| /* | 
 |  *  linux/mm/memory.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 |  */ | 
 |  | 
 | /* | 
 |  * demand-loading started 01.12.91 - seems it is high on the list of | 
 |  * things wanted, and it should be easy to implement. - Linus | 
 |  */ | 
 |  | 
 | /* | 
 |  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | 
 |  * pages started 02.12.91, seems to work. - Linus. | 
 |  * | 
 |  * Tested sharing by executing about 30 /bin/sh: under the old kernel it | 
 |  * would have taken more than the 6M I have free, but it worked well as | 
 |  * far as I could see. | 
 |  * | 
 |  * Also corrected some "invalidate()"s - I wasn't doing enough of them. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Real VM (paging to/from disk) started 18.12.91. Much more work and | 
 |  * thought has to go into this. Oh, well.. | 
 |  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why. | 
 |  *		Found it. Everything seems to work now. | 
 |  * 20.12.91  -  Ok, making the swap-device changeable like the root. | 
 |  */ | 
 |  | 
 | /* | 
 |  * 05.04.94  -  Multi-page memory management added for v1.1. | 
 |  * 		Idea by Alex Bligh (alex@cconcepts.co.uk) | 
 |  * | 
 |  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG | 
 |  *		(Gerhard.Wichert@pdb.siemens.de) | 
 |  * | 
 |  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | 
 |  */ | 
 |  | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/ksm.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/export.h> | 
 | #include <linux/delayacct.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/init.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/mmu_notifier.h> | 
 | #include <linux/kallsyms.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/elf.h> | 
 | #include <linux/gfp.h> | 
 |  | 
 | #include <asm/io.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/pgtable.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | #ifndef CONFIG_NEED_MULTIPLE_NODES | 
 | /* use the per-pgdat data instead for discontigmem - mbligh */ | 
 | unsigned long max_mapnr; | 
 | struct page *mem_map; | 
 |  | 
 | EXPORT_SYMBOL(max_mapnr); | 
 | EXPORT_SYMBOL(mem_map); | 
 | #endif | 
 |  | 
 | unsigned long num_physpages; | 
 | /* | 
 |  * A number of key systems in x86 including ioremap() rely on the assumption | 
 |  * that high_memory defines the upper bound on direct map memory, then end | 
 |  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and | 
 |  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | 
 |  * and ZONE_HIGHMEM. | 
 |  */ | 
 | void * high_memory; | 
 |  | 
 | EXPORT_SYMBOL(num_physpages); | 
 | EXPORT_SYMBOL(high_memory); | 
 |  | 
 | /* | 
 |  * Randomize the address space (stacks, mmaps, brk, etc.). | 
 |  * | 
 |  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | 
 |  *   as ancient (libc5 based) binaries can segfault. ) | 
 |  */ | 
 | int randomize_va_space __read_mostly = | 
 | #ifdef CONFIG_COMPAT_BRK | 
 | 					1; | 
 | #else | 
 | 					2; | 
 | #endif | 
 |  | 
 | static int __init disable_randmaps(char *s) | 
 | { | 
 | 	randomize_va_space = 0; | 
 | 	return 1; | 
 | } | 
 | __setup("norandmaps", disable_randmaps); | 
 |  | 
 | unsigned long zero_pfn __read_mostly; | 
 | unsigned long highest_memmap_pfn __read_mostly; | 
 |  | 
 | /* | 
 |  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() | 
 |  */ | 
 | static int __init init_zero_pfn(void) | 
 | { | 
 | 	zero_pfn = page_to_pfn(ZERO_PAGE(0)); | 
 | 	return 0; | 
 | } | 
 | core_initcall(init_zero_pfn); | 
 |  | 
 |  | 
 | #if defined(SPLIT_RSS_COUNTING) | 
 |  | 
 | void sync_mm_rss(struct mm_struct *mm) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < NR_MM_COUNTERS; i++) { | 
 | 		if (current->rss_stat.count[i]) { | 
 | 			add_mm_counter(mm, i, current->rss_stat.count[i]); | 
 | 			current->rss_stat.count[i] = 0; | 
 | 		} | 
 | 	} | 
 | 	current->rss_stat.events = 0; | 
 | } | 
 |  | 
 | static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) | 
 | { | 
 | 	struct task_struct *task = current; | 
 |  | 
 | 	if (likely(task->mm == mm)) | 
 | 		task->rss_stat.count[member] += val; | 
 | 	else | 
 | 		add_mm_counter(mm, member, val); | 
 | } | 
 | #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) | 
 | #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) | 
 |  | 
 | /* sync counter once per 64 page faults */ | 
 | #define TASK_RSS_EVENTS_THRESH	(64) | 
 | static void check_sync_rss_stat(struct task_struct *task) | 
 | { | 
 | 	if (unlikely(task != current)) | 
 | 		return; | 
 | 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) | 
 | 		sync_mm_rss(task->mm); | 
 | } | 
 | #else /* SPLIT_RSS_COUNTING */ | 
 |  | 
 | #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) | 
 | #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) | 
 |  | 
 | static void check_sync_rss_stat(struct task_struct *task) | 
 | { | 
 | } | 
 |  | 
 | #endif /* SPLIT_RSS_COUNTING */ | 
 |  | 
 | #ifdef HAVE_GENERIC_MMU_GATHER | 
 |  | 
 | static int tlb_next_batch(struct mmu_gather *tlb) | 
 | { | 
 | 	struct mmu_gather_batch *batch; | 
 |  | 
 | 	batch = tlb->active; | 
 | 	if (batch->next) { | 
 | 		tlb->active = batch->next; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); | 
 | 	if (!batch) | 
 | 		return 0; | 
 |  | 
 | 	batch->next = NULL; | 
 | 	batch->nr   = 0; | 
 | 	batch->max  = MAX_GATHER_BATCH; | 
 |  | 
 | 	tlb->active->next = batch; | 
 | 	tlb->active = batch; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* tlb_gather_mmu | 
 |  *	Called to initialize an (on-stack) mmu_gather structure for page-table | 
 |  *	tear-down from @mm. The @fullmm argument is used when @mm is without | 
 |  *	users and we're going to destroy the full address space (exit/execve). | 
 |  */ | 
 | void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm) | 
 | { | 
 | 	tlb->mm = mm; | 
 |  | 
 | 	tlb->fullmm     = fullmm; | 
 | 	tlb->need_flush = 0; | 
 | 	tlb->fast_mode  = (num_possible_cpus() == 1); | 
 | 	tlb->local.next = NULL; | 
 | 	tlb->local.nr   = 0; | 
 | 	tlb->local.max  = ARRAY_SIZE(tlb->__pages); | 
 | 	tlb->active     = &tlb->local; | 
 |  | 
 | #ifdef CONFIG_HAVE_RCU_TABLE_FREE | 
 | 	tlb->batch = NULL; | 
 | #endif | 
 | } | 
 |  | 
 | void tlb_flush_mmu(struct mmu_gather *tlb) | 
 | { | 
 | 	struct mmu_gather_batch *batch; | 
 |  | 
 | 	if (!tlb->need_flush) | 
 | 		return; | 
 | 	tlb->need_flush = 0; | 
 | 	tlb_flush(tlb); | 
 | #ifdef CONFIG_HAVE_RCU_TABLE_FREE | 
 | 	tlb_table_flush(tlb); | 
 | #endif | 
 |  | 
 | 	if (tlb_fast_mode(tlb)) | 
 | 		return; | 
 |  | 
 | 	for (batch = &tlb->local; batch; batch = batch->next) { | 
 | 		free_pages_and_swap_cache(batch->pages, batch->nr); | 
 | 		batch->nr = 0; | 
 | 	} | 
 | 	tlb->active = &tlb->local; | 
 | } | 
 |  | 
 | /* tlb_finish_mmu | 
 |  *	Called at the end of the shootdown operation to free up any resources | 
 |  *	that were required. | 
 |  */ | 
 | void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) | 
 | { | 
 | 	struct mmu_gather_batch *batch, *next; | 
 |  | 
 | 	tlb_flush_mmu(tlb); | 
 |  | 
 | 	/* keep the page table cache within bounds */ | 
 | 	check_pgt_cache(); | 
 |  | 
 | 	for (batch = tlb->local.next; batch; batch = next) { | 
 | 		next = batch->next; | 
 | 		free_pages((unsigned long)batch, 0); | 
 | 	} | 
 | 	tlb->local.next = NULL; | 
 | } | 
 |  | 
 | /* __tlb_remove_page | 
 |  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while | 
 |  *	handling the additional races in SMP caused by other CPUs caching valid | 
 |  *	mappings in their TLBs. Returns the number of free page slots left. | 
 |  *	When out of page slots we must call tlb_flush_mmu(). | 
 |  */ | 
 | int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) | 
 | { | 
 | 	struct mmu_gather_batch *batch; | 
 |  | 
 | 	VM_BUG_ON(!tlb->need_flush); | 
 |  | 
 | 	if (tlb_fast_mode(tlb)) { | 
 | 		free_page_and_swap_cache(page); | 
 | 		return 1; /* avoid calling tlb_flush_mmu() */ | 
 | 	} | 
 |  | 
 | 	batch = tlb->active; | 
 | 	batch->pages[batch->nr++] = page; | 
 | 	if (batch->nr == batch->max) { | 
 | 		if (!tlb_next_batch(tlb)) | 
 | 			return 0; | 
 | 		batch = tlb->active; | 
 | 	} | 
 | 	VM_BUG_ON(batch->nr > batch->max); | 
 |  | 
 | 	return batch->max - batch->nr; | 
 | } | 
 |  | 
 | #endif /* HAVE_GENERIC_MMU_GATHER */ | 
 |  | 
 | #ifdef CONFIG_HAVE_RCU_TABLE_FREE | 
 |  | 
 | /* | 
 |  * See the comment near struct mmu_table_batch. | 
 |  */ | 
 |  | 
 | static void tlb_remove_table_smp_sync(void *arg) | 
 | { | 
 | 	/* Simply deliver the interrupt */ | 
 | } | 
 |  | 
 | static void tlb_remove_table_one(void *table) | 
 | { | 
 | 	/* | 
 | 	 * This isn't an RCU grace period and hence the page-tables cannot be | 
 | 	 * assumed to be actually RCU-freed. | 
 | 	 * | 
 | 	 * It is however sufficient for software page-table walkers that rely on | 
 | 	 * IRQ disabling. See the comment near struct mmu_table_batch. | 
 | 	 */ | 
 | 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1); | 
 | 	__tlb_remove_table(table); | 
 | } | 
 |  | 
 | static void tlb_remove_table_rcu(struct rcu_head *head) | 
 | { | 
 | 	struct mmu_table_batch *batch; | 
 | 	int i; | 
 |  | 
 | 	batch = container_of(head, struct mmu_table_batch, rcu); | 
 |  | 
 | 	for (i = 0; i < batch->nr; i++) | 
 | 		__tlb_remove_table(batch->tables[i]); | 
 |  | 
 | 	free_page((unsigned long)batch); | 
 | } | 
 |  | 
 | void tlb_table_flush(struct mmu_gather *tlb) | 
 | { | 
 | 	struct mmu_table_batch **batch = &tlb->batch; | 
 |  | 
 | 	if (*batch) { | 
 | 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); | 
 | 		*batch = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | void tlb_remove_table(struct mmu_gather *tlb, void *table) | 
 | { | 
 | 	struct mmu_table_batch **batch = &tlb->batch; | 
 |  | 
 | 	tlb->need_flush = 1; | 
 |  | 
 | 	/* | 
 | 	 * When there's less then two users of this mm there cannot be a | 
 | 	 * concurrent page-table walk. | 
 | 	 */ | 
 | 	if (atomic_read(&tlb->mm->mm_users) < 2) { | 
 | 		__tlb_remove_table(table); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (*batch == NULL) { | 
 | 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); | 
 | 		if (*batch == NULL) { | 
 | 			tlb_remove_table_one(table); | 
 | 			return; | 
 | 		} | 
 | 		(*batch)->nr = 0; | 
 | 	} | 
 | 	(*batch)->tables[(*batch)->nr++] = table; | 
 | 	if ((*batch)->nr == MAX_TABLE_BATCH) | 
 | 		tlb_table_flush(tlb); | 
 | } | 
 |  | 
 | #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ | 
 |  | 
 | /* | 
 |  * If a p?d_bad entry is found while walking page tables, report | 
 |  * the error, before resetting entry to p?d_none.  Usually (but | 
 |  * very seldom) called out from the p?d_none_or_clear_bad macros. | 
 |  */ | 
 |  | 
 | void pgd_clear_bad(pgd_t *pgd) | 
 | { | 
 | 	pgd_ERROR(*pgd); | 
 | 	pgd_clear(pgd); | 
 | } | 
 |  | 
 | void pud_clear_bad(pud_t *pud) | 
 | { | 
 | 	pud_ERROR(*pud); | 
 | 	pud_clear(pud); | 
 | } | 
 |  | 
 | void pmd_clear_bad(pmd_t *pmd) | 
 | { | 
 | 	pmd_ERROR(*pmd); | 
 | 	pmd_clear(pmd); | 
 | } | 
 |  | 
 | /* | 
 |  * Note: this doesn't free the actual pages themselves. That | 
 |  * has been handled earlier when unmapping all the memory regions. | 
 |  */ | 
 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, | 
 | 			   unsigned long addr) | 
 | { | 
 | 	pgtable_t token = pmd_pgtable(*pmd); | 
 | 	pmd_clear(pmd); | 
 | 	pte_free_tlb(tlb, token, addr); | 
 | 	tlb->mm->nr_ptes--; | 
 | } | 
 |  | 
 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 | 	unsigned long start; | 
 |  | 
 | 	start = addr; | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (pmd_none_or_clear_bad(pmd)) | 
 | 			continue; | 
 | 		free_pte_range(tlb, pmd, addr); | 
 | 	} while (pmd++, addr = next, addr != end); | 
 |  | 
 | 	start &= PUD_MASK; | 
 | 	if (start < floor) | 
 | 		return; | 
 | 	if (ceiling) { | 
 | 		ceiling &= PUD_MASK; | 
 | 		if (!ceiling) | 
 | 			return; | 
 | 	} | 
 | 	if (end - 1 > ceiling - 1) | 
 | 		return; | 
 |  | 
 | 	pmd = pmd_offset(pud, start); | 
 | 	pud_clear(pud); | 
 | 	pmd_free_tlb(tlb, pmd, start); | 
 | } | 
 |  | 
 | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 | 	unsigned long start; | 
 |  | 
 | 	start = addr; | 
 | 	pud = pud_offset(pgd, addr); | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (pud_none_or_clear_bad(pud)) | 
 | 			continue; | 
 | 		free_pmd_range(tlb, pud, addr, next, floor, ceiling); | 
 | 	} while (pud++, addr = next, addr != end); | 
 |  | 
 | 	start &= PGDIR_MASK; | 
 | 	if (start < floor) | 
 | 		return; | 
 | 	if (ceiling) { | 
 | 		ceiling &= PGDIR_MASK; | 
 | 		if (!ceiling) | 
 | 			return; | 
 | 	} | 
 | 	if (end - 1 > ceiling - 1) | 
 | 		return; | 
 |  | 
 | 	pud = pud_offset(pgd, start); | 
 | 	pgd_clear(pgd); | 
 | 	pud_free_tlb(tlb, pud, start); | 
 | } | 
 |  | 
 | /* | 
 |  * This function frees user-level page tables of a process. | 
 |  * | 
 |  * Must be called with pagetable lock held. | 
 |  */ | 
 | void free_pgd_range(struct mmu_gather *tlb, | 
 | 			unsigned long addr, unsigned long end, | 
 | 			unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long next; | 
 |  | 
 | 	/* | 
 | 	 * The next few lines have given us lots of grief... | 
 | 	 * | 
 | 	 * Why are we testing PMD* at this top level?  Because often | 
 | 	 * there will be no work to do at all, and we'd prefer not to | 
 | 	 * go all the way down to the bottom just to discover that. | 
 | 	 * | 
 | 	 * Why all these "- 1"s?  Because 0 represents both the bottom | 
 | 	 * of the address space and the top of it (using -1 for the | 
 | 	 * top wouldn't help much: the masks would do the wrong thing). | 
 | 	 * The rule is that addr 0 and floor 0 refer to the bottom of | 
 | 	 * the address space, but end 0 and ceiling 0 refer to the top | 
 | 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though | 
 | 	 * that end 0 case should be mythical). | 
 | 	 * | 
 | 	 * Wherever addr is brought up or ceiling brought down, we must | 
 | 	 * be careful to reject "the opposite 0" before it confuses the | 
 | 	 * subsequent tests.  But what about where end is brought down | 
 | 	 * by PMD_SIZE below? no, end can't go down to 0 there. | 
 | 	 * | 
 | 	 * Whereas we round start (addr) and ceiling down, by different | 
 | 	 * masks at different levels, in order to test whether a table | 
 | 	 * now has no other vmas using it, so can be freed, we don't | 
 | 	 * bother to round floor or end up - the tests don't need that. | 
 | 	 */ | 
 |  | 
 | 	addr &= PMD_MASK; | 
 | 	if (addr < floor) { | 
 | 		addr += PMD_SIZE; | 
 | 		if (!addr) | 
 | 			return; | 
 | 	} | 
 | 	if (ceiling) { | 
 | 		ceiling &= PMD_MASK; | 
 | 		if (!ceiling) | 
 | 			return; | 
 | 	} | 
 | 	if (end - 1 > ceiling - 1) | 
 | 		end -= PMD_SIZE; | 
 | 	if (addr > end - 1) | 
 | 		return; | 
 |  | 
 | 	pgd = pgd_offset(tlb->mm, addr); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		if (pgd_none_or_clear_bad(pgd)) | 
 | 			continue; | 
 | 		free_pud_range(tlb, pgd, addr, next, floor, ceiling); | 
 | 	} while (pgd++, addr = next, addr != end); | 
 | } | 
 |  | 
 | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, | 
 | 		unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	while (vma) { | 
 | 		struct vm_area_struct *next = vma->vm_next; | 
 | 		unsigned long addr = vma->vm_start; | 
 |  | 
 | 		/* | 
 | 		 * Hide vma from rmap and truncate_pagecache before freeing | 
 | 		 * pgtables | 
 | 		 */ | 
 | 		unlink_anon_vmas(vma); | 
 | 		unlink_file_vma(vma); | 
 |  | 
 | 		if (is_vm_hugetlb_page(vma)) { | 
 | 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end, | 
 | 				floor, next? next->vm_start: ceiling); | 
 | 		} else { | 
 | 			/* | 
 | 			 * Optimization: gather nearby vmas into one call down | 
 | 			 */ | 
 | 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE | 
 | 			       && !is_vm_hugetlb_page(next)) { | 
 | 				vma = next; | 
 | 				next = vma->vm_next; | 
 | 				unlink_anon_vmas(vma); | 
 | 				unlink_file_vma(vma); | 
 | 			} | 
 | 			free_pgd_range(tlb, addr, vma->vm_end, | 
 | 				floor, next? next->vm_start: ceiling); | 
 | 		} | 
 | 		vma = next; | 
 | 	} | 
 | } | 
 |  | 
 | int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 		pmd_t *pmd, unsigned long address) | 
 | { | 
 | 	pgtable_t new = pte_alloc_one(mm, address); | 
