| #ifndef __ASM_SYSTEM_H | 
 | #define __ASM_SYSTEM_H | 
 |  | 
 | #include <linux/config.h> | 
 | #include <linux/kernel.h> | 
 | #include <asm/segment.h> | 
 | #include <asm/cpufeature.h> | 
 | #include <linux/bitops.h> /* for LOCK_PREFIX */ | 
 |  | 
 | #ifdef __KERNEL__ | 
 |  | 
 | struct task_struct;	/* one of the stranger aspects of C forward declarations.. */ | 
 | extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next)); | 
 |  | 
 | #define switch_to(prev,next,last) do {					\ | 
 | 	unsigned long esi,edi;						\ | 
 | 	asm volatile("pushl %%ebp\n\t"					\ | 
 | 		     "movl %%esp,%0\n\t"	/* save ESP */		\ | 
 | 		     "movl %5,%%esp\n\t"	/* restore ESP */	\ | 
 | 		     "movl $1f,%1\n\t"		/* save EIP */		\ | 
 | 		     "pushl %6\n\t"		/* restore EIP */	\ | 
 | 		     "jmp __switch_to\n"				\ | 
 | 		     "1:\t"						\ | 
 | 		     "popl %%ebp\n\t"					\ | 
 | 		     :"=m" (prev->thread.esp),"=m" (prev->thread.eip),	\ | 
 | 		      "=a" (last),"=S" (esi),"=D" (edi)			\ | 
 | 		     :"m" (next->thread.esp),"m" (next->thread.eip),	\ | 
 | 		      "2" (prev), "d" (next));				\ | 
 | } while (0) | 
 |  | 
 | #define _set_base(addr,base) do { unsigned long __pr; \ | 
 | __asm__ __volatile__ ("movw %%dx,%1\n\t" \ | 
 | 	"rorl $16,%%edx\n\t" \ | 
 | 	"movb %%dl,%2\n\t" \ | 
 | 	"movb %%dh,%3" \ | 
 | 	:"=&d" (__pr) \ | 
 | 	:"m" (*((addr)+2)), \ | 
 | 	 "m" (*((addr)+4)), \ | 
 | 	 "m" (*((addr)+7)), \ | 
 |          "0" (base) \ | 
 |         ); } while(0) | 
 |  | 
 | #define _set_limit(addr,limit) do { unsigned long __lr; \ | 
 | __asm__ __volatile__ ("movw %%dx,%1\n\t" \ | 
 | 	"rorl $16,%%edx\n\t" \ | 
 | 	"movb %2,%%dh\n\t" \ | 
 | 	"andb $0xf0,%%dh\n\t" \ | 
 | 	"orb %%dh,%%dl\n\t" \ | 
 | 	"movb %%dl,%2" \ | 
 | 	:"=&d" (__lr) \ | 
 | 	:"m" (*(addr)), \ | 
 | 	 "m" (*((addr)+6)), \ | 
 | 	 "0" (limit) \ | 
 |         ); } while(0) | 
 |  | 
 | #define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) ) | 
 | #define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1) ) | 
 |  | 
 | /* | 
 |  * Load a segment. Fall back on loading the zero | 
 |  * segment if something goes wrong.. | 
 |  */ | 
 | #define loadsegment(seg,value)			\ | 
 | 	asm volatile("\n"			\ | 
 | 		"1:\t"				\ | 
 | 		"mov %0,%%" #seg "\n"		\ | 
 | 		"2:\n"				\ | 
 | 		".section .fixup,\"ax\"\n"	\ | 
 | 		"3:\t"				\ | 
 | 		"pushl $0\n\t"			\ | 
 | 		"popl %%" #seg "\n\t"		\ | 
 | 		"jmp 2b\n"			\ | 
 | 		".previous\n"			\ | 
 | 		".section __ex_table,\"a\"\n\t"	\ | 
 | 		".align 4\n\t"			\ | 
 | 		".long 1b,3b\n"			\ | 
 | 		".previous"			\ | 
 | 		: :"rm" (value)) | 
 |  | 
 | /* | 
 |  * Save a segment register away | 
 |  */ | 
 | #define savesegment(seg, value) \ | 
 | 	asm volatile("mov %%" #seg ",%0":"=rm" (value)) | 
 |  | 
 | /* | 
 |  * Clear and set 'TS' bit respectively | 
 |  */ | 
 | #define clts() __asm__ __volatile__ ("clts") | 
 | #define read_cr0() ({ \ | 
 | 	unsigned int __dummy; \ | 
 | 	__asm__ __volatile__( \ | 
 | 		"movl %%cr0,%0\n\t" \ | 
 | 		:"=r" (__dummy)); \ | 
 | 	__dummy; \ | 
 | }) | 
 | #define write_cr0(x) \ | 
 | 	__asm__ __volatile__("movl %0,%%cr0": :"r" (x)); | 
 |  | 
 | #define read_cr2() ({ \ | 
 | 	unsigned int __dummy; \ | 
 | 	__asm__ __volatile__( \ | 
 | 		"movl %%cr2,%0\n\t" \ | 
