long *p, unsigned long mask) | 
 | { | 
 | 	return __atomic_andn((int *)p, __atomic_setup(p), mask).val; | 
 | } | 
 | EXPORT_SYMBOL(_atomic_andn); | 
 |  | 
 | unsigned long _atomic_xor(volatile unsigned long *p, unsigned long mask) | 
 | { | 
 | 	return __atomic_xor((int *)p, __atomic_setup(p), mask).val; | 
 | } | 
 | EXPORT_SYMBOL(_atomic_xor); | 
 |  | 
 |  | 
 | u64 _atomic64_xchg(atomic64_t *v, u64 n) | 
 | { | 
 | 	return __atomic64_xchg(&v->counter, __atomic_setup(v), n); | 
 | } | 
 | EXPORT_SYMBOL(_atomic64_xchg); | 
 |  | 
 | u64 _atomic64_xchg_add(atomic64_t *v, u64 i) | 
 | { | 
 | 	return __atomic64_xchg_add(&v->counter, __atomic_setup(v), i); | 
 | } | 
 | EXPORT_SYMBOL(_atomic64_xchg_add); | 
 |  | 
 | u64 _atomic64_xchg_add_unless(atomic64_t *v, u64 a, u64 u) | 
 | { | 
 | 	/* | 
 | 	 * Note: argument order is switched here since it is easier | 
 | 	 * to use the first argument consistently as the "old value" | 
 | 	 * in the assembly, as is done for _atomic_cmpxchg(). | 
 | 	 */ | 
 | 	return __atomic64_xchg_add_unless(&v->counter, __atomic_setup(v), | 
 | 					  u, a); | 
 | } | 
 | EXPORT_SYMBOL(_atomic64_xchg_add_unless); | 
 |  | 
 | u64 _atomic64_cmpxchg(atomic64_t *v, u64 o, u64 n) | 
 | { | 
 | 	return __atomic64_cmpxchg(&v->counter, __atomic_setup(v), o, n); | 
 | } | 
 | EXPORT_SYMBOL(_atomic64_cmpxchg); | 
 |  | 
 |  | 
 | static inline int *__futex_setup(int __user *v) | 
 | { | 
 | 	/* | 
 | 	 * Issue a prefetch to the counter to bring it into cache. | 
 | 	 * As for __atomic_setup, but we can't do a read into the L1 | 
 | 	 * since it might fault; instead we do a prefetch into the L2. | 
 | 	 */ | 
 | 	__insn_prefetch(v); | 
 | 	return __atomic_hashed_lock((int __force *)v); | 
 | } | 
 |  | 
 | struct __get_user futex_set(int __user *v, int i) | 
 | { | 
 | 	return __atomic_xchg((int __force *)v, __futex_setup(v), i); | 
 | } | 
 |  | 
 | struct __get_user futex_add(int __user *v, int n) | 
 | { | 
 | 	return __atomic_xchg_add((int __force *)v, __futex_setup(v), n); | 
 | } | 
 |  | 
 | struct __get_user futex_or(int __user *v, int n) | 
 | { | 
 | 	return __atomic_or((int __force *)v, __futex_setup(v), n); | 
 | } | 
 |  | 
 | struct __get_user futex_andn(int __user *v, int n) | 
 | { | 
 | 	return __atomic_andn((int __force *)v, __futex_setup(v), n); | 
 | } | 
 |  | 
 | struct __get_user futex_xor(int __user *v, int n) | 
 | { | 
 | 	return __atomic_xor((int __force *)v, __futex_setup(v), n); | 
 | } | 
 |  | 
 | struct __get_user futex_cmpxchg(int __user *v, int o, int n) | 
 | { | 
 | 	return __atomic_cmpxchg((int __force *)v, __futex_setup(v), o, n); | 
 | } | 
 |  | 
 | /* | 
 |  * If any of the atomic or futex routines hit a bad address (not in | 
 |  * the page tables at kernel PL) this routine is called.  The futex | 
 |  * routines are never used on kernel space, and the normal atomics and | 
 |  * bitops are never used on user space.  So a fault on kernel space | 
 |  * must be fatal, but a fault on userspace is a futex fault and we | 
 |  * need to return -EFAULT.  Note that the context this routine is | 
 |  * invoked in is the context of the "_atomic_xxx()" routines called | 
 |  * by the functions in this file. | 
 |  */ | 