 | 	int wait_split_huge_page; | 
 | 	if (!new) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * Ensure all pte setup (eg. pte page lock and page clearing) are | 
 | 	 * visible before the pte is made visible to other CPUs by being | 
 | 	 * put into page tables. | 
 | 	 * | 
 | 	 * The other side of the story is the pointer chasing in the page | 
 | 	 * table walking code (when walking the page table without locking; | 
 | 	 * ie. most of the time). Fortunately, these data accesses consist | 
 | 	 * of a chain of data-dependent loads, meaning most CPUs (alpha | 
 | 	 * being the notable exception) will already guarantee loads are | 
 | 	 * seen in-order. See the alpha page table accessors for the | 
 | 	 * smp_read_barrier_depends() barriers in page table walking code. | 
 | 	 */ | 
 | 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ | 
 |  | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	wait_split_huge_page = 0; | 
 | 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */ | 
 | 		mm->nr_ptes++; | 
 | 		pmd_populate(mm, pmd, new); | 
 | 		new = NULL; | 
 | 	} else if (unlikely(pmd_trans_splitting(*pmd))) | 
 | 		wait_split_huge_page = 1; | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | 	if (new) | 
 | 		pte_free(mm, new); | 
 | 	if (wait_split_huge_page) | 
 | 		wait_split_huge_page(vma->anon_vma, pmd); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) | 
 | { | 
 | 	pte_t *new = pte_alloc_one_kernel(&init_mm, address); | 
 | 	if (!new) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	smp_wmb(); /* See comment in __pte_alloc */ | 
 |  | 
 | 	spin_lock(&init_mm.page_table_lock); | 
 | 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */ | 
 | 		pmd_populate_kernel(&init_mm, pmd, new); | 
 | 		new = NULL; | 
 | 	} else | 
 | 		VM_BUG_ON(pmd_trans_splitting(*pmd)); | 
 | 	spin_unlock(&init_mm.page_table_lock); | 
 | 	if (new) | 
 | 		pte_free_kernel(&init_mm, new); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void init_rss_vec(int *rss) | 
 | { | 
 | 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); | 
 | } | 
 |  | 
 | static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (current->mm == mm) | 
 | 		sync_mm_rss(mm); | 
 | 	for (i = 0; i < NR_MM_COUNTERS; i++) | 
 | 		if (rss[i]) | 
 | 			add_mm_counter(mm, i, rss[i]); | 
 | } | 
 |  | 
 | /* | 
 |  * This function is called to print an error when a bad pte | 
 |  * is found. For example, we might have a PFN-mapped pte in | 
 |  * a region that doesn't allow it. | 
 |  * | 
 |  * The calling function must still handle the error. | 
 |  */ | 
 | static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, | 
 | 			  pte_t pte, struct page *page) | 
 | { | 
 | 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr); | 
 | 	pud_t *pud = pud_offset(pgd, addr); | 
 | 	pmd_t *pmd = pmd_offset(pud, addr); | 
 | 	struct address_space *mapping; | 
 | 	pgoff_t index; | 
 | 	static unsigned long resume; | 
 | 	static unsigned long nr_shown; | 
 | 	static unsigned long nr_unshown; | 
 |  | 
 | 	/* | 
 | 	 * Allow a burst of 60 reports, then keep quiet for that minute; | 
 | 	 * or allow a steady drip of one report per second. | 
 | 	 */ | 
 | 	if (nr_shown == 60) { | 
 | 		if (time_before(jiffies, resume)) { | 
 | 			nr_unshown++; | 
 | 			return; | 
 | 		} | 
 | 		if (nr_unshown) { | 
 | 			printk(KERN_ALERT | 
 | 				"BUG: Bad page map: %lu messages suppressed\n", | 
 | 				nr_unshown); | 
 | 			nr_unshown = 0; | 
 | 		} | 
 | 		nr_shown = 0; | 
 | 	} | 
 | 	if (nr_shown++ == 0) | 
 | 		resume = jiffies + 60 * HZ; | 
 |  | 
 | 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; | 
 | 	index = linear_page_index(vma, addr); | 
 |  | 
 | 	printk(KERN_ALERT | 
 | 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n", | 
 | 		current->comm, | 
 | 		(long long)pte_val(pte), (long long)pmd_val(*pmd)); | 
 | 	if (page) | 
 | 		dump_page(page); | 
 | 	printk(KERN_ALERT | 
 | 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", | 
 | 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); | 
 | 	/* | 
 | 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y | 
 | 	 */ | 
 | 	if (vma->vm_ops) | 
 | 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", | 
 | 				(unsigned long)vma->vm_ops->fault); | 
 | 	if (vma->vm_file && vma->vm_file->f_op) | 
 | 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", | 
 | 				(unsigned long)vma->vm_file->f_op->mmap); | 
 | 	dump_stack(); | 
 | 	add_taint(TAINT_BAD_PAGE); | 
 | } | 
 |  | 
 | static inline int is_cow_mapping(vm_flags_t flags) | 
 | { | 
 | 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | 
 | } | 
 |  | 
 | #ifndef is_zero_pfn | 
 | static inline int is_zero_pfn(unsigned long pfn) | 
 | { | 
 | 	return pfn == zero_pfn; | 
 | } | 
 | #endif | 
 |  | 
 | #ifndef my_zero_pfn | 
 | static inline unsigned long my_zero_pfn(unsigned long addr) | 
 | { | 
 | 	return zero_pfn; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * vm_normal_page -- This function gets the "struct page" associated with a pte. | 
 |  * | 
 |  * "Special" mappings do not wish to be associated with a "struct page" (either | 
 |  * it doesn't exist, or it exists but they don't want to touch it). In this | 
 |  * case, NULL is returned here. "Normal" mappings do have a struct page. | 
 |  * | 
 |  * There are 2 broad cases. Firstly, an architecture may define a pte_special() | 
 |  * pte bit, in which case this function is trivial. Secondly, an architecture | 
 |  * may not have a spare pte bit, which requires a more complicated scheme, | 
 |  * described below. | 
 |  * | 
 |  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a | 
 |  * special mapping (even if there are underlying and valid "struct pages"). | 
 |  * COWed pages of a VM_PFNMAP are always normal. | 
 |  * | 
 |  * The way we recognize COWed pages within VM_PFNMAP mappings is through the | 
 |  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit | 
 |  * set, and the vm_pgoff will point to the first PFN mapped: thus every special | 
 |  * mapping will always honor the rule | 
 |  * | 
 |  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | 
 |  * | 
 |  * And for normal mappings this is false. | 
 |  * | 
 |  * This restricts such mappings to be a linear translation from virtual address | 
 |  * to pfn. To get around this restriction, we allow arbitrary mappings so long | 
 |  * as the vma is not a COW mapping; in that case, we know that all ptes are | 
 |  * special (because none can have been COWed). | 
 |  * | 
 |  * | 
 |  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. | 
 |  * | 
 |  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct | 
 |  * page" backing, however the difference is that _all_ pages with a struct | 
 |  * page (that is, those where pfn_valid is true) are refcounted and considered | 
 |  * normal pages by the VM. The disadvantage is that pages are refcounted | 
 |  * (which can be slower and simply not an option for some PFNMAP users). The | 
 |  * advantage is that we don't have to follow the strict linearity rule of | 
 |  * PFNMAP mappings in order to support COWable mappings. | 
 |  * | 
 |  */ | 
 | #ifdef __HAVE_ARCH_PTE_SPECIAL | 
 | # define HAVE_PTE_SPECIAL 1 | 
 | #else | 
 | # define HAVE_PTE_SPECIAL 0 | 
 | #endif | 
 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, | 
 | 				pte_t pte) | 
 | { | 
 | 	unsigned long pfn = pte_pfn(pte); | 
 |  | 
 | 	if (HAVE_PTE_SPECIAL) { | 
 | 		if (likely(!pte_special(pte))) | 
 | 			goto check_pfn; | 
 | 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) | 
 | 			return NULL; | 
 | 		if (!is_zero_pfn(pfn)) | 
 | 			print_bad_pte(vma, addr, pte, NULL); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* !HAVE_PTE_SPECIAL case follows: */ | 
 |  | 
 | 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { | 
 | 		if (vma->vm_flags & VM_MIXEDMAP) { | 
 | 			if (!pfn_valid(pfn)) | 
 | 				return NULL; | 
 | 			goto out; | 
 | 		} else { | 
 | 			unsigned long off; | 
 | 			off = (addr - vma->vm_start) >> PAGE_SHIFT; | 
 | 			if (pfn == vma->vm_pgoff + off) | 
 | 				return NULL; | 
 | 			if (!is_cow_mapping(vma->vm_flags)) | 
 | 				return NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (is_zero_pfn(pfn)) | 
 | 		return NULL; | 
 | check_pfn: | 
 | 	if (unlikely(pfn > highest_memmap_pfn)) { | 
 | 		print_bad_pte(vma, addr, pte, NULL); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * NOTE! We still have PageReserved() pages in the page tables. | 
 | 	 * eg. VDSO mappings can cause them to exist. | 
 | 	 */ | 
 | out: | 
 | 	return pfn_to_page(pfn); | 
 | } | 
 |  | 
 | /* | 
 |  * copy one vm_area from one task to the other. Assumes the page tables | 
 |  * already present in the new task to be cleared in the whole range | 
 |  * covered by this vma. | 
 |  */ | 
 |  | 
 | static inline unsigned long | 
 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
 | 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, | 
 | 		unsigned long addr, int *rss) | 
 | { | 
 | 	unsigned long vm_flags = vma->vm_flags; | 
 | 	pte_t pte = *src_pte; | 
 | 	struct page *page; | 
 |  | 
 | 	/* pte contains position in swap or file, so copy. */ | 
 | 	if (unlikely(!pte_present(pte))) { | 
 | 		if (!pte_file(pte)) { | 
 | 			swp_entry_t entry = pte_to_swp_entry(pte); | 
 |  | 
 | 			if (swap_duplicate(entry) < 0) | 
 | 				return entry.val; | 
 |  | 
 | 			/* make sure dst_mm is on swapoff's mmlist. */ | 
 | 			if (unlikely(list_empty(&dst_mm->mmlist))) { | 
 | 				spin_lock(&mmlist_lock); | 
 | 				if (list_empty(&dst_mm->mmlist)) | 
 | 					list_add(&dst_mm->mmlist, | 
 | 						 &src_mm->mmlist); | 
 | 				spin_unlock(&mmlist_lock); | 
 | 			} | 
 | 			if (likely(!non_swap_entry(entry))) | 
 | 				rss[MM_SWAPENTS]++; | 
 | 			else if (is_migration_entry(entry)) { | 
 | 				page = migration_entry_to_page(entry); | 
 |  | 
 | 				if (PageAnon(page)) | 
 | 					rss[MM_ANONPAGES]++; | 
 | 				else | 
 | 					rss[MM_FILEPAGES]++; | 
 |  | 
 | 				if (is_write_migration_entry(entry) && | 
 | 				    is_cow_mapping(vm_flags)) { | 
 | 					/* | 
 | 					 * COW mappings require pages in both | 
 | 					 * parent and child to be set to read. | 
 | 					 */ | 
 | 					make_migration_entry_read(&entry); | 
 | 					pte = swp_entry_to_pte(entry); | 
 | 					set_pte_at(src_mm, addr, src_pte, pte); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		goto out_set_pte; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If it's a COW mapping, write protect it both | 
 | 	 * in the parent and the child | 
 | 	 */ | 
 | 	if (is_cow_mapping(vm_flags)) { | 
 | 		ptep_set_wrprotect(src_mm, addr, src_pte); | 
 | 		pte = pte_wrprotect(pte); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If it's a shared mapping, mark it clean in | 
 | 	 * the child | 
 | 	 */ | 
 | 	if (vm_flags & VM_SHARED) | 
 | 		pte = pte_mkclean(pte); | 
 | 	pte = pte_mkold(pte); | 
 |  | 
 | 	page = vm_normal_page(vma, addr, pte); | 
 | 	if (page) { | 
 | 		get_page(page); | 
 | 		page_dup_rmap(page); | 
 | 		if (PageAnon(page)) | 
 | 			rss[MM_ANONPAGES]++; | 
 | 		else | 
 | 			rss[MM_FILEPAGES]++; | 
 | 	} | 
 |  | 
 | out_set_pte: | 
 | 	set_pte_at(dst_mm, addr, dst_pte, pte); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
 | 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, | 
 | 		   unsigned long addr, unsigned long end) | 
 | { | 
 | 	pte_t *orig_src_pte, *orig_dst_pte; | 
 | 	pte_t *src_pte, *dst_pte; | 
 | 	spinlock_t *src_ptl, *dst_ptl; | 
 | 	int progress = 0; | 
 | 	int rss[NR_MM_COUNTERS]; | 
 | 	swp_entry_t entry = (swp_entry_t){0}; | 
 |  | 
 | again: | 
 | 	init_rss_vec(rss); | 
 |  | 
 | 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); | 
 | 	if (!dst_pte) | 
 | 		return -ENOMEM; | 
 | 	src_pte = pte_offset_map(src_pmd, addr); | 
 | 	src_ptl = pte_lockptr(src_mm, src_pmd); | 
 | 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | 
 | 	orig_src_pte = src_pte; | 
 | 	orig_dst_pte = dst_pte; | 
 | 	arch_enter_lazy_mmu_mode(); | 
 |  | 
 | 	do { | 
 | 		/* | 
 | 		 * We are holding two locks at this point - either of them | 
 | 		 * could generate latencies in another task on another CPU. | 
 | 		 */ | 
 | 		if (progress >= 32) { | 
 | 			progress = 0; | 
 | 			if (need_resched() || | 
 | 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) | 
 | 				break; | 
 | 		} | 
 | 		if (pte_none(*src_pte)) { | 
 | 			progress++; | 
 | 			continue; | 
 | 		} | 
 | 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, | 
 | 							vma, addr, rss); | 
 | 		if (entry.val) | 
 | 			break; | 
 | 		progress += 8; | 
 | 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | 
 |  | 
 | 	arch_leave_lazy_mmu_mode(); | 
 | 	spin_unlock(src_ptl); | 
 | 	pte_unmap(orig_src_pte); | 
 | 	add_mm_rss_vec(dst_mm, rss); | 
 | 	pte_unmap_unlock(orig_dst_pte, dst_ptl); | 
 | 	cond_resched(); | 
 |  | 
 | 	if (entry.val) { | 
 | 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) | 
 | 			return -ENOMEM; | 
 | 		progress = 0; | 
 | 	} | 
 | 	if (addr != end) | 
 | 		goto again; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
 | 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | 
 | 		unsigned long addr, unsigned long end) | 
 | { | 
 | 	pmd_t *src_pmd, *dst_pmd; | 
 | 	unsigned long next; | 
 |  | 
 | 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | 
 | 	if (!dst_pmd) | 
 | 		return -ENOMEM; | 
 | 	src_pmd = pmd_offset(src_pud, addr); | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (pmd_trans_huge(*src_pmd)) { | 
 | 			int err; | 
 | 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); | 
 | 			err = copy_huge_pmd(dst_mm, src_mm, | 
 | 					    dst_pmd, src_pmd, addr, vma); | 
 | 			if (err == -ENOMEM) | 
 | 				return -ENOMEM; | 
 | 			if (!err) | 
 | 				continue; | 
 | 			/* fall through */ | 
 | 		} | 
 | 		if (pmd_none_or_clear_bad(src_pmd)) | 
 | 			continue; | 
 | 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | 
 | 						vma, addr, next)) | 
 | 			return -ENOMEM; | 
 | 	} while (dst_pmd++, src_pmd++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
 | 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | 
 | 		unsigned long addr, unsigned long end) | 
 | { | 
 | 	pud_t *src_pud, *dst_pud; | 
 | 	unsigned long next; | 
 |  | 
 | 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr); | 
 | 	if (!dst_pud) | 
 | 		return -ENOMEM; | 
 | 	src_pud = pud_offset(src_pgd, addr); | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (pud_none_or_clear_bad(src_pud)) | 
 | 			continue; | 
 | 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | 
 | 						vma, addr, next)) | 
 | 			return -ENOMEM; | 
 | 	} while (dst_pud++, src_pud++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
 | 		struct vm_area_struct *vma) | 
 | { | 
 | 	pgd_t *src_pgd, *dst_pgd; | 
 | 	unsigned long next; | 
 | 	unsigned long addr = vma->vm_start; | 
 | 	unsigned long end = vma->vm_end; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Don't copy ptes where a page fault will fill them correctly. | 
 | 	 * Fork becomes much lighter when there are big shared or private | 
 | 	 * readonly mappings. The tradeoff is that copy_page_range is more | 
 | 	 * efficient than faulting. | 
 | 	 */ | 
 | 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { | 
 | 		if (!vma->anon_vma) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	if (is_vm_hugetlb_page(vma)) | 
 | 		return copy_hugetlb_page_range(dst_mm, src_mm, vma); | 
 |  | 
 | 	if (unlikely(is_pfn_mapping(vma))) { | 
 | 		/* | 
 | 		 * We do not free on error cases below as remove_vma | 
 | 		 * gets called on error from higher level routine | 
 | 		 */ | 
 | 		ret = track_pfn_vma_copy(vma); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We need to invalidate the secondary MMU mappings only when | 
 | 	 * there could be a permission downgrade on the ptes of the | 
 | 	 * parent mm. And a permission downgrade will only happen if | 
 | 	 * is_cow_mapping() returns true. | 
 | 	 */ | 
 | 	if (is_cow_mapping(vma->vm_flags)) | 
 | 		mmu_notifier_invalidate_range_start(src_mm, addr, end); | 
 |  | 
 | 	ret = 0; | 
 | 	dst_pgd = pgd_offset(dst_mm, addr); | 
 | 	src_pgd = pgd_offset(src_mm, addr); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		if (pgd_none_or_clear_bad(src_pgd)) | 
 | 			continue; | 
 | 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, | 