 | 		:"=r" (__dummy)); \ | 
 | 	__dummy; \ | 
 | }) | 
 | #define write_cr2(x) \ | 
 | 	__asm__ __volatile__("movl %0,%%cr2": :"r" (x)); | 
 |  | 
 | #define read_cr3() ({ \ | 
 | 	unsigned int __dummy; \ | 
 | 	__asm__ ( \ | 
 | 		"movl %%cr3,%0\n\t" \ | 
 | 		:"=r" (__dummy)); \ | 
 | 	__dummy; \ | 
 | }) | 
 | #define write_cr3(x) \ | 
 | 	__asm__ __volatile__("movl %0,%%cr3": :"r" (x)); | 
 |  | 
 | #define read_cr4() ({ \ | 
 | 	unsigned int __dummy; \ | 
 | 	__asm__( \ | 
 | 		"movl %%cr4,%0\n\t" \ | 
 | 		:"=r" (__dummy)); \ | 
 | 	__dummy; \ | 
 | }) | 
 |  | 
 | #define read_cr4_safe() ({			      \ | 
 | 	unsigned int __dummy;			      \ | 
 | 	/* This could fault if %cr4 does not exist */ \ | 
 | 	__asm__("1: movl %%cr4, %0		\n"   \ | 
 | 		"2:				\n"   \ | 
 | 		".section __ex_table,\"a\"	\n"   \ | 
 | 		".long 1b,2b			\n"   \ | 
 | 		".previous			\n"   \ | 
 | 		: "=r" (__dummy): "0" (0));	      \ | 
 | 	__dummy;				      \ | 
 | }) | 
 |  | 
 | #define write_cr4(x) \ | 
 | 	__asm__ __volatile__("movl %0,%%cr4": :"r" (x)); | 
 | #define stts() write_cr0(8 | read_cr0()) | 
 |  | 
 | #endif	/* __KERNEL__ */ | 
 |  | 
 | #define wbinvd() \ | 
 | 	__asm__ __volatile__ ("wbinvd": : :"memory"); | 
 |  | 
 | static inline unsigned long get_limit(unsigned long segment) | 
 | { | 
 | 	unsigned long __limit; | 
 | 	__asm__("lsll %1,%0" | 
 | 		:"=r" (__limit):"r" (segment)); | 
 | 	return __limit+1; | 
 | } | 
 |  | 
 | #define nop() __asm__ __volatile__ ("nop") | 
 |  | 
 | #define xchg(ptr,v) ((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr)))) | 
 |  | 
 | #define tas(ptr) (xchg((ptr),1)) | 
 |  | 
 | struct __xchg_dummy { unsigned long a[100]; }; | 
 | #define __xg(x) ((struct __xchg_dummy *)(x)) | 
 |  | 
 |  | 
 | #ifdef CONFIG_X86_CMPXCHG64 | 
 |  | 
 | /* | 
 |  * The semantics of XCHGCMP8B are a bit strange, this is why | 
 |  * there is a loop and the loading of %%eax and %%edx has to | 
 |  * be inside. This inlines well in most cases, the cached | 
 |  * cost is around ~38 cycles. (in the future we might want | 
 |  * to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that | 
 |  * might have an implicit FPU-save as a cost, so it's not | 
 |  * clear which path to go.) | 
 |  * | 
 |  * cmpxchg8b must be used with the lock prefix here to allow | 
 |  * the instruction to be executed atomically, see page 3-102 | 
 |  * of the instruction set reference 24319102.pdf. We need | 
 |  * the reader side to see the coherent 64bit value. | 
 |  */ | 
 | static inline void __set_64bit (unsigned long long * ptr, | 
 | 		unsigned int low, unsigned int high) | 
 | { | 
 | 	__asm__ __volatile__ ( | 
 | 		"\n1:\t" | 
 | 		"movl (%0), %%eax\n\t" | 
 | 		"movl 4(%0), %%edx\n\t" | 
 | 		"lock cmpxchg8b (%0)\n\t" | 
 | 		"jnz 1b" | 
 | 		: /* no outputs */ | 
 | 		:	"D"(ptr), | 
 | 			"b"(low), | 
 | 			"c"(high) | 
 | 		:	"ax","dx","memory"); | 
 | } | 
 |  | 
 | static inline void __set_64bit_constant (unsigned long long *ptr, | 
 | 						 unsigned long long value) | 
 | { | 
 | 	__set_64bit(ptr,(unsigned int)(value), (unsigned int)((value)>>32ULL)); | 
 | } | 
 | #define ll_low(x)	*(((unsigned int*)&(x))+0) | 
 | #define ll_high(x)	*(((unsigned int*)&(x))+1) | 
 |  | 
 | static inline void __set_64bit_var (unsigned long long *ptr, | 