 | struct __get_user __atomic_bad_address(int __user *addr) | 
 | { | 
 | 	if (unlikely(!access_ok(VERIFY_WRITE, addr, sizeof(int)))) | 
 | 		panic("Bad address used for kernel atomic op: %p\n", addr); | 
 | 	return (struct __get_user) { .err = -EFAULT }; | 
 | } | 
 |  | 
 |  | 
 | #if CHIP_HAS_CBOX_HOME_MAP() | 
 | static int __init noatomichash(char *str) | 
 | { | 
 | 	pr_warning("noatomichash is deprecated.\n"); | 
 | 	return 1; | 
 | } | 
 | __setup("noatomichash", noatomichash); | 
 | #endif | 
 |  | 
 | void __init __init_atomic_per_cpu(void) | 
 | { | 
 | #if ATOMIC_LOCKS_FOUND_VIA_TABLE() | 
 |  | 
 | 	unsigned int i; | 
 | 	int actual_cpu; | 
 |  | 
 | 	/* | 
 | 	 * Before this is called from setup, we just have one lock for | 
 | 	 * all atomic objects/operations.  Here we replace the | 
 | 	 * elements of atomic_lock_ptr so that they point at per_cpu | 
 | 	 * integers.  This seemingly over-complex approach stems from | 
 | 	 * the fact that DEFINE_PER_CPU defines an entry for each cpu | 
 | 	 * in the grid, not each cpu from 0..ATOMIC_HASH_SIZE-1.  But | 
 | 	 * for efficient hashing of atomics to their locks we want a | 
 | 	 * compile time constant power of 2 for the size of this | 
 | 	 * table, so we use ATOMIC_HASH_SIZE. | 
 | 	 * | 
 | 	 * Here we populate atomic_lock_ptr from the per cpu | 
 | 	 * atomic_lock_pool, interspersing by actual cpu so that | 
 | 	 * subsequent elements are homed on consecutive cpus. | 
 | 	 */ | 
 |  | 
 | 	actual_cpu = cpumask_first(cpu_possible_mask); | 
 |  | 
 | 	for (i = 0; i < ATOMIC_HASH_L1_SIZE; ++i) { | 
 | 		/* | 
 | 		 * Preincrement to slightly bias against using cpu 0, | 
 | 		 * which has plenty of stuff homed on it already. | 
 | 		 */ | 
 | 		actual_cpu = cpumask_next(actual_cpu, cpu_possible_mask); | 
 | 		if (actual_cpu >= nr_cpu_ids) | 
 | 			actual_cpu = cpumask_first(cpu_possible_mask); | 
 |  | 
 | 		atomic_lock_ptr[i] = &per_cpu(atomic_lock_pool, actual_cpu); | 
 | 	} | 
 |  | 
 | #else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */ | 
 |  | 
 | 	/* Validate power-of-two and "bigger than cpus" assumption */ | 
 | 	BUILD_BUG_ON(ATOMIC_HASH_SIZE & (ATOMIC_HASH_SIZE-1)); | 
 | 	BUG_ON(ATOMIC_HASH_SIZE < nr_cpu_ids); | 
 |  | 
 | 	/* | 
 | 	 * On TILEPro we prefer to use a single hash-for-home | 
 | 	 * page, since this means atomic operations are less | 
 | 	 * likely to encounter a TLB fault and thus should | 
 | 	 * in general perform faster.  You may wish to disable | 
 | 	 * this in situations where few hash-for-home tiles | 
 | 	 * are configured. | 
 | 	 */ | 
 | 	BUG_ON((unsigned long)atomic_locks % PAGE_SIZE != 0); | 
 |  | 
 | 	/* The locks must all fit on one page. */ | 
 | 	BUILD_BUG_ON(ATOMIC_HASH_SIZE * sizeof(int) > PAGE_SIZE); | 
 |  | 
 | 	/* | 
 | 	 * We use the page offset of the atomic value's address as | 
 | 	 * an index into atomic_locks, excluding the low 3 bits. | 
 | 	 * That should not produce more indices than ATOMIC_HASH_SIZE. | 
 | 	 */ | 
 | 	BUILD_BUG_ON((PAGE_SIZE >> 3) > ATOMIC_HASH_SIZE); | 
 |  | 
 | #endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */ | 
 |  | 
 | 	/* The futex code makes this assumption, so we validate it here. */ | 
 | 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(int)); | 
 | } |