 | 					    vma, addr, next))) { | 
 | 			ret = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 | 	} while (dst_pgd++, src_pgd++, addr = next, addr != end); | 
 |  | 
 | 	if (is_cow_mapping(vma->vm_flags)) | 
 | 		mmu_notifier_invalidate_range_end(src_mm, | 
 | 						  vma->vm_start, end); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static unsigned long zap_pte_range(struct mmu_gather *tlb, | 
 | 				struct vm_area_struct *vma, pmd_t *pmd, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				struct zap_details *details) | 
 | { | 
 | 	struct mm_struct *mm = tlb->mm; | 
 | 	int force_flush = 0; | 
 | 	int rss[NR_MM_COUNTERS]; | 
 | 	spinlock_t *ptl; | 
 | 	pte_t *start_pte; | 
 | 	pte_t *pte; | 
 |  | 
 | again: | 
 | 	init_rss_vec(rss); | 
 | 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); | 
 | 	pte = start_pte; | 
 | 	arch_enter_lazy_mmu_mode(); | 
 | 	do { | 
 | 		pte_t ptent = *pte; | 
 | 		if (pte_none(ptent)) { | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (pte_present(ptent)) { | 
 | 			struct page *page; | 
 |  | 
 | 			page = vm_normal_page(vma, addr, ptent); | 
 | 			if (unlikely(details) && page) { | 
 | 				/* | 
 | 				 * unmap_shared_mapping_pages() wants to | 
 | 				 * invalidate cache without truncating: | 
 | 				 * unmap shared but keep private pages. | 
 | 				 */ | 
 | 				if (details->check_mapping && | 
 | 				    details->check_mapping != page->mapping) | 
 | 					continue; | 
 | 				/* | 
 | 				 * Each page->index must be checked when | 
 | 				 * invalidating or truncating nonlinear. | 
 | 				 */ | 
 | 				if (details->nonlinear_vma && | 
 | 				    (page->index < details->first_index || | 
 | 				     page->index > details->last_index)) | 
 | 					continue; | 
 | 			} | 
 | 			ptent = ptep_get_and_clear_full(mm, addr, pte, | 
 | 							tlb->fullmm); | 
 | 			tlb_remove_tlb_entry(tlb, pte, addr); | 
 | 			if (unlikely(!page)) | 
 | 				continue; | 
 | 			if (unlikely(details) && details->nonlinear_vma | 
 | 			    && linear_page_index(details->nonlinear_vma, | 
 | 						addr) != page->index) | 
 | 				set_pte_at(mm, addr, pte, | 
 | 					   pgoff_to_pte(page->index)); | 
 | 			if (PageAnon(page)) | 
 | 				rss[MM_ANONPAGES]--; | 
 | 			else { | 
 | 				if (pte_dirty(ptent)) | 
 | 					set_page_dirty(page); | 
 | 				if (pte_young(ptent) && | 
 | 				    likely(!VM_SequentialReadHint(vma))) | 
 | 					mark_page_accessed(page); | 
 | 				rss[MM_FILEPAGES]--; | 
 | 			} | 
 | 			page_remove_rmap(page); | 
 | 			if (unlikely(page_mapcount(page) < 0)) | 
 | 				print_bad_pte(vma, addr, ptent, page); | 
 | 			force_flush = !__tlb_remove_page(tlb, page); | 
 | 			if (force_flush) | 
 | 				break; | 
 | 			continue; | 
 | 		} | 
 | 		/* | 
 | 		 * If details->check_mapping, we leave swap entries; | 
 | 		 * if details->nonlinear_vma, we leave file entries. | 
 | 		 */ | 
 | 		if (unlikely(details)) | 
 | 			continue; | 
 | 		if (pte_file(ptent)) { | 
 | 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) | 
 | 				print_bad_pte(vma, addr, ptent, NULL); | 
 | 		} else { | 
 | 			swp_entry_t entry = pte_to_swp_entry(ptent); | 
 |  | 
 | 			if (!non_swap_entry(entry)) | 
 | 				rss[MM_SWAPENTS]--; | 
 | 			else if (is_migration_entry(entry)) { | 
 | 				struct page *page; | 
 |  | 
 | 				page = migration_entry_to_page(entry); | 
 |  | 
 | 				if (PageAnon(page)) | 
 | 					rss[MM_ANONPAGES]--; | 
 | 				else | 
 | 					rss[MM_FILEPAGES]--; | 
 | 			} | 
 | 			if (unlikely(!free_swap_and_cache(entry))) | 
 | 				print_bad_pte(vma, addr, ptent, NULL); | 
 | 		} | 
 | 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); | 
 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 |  | 
 | 	add_mm_rss_vec(mm, rss); | 
 | 	arch_leave_lazy_mmu_mode(); | 
 | 	pte_unmap_unlock(start_pte, ptl); | 
 |  | 
 | 	/* | 
 | 	 * mmu_gather ran out of room to batch pages, we break out of | 
 | 	 * the PTE lock to avoid doing the potential expensive TLB invalidate | 
 | 	 * and page-free while holding it. | 
 | 	 */ | 
 | 	if (force_flush) { | 
 | 		force_flush = 0; | 
 | 		tlb_flush_mmu(tlb); | 
 | 		if (addr != end) | 
 | 			goto again; | 
 | 	} | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, | 
 | 				struct vm_area_struct *vma, pud_t *pud, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				struct zap_details *details) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 |  | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (pmd_trans_huge(*pmd)) { | 
 | 			if (next - addr != HPAGE_PMD_SIZE) { | 
 | 				VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); | 
 | 				split_huge_page_pmd(vma->vm_mm, pmd); | 
 | 			} else if (zap_huge_pmd(tlb, vma, pmd, addr)) | 
 | 				goto next; | 
 | 			/* fall through */ | 
 | 		} | 
 | 		/* | 
 | 		 * Here there can be other concurrent MADV_DONTNEED or | 
 | 		 * trans huge page faults running, and if the pmd is | 
 | 		 * none or trans huge it can change under us. This is | 
 | 		 * because MADV_DONTNEED holds the mmap_sem in read | 
 | 		 * mode. | 
 | 		 */ | 
 | 		if (pmd_none_or_trans_huge_or_clear_bad(pmd)) | 
 | 			goto next; | 
 | 		next = zap_pte_range(tlb, vma, pmd, addr, next, details); | 
 | next: | 
 | 		cond_resched(); | 
 | 	} while (pmd++, addr = next, addr != end); | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, | 
 | 				struct vm_area_struct *vma, pgd_t *pgd, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				struct zap_details *details) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 |  | 
 | 	pud = pud_offset(pgd, addr); | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (pud_none_or_clear_bad(pud)) | 
 | 			continue; | 
 | 		next = zap_pmd_range(tlb, vma, pud, addr, next, details); | 
 | 	} while (pud++, addr = next, addr != end); | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | static void unmap_page_range(struct mmu_gather *tlb, | 
 | 			     struct vm_area_struct *vma, | 
 | 			     unsigned long addr, unsigned long end, | 
 | 			     struct zap_details *details) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long next; | 
 |  | 
 | 	if (details && !details->check_mapping && !details->nonlinear_vma) | 
 | 		details = NULL; | 
 |  | 
 | 	BUG_ON(addr >= end); | 
 | 	mem_cgroup_uncharge_start(); | 
 | 	tlb_start_vma(tlb, vma); | 
 | 	pgd = pgd_offset(vma->vm_mm, addr); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		if (pgd_none_or_clear_bad(pgd)) | 
 | 			continue; | 
 | 		next = zap_pud_range(tlb, vma, pgd, addr, next, details); | 
 | 	} while (pgd++, addr = next, addr != end); | 
 | 	tlb_end_vma(tlb, vma); | 
 | 	mem_cgroup_uncharge_end(); | 
 | } | 
 |  | 
 |  | 
 | static void unmap_single_vma(struct mmu_gather *tlb, | 
 | 		struct vm_area_struct *vma, unsigned long start_addr, | 
 | 		unsigned long end_addr, unsigned long *nr_accounted, | 
 | 		struct zap_details *details) | 
 | { | 
 | 	unsigned long start = max(vma->vm_start, start_addr); | 
 | 	unsigned long end; | 
 |  | 
 | 	if (start >= vma->vm_end) | 
 | 		return; | 
 | 	end = min(vma->vm_end, end_addr); | 
 | 	if (end <= vma->vm_start) | 
 | 		return; | 
 |  | 
 | 	if (vma->vm_flags & VM_ACCOUNT) | 
 | 		*nr_accounted += (end - start) >> PAGE_SHIFT; | 
 |  | 
 | 	if (unlikely(is_pfn_mapping(vma))) | 
 | 		untrack_pfn_vma(vma, 0, 0); | 
 |  | 
 | 	if (start != end) { | 
 | 		if (unlikely(is_vm_hugetlb_page(vma))) { | 
 | 			/* | 
 | 			 * It is undesirable to test vma->vm_file as it | 
 | 			 * should be non-null for valid hugetlb area. | 
 | 			 * However, vm_file will be NULL in the error | 
 | 			 * cleanup path of do_mmap_pgoff. When | 
 | 			 * hugetlbfs ->mmap method fails, | 
 | 			 * do_mmap_pgoff() nullifies vma->vm_file | 
 | 			 * before calling this function to clean up. | 
 | 			 * Since no pte has actually been setup, it is | 
 | 			 * safe to do nothing in this case. | 
 | 			 */ | 
 | 			if (vma->vm_file) | 
 | 				unmap_hugepage_range(vma, start, end, NULL); | 
 | 		} else | 
 | 			unmap_page_range(tlb, vma, start, end, details); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * unmap_vmas - unmap a range of memory covered by a list of vma's | 
 |  * @tlb: address of the caller's struct mmu_gather | 
 |  * @vma: the starting vma | 
 |  * @start_addr: virtual address at which to start unmapping | 
 |  * @end_addr: virtual address at which to end unmapping | 
 |  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here | 
 |  * @details: details of nonlinear truncation or shared cache invalidation | 
 |  * | 
 |  * Unmap all pages in the vma list. | 
 |  * | 
 |  * Only addresses between `start' and `end' will be unmapped. | 
 |  * | 
 |  * The VMA list must be sorted in ascending virtual address order. | 
 |  * | 
 |  * unmap_vmas() assumes that the caller will flush the whole unmapped address | 
 |  * range after unmap_vmas() returns.  So the only responsibility here is to | 
 |  * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | 
 |  * drops the lock and schedules. | 
 |  */ | 
 | void unmap_vmas(struct mmu_gather *tlb, | 
 | 		struct vm_area_struct *vma, unsigned long start_addr, | 
 | 		unsigned long end_addr, unsigned long *nr_accounted, | 
 | 		struct zap_details *details) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 |  | 
 | 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); | 
 | 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) | 
 | 		unmap_single_vma(tlb, vma, start_addr, end_addr, nr_accounted, | 
 | 				 details); | 
 | 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); | 
 | } | 
 |  | 
 | /** | 
 |  * zap_page_range - remove user pages in a given range | 
 |  * @vma: vm_area_struct holding the applicable pages | 
 |  * @address: starting address of pages to zap | 
 |  * @size: number of bytes to zap | 
 |  * @details: details of nonlinear truncation or shared cache invalidation | 
 |  * | 
 |  * Caller must protect the VMA list | 
 |  */ | 
 | void zap_page_range(struct vm_area_struct *vma, unsigned long address, | 
 | 		unsigned long size, struct zap_details *details) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	struct mmu_gather tlb; | 
 | 	unsigned long end = address + size; | 
 | 	unsigned long nr_accounted = 0; | 
 |  | 
 | 	lru_add_drain(); | 
 | 	tlb_gather_mmu(&tlb, mm, 0); | 
 | 	update_hiwater_rss(mm); | 
 | 	unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); | 
 | 	tlb_finish_mmu(&tlb, address, end); | 
 | } | 
 |  | 
 | /** | 
 |  * zap_page_range_single - remove user pages in a given range | 
 |  * @vma: vm_area_struct holding the applicable pages | 
 |  * @address: starting address of pages to zap | 
 |  * @size: number of bytes to zap | 
 |  * @details: details of nonlinear truncation or shared cache invalidation | 
 |  * | 
 |  * The range must fit into one VMA. | 
 |  */ | 
 | static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, | 
 | 		unsigned long size, struct zap_details *details) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	struct mmu_gather tlb; | 
 | 	unsigned long end = address + size; | 
 | 	unsigned long nr_accounted = 0; | 
 |  | 
 | 	lru_add_drain(); | 
 | 	tlb_gather_mmu(&tlb, mm, 0); | 
 | 	update_hiwater_rss(mm); | 
 | 	mmu_notifier_invalidate_range_start(mm, address, end); | 
 | 	unmap_single_vma(&tlb, vma, address, end, &nr_accounted, details); | 
 | 	mmu_notifier_invalidate_range_end(mm, address, end); | 
 | 	tlb_finish_mmu(&tlb, address, end); | 
 | } | 
 |  | 
 | /** | 
 |  * zap_vma_ptes - remove ptes mapping the vma | 
 |  * @vma: vm_area_struct holding ptes to be zapped | 
 |  * @address: starting address of pages to zap | 
 |  * @size: number of bytes to zap | 
 |  * | 
 |  * This function only unmaps ptes assigned to VM_PFNMAP vmas. | 
 |  * | 
 |  * The entire address range must be fully contained within the vma. | 
 |  * | 
 |  * Returns 0 if successful. | 
 |  */ | 
 | int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, | 
 | 		unsigned long size) | 
 | { | 
 | 	if (address < vma->vm_start || address + size > vma->vm_end || | 
 | 	    		!(vma->vm_flags & VM_PFNMAP)) | 
 | 		return -1; | 
 | 	zap_page_range_single(vma, address, size, NULL); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(zap_vma_ptes); | 
 |  | 
 | /** | 
 |  * follow_page - look up a page descriptor from a user-virtual address | 
 |  * @vma: vm_area_struct mapping @address | 
 |  * @address: virtual address to look up | 
 |  * @flags: flags modifying lookup behaviour | 
 |  * | 
 |  * @flags can have FOLL_ flags set, defined in <linux/mm.h> | 
 |  * | 
 |  * Returns the mapped (struct page *), %NULL if no mapping exists, or | 
 |  * an error pointer if there is a mapping to something not represented | 
 |  * by a page descriptor (see also vm_normal_page()). | 
 |  */ | 
 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | 
 | 			unsigned int flags) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *ptep, pte; | 
 | 	spinlock_t *ptl; | 
 | 	struct page *page; | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 |  | 
 | 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE); | 
 | 	if (!IS_ERR(page)) { | 
 | 		BUG_ON(flags & FOLL_GET); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	page = NULL; | 
 | 	pgd = pgd_offset(mm, address); | 
 | 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | 
 | 		goto no_page_table; | 
 |  | 
 | 	pud = pud_offset(pgd, address); | 
 | 	if (pud_none(*pud)) | 
 | 		goto no_page_table; | 
 | 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { | 
 | 		BUG_ON(flags & FOLL_GET); | 
 | 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); | 
 | 		goto out; | 
 | 	} | 
 | 	if (unlikely(pud_bad(*pud))) | 
 | 		goto no_page_table; | 
 |  | 
 | 	pmd = pmd_offset(pud, address); | 
 | 	if (pmd_none(*pmd)) | 
 | 		goto no_page_table; | 
 | 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { | 
 | 		BUG_ON(flags & FOLL_GET); | 
 | 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); | 
 | 		goto out; | 
 | 	} | 
 | 	if (pmd_trans_huge(*pmd)) { | 
 | 		if (flags & FOLL_SPLIT) { | 
 | 			split_huge_page_pmd(mm, pmd); | 
 | 			goto split_fallthrough; | 
 | 		} | 
 | 		spin_lock(&mm->page_table_lock); | 
 | 		if (likely(pmd_trans_huge(*pmd))) { | 
 | 			if (unlikely(pmd_trans_splitting(*pmd))) { | 
 | 				spin_unlock(&mm->page_table_lock); | 
 | 				wait_split_huge_page(vma->anon_vma, pmd); | 
 | 			} else { | 
 | 				page = follow_trans_huge_pmd(mm, address, | 
 | 							     pmd, flags); | 
 | 				spin_unlock(&mm->page_table_lock); | 
 | 				goto out; | 
 | 			} | 
 | 		} else | 
 | 			spin_unlock(&mm->page_table_lock); | 
 | 		/* fall through */ | 
 | 	} | 
 | split_fallthrough: | 
 | 	if (unlikely(pmd_bad(*pmd))) | 
 | 		goto no_page_table; | 
 |  | 
 | 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | 
 |  | 
 | 	pte = *ptep; | 
 | 	if (!pte_present(pte)) | 
 | 		goto no_page; | 
 | 	if ((flags & FOLL_WRITE) && !pte_write(pte)) | 
 | 		goto unlock; | 
 |  | 
 | 	page = vm_normal_page(vma, address, pte); | 
 | 	if (unlikely(!page)) { | 
 | 		if ((flags & FOLL_DUMP) || | 
 | 		    !is_zero_pfn(pte_pfn(pte))) | 
 | 			goto bad_page; | 
 | 		page = pte_page(pte); | 
 | 	} | 
 |  | 
 | 	if (flags & FOLL_GET) | 
 | 		get_page_foll(page); | 
 | 	if (flags & FOLL_TOUCH) { | 
 | 		if ((flags & FOLL_WRITE) && | 
 | 		    !pte_dirty(pte) && !PageDirty(page)) | 
 | 			set_page_dirty(page); | 
 | 		/* | 
 | 		 * pte_mkyoung() would be more correct here, but atomic care | 
 | 		 * is needed to avoid losing the dirty bit: it is easier to use | 
 | 		 * mark_page_accessed(). | 
 | 		 */ | 
 | 		mark_page_accessed(page); | 
 | 	} | 
 | 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { | 
 | 		/* | 
 | 		 * The preliminary mapping check is mainly to avoid the | 
 | 		 * pointless overhead of lock_page on the ZERO_PAGE | 
 | 		 * which might bounce very badly if there is contention. | 
 | 		 * | 
 | 		 * If the page is already locked, we don't need to | 
 | 		 * handle it now - vmscan will handle it later if and | 
 | 		 * when it attempts to reclaim the page. | 
 | 		 */ | 
 | 		if (page->mapping && trylock_page(page)) { | 
 | 			lru_add_drain();  /* push cached pages to LRU */ | 
 | 			/* | 
 | 			 * Because we lock page here and migration is | 
 | 			 * blocked by the pte's page reference, we need | 
 | 			 * only check for file-cache page truncation. | 