 | 			 unsigned long long value) | 
 | { | 
 | 	__set_64bit(ptr,ll_low(value), ll_high(value)); | 
 | } | 
 |  | 
 | #define set_64bit(ptr,value) \ | 
 | (__builtin_constant_p(value) ? \ | 
 |  __set_64bit_constant(ptr, value) : \ | 
 |  __set_64bit_var(ptr, value) ) | 
 |  | 
 | #define _set_64bit(ptr,value) \ | 
 | (__builtin_constant_p(value) ? \ | 
 |  __set_64bit(ptr, (unsigned int)(value), (unsigned int)((value)>>32ULL) ) : \ | 
 |  __set_64bit(ptr, ll_low(value), ll_high(value)) ) | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * Note: no "lock" prefix even on SMP: xchg always implies lock anyway | 
 |  * Note 2: xchg has side effect, so that attribute volatile is necessary, | 
 |  *	  but generally the primitive is invalid, *ptr is output argument. --ANK | 
 |  */ | 
 | static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size) | 
 | { | 
 | 	switch (size) { | 
 | 		case 1: | 
 | 			__asm__ __volatile__("xchgb %b0,%1" | 
 | 				:"=q" (x) | 
 | 				:"m" (*__xg(ptr)), "0" (x) | 
 | 				:"memory"); | 
 | 			break; | 
 | 		case 2: | 
 | 			__asm__ __volatile__("xchgw %w0,%1" | 
 | 				:"=r" (x) | 
 | 				:"m" (*__xg(ptr)), "0" (x) | 
 | 				:"memory"); | 
 | 			break; | 
 | 		case 4: | 
 | 			__asm__ __volatile__("xchgl %0,%1" | 
 | 				:"=r" (x) | 
 | 				:"m" (*__xg(ptr)), "0" (x) | 
 | 				:"memory"); | 
 | 			break; | 
 | 	} | 
 | 	return x; | 
 | } | 
 |  | 
 | /* | 
 |  * Atomic compare and exchange.  Compare OLD with MEM, if identical, | 
 |  * store NEW in MEM.  Return the initial value in MEM.  Success is | 
 |  * indicated by comparing RETURN with OLD. | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_X86_CMPXCHG | 
 | #define __HAVE_ARCH_CMPXCHG 1 | 
 | #define cmpxchg(ptr,o,n)\ | 
 | 	((__typeof__(*(ptr)))__cmpxchg((ptr),(unsigned long)(o),\ | 
 | 					(unsigned long)(n),sizeof(*(ptr)))) | 
 | #endif | 
 |  | 
 | static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old, | 
 | 				      unsigned long new, int size) | 
 | { | 
 | 	unsigned long prev; | 
 | 	switch (size) { | 
 | 	case 1: | 
 | 		__asm__ __volatile__(LOCK_PREFIX "cmpxchgb %b1,%2" | 
 | 				     : "=a"(prev) | 
 | 				     : "q"(new), "m"(*__xg(ptr)), "0"(old) | 
 | 				     : "memory"); | 
 | 		return prev; | 
 | 	case 2: | 
 | 		__asm__ __volatile__(LOCK_PREFIX "cmpxchgw %w1,%2" | 
 | 				     : "=a"(prev) | 
 | 				     : "r"(new), "m"(*__xg(ptr)), "0"(old) | 
 | 				     : "memory"); | 
 | 		return prev; | 
 | 	case 4: | 
 | 		__asm__ __volatile__(LOCK_PREFIX "cmpxchgl %1,%2" | 
 | 				     : "=a"(prev) | 
 | 				     : "r"(new), "m"(*__xg(ptr)), "0"(old) | 
 | 				     : "memory"); | 
 | 		return prev; | 
 | 	} | 
 | 	return old; | 
 | } | 
 |  | 
 | #ifndef CONFIG_X86_CMPXCHG | 
 | /* | 
 |  * Building a kernel capable running on 80386. It may be necessary to | 
 |  * simulate the cmpxchg on the 80386 CPU. For that purpose we define | 
 |  * a function for each of the sizes we support. | 
 |  */ | 
 |  | 
 | extern unsigned long cmpxchg_386_u8(volatile void *, u8, u8); | 
 | extern unsigned long cmpxchg_386_u16(volatile void *, u16, u16); | 
 | extern unsigned long cmpxchg_386_u32(volatile void *, u32, u32); | 
 |  | 
 | static inline unsigned long cmpxchg_386(volatile void *ptr, unsigned long old, | 