 | 			 */ | 
 | 			if (page->mapping) | 
 | 				mlock_vma_page(page); | 
 | 			unlock_page(page); | 
 | 		} | 
 | 	} | 
 | unlock: | 
 | 	pte_unmap_unlock(ptep, ptl); | 
 | out: | 
 | 	return page; | 
 |  | 
 | bad_page: | 
 | 	pte_unmap_unlock(ptep, ptl); | 
 | 	return ERR_PTR(-EFAULT); | 
 |  | 
 | no_page: | 
 | 	pte_unmap_unlock(ptep, ptl); | 
 | 	if (!pte_none(pte)) | 
 | 		return page; | 
 |  | 
 | no_page_table: | 
 | 	/* | 
 | 	 * When core dumping an enormous anonymous area that nobody | 
 | 	 * has touched so far, we don't want to allocate unnecessary pages or | 
 | 	 * page tables.  Return error instead of NULL to skip handle_mm_fault, | 
 | 	 * then get_dump_page() will return NULL to leave a hole in the dump. | 
 | 	 * But we can only make this optimization where a hole would surely | 
 | 	 * be zero-filled if handle_mm_fault() actually did handle it. | 
 | 	 */ | 
 | 	if ((flags & FOLL_DUMP) && | 
 | 	    (!vma->vm_ops || !vma->vm_ops->fault)) | 
 | 		return ERR_PTR(-EFAULT); | 
 | 	return page; | 
 | } | 
 |  | 
 | static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) | 
 | { | 
 | 	return stack_guard_page_start(vma, addr) || | 
 | 	       stack_guard_page_end(vma, addr+PAGE_SIZE); | 
 | } | 
 |  | 
 | /** | 
 |  * __get_user_pages() - pin user pages in memory | 
 |  * @tsk:	task_struct of target task | 
 |  * @mm:		mm_struct of target mm | 
 |  * @start:	starting user address | 
 |  * @nr_pages:	number of pages from start to pin | 
 |  * @gup_flags:	flags modifying pin behaviour | 
 |  * @pages:	array that receives pointers to the pages pinned. | 
 |  *		Should be at least nr_pages long. Or NULL, if caller | 
 |  *		only intends to ensure the pages are faulted in. | 
 |  * @vmas:	array of pointers to vmas corresponding to each page. | 
 |  *		Or NULL if the caller does not require them. | 
 |  * @nonblocking: whether waiting for disk IO or mmap_sem contention | 
 |  * | 
 |  * Returns number of pages pinned. This may be fewer than the number | 
 |  * requested. If nr_pages is 0 or negative, returns 0. If no pages | 
 |  * were pinned, returns -errno. Each page returned must be released | 
 |  * with a put_page() call when it is finished with. vmas will only | 
 |  * remain valid while mmap_sem is held. | 
 |  * | 
 |  * Must be called with mmap_sem held for read or write. | 
 |  * | 
 |  * __get_user_pages walks a process's page tables and takes a reference to | 
 |  * each struct page that each user address corresponds to at a given | 
 |  * instant. That is, it takes the page that would be accessed if a user | 
 |  * thread accesses the given user virtual address at that instant. | 
 |  * | 
 |  * This does not guarantee that the page exists in the user mappings when | 
 |  * __get_user_pages returns, and there may even be a completely different | 
 |  * page there in some cases (eg. if mmapped pagecache has been invalidated | 
 |  * and subsequently re faulted). However it does guarantee that the page | 
 |  * won't be freed completely. And mostly callers simply care that the page | 
 |  * contains data that was valid *at some point in time*. Typically, an IO | 
 |  * or similar operation cannot guarantee anything stronger anyway because | 
 |  * locks can't be held over the syscall boundary. | 
 |  * | 
 |  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If | 
 |  * the page is written to, set_page_dirty (or set_page_dirty_lock, as | 
 |  * appropriate) must be called after the page is finished with, and | 
 |  * before put_page is called. | 
 |  * | 
 |  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO | 
 |  * or mmap_sem contention, and if waiting is needed to pin all pages, | 
 |  * *@nonblocking will be set to 0. | 
 |  * | 
 |  * In most cases, get_user_pages or get_user_pages_fast should be used | 
 |  * instead of __get_user_pages. __get_user_pages should be used only if | 
 |  * you need some special @gup_flags. | 
 |  */ | 
 | int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 
 | 		     unsigned long start, int nr_pages, unsigned int gup_flags, | 
 | 		     struct page **pages, struct vm_area_struct **vmas, | 
 | 		     int *nonblocking) | 
 | { | 
 | 	int i; | 
 | 	unsigned long vm_flags; | 
 |  | 
 | 	if (nr_pages <= 0) | 
 | 		return 0; | 
 |  | 
 | 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); | 
 |  | 
 | 	/*  | 
 | 	 * Require read or write permissions. | 
 | 	 * If FOLL_FORCE is set, we only require the "MAY" flags. | 
 | 	 */ | 
 | 	vm_flags  = (gup_flags & FOLL_WRITE) ? | 
 | 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | 
 | 	vm_flags &= (gup_flags & FOLL_FORCE) ? | 
 | 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | 
 | 	i = 0; | 
 |  | 
 | 	do { | 
 | 		struct vm_area_struct *vma; | 
 |  | 
 | 		vma = find_extend_vma(mm, start); | 
 | 		if (!vma && in_gate_area(mm, start)) { | 
 | 			unsigned long pg = start & PAGE_MASK; | 
 | 			pgd_t *pgd; | 
 | 			pud_t *pud; | 
 | 			pmd_t *pmd; | 
 | 			pte_t *pte; | 
 |  | 
 | 			/* user gate pages are read-only */ | 
 | 			if (gup_flags & FOLL_WRITE) | 
 | 				return i ? : -EFAULT; | 
 | 			if (pg > TASK_SIZE) | 
 | 				pgd = pgd_offset_k(pg); | 
 | 			else | 
 | 				pgd = pgd_offset_gate(mm, pg); | 
 | 			BUG_ON(pgd_none(*pgd)); | 
 | 			pud = pud_offset(pgd, pg); | 
 | 			BUG_ON(pud_none(*pud)); | 
 | 			pmd = pmd_offset(pud, pg); | 
 | 			if (pmd_none(*pmd)) | 
 | 				return i ? : -EFAULT; | 
 | 			VM_BUG_ON(pmd_trans_huge(*pmd)); | 
 | 			pte = pte_offset_map(pmd, pg); | 
 | 			if (pte_none(*pte)) { | 
 | 				pte_unmap(pte); | 
 | 				return i ? : -EFAULT; | 
 | 			} | 
 | 			vma = get_gate_vma(mm); | 
 | 			if (pages) { | 
 | 				struct page *page; | 
 |  | 
 | 				page = vm_normal_page(vma, start, *pte); | 
 | 				if (!page) { | 
 | 					if (!(gup_flags & FOLL_DUMP) && | 
 | 					     is_zero_pfn(pte_pfn(*pte))) | 
 | 						page = pte_page(*pte); | 
 | 					else { | 
 | 						pte_unmap(pte); | 
 | 						return i ? : -EFAULT; | 
 | 					} | 
 | 				} | 
 | 				pages[i] = page; | 
 | 				get_page(page); | 
 | 			} | 
 | 			pte_unmap(pte); | 
 | 			goto next_page; | 
 | 		} | 
 |  | 
 | 		if (!vma || | 
 | 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) || | 
 | 		    !(vm_flags & vma->vm_flags)) | 
 | 			return i ? : -EFAULT; | 
 |  | 
 | 		if (is_vm_hugetlb_page(vma)) { | 
 | 			i = follow_hugetlb_page(mm, vma, pages, vmas, | 
 | 					&start, &nr_pages, i, gup_flags); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		do { | 
 | 			struct page *page; | 
 | 			unsigned int foll_flags = gup_flags; | 
 |  | 
 | 			/* | 
 | 			 * If we have a pending SIGKILL, don't keep faulting | 
 | 			 * pages and potentially allocating memory. | 
 | 			 */ | 
 | 			if (unlikely(fatal_signal_pending(current))) | 
 | 				return i ? i : -ERESTARTSYS; | 
 |  | 
 | 			cond_resched(); | 
 | 			while (!(page = follow_page(vma, start, foll_flags))) { | 
 | 				int ret; | 
 | 				unsigned int fault_flags = 0; | 
 |  | 
 | 				/* For mlock, just skip the stack guard page. */ | 
 | 				if (foll_flags & FOLL_MLOCK) { | 
 | 					if (stack_guard_page(vma, start)) | 
 | 						goto next_page; | 
 | 				} | 
 | 				if (foll_flags & FOLL_WRITE) | 
 | 					fault_flags |= FAULT_FLAG_WRITE; | 
 | 				if (nonblocking) | 
 | 					fault_flags |= FAULT_FLAG_ALLOW_RETRY; | 
 | 				if (foll_flags & FOLL_NOWAIT) | 
 | 					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); | 
 |  | 
 | 				ret = handle_mm_fault(mm, vma, start, | 
 | 							fault_flags); | 
 |  | 
 | 				if (ret & VM_FAULT_ERROR) { | 
 | 					if (ret & VM_FAULT_OOM) | 
 | 						return i ? i : -ENOMEM; | 
 | 					if (ret & (VM_FAULT_HWPOISON | | 
 | 						   VM_FAULT_HWPOISON_LARGE)) { | 
 | 						if (i) | 
 | 							return i; | 
 | 						else if (gup_flags & FOLL_HWPOISON) | 
 | 							return -EHWPOISON; | 
 | 						else | 
 | 							return -EFAULT; | 
 | 					} | 
 | 					if (ret & VM_FAULT_SIGBUS) | 
 | 						return i ? i : -EFAULT; | 
 | 					BUG(); | 
 | 				} | 
 |  | 
 | 				if (tsk) { | 
 | 					if (ret & VM_FAULT_MAJOR) | 
 | 						tsk->maj_flt++; | 
 | 					else | 
 | 						tsk->min_flt++; | 
 | 				} | 
 |  | 
 | 				if (ret & VM_FAULT_RETRY) { | 
 | 					if (nonblocking) | 
 | 						*nonblocking = 0; | 
 | 					return i; | 
 | 				} | 
 |  | 
 | 				/* | 
 | 				 * The VM_FAULT_WRITE bit tells us that | 
 | 				 * do_wp_page has broken COW when necessary, | 
 | 				 * even if maybe_mkwrite decided not to set | 
 | 				 * pte_write. We can thus safely do subsequent | 
 | 				 * page lookups as if they were reads. But only | 
 | 				 * do so when looping for pte_write is futile: | 
 | 				 * in some cases userspace may also be wanting | 
 | 				 * to write to the gotten user page, which a | 
 | 				 * read fault here might prevent (a readonly | 
 | 				 * page might get reCOWed by userspace write). | 
 | 				 */ | 
 | 				if ((ret & VM_FAULT_WRITE) && | 
 | 				    !(vma->vm_flags & VM_WRITE)) | 
 | 					foll_flags &= ~FOLL_WRITE; | 
 |  | 
 | 				cond_resched(); | 
 | 			} | 
 | 			if (IS_ERR(page)) | 
 | 				return i ? i : PTR_ERR(page); | 
 | 			if (pages) { | 
 | 				pages[i] = page; | 
 |  | 
 | 				flush_anon_page(vma, page, start); | 
 | 				flush_dcache_page(page); | 
 | 			} | 
 | next_page: | 
 | 			if (vmas) | 
 | 				vmas[i] = vma; | 
 | 			i++; | 
 | 			start += PAGE_SIZE; | 
 | 			nr_pages--; | 
 | 		} while (nr_pages && start < vma->vm_end); | 
 | 	} while (nr_pages); | 
 | 	return i; | 
 | } | 
 | EXPORT_SYMBOL(__get_user_pages); | 
 |  | 
 | /* | 
 |  * fixup_user_fault() - manually resolve a user page fault | 
 |  * @tsk:	the task_struct to use for page fault accounting, or | 
 |  *		NULL if faults are not to be recorded. | 
 |  * @mm:		mm_struct of target mm | 
 |  * @address:	user address | 
 |  * @fault_flags:flags to pass down to handle_mm_fault() | 
 |  * | 
 |  * This is meant to be called in the specific scenario where for locking reasons | 
 |  * we try to access user memory in atomic context (within a pagefault_disable() | 
 |  * section), this returns -EFAULT, and we want to resolve the user fault before | 
 |  * trying again. | 
 |  * | 
 |  * Typically this is meant to be used by the futex code. | 
 |  * | 
 |  * The main difference with get_user_pages() is that this function will | 
 |  * unconditionally call handle_mm_fault() which will in turn perform all the | 
 |  * necessary SW fixup of the dirty and young bits in the PTE, while | 
 |  * handle_mm_fault() only guarantees to update these in the struct page. | 
 |  * | 
 |  * This is important for some architectures where those bits also gate the | 
 |  * access permission to the page because they are maintained in software.  On | 
 |  * such architectures, gup() will not be enough to make a subsequent access | 
 |  * succeed. | 
 |  * | 
 |  * This should be called with the mm_sem held for read. | 
 |  */ | 
 | int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, | 
 | 		     unsigned long address, unsigned int fault_flags) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	int ret; | 
 |  | 
 | 	vma = find_extend_vma(mm, address); | 
 | 	if (!vma || address < vma->vm_start) | 
 | 		return -EFAULT; | 
 |  | 
 | 	ret = handle_mm_fault(mm, vma, address, fault_flags); | 
 | 	if (ret & VM_FAULT_ERROR) { | 
 | 		if (ret & VM_FAULT_OOM) | 
 | 			return -ENOMEM; | 
 | 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) | 
 | 			return -EHWPOISON; | 
 | 		if (ret & VM_FAULT_SIGBUS) | 
 | 			return -EFAULT; | 
 | 		BUG(); | 
 | 	} | 
 | 	if (tsk) { | 
 | 		if (ret & VM_FAULT_MAJOR) | 
 | 			tsk->maj_flt++; | 
 | 		else | 
 | 			tsk->min_flt++; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * get_user_pages() - pin user pages in memory | 
 |  * @tsk:	the task_struct to use for page fault accounting, or | 
 |  *		NULL if faults are not to be recorded. | 
 |  * @mm:		mm_struct of target mm | 
 |  * @start:	starting user address | 
 |  * @nr_pages:	number of pages from start to pin | 
 |  * @write:	whether pages will be written to by the caller | 
 |  * @force:	whether to force write access even if user mapping is | 
 |  *		readonly. This will result in the page being COWed even | 
 |  *		in MAP_SHARED mappings. You do not want this. | 
 |  * @pages:	array that receives pointers to the pages pinned. | 
 |  *		Should be at least nr_pages long. Or NULL, if caller | 
 |  *		only intends to ensure the pages are faulted in. | 
 |  * @vmas:	array of pointers to vmas corresponding to each page. | 
 |  *		Or NULL if the caller does not require them. | 
 |  * | 
 |  * Returns number of pages pinned. This may be fewer than the number | 
 |  * requested. If nr_pages is 0 or negative, returns 0. If no pages | 
 |  * were pinned, returns -errno. Each page returned must be released | 
 |  * with a put_page() call when it is finished with. vmas will only | 
 |  * remain valid while mmap_sem is held. | 
 |  * | 
 |  * Must be called with mmap_sem held for read or write. | 
 |  * | 
 |  * get_user_pages walks a process's page tables and takes a reference to | 
 |  * each struct page that each user address corresponds to at a given | 
 |  * instant. That is, it takes the page that would be accessed if a user | 
 |  * thread accesses the given user virtual address at that instant. | 
 |  * | 
 |  * This does not guarantee that the page exists in the user mappings when | 
 |  * get_user_pages returns, and there may even be a completely different | 
 |  * page there in some cases (eg. if mmapped pagecache has been invalidated | 
 |  * and subsequently re faulted). However it does guarantee that the page | 
 |  * won't be freed completely. And mostly callers simply care that the page | 
 |  * contains data that was valid *at some point in time*. Typically, an IO | 
 |  * or similar operation cannot guarantee anything stronger anyway because | 
 |  * locks can't be held over the syscall boundary. | 
 |  * | 
 |  * If write=0, the page must not be written to. If the page is written to, | 
 |  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called | 
 |  * after the page is finished with, and before put_page is called. | 
 |  * | 
 |  * get_user_pages is typically used for fewer-copy IO operations, to get a | 
 |  * handle on the memory by some means other than accesses via the user virtual | 
 |  * addresses. The pages may be submitted for DMA to devices or accessed via | 
 |  * their kernel linear mapping (via the kmap APIs). Care should be taken to | 
 |  * use the correct cache flushing APIs. | 
 |  * | 
 |  * See also get_user_pages_fast, for performance critical applications. | 
 |  */ | 
 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 
 | 		unsigned long start, int nr_pages, int write, int force, | 
 | 		struct page **pages, struct vm_area_struct **vmas) | 
 | { | 
 | 	int flags = FOLL_TOUCH; | 
 |  | 
 | 	if (pages) | 
 | 		flags |= FOLL_GET; | 
 | 	if (write) | 
 | 		flags |= FOLL_WRITE; | 
 | 	if (force) | 
 | 		flags |= FOLL_FORCE; | 
 |  | 
 | 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, | 
 | 				NULL); | 
 | } | 
 | EXPORT_SYMBOL(get_user_pages); | 
 |  | 
 | /** | 
 |  * get_dump_page() - pin user page in memory while writing it to core dump | 
 |  * @addr: user address | 
 |  * | 
 |  * Returns struct page pointer of user page pinned for dump, | 
 |  * to be freed afterwards by page_cache_release() or put_page(). | 
 |  * | 
 |  * Returns NULL on any kind of failure - a hole must then be inserted into | 
 |  * the corefile, to preserve alignment with its headers; and also returns | 
 |  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - | 
 |  * allowing a hole to be left in the corefile to save diskspace. | 
 |  * | 
 |  * Called without mmap_sem, but after all other threads have been killed. | 
 |  */ | 
 | #ifdef CONFIG_ELF_CORE | 
 | struct page *get_dump_page(unsigned long addr) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	struct page *page; | 
 |  | 
 | 	if (__get_user_pages(current, current->mm, addr, 1, | 
 | 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, | 
 | 			     NULL) < 1) | 
 | 		return NULL; | 
 | 	flush_cache_page(vma, addr, page_to_pfn(page)); | 
 | 	return page; | 
 | } | 
 | #endif /* CONFIG_ELF_CORE */ | 
 |  | 
 | pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, | 