 | 				      unsigned long new, int size) | 
 | { | 
 | 	switch (size) { | 
 | 	case 1: | 
 | 		return cmpxchg_386_u8(ptr, old, new); | 
 | 	case 2: | 
 | 		return cmpxchg_386_u16(ptr, old, new); | 
 | 	case 4: | 
 | 		return cmpxchg_386_u32(ptr, old, new); | 
 | 	} | 
 | 	return old; | 
 | } | 
 |  | 
 | #define cmpxchg(ptr,o,n)						\ | 
 | ({									\ | 
 | 	__typeof__(*(ptr)) __ret;					\ | 
 | 	if (likely(boot_cpu_data.x86 > 3))				\ | 
 | 		__ret = __cmpxchg((ptr), (unsigned long)(o),		\ | 
 | 					(unsigned long)(n), sizeof(*(ptr))); \ | 
 | 	else								\ | 
 | 		__ret = cmpxchg_386((ptr), (unsigned long)(o),		\ | 
 | 					(unsigned long)(n), sizeof(*(ptr))); \ | 
 | 	__ret;								\ | 
 | }) | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_X86_CMPXCHG64 | 
 |  | 
 | static inline unsigned long long __cmpxchg64(volatile void *ptr, unsigned long long old, | 
 | 				      unsigned long long new) | 
 | { | 
 | 	unsigned long long prev; | 
 | 	__asm__ __volatile__(LOCK_PREFIX "cmpxchg8b %3" | 
 | 			     : "=A"(prev) | 
 | 			     : "b"((unsigned long)new), | 
 | 			       "c"((unsigned long)(new >> 32)), | 
 | 			       "m"(*__xg(ptr)), | 
 | 			       "0"(old) | 
 | 			     : "memory"); | 
 | 	return prev; | 
 | } | 
 |  | 
 | #define cmpxchg64(ptr,o,n)\ | 
 | 	((__typeof__(*(ptr)))__cmpxchg64((ptr),(unsigned long long)(o),\ | 
 | 					(unsigned long long)(n))) | 
 |  | 
 | #endif | 
 |      | 
 | #ifdef __KERNEL__ | 
 | struct alt_instr {  | 
 | 	__u8 *instr; 		/* original instruction */ | 
 | 	__u8 *replacement; | 
 | 	__u8  cpuid;		/* cpuid bit set for replacement */ | 
 | 	__u8  instrlen;		/* length of original instruction */ | 
 | 	__u8  replacementlen; 	/* length of new instruction, <= instrlen */  | 
 | 	__u8  pad; | 
 | };  | 
 | #endif | 
 |  | 
 | /*  | 
 |  * Alternative instructions for different CPU types or capabilities. | 
 |  *  | 
 |  * This allows to use optimized instructions even on generic binary | 
 |  * kernels. | 
 |  *  | 
 |  * length of oldinstr must be longer or equal the length of newinstr | 
 |  * It can be padded with nops as needed. | 
 |  *  | 
 |  * For non barrier like inlines please define new variants | 
 |  * without volatile and memory clobber. | 
 |  */ | 
 | #define alternative(oldinstr, newinstr, feature) 	\ | 
 | 	asm volatile ("661:\n\t" oldinstr "\n662:\n" 		     \ | 
 | 		      ".section .altinstructions,\"a\"\n"     	     \ | 
 | 		      "  .align 4\n"				       \ | 
 | 		      "  .long 661b\n"            /* label */          \ | 
 | 		      "  .long 663f\n"		  /* new instruction */ 	\ | 
 | 		      "  .byte %c0\n"             /* feature bit */    \ | 
 | 		      "  .byte 662b-661b\n"       /* sourcelen */      \ | 
 | 		      "  .byte 664f-663f\n"       /* replacementlen */ \ | 
 | 		      ".previous\n"						\ | 
 | 		      ".section .altinstr_replacement,\"ax\"\n"			\ | 
 | 		      "663:\n\t" newinstr "\n664:\n"   /* replacement */    \ | 
 | 		      ".previous" :: "i" (feature) : "memory")   | 
 |  | 
 | /* | 
 |  * Alternative inline assembly with input. | 
 |  *  | 
 |  * Pecularities: | 
 |  * No memory clobber here.  | 
 |  * Argument numbers start with 1. | 
 |  * Best is to use constraints that are fixed size (like (%1) ... "r") | 
 |  * If you use variable sized constraints like "m" or "g" in the  | 