 | 			spinlock_t **ptl) | 
 | { | 
 | 	pgd_t * pgd = pgd_offset(mm, addr); | 
 | 	pud_t * pud = pud_alloc(mm, pgd, addr); | 
 | 	if (pud) { | 
 | 		pmd_t * pmd = pmd_alloc(mm, pud, addr); | 
 | 		if (pmd) { | 
 | 			VM_BUG_ON(pmd_trans_huge(*pmd)); | 
 | 			return pte_alloc_map_lock(mm, pmd, addr, ptl); | 
 | 		} | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * This is the old fallback for page remapping. | 
 |  * | 
 |  * For historical reasons, it only allows reserved pages. Only | 
 |  * old drivers should use this, and they needed to mark their | 
 |  * pages reserved for the old functions anyway. | 
 |  */ | 
 | static int insert_page(struct vm_area_struct *vma, unsigned long addr, | 
 | 			struct page *page, pgprot_t prot) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	int retval; | 
 | 	pte_t *pte; | 
 | 	spinlock_t *ptl; | 
 |  | 
 | 	retval = -EINVAL; | 
 | 	if (PageAnon(page)) | 
 | 		goto out; | 
 | 	retval = -ENOMEM; | 
 | 	flush_dcache_page(page); | 
 | 	pte = get_locked_pte(mm, addr, &ptl); | 
 | 	if (!pte) | 
 | 		goto out; | 
 | 	retval = -EBUSY; | 
 | 	if (!pte_none(*pte)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* Ok, finally just insert the thing.. */ | 
 | 	get_page(page); | 
 | 	inc_mm_counter_fast(mm, MM_FILEPAGES); | 
 | 	page_add_file_rmap(page); | 
 | 	set_pte_at(mm, addr, pte, mk_pte(page, prot)); | 
 |  | 
 | 	retval = 0; | 
 | 	pte_unmap_unlock(pte, ptl); | 
 | 	return retval; | 
 | out_unlock: | 
 | 	pte_unmap_unlock(pte, ptl); | 
 | out: | 
 | 	return retval; | 
 | } | 
 |  | 
 | /** | 
 |  * vm_insert_page - insert single page into user vma | 
 |  * @vma: user vma to map to | 
 |  * @addr: target user address of this page | 
 |  * @page: source kernel page | 
 |  * | 
 |  * This allows drivers to insert individual pages they've allocated | 
 |  * into a user vma. | 
 |  * | 
 |  * The page has to be a nice clean _individual_ kernel allocation. | 
 |  * If you allocate a compound page, you need to have marked it as | 
 |  * such (__GFP_COMP), or manually just split the page up yourself | 
 |  * (see split_page()). | 
 |  * | 
 |  * NOTE! Traditionally this was done with "remap_pfn_range()" which | 
 |  * took an arbitrary page protection parameter. This doesn't allow | 
 |  * that. Your vma protection will have to be set up correctly, which | 
 |  * means that if you want a shared writable mapping, you'd better | 
 |  * ask for a shared writable mapping! | 
 |  * | 
 |  * The page does not need to be reserved. | 
 |  */ | 
 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, | 
 | 			struct page *page) | 
 | { | 
 | 	if (addr < vma->vm_start || addr >= vma->vm_end) | 
 | 		return -EFAULT; | 
 | 	if (!page_count(page)) | 
 | 		return -EINVAL; | 
 | 	vma->vm_flags |= VM_INSERTPAGE; | 
 | 	return insert_page(vma, addr, page, vma->vm_page_prot); | 
 | } | 
 | EXPORT_SYMBOL(vm_insert_page); | 
 |  | 
 | static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, | 
 | 			unsigned long pfn, pgprot_t prot) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	int retval; | 
 | 	pte_t *pte, entry; | 
 | 	spinlock_t *ptl; | 
 |  | 
 | 	retval = -ENOMEM; | 
 | 	pte = get_locked_pte(mm, addr, &ptl); | 
 | 	if (!pte) | 
 | 		goto out; | 
 | 	retval = -EBUSY; | 
 | 	if (!pte_none(*pte)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* Ok, finally just insert the thing.. */ | 
 | 	entry = pte_mkspecial(pfn_pte(pfn, prot)); | 
 | 	set_pte_at(mm, addr, pte, entry); | 
 | 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ | 
 |  | 
 | 	retval = 0; | 
 | out_unlock: | 
 | 	pte_unmap_unlock(pte, ptl); | 
 | out: | 
 | 	return retval; | 
 | } | 
 |  | 
 | /** | 
 |  * vm_insert_pfn - insert single pfn into user vma | 
 |  * @vma: user vma to map to | 
 |  * @addr: target user address of this page | 
 |  * @pfn: source kernel pfn | 
 |  * | 
 |  * Similar to vm_inert_page, this allows drivers to insert individual pages | 
 |  * they've allocated into a user vma. Same comments apply. | 
 |  * | 
 |  * This function should only be called from a vm_ops->fault handler, and | 
 |  * in that case the handler should return NULL. | 
 |  * | 
 |  * vma cannot be a COW mapping. | 
 |  * | 
 |  * As this is called only for pages that do not currently exist, we | 
 |  * do not need to flush old virtual caches or the TLB. | 
 |  */ | 
 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | 
 | 			unsigned long pfn) | 
 | { | 
 | 	int ret; | 
 | 	pgprot_t pgprot = vma->vm_page_prot; | 
 | 	/* | 
 | 	 * Technically, architectures with pte_special can avoid all these | 
 | 	 * restrictions (same for remap_pfn_range).  However we would like | 
 | 	 * consistency in testing and feature parity among all, so we should | 
 | 	 * try to keep these invariants in place for everybody. | 
 | 	 */ | 
 | 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); | 
 | 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | 
 | 						(VM_PFNMAP|VM_MIXEDMAP)); | 
 | 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | 
 | 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | 
 |  | 
 | 	if (addr < vma->vm_start || addr >= vma->vm_end) | 
 | 		return -EFAULT; | 
 | 	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = insert_pfn(vma, addr, pfn, pgprot); | 
 |  | 
 | 	if (ret) | 
 | 		untrack_pfn_vma(vma, pfn, PAGE_SIZE); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(vm_insert_pfn); | 
 |  | 
 | int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, | 
 | 			unsigned long pfn) | 
 | { | 
 | 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); | 
 |  | 
 | 	if (addr < vma->vm_start || addr >= vma->vm_end) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* | 
 | 	 * If we don't have pte special, then we have to use the pfn_valid() | 
 | 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* | 
 | 	 * refcount the page if pfn_valid is true (hence insert_page rather | 
 | 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP | 
 | 	 * without pte special, it would there be refcounted as a normal page. | 
 | 	 */ | 
 | 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { | 
 | 		struct page *page; | 
 |  | 
 | 		page = pfn_to_page(pfn); | 
 | 		return insert_page(vma, addr, page, vma->vm_page_prot); | 
 | 	} | 
 | 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot); | 
 | } | 
 | EXPORT_SYMBOL(vm_insert_mixed); | 
 |  | 
 | /* | 
 |  * maps a range of physical memory into the requested pages. the old | 
 |  * mappings are removed. any references to nonexistent pages results | 
 |  * in null mappings (currently treated as "copy-on-access") | 
 |  */ | 
 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | 
 | 			unsigned long addr, unsigned long end, | 
 | 			unsigned long pfn, pgprot_t prot) | 
 | { | 
 | 	pte_t *pte; | 
 | 	spinlock_t *ptl; | 
 |  | 
 | 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); | 
 | 	if (!pte) | 
 | 		return -ENOMEM; | 
 | 	arch_enter_lazy_mmu_mode(); | 
 | 	do { | 
 | 		BUG_ON(!pte_none(*pte)); | 
 | 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); | 
 | 		pfn++; | 
 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 | 	arch_leave_lazy_mmu_mode(); | 
 | 	pte_unmap_unlock(pte - 1, ptl); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | 
 | 			unsigned long addr, unsigned long end, | 
 | 			unsigned long pfn, pgprot_t prot) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 |  | 
 | 	pfn -= addr >> PAGE_SHIFT; | 
 | 	pmd = pmd_alloc(mm, pud, addr); | 
 | 	if (!pmd) | 
 | 		return -ENOMEM; | 
 | 	VM_BUG_ON(pmd_trans_huge(*pmd)); | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (remap_pte_range(mm, pmd, addr, next, | 
 | 				pfn + (addr >> PAGE_SHIFT), prot)) | 
 | 			return -ENOMEM; | 
 | 	} while (pmd++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, | 
 | 			unsigned long addr, unsigned long end, | 
 | 			unsigned long pfn, pgprot_t prot) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 |  | 
 | 	pfn -= addr >> PAGE_SHIFT; | 
 | 	pud = pud_alloc(mm, pgd, addr); | 
 | 	if (!pud) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (remap_pmd_range(mm, pud, addr, next, | 
 | 				pfn + (addr >> PAGE_SHIFT), prot)) | 
 | 			return -ENOMEM; | 
 | 	} while (pud++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * remap_pfn_range - remap kernel memory to userspace | 
 |  * @vma: user vma to map to | 
 |  * @addr: target user address to start at | 
 |  * @pfn: physical address of kernel memory | 
 |  * @size: size of map area | 
 |  * @prot: page protection flags for this mapping | 
 |  * | 
 |  *  Note: this is only safe if the mm semaphore is held when called. | 
 |  */ | 
 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | 
 | 		    unsigned long pfn, unsigned long size, pgprot_t prot) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long next; | 
 | 	unsigned long end = addr + PAGE_ALIGN(size); | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * Physically remapped pages are special. Tell the | 
 | 	 * rest of the world about it: | 
 | 	 *   VM_IO tells people not to look at these pages | 
 | 	 *	(accesses can have side effects). | 
 | 	 *   VM_RESERVED is specified all over the place, because | 
 | 	 *	in 2.4 it kept swapout's vma scan off this vma; but | 
 | 	 *	in 2.6 the LRU scan won't even find its pages, so this | 
 | 	 *	flag means no more than count its pages in reserved_vm, | 
 | 	 * 	and omit it from core dump, even when VM_IO turned off. | 
 | 	 *   VM_PFNMAP tells the core MM that the base pages are just | 
 | 	 *	raw PFN mappings, and do not have a "struct page" associated | 
 | 	 *	with them. | 
 | 	 * | 
 | 	 * There's a horrible special case to handle copy-on-write | 
 | 	 * behaviour that some programs depend on. We mark the "original" | 
 | 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff". | 
 | 	 */ | 
 | 	if (addr == vma->vm_start && end == vma->vm_end) { | 
 | 		vma->vm_pgoff = pfn; | 
 | 		vma->vm_flags |= VM_PFN_AT_MMAP; | 
 | 	} else if (is_cow_mapping(vma->vm_flags)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; | 
 |  | 
 | 	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); | 
 | 	if (err) { | 
 | 		/* | 
 | 		 * To indicate that track_pfn related cleanup is not | 
 | 		 * needed from higher level routine calling unmap_vmas | 
 | 		 */ | 
 | 		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); | 
 | 		vma->vm_flags &= ~VM_PFN_AT_MMAP; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	BUG_ON(addr >= end); | 
 | 	pfn -= addr >> PAGE_SHIFT; | 
 | 	pgd = pgd_offset(mm, addr); | 
 | 	flush_cache_range(vma, addr, end); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		err = remap_pud_range(mm, pgd, addr, next, | 
 | 				pfn + (addr >> PAGE_SHIFT), prot); | 
 | 		if (err) | 
 | 			break; | 
 | 	} while (pgd++, addr = next, addr != end); | 
 |  | 
 | 	if (err) | 
 | 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); | 
 |  | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL(remap_pfn_range); | 
 |  | 
 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, | 
 | 				     unsigned long addr, unsigned long end, | 
 | 				     pte_fn_t fn, void *data) | 
 | { | 
 | 	pte_t *pte; | 
 | 	int err; | 
 | 	pgtable_t token; | 
 | 	spinlock_t *uninitialized_var(ptl); | 
 |  | 
 | 	pte = (mm == &init_mm) ? | 
 | 		pte_alloc_kernel(pmd, addr) : | 
 | 		pte_alloc_map_lock(mm, pmd, addr, &ptl); | 
 | 	if (!pte) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	BUG_ON(pmd_huge(*pmd)); | 
 |  | 
 | 	arch_enter_lazy_mmu_mode(); | 
 |  | 
 | 	token = pmd_pgtable(*pmd); | 
 |  | 
 | 	do { | 
 | 		err = fn(pte++, token, addr, data); | 
 | 		if (err) | 
 | 			break; | 
 | 	} while (addr += PAGE_SIZE, addr != end); | 
 |  | 
 | 	arch_leave_lazy_mmu_mode(); | 
 |  | 
 | 	if (mm != &init_mm) | 
 | 		pte_unmap_unlock(pte-1, ptl); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | 
 | 				     unsigned long addr, unsigned long end, | 
 | 				     pte_fn_t fn, void *data) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 | 	int err; | 
 |  | 
 | 	BUG_ON(pud_huge(*pud)); | 
 |  | 
 | 	pmd = pmd_alloc(mm, pud, addr); | 
 | 	if (!pmd) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data); | 
 | 		if (err) | 
 | 			break; | 
 | 	} while (pmd++, addr = next, addr != end); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, | 
 | 				     unsigned long addr, unsigned long end, | 
 | 				     pte_fn_t fn, void *data) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 | 	int err; | 
 |  | 
 | 	pud = pud_alloc(mm, pgd, addr); | 
 | 	if (!pud) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data); | 
 | 		if (err) | 
 | 			break; | 
 | 	} while (pud++, addr = next, addr != end); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Scan a region of virtual memory, filling in page tables as necessary | 
 |  * and calling a provided function on each leaf page table. | 
 |  */ | 
 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | 
 | 			unsigned long size, pte_fn_t fn, void *data) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long next; | 
 | 	unsigned long end = addr + size; | 
 | 	int err; | 
 |  | 
 | 	BUG_ON(addr >= end); | 
 | 	pgd = pgd_offset(mm, addr); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data); | 
 | 		if (err) | 
 | 			break; | 
 | 	} while (pgd++, addr = next, addr != end); | 
 |  | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL_GPL(apply_to_page_range); | 
 |  | 
 | /* | 
 |  * handle_pte_fault chooses page fault handler according to an entry | 
 |  * which was read non-atomically.  Before making any commitment, on | 
 |  * those architectures or configurations (e.g. i386 with PAE) which | 
 |  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault | 
 |  * must check under lock before unmapping the pte and proceeding | 
 |  * (but do_wp_page is only called after already making such a check; | 
 |  * and do_anonymous_page can safely check later on). | 
 |  */ | 
 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, | 
 | 				pte_t *page_table, pte_t orig_pte) | 
 | { | 
 | 	int same = 1; | 
 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | 
 | 	if (sizeof(pte_t) > sizeof(unsigned long)) { | 
 | 		spinlock_t *ptl = pte_lockptr(mm, pmd); | 
 | 		spin_lock(ptl); | 
 | 		same = pte_same(*page_table, orig_pte); | 
 | 		spin_unlock(ptl); | 
 | 	} | 
 | #endif | 
 | 	pte_unmap(page_table); | 
 | 	return same; | 
 | } | 
 |  | 
 | static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) | 
 | { | 
 | 	/* | 
 | 	 * If the source page was a PFN mapping, we don't have | 
 | 	 * a "struct page" for it. We do a best-effort copy by | 
 | 	 * just copying from the original user address. If that | 
 | 	 * fails, we just zero-fill it. Live with it. | 
 | 	 */ | 
 | 	if (unlikely(!src)) { | 
 | 		void *kaddr = kmap_atomic(dst); | 
 | 		void __user *uaddr = (void __user *)(va & PAGE_MASK); | 
 |  | 
 | 		/* | 
 | 		 * This really shouldn't fail, because the page is there | 
 | 		 * in the page tables. But it might just be unreadable, | 
 | 		 * in which case we just give up and fill the result with | 
 | 		 * zeroes. | 
 | 		 */ | 
 | 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) | 
 | 			clear_page(kaddr); | 
 | 		kunmap_atomic(kaddr); | 
 | 		flush_dcache_page(dst); | 
 | 	} else | 
 | 		copy_user_highpage(dst, src, va, vma); | 
 | } | 
 |  | 
 | /* | 
 |  * This routine handles present pages, when users try to write | 
 |  * to a shared page. It is done by copying the page to a new address | 
 |  * and decrementing the shared-page counter for the old page. | 
 |  * | 
 |  * Note that this routine assumes that the protection checks have been | 
 |  * done by the caller (the low-level page fault routine in most cases). | 
 |  * Thus we can safely just mark it writable once we've done any necessary | 
 |  * COW. | 
 |  * | 
 |  * We also mark the page dirty at this point even though the page will | 
 |  * change only once the write actually happens. This avoids a few races, | 
 |  * and potentially makes it more efficient. | 
 |  * | 
 |  * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
 |  * but allow concurrent faults), with pte both mapped and locked. | 
 |  * We return with mmap_sem still held, but pte unmapped and unlocked. | 
 |  */ | 
 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 		unsigned long address, pte_t *page_table, pmd_t *pmd, | 
 | 		spinlock_t *ptl, pte_t orig_pte) | 
 | 	__releases(ptl) | 
 | { | 
 | 	struct page *old_page, *new_page; | 
 | 	pte_t entry; | 
 | 	int ret = 0; | 
 | 	int page_mkwrite = 0; | 
 | 	struct page *dirty_page = NULL; | 
 |  | 
 | 	old_page = vm_normal_page(vma, address, orig_pte); | 
 | 	if (!old_page) { | 
 | 		/* | 
 | 		 * VM_MIXEDMAP !pfn_valid() case | 
 | 		 * | 
 | 		 * We should not cow pages in a shared writeable mapping. | 
 | 		 * Just mark the pages writable as we can't do any dirty | 
 | 		 * accounting on raw pfn maps. | 
 | 		 */ | 
 | 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | 
 | 				     (VM_WRITE|VM_SHARED)) | 
 | 			goto reuse; | 
 | 		goto gotten; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Take out anonymous pages first, anonymous shared vmas are | 
 | 	 * not dirty accountable. | 
 | 	 */ | 
 | 	if (PageAnon(old_page) && !PageKsm(old_page)) { | 
 | 		if (!trylock_page(old_page)) { | 
 | 			page_cache_get(old_page); | 
 | 			pte_unmap_unlock(page_table, ptl); | 
 | 			lock_page(old_page); | 
 | 			page_table = pte_offset_map_lock(mm, pmd, address, | 
 | 							 &ptl); | 
 | 			if (!pte_same(*page_table, orig_pte)) { | 
 | 				unlock_page(old_page); | 
 | 				goto unlock; | 
 | 			} | 
 | 			page_cache_release(old_page); | 
 | 		} | 
 | 		if (reuse_swap_page(old_page)) { | 
 | 			/* | 
 | 			 * The page is all ours.  Move it to our anon_vma so | 
 | 			 * the rmap code will not search our parent or siblings. | 
 | 			 * Protected against the rmap code by the page lock. | 
 | 			 */ | 
 | 			page_move_anon_rmap(old_page, vma, address); | 
 | 			unlock_page(old_page); | 
 | 			goto reuse; | 
 | 		} | 
 | 		unlock_page(old_page); | 
 | 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | 
 | 					(VM_WRITE|VM_SHARED))) { | 
 | 		/* | 
 | 		 * Only catch write-faults on shared writable pages, | 
 | 		 * read-only shared pages can get COWed by | 
 | 		 * get_user_pages(.write=1, .force=1). | 
 | 		 */ | 
 | 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) { | 
 | 			struct vm_fault vmf; | 
 | 			int tmp; | 
 |  | 
 | 			vmf.virtual_address = (void __user *)(address & | 
 | 								PAGE_MASK); | 
 | 			vmf.pgoff = old_page->index; | 
 | 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; | 
 | 			vmf.page = old_page; | 
 |  | 
 | 			/* | 
 | 			 * Notify the address space that the page is about to | 
 | 			 * become writable so that it can prohibit this or wait | 
 | 			 * for the page to get into an appropriate state. | 
 | 			 * | 
 | 			 * We do this without the lock held, so that it can | 
 | 			 * sleep if it needs to. | 
 | 			 */ | 
 | 			page_cache_get(old_page); | 
 | 			pte_unmap_unlock(page_table, ptl); | 
 |  | 
 | 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf); | 
 | 			if (unlikely(tmp & | 
 | 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { | 
 | 				ret = tmp; | 
 | 				goto unwritable_page; | 
 | 			} | 
 | 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) { | 
 | 				lock_page(old_page); | 
 | 				if (!old_page->mapping) { | 
 | 					ret = 0; /* retry the fault */ | 
 | 					unlock_page(old_page); | 
 | 					goto unwritable_page; | 
 | 				} | 
 | 			} else | 
 | 				VM_BUG_ON(!PageLocked(old_page)); | 
 |  | 
 | 			/* | 
 | 			 * Since we dropped the lock we need to revalidate | 
 | 			 * the PTE as someone else may have changed it.  If | 
 | 			 * they did, we just return, as we can count on the | 
 | 			 * MMU to tell us if they didn't also make it writable. | 
 | 			 */ | 
 | 			page_table = pte_offset_map_lock(mm, pmd, address, | 
 | 							 &ptl); | 
 | 			if (!pte_same(*page_table, orig_pte)) { | 
 | 				unlock_page(old_page); | 
 | 				goto unlock; | 
 | 			} | 
 |  | 
 | 			page_mkwrite = 1; | 
 | 		} | 
 | 		dirty_page = old_page; | 
 | 		get_page(dirty_page); | 
 |  | 
 | reuse: | 
 | 		flush_cache_page(vma, address, pte_pfn(orig_pte)); | 
 | 		entry = pte_mkyoung(orig_pte); | 
 | 		entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
 | 		if (ptep_set_access_flags(vma, address, page_table, entry,1)) | 
 | 			update_mmu_cache(vma, address, page_table); | 
 | 		pte_unmap_unlock(page_table, ptl); | 
 | 		ret |= VM_FAULT_WRITE; | 
 |  | 
 | 		if (!dirty_page) | 
 | 			return ret; | 
 |  | 
 | 		/* | 
 | 		 * Yes, Virginia, this is actually required to prevent a race | 
 | 		 * with clear_page_dirty_for_io() from clearing the page dirty | 
 | 		 * bit after it clear all dirty ptes, but before a racing | 
 | 		 * do_wp_page installs a dirty pte. | 
 | 		 * | 
 | 		 * __do_fault is protected similarly. | 
 | 		 */ | 
 | 		if (!page_mkwrite) { | 
 | 			wait_on_page_locked(dirty_page); | 
 | 			set_page_dirty_balance(dirty_page, page_mkwrite); | 
 | 		} | 
 | 		put_page(dirty_page); | 
 | 		if (page_mkwrite) { | 
 | 			struct address_space *mapping = dirty_page->mapping; | 
 |  | 
 | 			set_page_dirty(dirty_page); | 
 | 			unlock_page(dirty_page); | 
 | 			page_cache_release(dirty_page); | 
 | 			if (mapping)	{ | 
 | 				/* | 
 | 				 * Some device drivers do not set page.mapping | 
 | 				 * but still dirty their pages | 
 | 				 */ | 
 | 				balance_dirty_pages_ratelimited(mapping); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* file_update_time outside page_lock */ | 
 | 		if (vma->vm_file) | 
 | 			file_update_time(vma->vm_file); | 
 |  | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Ok, we need to copy. Oh, well.. | 
 | 	 */ | 
 | 	page_cache_get(old_page); | 
 | gotten: | 
 | 	pte_unmap_unlock(page_table, ptl); | 
 |  | 
 | 	if (unlikely(anon_vma_prepare(vma))) | 
 | 		goto oom; | 
 |  | 
 | 	if (is_zero_pfn(pte_pfn(orig_pte))) { | 
 | 		new_page = alloc_zeroed_user_highpage_movable(vma, address); | 
 | 		if (!new_page) | 
 | 			goto oom; | 
 | 	} else { | 
 | 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); | 
 | 		if (!new_page) | 
 | 			goto oom; | 
 | 		cow_user_page(new_page, old_page, address, vma); | 
 | 	} | 
 | 	__SetPageUptodate(new_page); | 
 |  | 
 | 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) | 
 | 		goto oom_free_new; | 
 |  | 
 | 	/* | 
 | 	 * Re-check the pte - we dropped the lock | 
 | 	 */ | 
 | 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
 | 	if (likely(pte_same(*page_table, orig_pte))) { | 
 | 		if (old_page) { | 
 | 			if (!PageAnon(old_page)) { | 
 | 				dec_mm_counter_fast(mm, MM_FILEPAGES); | 
 | 				inc_mm_counter_fast(mm, MM_ANONPAGES); | 
 | 			} | 
 | 		} else | 
 | 			inc_mm_counter_fast(mm, MM_ANONPAGES); | 
 | 		flush_cache_page(vma, address, pte_pfn(orig_pte)); | 
 | 		entry = mk_pte(new_page, vma->vm_page_prot); | 
 | 		entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
 | 		/* | 
 | 		 * Clear the pte entry and flush it first, before updating the | 
 | 		 * pte with the new entry. This will avoid a race condition | 
 | 		 * seen in the presence of one thread doing SMC and another | 
 | 		 * thread doing COW. | 
 | 		 */ | 
 | 		ptep_clear_flush(vma, address, page_table); | 
 | 		page_add_new_anon_rmap(new_page, vma, address); | 
 | 		/* | 
 | 		 * We call the notify macro here because, when using secondary | 
 | 		 * mmu page tables (such as kvm shadow page tables), we want the | 
 | 		 * new page to be mapped directly into the secondary page table. | 
 | 		 */ | 
 | 		set_pte_at_notify(mm, address, page_table, entry); | 
 | 		update_mmu_cache(vma, address, page_table); | 
 | 		if (old_page) { | 
 | 			/* | 
 | 			 * Only after switching the pte to the new page may | 
 | 			 * we remove the mapcount here. Otherwise another | 
 | 			 * process may come and find the rmap count decremented | 
 | 			 * before the pte is switched to the new page, and | 
 | 			 * "reuse" the old page writing into it while our pte | 
 | 			 * here still points into it and can be read by other | 
 | 			 * threads. | 
 | 			 * | 
 | 			 * The critical issue is to order this | 
 | 			 * page_remove_rmap with the ptp_clear_flush above. | 
 | 			 * Those stores are ordered by (if nothing else,) | 
 | 			 * the barrier present in the atomic_add_negative | 
 | 			 * in page_remove_rmap. | 
 | 			 * | 
 | 			 * Then the TLB flush in ptep_clear_flush ensures that | 
 | 			 * no process can access the old page before the | 
 | 			 * decremented mapcount is visible. And the old page | 
 | 			 * cannot be reused until after the decremented | 
 | 			 * mapcount is visible. So transitively, TLBs to | 
 | 			 * old page will be flushed before it can be reused. | 
 | 			 */ | 
 | 			page_remove_rmap(old_page); | 
 | 		} | 
 |  | 
 | 		/* Free the old page.. */ | 
 | 		new_page = old_page; | 
 | 		ret |= VM_FAULT_WRITE; | 
 | 	} else | 
 | 		mem_cgroup_uncharge_page(new_page); | 
 |  | 
 | 	if (new_page) | 
 | 		page_cache_release(new_page); | 
 | unlock: | 
 | 	pte_unmap_unlock(page_table, ptl); | 
 | 	if (old_page) { | 
 | 		/* | 
 | 		 * Don't let another task, with possibly unlocked vma, | 
 | 		 * keep the mlocked page. | 
 | 		 */ | 
 | 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { | 
 | 			lock_page(old_page);	/* LRU manipulation */ | 
 | 			munlock_vma_page(old_page); | 
 | 			unlock_page(old_page); | 
 | 		} | 
 | 		page_cache_release(old_page); | 
 | 	} | 
 | 	return ret; | 
 | oom_free_new: | 
 | 	page_cache_release(new_page); | 
 | oom: | 
 | 	if (old_page) { | 
 | 		if (page_mkwrite) { | 
 | 			unlock_page(old_page); | 
 | 			page_cache_release(old_page); | 
 | 		} | 
 | 		page_cache_release(old_page); | 
 | 	} | 
 | 	return VM_FAULT_OOM; | 
 |  | 
 | unwritable_page: | 
 | 	page_cache_release(old_page); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void unmap_mapping_range_vma(struct vm_area_struct *vma, | 
 | 		unsigned long start_addr, unsigned long end_addr, | 
 | 		struct zap_details *details) | 
 | { | 
 | 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details); | 
 | } | 
 |  | 
 | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, | 
 | 					    struct zap_details *details) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	struct prio_tree_iter iter; | 
 | 	pgoff_t vba, vea, zba, zea; | 
 |  | 
 | 	vma_prio_tree_foreach(vma, &iter, root, | 
 | 			details->first_index, details->last_index) { | 
 |  | 
 | 		vba = vma->vm_pgoff; | 
 | 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; | 
 | 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ | 
 | 		zba = details->first_index; | 
 | 		if (zba < vba) | 
 | 			zba = vba; | 
 | 		zea = details->last_index; | 
 | 		if (zea > vea) | 
 | 			zea = vea; | 
 |  | 
 | 		unmap_mapping_range_vma(vma, | 
 | 			((zba - vba) << PAGE_SHIFT) + vma->vm_start, | 
 | 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | 
 | 				details); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void unmap_mapping_range_list(struct list_head *head, | 
 | 					    struct zap_details *details) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	/* | 
 | 	 * In nonlinear VMAs there is no correspondence between virtual address | 
 | 	 * offset and file offset.  So we must perform an exhaustive search | 
 | 	 * across *all* the pages in each nonlinear VMA, not just the pages | 
 | 	 * whose virtual address lies outside the file truncation point. | 
 | 	 */ | 
 | 	list_for_each_entry(vma, head, shared.vm_set.list) { | 
 | 		details->nonlinear_vma = vma; | 
 | 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. | 
 |  * @mapping: the address space containing mmaps to be unmapped. | 
 |  * @holebegin: byte in first page to unmap, relative to the start of | 
 |  * the underlying file.  This will be rounded down to a PAGE_SIZE | 
 |  * boundary.  Note that this is different from truncate_pagecache(), which | 
 |  * must keep the partial page.  In contrast, we must get rid of | 
 |  * partial pages. | 
 |  * @holelen: size of prospective hole in bytes.  This will be rounded | 
 |  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the | 
 |  * end of the file. | 
 |  * @even_cows: 1 when truncating a file, unmap even private COWed pages; | 
 |  * but 0 when invalidating pagecache, don't throw away private data. | 
 |  */ | 
 | void unmap_mapping_range(struct address_space *mapping, | 
 | 		loff_t const holebegin, loff_t const holelen, int even_cows) | 
 | { | 
 | 	struct zap_details details; | 
 | 	pgoff_t hba = holebegin >> PAGE_SHIFT; | 
 | 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 |  | 
 | 	/* Check for overflow. */ | 
 | 	if (sizeof(holelen) > sizeof(hlen)) { | 
 | 		long long holeend = | 
 | 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 		if (holeend & ~(long long)ULONG_MAX) | 
 | 			hlen = ULONG_MAX - hba + 1; | 
 | 	} | 
 |  | 
 | 	details.check_mapping = even_cows? NULL: mapping; | 
 | 	details.nonlinear_vma = NULL; | 
 | 	details.first_index = hba; | 
 | 	details.last_index = hba + hlen - 1; | 
 | 	if (details.last_index < details.first_index) | 
 | 		details.last_index = ULONG_MAX; | 
 |  | 
 |  | 
 | 	mutex_lock(&mapping->i_mmap_mutex); | 
 | 	if (unlikely(!prio_tree_empty(&mapping->i_mmap))) | 
 | 		unmap_mapping_range_tree(&mapping->i_mmap, &details); | 
 | 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) | 
 | 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); | 
 | 	mutex_unlock(&mapping->i_mmap_mutex); | 
 | } | 
 | EXPORT_SYMBOL(unmap_mapping_range); | 
 |  | 
 | /* | 
 |  * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
 |  * but allow concurrent faults), and pte mapped but not yet locked. | 
 |  * We return with mmap_sem still held, but pte unmapped and unlocked. | 
 |  */ | 
 | static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 		unsigned long address, pte_t *page_table, pmd_t *pmd, | 
 | 		unsigned int flags, pte_t orig_pte) | 
 | { | 
 | 	spinlock_t *ptl; | 
 | 	struct page *page, *swapcache = NULL; | 
 | 	swp_entry_t entry; | 
 | 	pte_t pte; | 
 | 	int locked; | 
 | 	struct mem_cgroup *ptr; | 
 | 	int exclusive = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) | 
 | 		goto out; | 
 |  | 
 | 	entry = pte_to_swp_entry(orig_pte); | 
 | 	if (unlikely(non_swap_entry(entry))) { | 
 | 		if (is_migration_entry(entry)) { | 
 | #ifdef CONFIG_CMA | 
 | 			/* | 
 | 			 * FIXME: mszyprow: cruel, brute-force method for | 
 | 			 * letting cma/migration to finish it's job without | 
 | 			 * stealing the lock migration_entry_wait() and creating | 
 | 			 * a live-lock on the faulted page | 
 | 			 * (page->_count == 2 migration failure issue) | 
 | 			 */ | 
 | 			mdelay(10); | 
 | #endif | 
 | 			migration_entry_wait(mm, pmd, address); | 
 | 		} else if (is_hwpoison_entry(entry)) { | 
 | 			ret = VM_FAULT_HWPOISON; | 
 | 		} else { | 
 | 			print_bad_pte(vma, address, orig_pte, NULL); | 
 | 			ret = VM_FAULT_SIGBUS; | 
 | 		} | 
 | 		goto out; | 
 | 	} | 
 | 	delayacct_set_flag(DELAYACCT_PF_SWAPIN); | 
 | 	page = lookup_swap_cache(entry); | 
 | 	if (!page) { | 
 | 		grab_swap_token(mm); /* Contend for token _before_ read-in */ | 
 | 		page = swapin_readahead(entry, | 
 | 					GFP_HIGHUSER_MOVABLE, vma, address); | 
 | 		if (!page) { | 
 | 			/* | 
 | 			 * Back out if somebody else faulted in this pte | 
 | 			 * while we released the pte lock. | 
 | 			 */ | 
 | 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
 | 			if (likely(pte_same(*page_table, orig_pte))) | 
 | 				ret = VM_FAULT_OOM; | 
 | 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 
 | 			goto unlock; | 
 | 		} | 
 |  | 
 | 		/* Had to read the page from swap area: Major fault */ | 
 | 		ret = VM_FAULT_MAJOR; | 
 | 		count_vm_event(PGMAJFAULT); | 
 | 		mem_cgroup_count_vm_event(mm, PGMAJFAULT); | 
 | 	} else if (PageHWPoison(page)) { | 
 | 		/* | 
 | 		 * hwpoisoned dirty swapcache pages are kept for killing | 
 | 		 * owner processes (which may be unknown at hwpoison time) | 
 | 		 */ | 
 | 		ret = VM_FAULT_HWPOISON; | 
 | 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 
 | 		goto out_release; | 
 | 	} | 
 |  | 
 | 	locked = lock_page_or_retry(page, mm, flags); | 
 | 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 
 | 	if (!locked) { | 
 | 		ret |= VM_FAULT_RETRY; | 
 | 		goto out_release; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not | 
 | 	 * release the swapcache from under us.  The page pin, and pte_same | 
 | 	 * test below, are not enough to exclude that.  Even if it is still | 
 | 	 * swapcache, we need to check that the page's swap has not changed. | 