 |  * replacement maake sure to pad to the worst case length. | 
 |  */ | 
 | #define alternative_input(oldinstr, newinstr, feature, input...)		\ | 
 | 	asm volatile ("661:\n\t" oldinstr "\n662:\n"				\ | 
 | 		      ".section .altinstructions,\"a\"\n"			\ | 
 | 		      "  .align 4\n"						\ | 
 | 		      "  .long 661b\n"            /* label */			\ | 
 | 		      "  .long 663f\n"		  /* new instruction */ 	\ | 
 | 		      "  .byte %c0\n"             /* feature bit */		\ | 
 | 		      "  .byte 662b-661b\n"       /* sourcelen */		\ | 
 | 		      "  .byte 664f-663f\n"       /* replacementlen */ 		\ | 
 | 		      ".previous\n"						\ | 
 | 		      ".section .altinstr_replacement,\"ax\"\n"			\ | 
 | 		      "663:\n\t" newinstr "\n664:\n"   /* replacement */ 	\ | 
 | 		      ".previous" :: "i" (feature), ##input) | 
 |  | 
 | /* | 
 |  * Force strict CPU ordering. | 
 |  * And yes, this is required on UP too when we're talking | 
 |  * to devices. | 
 |  * | 
 |  * For now, "wmb()" doesn't actually do anything, as all | 
 |  * Intel CPU's follow what Intel calls a *Processor Order*, | 
 |  * in which all writes are seen in the program order even | 
 |  * outside the CPU. | 
 |  * | 
 |  * I expect future Intel CPU's to have a weaker ordering, | 
 |  * but I'd also expect them to finally get their act together | 
 |  * and add some real memory barriers if so. | 
 |  * | 
 |  * Some non intel clones support out of order store. wmb() ceases to be a | 
 |  * nop for these. | 
 |  */ | 
 |   | 
 |  | 
 | /*  | 
 |  * Actually only lfence would be needed for mb() because all stores done  | 
 |  * by the kernel should be already ordered. But keep a full barrier for now.  | 
 |  */ | 
 |  | 
 | #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2) | 
 | #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2) | 
 |  | 
 | /** | 
 |  * read_barrier_depends - Flush all pending reads that subsequents reads | 
 |  * depend on. | 
 |  * | 
 |  * No data-dependent reads from memory-like regions are ever reordered | 
 |  * over this barrier.  All reads preceding this primitive are guaranteed | 
 |  * to access memory (but not necessarily other CPUs' caches) before any | 
 |  * reads following this primitive that depend on the data return by | 
 |  * any of the preceding reads.  This primitive is much lighter weight than | 
 |  * rmb() on most CPUs, and is never heavier weight than is | 
 |  * rmb(). | 
 |  * | 
 |  * These ordering constraints are respected by both the local CPU | 
 |  * and the compiler. | 
 |  * | 
 |  * Ordering is not guaranteed by anything other than these primitives, | 
 |  * not even by data dependencies.  See the documentation for | 
 |  * memory_barrier() for examples and URLs to more information. | 
 |  * | 
 |  * For example, the following code would force ordering (the initial | 
 |  * value of "a" is zero, "b" is one, and "p" is "&a"): | 
 |  * | 
 |  * <programlisting> | 
 |  *	CPU 0				CPU 1 | 
 |  * | 
 |  *	b = 2; | 
 |  *	memory_barrier(); | 
 |  *	p = &b;				q = p; | 
 |  *					read_barrier_depends(); | 
 |  *					d = *q; | 
 |  * </programlisting> | 
 |  * | 
 |  * because the read of "*q" depends on the read of "p" and these | 
 |  * two reads are separated by a read_barrier_depends().  However, | 
 |  * the following code, with the same initial values for "a" and "b": | 
 |  * | 
 |  * <programlisting> | 
 |  *	CPU 0				CPU 1 | 
 |  * | 
 |  *	a = 2; | 
 |  *	memory_barrier(); | 
 |  *	b = 3;				y = b; | 
 |  *					read_barrier_depends(); | 
 |  *					x = a; | 
 |  * </programlisting> | 
 |  * | 
 |  * does not enforce ordering, since there is no data dependency between | 
 |  * the read of "a" and the read of "b".  Therefore, on some CPUs, such | 
 |  * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb() | 
 |  * in cases like thiswhere there are no data dependencies. | 
 |  **/ | 
 |  | 
 | #define read_barrier_depends()	do { } while(0) | 
 |  | 
 | #ifdef CONFIG_X86_OOSTORE | 
 | /* Actually there are no OOO store capable CPUs for now that do SSE,  | 
 |    but make it already an possibility. */ | 
 | #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM) | 
 | #else | 
 | #define wmb()	__asm__ __volatile__ ("": : :"memory") | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | #define smp_mb()	mb() | 
 | #define smp_rmb()	rmb() | 
 | #define smp_wmb()	wmb() | 
 | #define smp_read_barrier_depends()	read_barrier_depends() | 
 | #define set_mb(var, value) do { (void) xchg(&var, value); } while (0) | 
 | #else | 
 | #define smp_mb()	barrier() | 
 | #define smp_rmb()	barrier() | 
 | #define smp_wmb()	barrier() | 
 | #define smp_read_barrier_depends()	do { } while(0) | 
 | #define set_mb(var, value) do { var = value; barrier(); } while (0) | 
 | #endif | 
 |  | 
 | #define set_wmb(var, value) do { var = value; wmb(); } while (0) | 
 |  | 
 | /* interrupt control.. */ | 
 | #define local_save_flags(x)	do { typecheck(unsigned long,x); __asm__ __volatile__("pushfl ; popl %0":"=g" (x): /* no input */); } while (0) | 
 | #define local_irq_restore(x) 	do { typecheck(unsigned long,x); __asm__ __volatile__("pushl %0 ; popfl": /* no output */ :"g" (x):"memory", "cc"); } while (0) | 
 | #define local_irq_disable() 	__asm__ __volatile__("cli": : :"memory") | 
 | #define local_irq_enable()	__asm__ __volatile__("sti": : :"memory") | 
 | /* used in the idle loop; sti takes one instruction cycle to complete */ | 
 | #define safe_halt()		__asm__ __volatile__("sti; hlt": : :"memory") | 
 | /* used when interrupts are already enabled or to shutdown the processor */ | 
 | #define halt()			__asm__ __volatile__("hlt": : :"memory") | 
 |  | 
 | #define irqs_disabled()			\ | 
 | ({					\ | 
 | 	unsigned long flags;		\ | 
 | 	local_save_flags(flags);	\ | 
 | 	!(flags & (1<<9));		\ | 
 | }) | 
 |  | 
 | /* For spinlocks etc */ | 
 | #define local_irq_save(x)	__asm__ __volatile__("pushfl ; popl %0 ; cli":"=g" (x): /* no input */ :"memory") | 
 |  | 
 | /* | 
 |  * disable hlt during certain critical i/o operations | 
 |  */ | 
 | #define HAVE_DISABLE_HLT | 
 | void disable_hlt(void); | 
 | void enable_hlt(void); | 
 |  | 
 | extern int es7000_plat; | 
 | void cpu_idle_wait(void); | 
 |  | 
 | /* | 
 |  * On SMP systems, when the scheduler does migration-cost autodetection, | 
 |  * it needs a way to flush as much of the CPU's caches as possible: | 
 |  */ | 
 | static inline void sched_cacheflush(void) | 
 | { | 
 | 	wbinvd(); | 
 | } | 
 |  | 
 | extern unsigned long arch_align_stack(unsigned long sp); | 
 |  | 
 | #endif |