 | 	 */ | 
 | 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) | 
 | 		goto out_page; | 
 |  | 
 | 	if (ksm_might_need_to_copy(page, vma, address)) { | 
 | 		swapcache = page; | 
 | 		page = ksm_does_need_to_copy(page, vma, address); | 
 |  | 
 | 		if (unlikely(!page)) { | 
 | 			ret = VM_FAULT_OOM; | 
 | 			page = swapcache; | 
 | 			swapcache = NULL; | 
 | 			goto out_page; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { | 
 | 		ret = VM_FAULT_OOM; | 
 | 		goto out_page; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Back out if somebody else already faulted in this pte. | 
 | 	 */ | 
 | 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
 | 	if (unlikely(!pte_same(*page_table, orig_pte))) | 
 | 		goto out_nomap; | 
 |  | 
 | 	if (unlikely(!PageUptodate(page))) { | 
 | 		ret = VM_FAULT_SIGBUS; | 
 | 		goto out_nomap; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The page isn't present yet, go ahead with the fault. | 
 | 	 * | 
 | 	 * Be careful about the sequence of operations here. | 
 | 	 * To get its accounting right, reuse_swap_page() must be called | 
 | 	 * while the page is counted on swap but not yet in mapcount i.e. | 
 | 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() | 
 | 	 * must be called after the swap_free(), or it will never succeed. | 
 | 	 * Because delete_from_swap_page() may be called by reuse_swap_page(), | 
 | 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry | 
 | 	 * in page->private. In this case, a record in swap_cgroup  is silently | 
 | 	 * discarded at swap_free(). | 
 | 	 */ | 
 |  | 
 | 	inc_mm_counter_fast(mm, MM_ANONPAGES); | 
 | 	dec_mm_counter_fast(mm, MM_SWAPENTS); | 
 | 	pte = mk_pte(page, vma->vm_page_prot); | 
 | 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { | 
 | 		pte = maybe_mkwrite(pte_mkdirty(pte), vma); | 
 | 		flags &= ~FAULT_FLAG_WRITE; | 
 | 		ret |= VM_FAULT_WRITE; | 
 | 		exclusive = 1; | 
 | 	} | 
 | 	flush_icache_page(vma, page); | 
 | 	set_pte_at(mm, address, page_table, pte); | 
 | 	do_page_add_anon_rmap(page, vma, address, exclusive); | 
 | 	/* It's better to call commit-charge after rmap is established */ | 
 | 	mem_cgroup_commit_charge_swapin(page, ptr); | 
 |  | 
 | 	swap_free(entry); | 
 | 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) | 
 | 		try_to_free_swap(page); | 
 | 	unlock_page(page); | 
 | 	if (swapcache) { | 
 | 		/* | 
 | 		 * Hold the lock to avoid the swap entry to be reused | 
 | 		 * until we take the PT lock for the pte_same() check | 
 | 		 * (to avoid false positives from pte_same). For | 
 | 		 * further safety release the lock after the swap_free | 
 | 		 * so that the swap count won't change under a | 
 | 		 * parallel locked swapcache. | 
 | 		 */ | 
 | 		unlock_page(swapcache); | 
 | 		page_cache_release(swapcache); | 
 | 	} | 
 |  | 
 | 	if (flags & FAULT_FLAG_WRITE) { | 
 | 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); | 
 | 		if (ret & VM_FAULT_ERROR) | 
 | 			ret &= VM_FAULT_ERROR; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* No need to invalidate - it was non-present before */ | 
 | 	update_mmu_cache(vma, address, page_table); | 
 | unlock: | 
 | 	pte_unmap_unlock(page_table, ptl); | 
 | out: | 
 | 	return ret; | 
 | out_nomap: | 
 | 	mem_cgroup_cancel_charge_swapin(ptr); | 
 | 	pte_unmap_unlock(page_table, ptl); | 
 | out_page: | 
 | 	unlock_page(page); | 
 | out_release: | 
 | 	page_cache_release(page); | 
 | 	if (swapcache) { | 
 | 		unlock_page(swapcache); | 
 | 		page_cache_release(swapcache); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This is like a special single-page "expand_{down|up}wards()", | 
 |  * except we must first make sure that 'address{-|+}PAGE_SIZE' | 
 |  * doesn't hit another vma. | 
 |  */ | 
 | static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) | 
 | { | 
 | 	address &= PAGE_MASK; | 
 | 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { | 
 | 		struct vm_area_struct *prev = vma->vm_prev; | 
 |  | 
 | 		/* | 
 | 		 * Is there a mapping abutting this one below? | 
 | 		 * | 
 | 		 * That's only ok if it's the same stack mapping | 
 | 		 * that has gotten split.. | 
 | 		 */ | 
 | 		if (prev && prev->vm_end == address) | 
 | 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; | 
 |  | 
 | 		expand_downwards(vma, address - PAGE_SIZE); | 
 | 	} | 
 | 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { | 
 | 		struct vm_area_struct *next = vma->vm_next; | 
 |  | 
 | 		/* As VM_GROWSDOWN but s/below/above/ */ | 
 | 		if (next && next->vm_start == address + PAGE_SIZE) | 
 | 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; | 
 |  | 
 | 		expand_upwards(vma, address + PAGE_SIZE); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
 |  * but allow concurrent faults), and pte mapped but not yet locked. | 
 |  * We return with mmap_sem still held, but pte unmapped and unlocked. | 
 |  */ | 
 | static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 		unsigned long address, pte_t *page_table, pmd_t *pmd, | 
 | 		unsigned int flags) | 
 | { | 
 | 	struct page *page; | 
 | 	spinlock_t *ptl; | 
 | 	pte_t entry; | 
 |  | 
 | 	pte_unmap(page_table); | 
 |  | 
 | 	/* Check if we need to add a guard page to the stack */ | 
 | 	if (check_stack_guard_page(vma, address) < 0) | 
 | 		return VM_FAULT_SIGBUS; | 
 |  | 
 | 	/* Use the zero-page for reads */ | 
 | 	if (!(flags & FAULT_FLAG_WRITE)) { | 
 | 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), | 
 | 						vma->vm_page_prot)); | 
 | 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
 | 		if (!pte_none(*page_table)) | 
 | 			goto unlock; | 
 | 		goto setpte; | 
 | 	} | 
 |  | 
 | 	/* Allocate our own private page. */ | 
 | 	if (unlikely(anon_vma_prepare(vma))) | 
 | 		goto oom; | 
 | 	page = alloc_zeroed_user_highpage_movable(vma, address); | 
 | 	if (!page) | 
 | 		goto oom; | 
 | 	__SetPageUptodate(page); | 
 |  | 
 | 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) | 
 | 		goto oom_free_page; | 
 |  | 
 | 	entry = mk_pte(page, vma->vm_page_prot); | 
 | 	if (vma->vm_flags & VM_WRITE) | 
 | 		entry = pte_mkwrite(pte_mkdirty(entry)); | 
 |  | 
 | 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
 | 	if (!pte_none(*page_table)) | 
 | 		goto release; | 
 |  | 
 | 	inc_mm_counter_fast(mm, MM_ANONPAGES); | 
 | 	page_add_new_anon_rmap(page, vma, address); | 
 | setpte: | 
 | 	set_pte_at(mm, address, page_table, entry); | 
 |  | 
 | 	/* No need to invalidate - it was non-present before */ | 
 | 	update_mmu_cache(vma, address, page_table); | 
 | unlock: | 
 | 	pte_unmap_unlock(page_table, ptl); | 
 | 	return 0; | 
 | release: | 
 | 	mem_cgroup_uncharge_page(page); | 
 | 	page_cache_release(page); | 
 | 	goto unlock; | 
 | oom_free_page: | 
 | 	page_cache_release(page); | 
 | oom: | 
 | 	return VM_FAULT_OOM; | 
 | } | 
 |  | 
 | /* | 
 |  * __do_fault() tries to create a new page mapping. It aggressively | 
 |  * tries to share with existing pages, but makes a separate copy if | 
 |  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid | 
 |  * the next page fault. | 
 |  * | 
 |  * As this is called only for pages that do not currently exist, we | 
 |  * do not need to flush old virtual caches or the TLB. | 
 |  * | 
 |  * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
 |  * but allow concurrent faults), and pte neither mapped nor locked. | 
 |  * We return with mmap_sem still held, but pte unmapped and unlocked. | 
 |  */ | 
 | static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 		unsigned long address, pmd_t *pmd, | 
 | 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte) | 
 | { | 
 | 	pte_t *page_table; | 
 | 	spinlock_t *ptl; | 
 | 	struct page *page; | 
 | 	struct page *cow_page; | 
 | 	pte_t entry; | 
 | 	int anon = 0; | 
 | 	struct page *dirty_page = NULL; | 
 | 	struct vm_fault vmf; | 
 | 	int ret; | 
 | 	int page_mkwrite = 0; | 
 |  | 
 | 	/* | 
 | 	 * If we do COW later, allocate page befor taking lock_page() | 
 | 	 * on the file cache page. This will reduce lock holding time. | 
 | 	 */ | 
 | 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { | 
 |  | 
 | 		if (unlikely(anon_vma_prepare(vma))) | 
 | 			return VM_FAULT_OOM; | 
 |  | 
 | 		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); | 
 | 		if (!cow_page) | 
 | 			return VM_FAULT_OOM; | 
 |  | 
 | 		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) { | 
 | 			page_cache_release(cow_page); | 
 | 			return VM_FAULT_OOM; | 
 | 		} | 
 | 	} else | 
 | 		cow_page = NULL; | 
 |  | 
 | 	vmf.virtual_address = (void __user *)(address & PAGE_MASK); | 
 | 	vmf.pgoff = pgoff; | 
 | 	vmf.flags = flags; | 
 | 	vmf.page = NULL; | 
 |  | 
 | 	ret = vma->vm_ops->fault(vma, &vmf); | 
 | 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | | 
 | 			    VM_FAULT_RETRY))) | 
 | 		goto uncharge_out; | 
 |  | 
 | 	if (unlikely(PageHWPoison(vmf.page))) { | 
 | 		if (ret & VM_FAULT_LOCKED) | 
 | 			unlock_page(vmf.page); | 
 | 		ret = VM_FAULT_HWPOISON; | 
 | 		goto uncharge_out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For consistency in subsequent calls, make the faulted page always | 
 | 	 * locked. | 
 | 	 */ | 
 | 	if (unlikely(!(ret & VM_FAULT_LOCKED))) | 
 | 		lock_page(vmf.page); | 
 | 	else | 
 | 		VM_BUG_ON(!PageLocked(vmf.page)); | 
 |  | 
 | 	/* | 
 | 	 * Should we do an early C-O-W break? | 
 | 	 */ | 
 | 	page = vmf.page; | 
 | 	if (flags & FAULT_FLAG_WRITE) { | 
 | 		if (!(vma->vm_flags & VM_SHARED)) { | 
 | 			page = cow_page; | 
 | 			anon = 1; | 
 | 			copy_user_highpage(page, vmf.page, address, vma); | 
 | 			__SetPageUptodate(page); | 
 | 		} else { | 
 | 			/* | 
 | 			 * If the page will be shareable, see if the backing | 
 | 			 * address space wants to know that the page is about | 
 | 			 * to become writable | 
 | 			 */ | 
 | 			if (vma->vm_ops->page_mkwrite) { | 
 | 				int tmp; | 
 |  | 
 | 				unlock_page(page); | 
 | 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; | 
 | 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf); | 
 | 				if (unlikely(tmp & | 
 | 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { | 
 | 					ret = tmp; | 
 | 					goto unwritable_page; | 
 | 				} | 
 | 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) { | 
 | 					lock_page(page); | 
 | 					if (!page->mapping) { | 
 | 						ret = 0; /* retry the fault */ | 
 | 						unlock_page(page); | 
 | 						goto unwritable_page; | 
 | 					} | 
 | 				} else | 
 | 					VM_BUG_ON(!PageLocked(page)); | 
 | 				page_mkwrite = 1; | 
 | 			} | 
 | 		} | 
 |  | 
 | 	} | 
 |  | 
 | 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 
 |  | 
 | 	/* | 
 | 	 * This silly early PAGE_DIRTY setting removes a race | 
 | 	 * due to the bad i386 page protection. But it's valid | 
 | 	 * for other architectures too. | 
 | 	 * | 
 | 	 * Note that if FAULT_FLAG_WRITE is set, we either now have | 
 | 	 * an exclusive copy of the page, or this is a shared mapping, | 
 | 	 * so we can make it writable and dirty to avoid having to | 
 | 	 * handle that later. | 
 | 	 */ | 
 | 	/* Only go through if we didn't race with anybody else... */ | 
 | 	if (likely(pte_same(*page_table, orig_pte))) { | 
 | 		flush_icache_page(vma, page); | 
 | 		entry = mk_pte(page, vma->vm_page_prot); | 
 | 		if (flags & FAULT_FLAG_WRITE) | 
 | 			entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
 | 		if (anon) { | 
 | 			inc_mm_counter_fast(mm, MM_ANONPAGES); | 
 | 			page_add_new_anon_rmap(page, vma, address); | 
 | 		} else { | 
 | 			inc_mm_counter_fast(mm, MM_FILEPAGES); | 
 | 			page_add_file_rmap(page); | 
 | 			if (flags & FAULT_FLAG_WRITE) { | 
 | 				dirty_page = page; | 
 | 				get_page(dirty_page); | 
 | 			} | 
 | 		} | 
 | 		set_pte_at(mm, address, page_table, entry); | 
 |  | 
 | 		/* no need to invalidate: a not-present page won't be cached */ | 
 | 		update_mmu_cache(vma, address, page_table); | 
 | 	} else { | 
 | 		if (cow_page) | 
 | 			mem_cgroup_uncharge_page(cow_page); | 
 | 		if (anon) | 
 | 			page_cache_release(page); | 
 | 		else | 
 | 			anon = 1; /* no anon but release faulted_page */ | 
 | 	} | 
 |  | 
 | 	pte_unmap_unlock(page_table, ptl); | 
 |  | 
 | 	if (dirty_page) { | 
 | 		struct address_space *mapping = page->mapping; | 
 |  | 
 | 		if (set_page_dirty(dirty_page)) | 
 | 			page_mkwrite = 1; | 
 | 		unlock_page(dirty_page); | 
 | 		put_page(dirty_page); | 
 | 		if (page_mkwrite && mapping) { | 
 | 			/* | 
 | 			 * Some device drivers do not set page.mapping but still | 
 | 			 * dirty their pages | 
 | 			 */ | 
 | 			balance_dirty_pages_ratelimited(mapping); | 
 | 		} | 
 |  | 
 | 		/* file_update_time outside page_lock */ | 
 | 		if (vma->vm_file) | 
 | 			file_update_time(vma->vm_file); | 
 | 	} else { | 
 | 		unlock_page(vmf.page); | 
 | 		if (anon) | 
 | 			page_cache_release(vmf.page); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 |  | 
 | unwritable_page: | 
 | 	page_cache_release(page); | 
 | 	return ret; | 
 | uncharge_out: | 
 | 	/* fs's fault handler get error */ | 
 | 	if (cow_page) { | 
 | 		mem_cgroup_uncharge_page(cow_page); | 
 | 		page_cache_release(cow_page); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 		unsigned long address, pte_t *page_table, pmd_t *pmd, | 
 | 		unsigned int flags, pte_t orig_pte) | 
 | { | 
 | 	pgoff_t pgoff = (((address & PAGE_MASK) | 
 | 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; | 
 |  | 
 | 	pte_unmap(page_table); | 
 | 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); | 
 | } | 
 |  | 
 | /* | 
 |  * Fault of a previously existing named mapping. Repopulate the pte | 
 |  * from the encoded file_pte if possible. This enables swappable | 
 |  * nonlinear vmas. | 
 |  * | 
 |  * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
 |  * but allow concurrent faults), and pte mapped but not yet locked. | 
 |  * We return with mmap_sem still held, but pte unmapped and unlocked. | 
 |  */ | 
 | static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 		unsigned long address, pte_t *page_table, pmd_t *pmd, | 
 | 		unsigned int flags, pte_t orig_pte) | 
 | { | 
 | 	pgoff_t pgoff; | 
 |  | 
 | 	flags |= FAULT_FLAG_NONLINEAR; | 
 |  | 
 | 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { | 
 | 		/* | 
 | 		 * Page table corrupted: show pte and kill process. | 
 | 		 */ | 
 | 		print_bad_pte(vma, address, orig_pte, NULL); | 
 | 		return VM_FAULT_SIGBUS; | 
 | 	} | 
 |  | 
 | 	pgoff = pte_to_pgoff(orig_pte); | 
 | 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); | 
 | } | 
 |  | 
 | /* | 
 |  * These routines also need to handle stuff like marking pages dirty | 
 |  * and/or accessed for architectures that don't do it in hardware (most | 
 |  * RISC architectures).  The early dirtying is also good on the i386. | 
 |  * | 
 |  * There is also a hook called "update_mmu_cache()" that architectures | 
 |  * with external mmu caches can use to update those (ie the Sparc or | 
 |  * PowerPC hashed page tables that act as extended TLBs). | 
 |  * | 
 |  * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
 |  * but allow concurrent faults), and pte mapped but not yet locked. | 
 |  * We return with mmap_sem still held, but pte unmapped and unlocked. | 
 |  */ | 
 | int handle_pte_fault(struct mm_struct *mm, | 
 | 		     struct vm_area_struct *vma, unsigned long address, | 
 | 		     pte_t *pte, pmd_t *pmd, unsigned int flags) | 
 | { | 
 | 	pte_t entry; | 
 | 	spinlock_t *ptl; | 
 |  | 
 | 	entry = *pte; | 
 | 	if (!pte_present(entry)) { | 
 | 		if (pte_none(entry)) { | 
 | 			if (vma->vm_ops) { | 
 | 				if (likely(vma->vm_ops->fault)) | 
 | 					return do_linear_fault(mm, vma, address, | 
 | 						pte, pmd, flags, entry); | 
 | 			} | 
 | 			return do_anonymous_page(mm, vma, address, | 
 | 						 pte, pmd, flags); | 
 | 		} | 
 | 		if (pte_file(entry)) | 
 | 			return do_nonlinear_fault(mm, vma, address, | 
 | 					pte, pmd, flags, entry); | 
 | 		return do_swap_page(mm, vma, address, | 
 | 					pte, pmd, flags, entry); | 
 | 	} | 
 |  | 
 | 	ptl = pte_lockptr(mm, pmd); | 
 | 	spin_lock(ptl); | 
 | 	if (unlikely(!pte_same(*pte, entry))) | 
 | 		goto unlock; | 
 | 	if (flags & FAULT_FLAG_WRITE) { | 
 | 		if (!pte_write(entry)) | 
 | 			return do_wp_page(mm, vma, address, | 
 | 					pte, pmd, ptl, entry); | 
 | 		entry = pte_mkdirty(entry); | 
 | 	} | 
 | 	entry = pte_mkyoung(entry); | 
 | 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { | 
 | 		update_mmu_cache(vma, address, pte); | 
 | 	} else { | 
 | 		/* | 
 | 		 * This is needed only for protection faults but the arch code | 
 | 		 * is not yet telling us if this is a protection fault or not. | 
 | 		 * This still avoids useless tlb flushes for .text page faults | 
 | 		 * with threads. | 
 | 		 */ | 
 | 		if (flags & FAULT_FLAG_WRITE) | 
 | 			flush_tlb_fix_spurious_fault(vma, address); | 
 | 	} | 
 | unlock: | 
 | 	pte_unmap_unlock(pte, ptl); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * By the time we get here, we already hold the mm semaphore | 
 |  */ | 
 | int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 		unsigned long address, unsigned int flags) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 |  | 
 | 	__set_current_state(TASK_RUNNING); | 
 |  | 
 | 	count_vm_event(PGFAULT); | 
 | 	mem_cgroup_count_vm_event(mm, PGFAULT); | 
 |  | 
 | 	/* do counter updates before entering really critical section. */ | 
 | 	check_sync_rss_stat(current); | 
 |  | 
 | 	if (unlikely(is_vm_hugetlb_page(vma))) | 
 | 		return hugetlb_fault(mm, vma, address, flags); | 
 |  | 
 | 	pgd = pgd_offset(mm, address); | 
 | 	pud = pud_alloc(mm, pgd, address); | 
 | 	if (!pud) | 
 | 		return VM_FAULT_OOM; | 
 | 	pmd = pmd_alloc(mm, pud, address); | 
 | 	if (!pmd) | 
 | 		return VM_FAULT_OOM; | 
 | 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { | 
 | 		if (!vma->vm_ops) | 
 | 			return do_huge_pmd_anonymous_page(mm, vma, address, | 
 | 							  pmd, flags); | 
 | 	} else { | 
 | 		pmd_t orig_pmd = *pmd; | 
 | 		barrier(); | 
 | 		if (pmd_trans_huge(orig_pmd)) { | 
 | 			if (flags & FAULT_FLAG_WRITE && | 
 | 			    !pmd_write(orig_pmd) && | 
 | 			    !pmd_trans_splitting(orig_pmd)) | 
 | 				return do_huge_pmd_wp_page(mm, vma, address, | 
 | 							   pmd, orig_pmd); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Use __pte_alloc instead of pte_alloc_map, because we can't | 
 | 	 * run pte_offset_map on the pmd, if an huge pmd could | 
 | 	 * materialize from under us from a different thread. | 
 | 	 */ | 
 | 	if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address)) | 
 | 		return VM_FAULT_OOM; | 
 | 	/* if an huge pmd materialized from under us just retry later */ | 
 | 	if (unlikely(pmd_trans_huge(*pmd))) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * A regular pmd is established and it can't morph into a huge pmd | 
 | 	 * from under us anymore at this point because we hold the mmap_sem | 
 | 	 * read mode and khugepaged takes it in write mode. So now it's | 
 | 	 * safe to run pte_offset_map(). | 
 | 	 */ | 
 | 	pte = pte_offset_map(pmd, address); | 
 |  | 
 | 	return handle_pte_fault(mm, vma, address, pte, pmd, flags); | 
 | } | 
 |  | 
 | #ifndef __PAGETABLE_PUD_FOLDED | 
 | /* | 
 |  * Allocate page upper directory. | 
 |  * We've already handled the fast-path in-line. | 
 |  */ | 
 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | 
 | { | 
 | 	pud_t *new = pud_alloc_one(mm, address); | 
 | 	if (!new) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	smp_wmb(); /* See comment in __pte_alloc */ | 
 |  | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	if (pgd_present(*pgd))		/* Another has populated it */ | 
 | 		pud_free(mm, new); | 
 | 	else | 
 | 		pgd_populate(mm, pgd, new); | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | 	return 0; | 
 | } | 
 | #endif /* __PAGETABLE_PUD_FOLDED */ | 
 |  | 
 | #ifndef __PAGETABLE_PMD_FOLDED | 
 | /* | 
 |  * Allocate page middle directory. | 
 |  * We've already handled the fast-path in-line. | 
 |  */ | 
 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | 
 | { | 
 | 	pmd_t *new = pmd_alloc_one(mm, address); | 
 | 	if (!new) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	smp_wmb(); /* See comment in __pte_alloc */ | 
 |  | 
 | 	spin_lock(&mm->page_table_lock); | 
 | #ifndef __ARCH_HAS_4LEVEL_HACK | 
 | 	if (pud_present(*pud))		/* Another has populated it */ | 
 | 		pmd_free(mm, new); | 
 | 	else | 
 | 		pud_populate(mm, pud, new); | 
 | #else | 
 | 	if (pgd_present(*pud))		/* Another has populated it */ | 
 | 		pmd_free(mm, new); | 
 | 	else | 
 | 		pgd_populate(mm, pud, new); | 
 | #endif /* __ARCH_HAS_4LEVEL_HACK */ | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | 	return 0; | 
 | } | 
 | #endif /* __PAGETABLE_PMD_FOLDED */ | 
 |  | 
 | int make_pages_present(unsigned long addr, unsigned long end) | 
 | { | 
 | 	int ret, len, write; | 
 | 	struct vm_area_struct * vma; | 
 |  | 
 | 	vma = find_vma(current->mm, addr); | 
 | 	if (!vma) | 
 | 		return -ENOMEM; | 
 | 	/* | 
 | 	 * We want to touch writable mappings with a write fault in order | 
 | 	 * to break COW, except for shared mappings because these don't COW | 
 | 	 * and we would not want to dirty them for nothing. | 
 | 	 */ | 
 | 	write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE; | 
 | 	BUG_ON(addr >= end); | 
 | 	BUG_ON(end > vma->vm_end); | 
 | 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; | 
 | 	ret = get_user_pages(current, current->mm, addr, | 
 | 			len, write, 0, NULL, NULL); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	return ret == len ? 0 : -EFAULT; | 
 | } | 
 |  | 
 | #if !defined(__HAVE_ARCH_GATE_AREA) | 
 |  | 
 | #if defined(AT_SYSINFO_EHDR) | 
 | static struct vm_area_struct gate_vma; | 
 |  | 
 | static int __init gate_vma_init(void) | 
 | { | 
 | 	gate_vma.vm_mm = NULL; | 
 | 	gate_vma.vm_start = FIXADDR_USER_START; | 
 | 	gate_vma.vm_end = FIXADDR_USER_END; | 
 | 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; | 
 | 	gate_vma.vm_page_prot = __P101; | 
 |  | 
 | 	return 0; | 
 | } | 
 | __initcall(gate_vma_init); | 
 | #endif | 
 |  | 
 | struct vm_area_struct *get_gate_vma(struct mm_struct *mm) | 
 | { | 
 | #ifdef AT_SYSINFO_EHDR | 
 | 	return &gate_vma; | 
 | #else | 
 | 	return NULL; | 
 | #endif | 
 | } | 
 |  | 
 | int in_gate_area_no_mm(unsigned long addr) | 
 | { | 
 | #ifdef AT_SYSINFO_EHDR | 
 | 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) | 
 | 		return 1; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif	/* __HAVE_ARCH_GATE_AREA */ | 
 |  | 
 | static int __follow_pte(struct mm_struct *mm, unsigned long address, | 
 | 		pte_t **ptepp, spinlock_t **ptlp) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *ptep; | 
 |  | 
 | 	pgd = pgd_offset(mm, address); | 
 | 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | 
 | 		goto out; | 
 |  | 
 | 	pud = pud_offset(pgd, address); | 
 | 	if (pud_none(*pud) || unlikely(pud_bad(*pud))) | 
 | 		goto out; | 
 |  | 
 | 	pmd = pmd_offset(pud, address); | 
 | 	VM_BUG_ON(pmd_trans_huge(*pmd)); | 
 | 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | 
 | 		goto out; | 
 |  | 
 | 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */ | 
 | 	if (pmd_huge(*pmd)) | 
 | 		goto out; | 
 |  | 
 | 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp); | 
 | 	if (!ptep) | 
 | 		goto out; | 
 | 	if (!pte_present(*ptep)) | 
 | 		goto unlock; | 
 | 	*ptepp = ptep; | 
 | 	return 0; | 
 | unlock: | 
 | 	pte_unmap_unlock(ptep, *ptlp); | 
 | out: | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static inline int follow_pte(struct mm_struct *mm, unsigned long address, | 
 | 			     pte_t **ptepp, spinlock_t **ptlp) | 
 | { | 
 | 	int res; | 
 |  | 
 | 	/* (void) is needed to make gcc happy */ | 
 | 	(void) __cond_lock(*ptlp, | 
 | 			   !(res = __follow_pte(mm, address, ptepp, ptlp))); | 
 | 	return res; | 
 | } | 
 |  | 
 | /** | 
 |  * follow_pfn - look up PFN at a user virtual address | 
 |  * @vma: memory mapping | 
 |  * @address: user virtual address | 
 |  * @pfn: location to store found PFN | 
 |  * | 
 |  * Only IO mappings and raw PFN mappings are allowed. | 
 |  * | 
 |  * Returns zero and the pfn at @pfn on success, -ve otherwise. | 
 |  */ | 
 | int follow_pfn(struct vm_area_struct *vma, unsigned long address, | 
 | 	unsigned long *pfn) | 
 | { | 
 | 	int ret = -EINVAL; | 
 | 	spinlock_t *ptl; | 
 | 	pte_t *ptep; | 
 |  | 
 | 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | 
 | 		return ret; | 
 |  | 
 | 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	*pfn = pte_pfn(*ptep); | 
 | 	pte_unmap_unlock(ptep, ptl); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(follow_pfn); | 
 |  | 
 | #ifdef CONFIG_HAVE_IOREMAP_PROT | 
 | int follow_phys(struct vm_area_struct *vma, | 
 | 		unsigned long address, unsigned int flags, | 
 | 		unsigned long *prot, resource_size_t *phys) | 
 | { | 
 | 	int ret = -EINVAL; | 
 | 	pte_t *ptep, pte; | 
 | 	spinlock_t *ptl; | 
 |  | 
 | 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | 
 | 		goto out; | 
 |  | 
 | 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) | 
 | 		goto out; | 
 | 	pte = *ptep; | 
 |  | 
 | 	if ((flags & FOLL_WRITE) && !pte_write(pte)) | 
 | 		goto unlock; | 
 |  | 
 | 	*prot = pgprot_val(pte_pgprot(pte)); | 
 | 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; | 
 |  | 
 | 	ret = 0; | 
 | unlock: | 
 | 	pte_unmap_unlock(ptep, ptl); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | 
 | 			void *buf, int len, int write) | 
 | { | 
 | 	resource_size_t phys_addr; | 
 | 	unsigned long prot = 0; | 
 | 	void __iomem *maddr; | 
 | 	int offset = addr & (PAGE_SIZE-1); | 
 |  | 
 | 	if (follow_phys(vma, addr, write, &prot, &phys_addr)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); | 
 | 	if (write) | 
 | 		memcpy_toio(maddr + offset, buf, len); | 
 | 	else | 
 | 		memcpy_fromio(buf, maddr + offset, len); | 
 | 	iounmap(maddr); | 
 |  | 
 | 	return len; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Access another process' address space as given in mm.  If non-NULL, use the | 
 |  * given task for page fault accounting. | 
 |  */ | 
 | static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, | 
 | 		unsigned long addr, void *buf, int len, int write) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	void *old_buf = buf; | 
 |  | 
 | 	down_read(&mm->mmap_sem); | 
 | 	/* ignore errors, just check how much was successfully transferred */ | 
 | 	while (len) { | 
 | 		int bytes, ret, offset; | 
 | 		void *maddr; | 
 | 		struct page *page = NULL; | 
 |  | 
 | 		ret = get_user_pages(tsk, mm, addr, 1, | 
 | 				write, 1, &page, &vma); | 
 | 		if (ret <= 0) { | 
 | 			/* | 
 | 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which | 
 | 			 * we can access using slightly different code. | 
 | 			 */ | 
 | #ifdef CONFIG_HAVE_IOREMAP_PROT | 
 | 			vma = find_vma(mm, addr); | 
 | 			if (!vma || vma->vm_start > addr) | 
 | 				break; | 
 | 			if (vma->vm_ops && vma->vm_ops->access) | 
 | 				ret = vma->vm_ops->access(vma, addr, buf, | 
 | 							  len, write); | 
 | 			if (ret <= 0) | 
 | #endif | 
 | 				break; | 
 | 			bytes = ret; | 
 | 		} else { | 
 | 			bytes = len; | 
 | 			offset = addr & (PAGE_SIZE-1); | 
 | 			if (bytes > PAGE_SIZE-offset) | 
 | 				bytes = PAGE_SIZE-offset; | 
 |  | 
 | 			maddr = kmap(page); | 
 | 			if (write) { | 
 | 				copy_to_user_page(vma, page, addr, | 
 | 						  maddr + offset, buf, bytes); | 
 | 				set_page_dirty_lock(page); | 
 | 			} else { | 
 | 				copy_from_user_page(vma, page, addr, | 
 | 						    buf, maddr + offset, bytes); | 
 | 			} | 
 | 			kunmap(page); | 
 | 			page_cache_release(page); | 
 | 		} | 
 | 		len -= bytes; | 
 | 		buf += bytes; | 
 | 		addr += bytes; | 
 | 	} | 
 | 	up_read(&mm->mmap_sem); | 
 |  | 
 | 	return buf - old_buf; | 
 | } | 
 |  | 
 | /** | 
 |  * access_remote_vm - access another process' address space | 
 |  * @mm:		the mm_struct of the target address space | 
 |  * @addr:	start address to access | 
 |  * @buf:	source or destination buffer | 
 |  * @len:	number of bytes to transfer | 
 |  * @write:	whether the access is a write | 
 |  * | 
 |  * The caller must hold a reference on @mm. | 
 |  */ | 
 | int access_remote_vm(struct mm_struct *mm, unsigned long addr, | 
 | 		void *buf, int len, int write) | 
 | { | 
 | 	return __access_remote_vm(NULL, mm, addr, buf, len, write); | 
 | } | 
 |  | 
 | /* | 
 |  * Access another process' address space. | 
 |  * Source/target buffer must be kernel space, | 
 |  * Do not walk the page table directly, use get_user_pages | 
 |  */ | 
 | int access_process_vm(struct task_struct *tsk, unsigned long addr, | 
 | 		void *buf, int len, int write) | 
 | { | 
 | 	struct mm_struct *mm; | 
 | 	int ret; | 
 |  | 
 | 	mm = get_task_mm(tsk); | 
 | 	if (!mm) | 
 | 		return 0; | 
 |  | 
 | 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write); | 
 | 	mmput(mm); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Print the name of a VMA. | 
 |  */ | 
 | void print_vma_addr(char *prefix, unsigned long ip) | 
 | { | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	/* | 
 | 	 * Do not print if we are in atomic | 
 | 	 * contexts (in exception stacks, etc.): | 
 | 	 */ | 
 | 	if (preempt_count()) | 
 | 		return; | 
 |  | 
 | 	down_read(&mm->mmap_sem); | 
 | 	vma = find_vma(mm, ip); | 
 | 	if (vma && vma->vm_file) { | 
 | 		struct file *f = vma->vm_file; | 
 | 		char *buf = (char *)__get_free_page(GFP_KERNEL); | 
 | 		if (buf) { | 
 | 			char *p, *s; | 
 |  | 
 | 			p = d_path(&f->f_path, buf, PAGE_SIZE); | 
 | 			if (IS_ERR(p)) | 
 | 				p = "?"; | 
 | 			s = strrchr(p, '/'); | 
 | 			if (s) | 
 | 				p = s+1; | 
 | 			printk("%s%s[%lx+%lx]", prefix, p, | 
 | 					vma->vm_start, | 
 | 					vma->vm_end - vma->vm_start); | 
 | 			free_page((unsigned long)buf); | 
 | 		} | 
 | 	} | 
 | 	up_read(¤t->mm->mmap_sem); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PROVE_LOCKING | 
 | void might_fault(void) | 
 | { | 
 | 	/* | 
 | 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while | 
 | 	 * holding the mmap_sem, this is safe because kernel memory doesn't | 
 | 	 * get paged out, therefore we'll never actually fault, and the | 
 | 	 * below annotations will generate false positives. | 
 | 	 */ | 
 | 	if (segment_eq(get_fs(), KERNEL_DS)) | 
 | 		return; | 
 |  | 
 | 	might_sleep(); | 
 | 	/* | 
 | 	 * it would be nicer only to annotate paths which are not under | 
 | 	 * pagefault_disable, however that requires a larger audit and | 
 | 	 * providing helpers like get_user_atomic. | 
 | 	 */ | 
 | 	if (!in_atomic() && current->mm) | 
 | 		might_lock_read(¤t->mm->mmap_sem); | 
 | } | 
 | EXPORT_SYMBOL(might_fault); | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) | 
 | static void clear_gigantic_page(struct page *page, | 
 | 				unsigned long addr, | 
 | 				unsigned int pages_per_huge_page) | 
 | { | 
 | 	int i; | 
 | 	struct page *p = page; | 
 |  | 
 | 	might_sleep(); | 
 | 	for (i = 0; i < pages_per_huge_page; | 
 | 	     i++, p = mem_map_next(p, page, i)) { | 
 | 		cond_resched(); | 
 | 		clear_user_highpage(p, addr + i * PAGE_SIZE); | 
 | 	} | 
 | } | 
 | void clear_huge_page(struct page *page, | 
 | 		     unsigned long addr, unsigned int pages_per_huge_page) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | 
 | 		clear_gigantic_page(page, addr, pages_per_huge_page); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	might_sleep(); | 
 | 	for (i = 0; i < pages_per_huge_page; i++) { | 
 | 		cond_resched(); | 
 | 		clear_user_highpage(page + i, addr + i * PAGE_SIZE); | 
 | 	} | 
 | } | 
 |  | 
 | static void copy_user_gigantic_page(struct page *dst, struct page *src, | 
 | 				    unsigned long addr, | 
 | 				    struct vm_area_struct *vma, | 
 | 				    unsigned int pages_per_huge_page) | 
 | { | 
 | 	int i; | 
 | 	struct page *dst_base = dst; | 
 | 	struct page *src_base = src; | 
 |  | 
 | 	for (i = 0; i < pages_per_huge_page; ) { | 
 | 		cond_resched(); | 
 | 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); | 
 |  | 
 | 		i++; | 
 | 		dst = mem_map_next(dst, dst_base, i); | 
 | 		src = mem_map_next(src, src_base, i); | 
 | 	} | 
 | } | 
 |  | 
 | void copy_user_huge_page(struct page *dst, struct page *src, | 
 | 			 unsigned long addr, struct vm_area_struct *vma, | 
 | 			 unsigned int pages_per_huge_page) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | 
 | 		copy_user_gigantic_page(dst, src, addr, vma, | 
 | 					pages_per_huge_page); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	might_sleep(); | 
 | 	for (i = 0; i < pages_per_huge_page; i++) { | 
 | 		cond_resched(); | 
 | 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ |