| /* | 
 |  * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card | 
 |  *           and other Tigon based cards. | 
 |  * | 
 |  * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>. | 
 |  * | 
 |  * Thanks to Alteon and 3Com for providing hardware and documentation | 
 |  * enabling me to write this driver. | 
 |  * | 
 |  * A mailing list for discussing the use of this driver has been | 
 |  * setup, please subscribe to the lists if you have any questions | 
 |  * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to | 
 |  * see how to subscribe. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * Additional credits: | 
 |  *   Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace | 
 |  *       dump support. The trace dump support has not been | 
 |  *       integrated yet however. | 
 |  *   Troy Benjegerdes: Big Endian (PPC) patches. | 
 |  *   Nate Stahl: Better out of memory handling and stats support. | 
 |  *   Aman Singla: Nasty race between interrupt handler and tx code dealing | 
 |  *                with 'testing the tx_ret_csm and setting tx_full' | 
 |  *   David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping | 
 |  *                                       infrastructure and Sparc support | 
 |  *   Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the | 
 |  *                              driver under Linux/Sparc64 | 
 |  *   Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards | 
 |  *                                       ETHTOOL_GDRVINFO support | 
 |  *   Chip Salzenberg <chip@valinux.com>: Fix race condition between tx | 
 |  *                                       handler and close() cleanup. | 
 |  *   Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether | 
 |  *                                       memory mapped IO is enabled to | 
 |  *                                       make the driver work on RS/6000. | 
 |  *   Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem | 
 |  *                                       where the driver would disable | 
 |  *                                       bus master mode if it had to disable | 
 |  *                                       write and invalidate. | 
 |  *   Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little | 
 |  *                                       endian systems. | 
 |  *   Val Henson <vhenson@esscom.com>:    Reset Jumbo skb producer and | 
 |  *                                       rx producer index when | 
 |  *                                       flushing the Jumbo ring. | 
 |  *   Hans Grobler <grobh@sun.ac.za>:     Memory leak fixes in the | 
 |  *                                       driver init path. | 
 |  *   Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes. | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <linux/version.h> | 
 | #include <linux/types.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/init.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/sockios.h> | 
 |  | 
 | #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) | 
 | #include <linux/if_vlan.h> | 
 | #endif | 
 |  | 
 | #ifdef SIOCETHTOOL | 
 | #include <linux/ethtool.h> | 
 | #endif | 
 |  | 
 | #include <net/sock.h> | 
 | #include <net/ip.h> | 
 |  | 
 | #include <asm/system.h> | 
 | #include <asm/io.h> | 
 | #include <asm/irq.h> | 
 | #include <asm/byteorder.h> | 
 | #include <asm/uaccess.h> | 
 |  | 
 |  | 
 | #define DRV_NAME "acenic" | 
 |  | 
 | #undef INDEX_DEBUG | 
 |  | 
 | #ifdef CONFIG_ACENIC_OMIT_TIGON_I | 
 | #define ACE_IS_TIGON_I(ap)	0 | 
 | #define ACE_TX_RING_ENTRIES(ap)	MAX_TX_RING_ENTRIES | 
 | #else | 
 | #define ACE_IS_TIGON_I(ap)	(ap->version == 1) | 
 | #define ACE_TX_RING_ENTRIES(ap)	ap->tx_ring_entries | 
 | #endif | 
 |  | 
 | #ifndef PCI_VENDOR_ID_ALTEON | 
 | #define PCI_VENDOR_ID_ALTEON		0x12ae | 
 | #endif | 
 | #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE | 
 | #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE  0x0001 | 
 | #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002 | 
 | #endif | 
 | #ifndef PCI_DEVICE_ID_3COM_3C985 | 
 | #define PCI_DEVICE_ID_3COM_3C985	0x0001 | 
 | #endif | 
 | #ifndef PCI_VENDOR_ID_NETGEAR | 
 | #define PCI_VENDOR_ID_NETGEAR		0x1385 | 
 | #define PCI_DEVICE_ID_NETGEAR_GA620	0x620a | 
 | #endif | 
 | #ifndef PCI_DEVICE_ID_NETGEAR_GA620T | 
 | #define PCI_DEVICE_ID_NETGEAR_GA620T	0x630a | 
 | #endif | 
 |  | 
 |  | 
 | /* | 
 |  * Farallon used the DEC vendor ID by mistake and they seem not | 
 |  * to care - stinky! | 
 |  */ | 
 | #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX | 
 | #define PCI_DEVICE_ID_FARALLON_PN9000SX	0x1a | 
 | #endif | 
 | #ifndef PCI_DEVICE_ID_FARALLON_PN9100T | 
 | #define PCI_DEVICE_ID_FARALLON_PN9100T  0xfa | 
 | #endif | 
 | #ifndef PCI_VENDOR_ID_SGI | 
 | #define PCI_VENDOR_ID_SGI		0x10a9 | 
 | #endif | 
 | #ifndef PCI_DEVICE_ID_SGI_ACENIC | 
 | #define PCI_DEVICE_ID_SGI_ACENIC	0x0009 | 
 | #endif | 
 |  | 
 | static struct pci_device_id acenic_pci_tbl[] = { | 
 | 	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE, | 
 | 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | 
 | 	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER, | 
 | 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | 
 | 	{ PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985, | 
 | 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | 
 | 	{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620, | 
 | 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | 
 | 	{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T, | 
 | 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | 
 | 	/* | 
 | 	 * Farallon used the DEC vendor ID on their cards incorrectly, | 
 | 	 * then later Alteon's ID. | 
 | 	 */ | 
 | 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX, | 
 | 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | 
 | 	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T, | 
 | 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | 
 | 	{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC, | 
 | 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | 
 | 	{ } | 
 | }; | 
 | MODULE_DEVICE_TABLE(pci, acenic_pci_tbl); | 
 |  | 
 | #define ace_sync_irq(irq)	synchronize_irq(irq) | 
 |  | 
 | #ifndef offset_in_page | 
 | #define offset_in_page(ptr)	((unsigned long)(ptr) & ~PAGE_MASK) | 
 | #endif | 
 |  | 
 | #define ACE_MAX_MOD_PARMS	8 | 
 | #define BOARD_IDX_STATIC	0 | 
 | #define BOARD_IDX_OVERFLOW	-1 | 
 |  | 
 | #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \ | 
 | 	defined(NETIF_F_HW_VLAN_RX) | 
 | #define ACENIC_DO_VLAN		1 | 
 | #define ACE_RCB_VLAN_FLAG	RCB_FLG_VLAN_ASSIST | 
 | #else | 
 | #define ACENIC_DO_VLAN		0 | 
 | #define ACE_RCB_VLAN_FLAG	0 | 
 | #endif | 
 |  | 
 | #include "acenic.h" | 
 |  | 
 | /* | 
 |  * These must be defined before the firmware is included. | 
 |  */ | 
 | #define MAX_TEXT_LEN	96*1024 | 
 | #define MAX_RODATA_LEN	8*1024 | 
 | #define MAX_DATA_LEN	2*1024 | 
 |  | 
 | #include "acenic_firmware.h" | 
 |  | 
 | #ifndef tigon2FwReleaseLocal | 
 | #define tigon2FwReleaseLocal 0 | 
 | #endif | 
 |  | 
 | /* | 
 |  * This driver currently supports Tigon I and Tigon II based cards | 
 |  * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear | 
 |  * GA620. The driver should also work on the SGI, DEC and Farallon | 
 |  * versions of the card, however I have not been able to test that | 
 |  * myself. | 
 |  * | 
 |  * This card is really neat, it supports receive hardware checksumming | 
 |  * and jumbo frames (up to 9000 bytes) and does a lot of work in the | 
 |  * firmware. Also the programming interface is quite neat, except for | 
 |  * the parts dealing with the i2c eeprom on the card ;-) | 
 |  * | 
 |  * Using jumbo frames: | 
 |  * | 
 |  * To enable jumbo frames, simply specify an mtu between 1500 and 9000 | 
 |  * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time | 
 |  * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet | 
 |  * interface number and <MTU> being the MTU value. | 
 |  * | 
 |  * Module parameters: | 
 |  * | 
 |  * When compiled as a loadable module, the driver allows for a number | 
 |  * of module parameters to be specified. The driver supports the | 
 |  * following module parameters: | 
 |  * | 
 |  *  trace=<val> - Firmware trace level. This requires special traced | 
 |  *                firmware to replace the firmware supplied with | 
 |  *                the driver - for debugging purposes only. | 
 |  * | 
 |  *  link=<val>  - Link state. Normally you want to use the default link | 
 |  *                parameters set by the driver. This can be used to | 
 |  *                override these in case your switch doesn't negotiate | 
 |  *                the link properly. Valid values are: | 
 |  *         0x0001 - Force half duplex link. | 
 |  *         0x0002 - Do not negotiate line speed with the other end. | 
 |  *         0x0010 - 10Mbit/sec link. | 
 |  *         0x0020 - 100Mbit/sec link. | 
 |  *         0x0040 - 1000Mbit/sec link. | 
 |  *         0x0100 - Do not negotiate flow control. | 
 |  *         0x0200 - Enable RX flow control Y | 
 |  *         0x0400 - Enable TX flow control Y (Tigon II NICs only). | 
 |  *                Default value is 0x0270, ie. enable link+flow | 
 |  *                control negotiation. Negotiating the highest | 
 |  *                possible link speed with RX flow control enabled. | 
 |  * | 
 |  *                When disabling link speed negotiation, only one link | 
 |  *                speed is allowed to be specified! | 
 |  * | 
 |  *  tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed | 
 |  *                to wait for more packets to arive before | 
 |  *                interrupting the host, from the time the first | 
 |  *                packet arrives. | 
 |  * | 
 |  *  rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed | 
 |  *                to wait for more packets to arive in the transmit ring, | 
 |  *                before interrupting the host, after transmitting the | 
 |  *                first packet in the ring. | 
 |  * | 
 |  *  max_tx_desc=<val> - maximum number of transmit descriptors | 
 |  *                (packets) transmitted before interrupting the host. | 
 |  * | 
 |  *  max_rx_desc=<val> - maximum number of receive descriptors | 
 |  *                (packets) received before interrupting the host. | 
 |  * | 
 |  *  tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th | 
 |  *                increments of the NIC's on board memory to be used for | 
 |  *                transmit and receive buffers. For the 1MB NIC app. 800KB | 
 |  *                is available, on the 1/2MB NIC app. 300KB is available. | 
 |  *                68KB will always be available as a minimum for both | 
 |  *                directions. The default value is a 50/50 split. | 
 |  *  dis_pci_mem_inval=<val> - disable PCI memory write and invalidate | 
 |  *                operations, default (1) is to always disable this as | 
 |  *                that is what Alteon does on NT. I have not been able | 
 |  *                to measure any real performance differences with | 
 |  *                this on my systems. Set <val>=0 if you want to | 
 |  *                enable these operations. | 
 |  * | 
 |  * If you use more than one NIC, specify the parameters for the | 
 |  * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to | 
 |  * run tracing on NIC #2 but not on NIC #1 and #3. | 
 |  * | 
 |  * TODO: | 
 |  * | 
 |  * - Proper multicast support. | 
 |  * - NIC dump support. | 
 |  * - More tuning parameters. | 
 |  * | 
 |  * The mini ring is not used under Linux and I am not sure it makes sense | 
 |  * to actually use it. | 
 |  * | 
 |  * New interrupt handler strategy: | 
 |  * | 
 |  * The old interrupt handler worked using the traditional method of | 
 |  * replacing an skbuff with a new one when a packet arrives. However | 
 |  * the rx rings do not need to contain a static number of buffer | 
 |  * descriptors, thus it makes sense to move the memory allocation out | 
 |  * of the main interrupt handler and do it in a bottom half handler | 
 |  * and only allocate new buffers when the number of buffers in the | 
 |  * ring is below a certain threshold. In order to avoid starving the | 
 |  * NIC under heavy load it is however necessary to force allocation | 
 |  * when hitting a minimum threshold. The strategy for alloction is as | 
 |  * follows: | 
 |  * | 
 |  *     RX_LOW_BUF_THRES    - allocate buffers in the bottom half | 
 |  *     RX_PANIC_LOW_THRES  - we are very low on buffers, allocate | 
 |  *                           the buffers in the interrupt handler | 
 |  *     RX_RING_THRES       - maximum number of buffers in the rx ring | 
 |  *     RX_MINI_THRES       - maximum number of buffers in the mini ring | 
 |  *     RX_JUMBO_THRES      - maximum number of buffers in the jumbo ring | 
 |  * | 
 |  * One advantagous side effect of this allocation approach is that the | 
 |  * entire rx processing can be done without holding any spin lock | 
 |  * since the rx rings and registers are totally independent of the tx | 
 |  * ring and its registers.  This of course includes the kmalloc's of | 
 |  * new skb's. Thus start_xmit can run in parallel with rx processing | 
 |  * and the memory allocation on SMP systems. | 
 |  * | 
 |  * Note that running the skb reallocation in a bottom half opens up | 
 |  * another can of races which needs to be handled properly. In | 
 |  * particular it can happen that the interrupt handler tries to run | 
 |  * the reallocation while the bottom half is either running on another | 
 |  * CPU or was interrupted on the same CPU. To get around this the | 
 |  * driver uses bitops to prevent the reallocation routines from being | 
 |  * reentered. | 
 |  * | 
 |  * TX handling can also be done without holding any spin lock, wheee | 
 |  * this is fun! since tx_ret_csm is only written to by the interrupt | 
 |  * handler. The case to be aware of is when shutting down the device | 
 |  * and cleaning up where it is necessary to make sure that | 
 |  * start_xmit() is not running while this is happening. Well DaveM | 
 |  * informs me that this case is already protected against ... bye bye | 
 |  * Mr. Spin Lock, it was nice to know you. | 
 |  * | 
 |  * TX interrupts are now partly disabled so the NIC will only generate | 
 |  * TX interrupts for the number of coal ticks, not for the number of | 
 |  * TX packets in the queue. This should reduce the number of TX only, | 
 |  * ie. when no RX processing is done, interrupts seen. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Threshold values for RX buffer allocation - the low water marks for | 
 |  * when to start refilling the rings are set to 75% of the ring | 
 |  * sizes. It seems to make sense to refill the rings entirely from the | 
 |  * intrrupt handler once it gets below the panic threshold, that way | 
 |  * we don't risk that the refilling is moved to another CPU when the | 
 |  * one running the interrupt handler just got the slab code hot in its | 
 |  * cache. | 
 |  */ | 
 | #define RX_RING_SIZE		72 | 
 | #define RX_MINI_SIZE		64 | 
 | #define RX_JUMBO_SIZE		48 | 
 |  | 
 | #define RX_PANIC_STD_THRES	16 | 
 | #define RX_PANIC_STD_REFILL	(3*RX_PANIC_STD_THRES)/2 | 
 | #define RX_LOW_STD_THRES	(3*RX_RING_SIZE)/4 | 
 | #define RX_PANIC_MINI_THRES	12 | 
 | #define RX_PANIC_MINI_REFILL	(3*RX_PANIC_MINI_THRES)/2 | 
 | #define RX_LOW_MINI_THRES	(3*RX_MINI_SIZE)/4 | 
 | #define RX_PANIC_JUMBO_THRES	6 | 
 | #define RX_PANIC_JUMBO_REFILL	(3*RX_PANIC_JUMBO_THRES)/2 | 
 | #define RX_LOW_JUMBO_THRES	(3*RX_JUMBO_SIZE)/4 | 
 |  | 
 |  | 
 | /* | 
 |  * Size of the mini ring entries, basically these just should be big | 
 |  * enough to take TCP ACKs | 
 |  */ | 
 | #define ACE_MINI_SIZE		100 | 
 |  | 
 | #define ACE_MINI_BUFSIZE	ACE_MINI_SIZE | 
 | #define ACE_STD_BUFSIZE		(ACE_STD_MTU + ETH_HLEN + 4) | 
 | #define ACE_JUMBO_BUFSIZE	(ACE_JUMBO_MTU + ETH_HLEN + 4) | 
 |  | 
 | /* | 
 |  * There seems to be a magic difference in the effect between 995 and 996 | 
 |  * but little difference between 900 and 995 ... no idea why. | 
 |  * | 
 |  * There is now a default set of tuning parameters which is set, depending | 
 |  * on whether or not the user enables Jumbo frames. It's assumed that if | 
 |  * Jumbo frames are enabled, the user wants optimal tuning for that case. | 
 |  */ | 
 | #define DEF_TX_COAL		400 /* 996 */ | 
 | #define DEF_TX_MAX_DESC		60  /* was 40 */ | 
 | #define DEF_RX_COAL		120 /* 1000 */ | 
 | #define DEF_RX_MAX_DESC		25 | 
 | #define DEF_TX_RATIO		21 /* 24 */ | 
 |  | 
 | #define DEF_JUMBO_TX_COAL	20 | 
 | #define DEF_JUMBO_TX_MAX_DESC	60 | 
 | #define DEF_JUMBO_RX_COAL	30 | 
 | #define DEF_JUMBO_RX_MAX_DESC	6 | 
 | #define DEF_JUMBO_TX_RATIO	21 | 
 |  | 
 | #if tigon2FwReleaseLocal < 20001118 | 
 | /* | 
 |  * Standard firmware and early modifications duplicate | 
 |  * IRQ load without this flag (coal timer is never reset). | 
 |  * Note that with this flag tx_coal should be less than | 
 |  * time to xmit full tx ring. | 
 |  * 400usec is not so bad for tx ring size of 128. | 
 |  */ | 
 | #define TX_COAL_INTS_ONLY	1	/* worth it */ | 
 | #else | 
 | /* | 
 |  * With modified firmware, this is not necessary, but still useful. | 
 |  */ | 
 | #define TX_COAL_INTS_ONLY	1 | 
 | #endif | 
 |  | 
 | #define DEF_TRACE		0 | 
 | #define DEF_STAT		(2 * TICKS_PER_SEC) | 
 |  | 
 |  | 
 | static int link_state[ACE_MAX_MOD_PARMS]; | 
 | static int trace[ACE_MAX_MOD_PARMS]; | 
 | static int tx_coal_tick[ACE_MAX_MOD_PARMS]; | 
 | static int rx_coal_tick[ACE_MAX_MOD_PARMS]; | 
 | static int max_tx_desc[ACE_MAX_MOD_PARMS]; | 
 | static int max_rx_desc[ACE_MAX_MOD_PARMS]; | 
 | static int tx_ratio[ACE_MAX_MOD_PARMS]; | 
 | static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1}; | 
 |  | 
 | MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver"); | 
 |  | 
 | module_param_array_named(link, link_state, int, NULL, 0); | 
 | module_param_array(trace, int, NULL, 0); | 
 | module_param_array(tx_coal_tick, int, NULL, 0); | 
 | module_param_array(max_tx_desc, int, NULL, 0); | 
 | module_param_array(rx_coal_tick, int, NULL, 0); | 
 | module_param_array(max_rx_desc, int, NULL, 0); | 
 | module_param_array(tx_ratio, int, NULL, 0); | 
 | MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state"); | 
 | MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level"); | 
 | MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives"); | 
 | MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait"); | 
 | MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives"); | 
 | MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait"); | 
 | MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)"); | 
 |  | 
 |  | 
 | static char version[] __devinitdata = | 
 |   "acenic.c: v0.92 08/05/2002  Jes Sorensen, linux-acenic@SunSITE.dk\n" | 
 |   "                            http://home.cern.ch/~jes/gige/acenic.html\n"; | 
 |  | 
 | static int ace_get_settings(struct net_device *, struct ethtool_cmd *); | 
 | static int ace_set_settings(struct net_device *, struct ethtool_cmd *); | 
 | static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *); | 
 |  | 
 | static const struct ethtool_ops ace_ethtool_ops = { | 
 | 	.get_settings = ace_get_settings, | 
 | 	.set_settings = ace_set_settings, | 
 | 	.get_drvinfo = ace_get_drvinfo, | 
 | }; | 
 |  | 
 | static void ace_watchdog(struct net_device *dev); | 
 |  | 
 | static int __devinit acenic_probe_one(struct pci_dev *pdev, | 
 | 		const struct pci_device_id *id) | 
 | { | 
 | 	struct net_device *dev; | 
 | 	struct ace_private *ap; | 
 | 	static int boards_found; | 
 |  | 
 | 	dev = alloc_etherdev(sizeof(struct ace_private)); | 
 | 	if (dev == NULL) { | 
 | 		printk(KERN_ERR "acenic: Unable to allocate " | 
 | 		       "net_device structure!\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	SET_NETDEV_DEV(dev, &pdev->dev); | 
 |  | 
 | 	ap = dev->priv; | 
 | 	ap->pdev = pdev; | 
 | 	ap->name = pci_name(pdev); | 
 |  | 
 | 	dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; | 
 | #if ACENIC_DO_VLAN | 
 | 	dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; | 
 | 	dev->vlan_rx_register = ace_vlan_rx_register; | 
 | #endif | 
 |  | 
 | 	dev->tx_timeout = &ace_watchdog; | 
 | 	dev->watchdog_timeo = 5*HZ; | 
 |  | 
 | 	dev->open = &ace_open; | 
 | 	dev->stop = &ace_close; | 
 | 	dev->hard_start_xmit = &ace_start_xmit; | 
 | 	dev->get_stats = &ace_get_stats; | 
 | 	dev->set_multicast_list = &ace_set_multicast_list; | 
 | 	SET_ETHTOOL_OPS(dev, &ace_ethtool_ops); | 
 | 	dev->set_mac_address = &ace_set_mac_addr; | 
 | 	dev->change_mtu = &ace_change_mtu; | 
 |  | 
 | 	/* we only display this string ONCE */ | 
 | 	if (!boards_found) | 
 | 		printk(version); | 
 |  | 
 | 	if (pci_enable_device(pdev)) | 
 | 		goto fail_free_netdev; | 
 |  | 
 | 	/* | 
 | 	 * Enable master mode before we start playing with the | 
 | 	 * pci_command word since pci_set_master() will modify | 
 | 	 * it. | 
 | 	 */ | 
 | 	pci_set_master(pdev); | 
 |  | 
 | 	pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command); | 
 |  | 
 | 	/* OpenFirmware on Mac's does not set this - DOH.. */ | 
 | 	if (!(ap->pci_command & PCI_COMMAND_MEMORY)) { | 
 | 		printk(KERN_INFO "%s: Enabling PCI Memory Mapped " | 
 | 		       "access - was not enabled by BIOS/Firmware\n", | 
 | 		       ap->name); | 
 | 		ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY; | 
 | 		pci_write_config_word(ap->pdev, PCI_COMMAND, | 
 | 				      ap->pci_command); | 
 | 		wmb(); | 
 | 	} | 
 |  | 
 | 	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency); | 
 | 	if (ap->pci_latency <= 0x40) { | 
 | 		ap->pci_latency = 0x40; | 
 | 		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Remap the regs into kernel space - this is abuse of | 
 | 	 * dev->base_addr since it was means for I/O port | 
 | 	 * addresses but who gives a damn. | 
 | 	 */ | 
 | 	dev->base_addr = pci_resource_start(pdev, 0); | 
 | 	ap->regs = ioremap(dev->base_addr, 0x4000); | 
 | 	if (!ap->regs) { | 
 | 		printk(KERN_ERR "%s:  Unable to map I/O register, " | 
 | 		       "AceNIC %i will be disabled.\n", | 
 | 		       ap->name, boards_found); | 
 | 		goto fail_free_netdev; | 
 | 	} | 
 |  | 
 | 	switch(pdev->vendor) { | 
 | 	case PCI_VENDOR_ID_ALTEON: | 
 | 		if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) { | 
 | 			printk(KERN_INFO "%s: Farallon PN9100-T ", | 
 | 			       ap->name); | 
 | 		} else { | 
 | 			printk(KERN_INFO "%s: Alteon AceNIC ", | 
 | 			       ap->name); | 
 | 		} | 
 | 		break; | 
 | 	case PCI_VENDOR_ID_3COM: | 
 | 		printk(KERN_INFO "%s: 3Com 3C985 ", ap->name); | 
 | 		break; | 
 | 	case PCI_VENDOR_ID_NETGEAR: | 
 | 		printk(KERN_INFO "%s: NetGear GA620 ", ap->name); | 
 | 		break; | 
 | 	case PCI_VENDOR_ID_DEC: | 
 | 		if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) { | 
 | 			printk(KERN_INFO "%s: Farallon PN9000-SX ", | 
 | 			       ap->name); | 
 | 			break; | 
 | 		} | 
 | 	case PCI_VENDOR_ID_SGI: | 
 | 		printk(KERN_INFO "%s: SGI AceNIC ", ap->name); | 
 | 		break; | 
 | 	default: | 
 | 		printk(KERN_INFO "%s: Unknown AceNIC ", ap->name); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr); | 
 | 	printk("irq %d\n", pdev->irq); | 
 |  | 
 | #ifdef CONFIG_ACENIC_OMIT_TIGON_I | 
 | 	if ((readl(&ap->regs->HostCtrl) >> 28) == 4) { | 
 | 		printk(KERN_ERR "%s: Driver compiled without Tigon I" | 
 | 		       " support - NIC disabled\n", dev->name); | 
 | 		goto fail_uninit; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (ace_allocate_descriptors(dev)) | 
 | 		goto fail_free_netdev; | 
 |  | 
 | #ifdef MODULE | 
 | 	if (boards_found >= ACE_MAX_MOD_PARMS) | 
 | 		ap->board_idx = BOARD_IDX_OVERFLOW; | 
 | 	else | 
 | 		ap->board_idx = boards_found; | 
 | #else | 
 | 	ap->board_idx = BOARD_IDX_STATIC; | 
 | #endif | 
 |  | 
 | 	if (ace_init(dev)) | 
 | 		goto fail_free_netdev; | 
 |  | 
 | 	if (register_netdev(dev)) { | 
 | 		printk(KERN_ERR "acenic: device registration failed\n"); | 
 | 		goto fail_uninit; | 
 | 	} | 
 | 	ap->name = dev->name; | 
 |  | 
 | 	if (ap->pci_using_dac) | 
 | 		dev->features |= NETIF_F_HIGHDMA; | 
 |  | 
 | 	pci_set_drvdata(pdev, dev); | 
 |  | 
 | 	boards_found++; | 
 | 	return 0; | 
 |  | 
 |  fail_uninit: | 
 | 	ace_init_cleanup(dev); | 
 |  fail_free_netdev: | 
 | 	free_netdev(dev); | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static void __devexit acenic_remove_one(struct pci_dev *pdev) | 
 | { | 
 | 	struct net_device *dev = pci_get_drvdata(pdev); | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 	short i; | 
 |  | 
 | 	unregister_netdev(dev); | 
 |  | 
 | 	writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); | 
 | 	if (ap->version >= 2) | 
 | 		writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); | 
 |  | 
 | 	/* | 
 | 	 * This clears any pending interrupts | 
 | 	 */ | 
 | 	writel(1, ®s->Mb0Lo); | 
 | 	readl(®s->CpuCtrl);	/* flush */ | 
 |  | 
 | 	/* | 
 | 	 * Make sure no other CPUs are processing interrupts | 
 | 	 * on the card before the buffers are being released. | 
 | 	 * Otherwise one might experience some `interesting' | 
 | 	 * effects. | 
 | 	 * | 
 | 	 * Then release the RX buffers - jumbo buffers were | 
 | 	 * already released in ace_close(). | 
 | 	 */ | 
 | 	ace_sync_irq(dev->irq); | 
 |  | 
 | 	for (i = 0; i < RX_STD_RING_ENTRIES; i++) { | 
 | 		struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb; | 
 |  | 
 | 		if (skb) { | 
 | 			struct ring_info *ringp; | 
 | 			dma_addr_t mapping; | 
 |  | 
 | 			ringp = &ap->skb->rx_std_skbuff[i]; | 
 | 			mapping = pci_unmap_addr(ringp, mapping); | 
 | 			pci_unmap_page(ap->pdev, mapping, | 
 | 				       ACE_STD_BUFSIZE, | 
 | 				       PCI_DMA_FROMDEVICE); | 
 |  | 
 | 			ap->rx_std_ring[i].size = 0; | 
 | 			ap->skb->rx_std_skbuff[i].skb = NULL; | 
 | 			dev_kfree_skb(skb); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ap->version >= 2) { | 
 | 		for (i = 0; i < RX_MINI_RING_ENTRIES; i++) { | 
 | 			struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb; | 
 |  | 
 | 			if (skb) { | 
 | 				struct ring_info *ringp; | 
 | 				dma_addr_t mapping; | 
 |  | 
 | 				ringp = &ap->skb->rx_mini_skbuff[i]; | 
 | 				mapping = pci_unmap_addr(ringp,mapping); | 
 | 				pci_unmap_page(ap->pdev, mapping, | 
 | 					       ACE_MINI_BUFSIZE, | 
 | 					       PCI_DMA_FROMDEVICE); | 
 |  | 
 | 				ap->rx_mini_ring[i].size = 0; | 
 | 				ap->skb->rx_mini_skbuff[i].skb = NULL; | 
 | 				dev_kfree_skb(skb); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { | 
 | 		struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb; | 
 | 		if (skb) { | 
 | 			struct ring_info *ringp; | 
 | 			dma_addr_t mapping; | 
 |  | 
 | 			ringp = &ap->skb->rx_jumbo_skbuff[i]; | 
 | 			mapping = pci_unmap_addr(ringp, mapping); | 
 | 			pci_unmap_page(ap->pdev, mapping, | 
 | 				       ACE_JUMBO_BUFSIZE, | 
 | 				       PCI_DMA_FROMDEVICE); | 
 |  | 
 | 			ap->rx_jumbo_ring[i].size = 0; | 
 | 			ap->skb->rx_jumbo_skbuff[i].skb = NULL; | 
 | 			dev_kfree_skb(skb); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ace_init_cleanup(dev); | 
 | 	free_netdev(dev); | 
 | } | 
 |  | 
 | static struct pci_driver acenic_pci_driver = { | 
 | 	.name		= "acenic", | 
 | 	.id_table	= acenic_pci_tbl, | 
 | 	.probe		= acenic_probe_one, | 
 | 	.remove		= __devexit_p(acenic_remove_one), | 
 | }; | 
 |  | 
 | static int __init acenic_init(void) | 
 | { | 
 | 	return pci_register_driver(&acenic_pci_driver); | 
 | } | 
 |  | 
 | static void __exit acenic_exit(void) | 
 | { | 
 | 	pci_unregister_driver(&acenic_pci_driver); | 
 | } | 
 |  | 
 | module_init(acenic_init); | 
 | module_exit(acenic_exit); | 
 |  | 
 | static void ace_free_descriptors(struct net_device *dev) | 
 | { | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 	int size; | 
 |  | 
 | 	if (ap->rx_std_ring != NULL) { | 
 | 		size = (sizeof(struct rx_desc) * | 
 | 			(RX_STD_RING_ENTRIES + | 
 | 			 RX_JUMBO_RING_ENTRIES + | 
 | 			 RX_MINI_RING_ENTRIES + | 
 | 			 RX_RETURN_RING_ENTRIES)); | 
 | 		pci_free_consistent(ap->pdev, size, ap->rx_std_ring, | 
 | 				    ap->rx_ring_base_dma); | 
 | 		ap->rx_std_ring = NULL; | 
 | 		ap->rx_jumbo_ring = NULL; | 
 | 		ap->rx_mini_ring = NULL; | 
 | 		ap->rx_return_ring = NULL; | 
 | 	} | 
 | 	if (ap->evt_ring != NULL) { | 
 | 		size = (sizeof(struct event) * EVT_RING_ENTRIES); | 
 | 		pci_free_consistent(ap->pdev, size, ap->evt_ring, | 
 | 				    ap->evt_ring_dma); | 
 | 		ap->evt_ring = NULL; | 
 | 	} | 
 | 	if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) { | 
 | 		size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); | 
 | 		pci_free_consistent(ap->pdev, size, ap->tx_ring, | 
 | 				    ap->tx_ring_dma); | 
 | 	} | 
 | 	ap->tx_ring = NULL; | 
 |  | 
 | 	if (ap->evt_prd != NULL) { | 
 | 		pci_free_consistent(ap->pdev, sizeof(u32), | 
 | 				    (void *)ap->evt_prd, ap->evt_prd_dma); | 
 | 		ap->evt_prd = NULL; | 
 | 	} | 
 | 	if (ap->rx_ret_prd != NULL) { | 
 | 		pci_free_consistent(ap->pdev, sizeof(u32), | 
 | 				    (void *)ap->rx_ret_prd, | 
 | 				    ap->rx_ret_prd_dma); | 
 | 		ap->rx_ret_prd = NULL; | 
 | 	} | 
 | 	if (ap->tx_csm != NULL) { | 
 | 		pci_free_consistent(ap->pdev, sizeof(u32), | 
 | 				    (void *)ap->tx_csm, ap->tx_csm_dma); | 
 | 		ap->tx_csm = NULL; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static int ace_allocate_descriptors(struct net_device *dev) | 
 | { | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 	int size; | 
 |  | 
 | 	size = (sizeof(struct rx_desc) * | 
 | 		(RX_STD_RING_ENTRIES + | 
 | 		 RX_JUMBO_RING_ENTRIES + | 
 | 		 RX_MINI_RING_ENTRIES + | 
 | 		 RX_RETURN_RING_ENTRIES)); | 
 |  | 
 | 	ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size, | 
 | 					       &ap->rx_ring_base_dma); | 
 | 	if (ap->rx_std_ring == NULL) | 
 | 		goto fail; | 
 |  | 
 | 	ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES; | 
 | 	ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES; | 
 | 	ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES; | 
 |  | 
 | 	size = (sizeof(struct event) * EVT_RING_ENTRIES); | 
 |  | 
 | 	ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma); | 
 |  | 
 | 	if (ap->evt_ring == NULL) | 
 | 		goto fail; | 
 |  | 
 | 	/* | 
 | 	 * Only allocate a host TX ring for the Tigon II, the Tigon I | 
 | 	 * has to use PCI registers for this ;-( | 
 | 	 */ | 
 | 	if (!ACE_IS_TIGON_I(ap)) { | 
 | 		size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); | 
 |  | 
 | 		ap->tx_ring = pci_alloc_consistent(ap->pdev, size, | 
 | 						   &ap->tx_ring_dma); | 
 |  | 
 | 		if (ap->tx_ring == NULL) | 
 | 			goto fail; | 
 | 	} | 
 |  | 
 | 	ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32), | 
 | 					   &ap->evt_prd_dma); | 
 | 	if (ap->evt_prd == NULL) | 
 | 		goto fail; | 
 |  | 
 | 	ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32), | 
 | 					      &ap->rx_ret_prd_dma); | 
 | 	if (ap->rx_ret_prd == NULL) | 
 | 		goto fail; | 
 |  | 
 | 	ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32), | 
 | 					  &ap->tx_csm_dma); | 
 | 	if (ap->tx_csm == NULL) | 
 | 		goto fail; | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	/* Clean up. */ | 
 | 	ace_init_cleanup(dev); | 
 | 	return 1; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Generic cleanup handling data allocated during init. Used when the | 
 |  * module is unloaded or if an error occurs during initialization | 
 |  */ | 
 | static void ace_init_cleanup(struct net_device *dev) | 
 | { | 
 | 	struct ace_private *ap; | 
 |  | 
 | 	ap = netdev_priv(dev); | 
 |  | 
 | 	ace_free_descriptors(dev); | 
 |  | 
 | 	if (ap->info) | 
 | 		pci_free_consistent(ap->pdev, sizeof(struct ace_info), | 
 | 				    ap->info, ap->info_dma); | 
 | 	kfree(ap->skb); | 
 | 	kfree(ap->trace_buf); | 
 |  | 
 | 	if (dev->irq) | 
 | 		free_irq(dev->irq, dev); | 
 |  | 
 | 	iounmap(ap->regs); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Commands are considered to be slow. | 
 |  */ | 
 | static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd) | 
 | { | 
 | 	u32 idx; | 
 |  | 
 | 	idx = readl(®s->CmdPrd); | 
 |  | 
 | 	writel(*(u32 *)(cmd), ®s->CmdRng[idx]); | 
 | 	idx = (idx + 1) % CMD_RING_ENTRIES; | 
 |  | 
 | 	writel(idx, ®s->CmdPrd); | 
 | } | 
 |  | 
 |  | 
 | static int __devinit ace_init(struct net_device *dev) | 
 | { | 
 | 	struct ace_private *ap; | 
 | 	struct ace_regs __iomem *regs; | 
 | 	struct ace_info *info = NULL; | 
 | 	struct pci_dev *pdev; | 
 | 	unsigned long myjif; | 
 | 	u64 tmp_ptr; | 
 | 	u32 tig_ver, mac1, mac2, tmp, pci_state; | 
 | 	int board_idx, ecode = 0; | 
 | 	short i; | 
 | 	unsigned char cache_size; | 
 | 	DECLARE_MAC_BUF(mac); | 
 |  | 
 | 	ap = netdev_priv(dev); | 
 | 	regs = ap->regs; | 
 |  | 
 | 	board_idx = ap->board_idx; | 
 |  | 
 | 	/* | 
 | 	 * aman@sgi.com - its useful to do a NIC reset here to | 
 | 	 * address the `Firmware not running' problem subsequent | 
 | 	 * to any crashes involving the NIC | 
 | 	 */ | 
 | 	writel(HW_RESET | (HW_RESET << 24), ®s->HostCtrl); | 
 | 	readl(®s->HostCtrl);		/* PCI write posting */ | 
 | 	udelay(5); | 
 |  | 
 | 	/* | 
 | 	 * Don't access any other registers before this point! | 
 | 	 */ | 
 | #ifdef __BIG_ENDIAN | 
 | 	/* | 
 | 	 * This will most likely need BYTE_SWAP once we switch | 
 | 	 * to using __raw_writel() | 
 | 	 */ | 
 | 	writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)), | 
 | 	       ®s->HostCtrl); | 
 | #else | 
 | 	writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)), | 
 | 	       ®s->HostCtrl); | 
 | #endif | 
 | 	readl(®s->HostCtrl);		/* PCI write posting */ | 
 |  | 
 | 	/* | 
 | 	 * Stop the NIC CPU and clear pending interrupts | 
 | 	 */ | 
 | 	writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); | 
 | 	readl(®s->CpuCtrl);		/* PCI write posting */ | 
 | 	writel(0, ®s->Mb0Lo); | 
 |  | 
 | 	tig_ver = readl(®s->HostCtrl) >> 28; | 
 |  | 
 | 	switch(tig_ver){ | 
 | #ifndef CONFIG_ACENIC_OMIT_TIGON_I | 
 | 	case 4: | 
 | 	case 5: | 
 | 		printk(KERN_INFO "  Tigon I  (Rev. %i), Firmware: %i.%i.%i, ", | 
 | 		       tig_ver, tigonFwReleaseMajor, tigonFwReleaseMinor, | 
 | 		       tigonFwReleaseFix); | 
 | 		writel(0, ®s->LocalCtrl); | 
 | 		ap->version = 1; | 
 | 		ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES; | 
 | 		break; | 
 | #endif | 
 | 	case 6: | 
 | 		printk(KERN_INFO "  Tigon II (Rev. %i), Firmware: %i.%i.%i, ", | 
 | 		       tig_ver, tigon2FwReleaseMajor, tigon2FwReleaseMinor, | 
 | 		       tigon2FwReleaseFix); | 
 | 		writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); | 
 | 		readl(®s->CpuBCtrl);		/* PCI write posting */ | 
 | 		/* | 
 | 		 * The SRAM bank size does _not_ indicate the amount | 
 | 		 * of memory on the card, it controls the _bank_ size! | 
 | 		 * Ie. a 1MB AceNIC will have two banks of 512KB. | 
 | 		 */ | 
 | 		writel(SRAM_BANK_512K, ®s->LocalCtrl); | 
 | 		writel(SYNC_SRAM_TIMING, ®s->MiscCfg); | 
 | 		ap->version = 2; | 
 | 		ap->tx_ring_entries = MAX_TX_RING_ENTRIES; | 
 | 		break; | 
 | 	default: | 
 | 		printk(KERN_WARNING "  Unsupported Tigon version detected " | 
 | 		       "(%i)\n", tig_ver); | 
 | 		ecode = -ENODEV; | 
 | 		goto init_error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * ModeStat _must_ be set after the SRAM settings as this change | 
 | 	 * seems to corrupt the ModeStat and possible other registers. | 
 | 	 * The SRAM settings survive resets and setting it to the same | 
 | 	 * value a second time works as well. This is what caused the | 
 | 	 * `Firmware not running' problem on the Tigon II. | 
 | 	 */ | 
 | #ifdef __BIG_ENDIAN | 
 | 	writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD | | 
 | 	       ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); | 
 | #else | 
 | 	writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | | 
 | 	       ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); | 
 | #endif | 
 | 	readl(®s->ModeStat);		/* PCI write posting */ | 
 |  | 
 | 	mac1 = 0; | 
 | 	for(i = 0; i < 4; i++) { | 
 | 		int t; | 
 |  | 
 | 		mac1 = mac1 << 8; | 
 | 		t = read_eeprom_byte(dev, 0x8c+i); | 
 | 		if (t < 0) { | 
 | 			ecode = -EIO; | 
 | 			goto init_error; | 
 | 		} else | 
 | 			mac1 |= (t & 0xff); | 
 | 	} | 
 | 	mac2 = 0; | 
 | 	for(i = 4; i < 8; i++) { | 
 | 		int t; | 
 |  | 
 | 		mac2 = mac2 << 8; | 
 | 		t = read_eeprom_byte(dev, 0x8c+i); | 
 | 		if (t < 0) { | 
 | 			ecode = -EIO; | 
 | 			goto init_error; | 
 | 		} else | 
 | 			mac2 |= (t & 0xff); | 
 | 	} | 
 |  | 
 | 	writel(mac1, ®s->MacAddrHi); | 
 | 	writel(mac2, ®s->MacAddrLo); | 
 |  | 
 | 	dev->dev_addr[0] = (mac1 >> 8) & 0xff; | 
 | 	dev->dev_addr[1] = mac1 & 0xff; | 
 | 	dev->dev_addr[2] = (mac2 >> 24) & 0xff; | 
 | 	dev->dev_addr[3] = (mac2 >> 16) & 0xff; | 
 | 	dev->dev_addr[4] = (mac2 >> 8) & 0xff; | 
 | 	dev->dev_addr[5] = mac2 & 0xff; | 
 |  | 
 | 	printk("MAC: %s\n", print_mac(mac, dev->dev_addr)); | 
 |  | 
 | 	/* | 
 | 	 * Looks like this is necessary to deal with on all architectures, | 
 | 	 * even this %$#%$# N440BX Intel based thing doesn't get it right. | 
 | 	 * Ie. having two NICs in the machine, one will have the cache | 
 | 	 * line set at boot time, the other will not. | 
 | 	 */ | 
 | 	pdev = ap->pdev; | 
 | 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size); | 
 | 	cache_size <<= 2; | 
 | 	if (cache_size != SMP_CACHE_BYTES) { | 
 | 		printk(KERN_INFO "  PCI cache line size set incorrectly " | 
 | 		       "(%i bytes) by BIOS/FW, ", cache_size); | 
 | 		if (cache_size > SMP_CACHE_BYTES) | 
 | 			printk("expecting %i\n", SMP_CACHE_BYTES); | 
 | 		else { | 
 | 			printk("correcting to %i\n", SMP_CACHE_BYTES); | 
 | 			pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, | 
 | 					      SMP_CACHE_BYTES >> 2); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	pci_state = readl(®s->PciState); | 
 | 	printk(KERN_INFO "  PCI bus width: %i bits, speed: %iMHz, " | 
 | 	       "latency: %i clks\n", | 
 | 	       	(pci_state & PCI_32BIT) ? 32 : 64, | 
 | 		(pci_state & PCI_66MHZ) ? 66 : 33, | 
 | 		ap->pci_latency); | 
 |  | 
 | 	/* | 
 | 	 * Set the max DMA transfer size. Seems that for most systems | 
 | 	 * the performance is better when no MAX parameter is | 
 | 	 * set. However for systems enabling PCI write and invalidate, | 
 | 	 * DMA writes must be set to the L1 cache line size to get | 
 | 	 * optimal performance. | 
 | 	 * | 
 | 	 * The default is now to turn the PCI write and invalidate off | 
 | 	 * - that is what Alteon does for NT. | 
 | 	 */ | 
 | 	tmp = READ_CMD_MEM | WRITE_CMD_MEM; | 
 | 	if (ap->version >= 2) { | 
 | 		tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ)); | 
 | 		/* | 
 | 		 * Tuning parameters only supported for 8 cards | 
 | 		 */ | 
 | 		if (board_idx == BOARD_IDX_OVERFLOW || | 
 | 		    dis_pci_mem_inval[board_idx]) { | 
 | 			if (ap->pci_command & PCI_COMMAND_INVALIDATE) { | 
 | 				ap->pci_command &= ~PCI_COMMAND_INVALIDATE; | 
 | 				pci_write_config_word(pdev, PCI_COMMAND, | 
 | 						      ap->pci_command); | 
 | 				printk(KERN_INFO "  Disabling PCI memory " | 
 | 				       "write and invalidate\n"); | 
 | 			} | 
 | 		} else if (ap->pci_command & PCI_COMMAND_INVALIDATE) { | 
 | 			printk(KERN_INFO "  PCI memory write & invalidate " | 
 | 			       "enabled by BIOS, enabling counter measures\n"); | 
 |  | 
 | 			switch(SMP_CACHE_BYTES) { | 
 | 			case 16: | 
 | 				tmp |= DMA_WRITE_MAX_16; | 
 | 				break; | 
 | 			case 32: | 
 | 				tmp |= DMA_WRITE_MAX_32; | 
 | 				break; | 
 | 			case 64: | 
 | 				tmp |= DMA_WRITE_MAX_64; | 
 | 				break; | 
 | 			case 128: | 
 | 				tmp |= DMA_WRITE_MAX_128; | 
 | 				break; | 
 | 			default: | 
 | 				printk(KERN_INFO "  Cache line size %i not " | 
 | 				       "supported, PCI write and invalidate " | 
 | 				       "disabled\n", SMP_CACHE_BYTES); | 
 | 				ap->pci_command &= ~PCI_COMMAND_INVALIDATE; | 
 | 				pci_write_config_word(pdev, PCI_COMMAND, | 
 | 						      ap->pci_command); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef __sparc__ | 
 | 	/* | 
 | 	 * On this platform, we know what the best dma settings | 
 | 	 * are.  We use 64-byte maximum bursts, because if we | 
 | 	 * burst larger than the cache line size (or even cross | 
 | 	 * a 64byte boundary in a single burst) the UltraSparc | 
 | 	 * PCI controller will disconnect at 64-byte multiples. | 
 | 	 * | 
 | 	 * Read-multiple will be properly enabled above, and when | 
 | 	 * set will give the PCI controller proper hints about | 
 | 	 * prefetching. | 
 | 	 */ | 
 | 	tmp &= ~DMA_READ_WRITE_MASK; | 
 | 	tmp |= DMA_READ_MAX_64; | 
 | 	tmp |= DMA_WRITE_MAX_64; | 
 | #endif | 
 | #ifdef __alpha__ | 
 | 	tmp &= ~DMA_READ_WRITE_MASK; | 
 | 	tmp |= DMA_READ_MAX_128; | 
 | 	/* | 
 | 	 * All the docs say MUST NOT. Well, I did. | 
 | 	 * Nothing terrible happens, if we load wrong size. | 
 | 	 * Bit w&i still works better! | 
 | 	 */ | 
 | 	tmp |= DMA_WRITE_MAX_128; | 
 | #endif | 
 | 	writel(tmp, ®s->PciState); | 
 |  | 
 | #if 0 | 
 | 	/* | 
 | 	 * The Host PCI bus controller driver has to set FBB. | 
 | 	 * If all devices on that PCI bus support FBB, then the controller | 
 | 	 * can enable FBB support in the Host PCI Bus controller (or on | 
 | 	 * the PCI-PCI bridge if that applies). | 
 | 	 * -ggg | 
 | 	 */ | 
 | 	/* | 
 | 	 * I have received reports from people having problems when this | 
 | 	 * bit is enabled. | 
 | 	 */ | 
 | 	if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) { | 
 | 		printk(KERN_INFO "  Enabling PCI Fast Back to Back\n"); | 
 | 		ap->pci_command |= PCI_COMMAND_FAST_BACK; | 
 | 		pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Configure DMA attributes. | 
 | 	 */ | 
 | 	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { | 
 | 		ap->pci_using_dac = 1; | 
 | 	} else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) { | 
 | 		ap->pci_using_dac = 0; | 
 | 	} else { | 
 | 		ecode = -ENODEV; | 
 | 		goto init_error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Initialize the generic info block and the command+event rings | 
 | 	 * and the control blocks for the transmit and receive rings | 
 | 	 * as they need to be setup once and for all. | 
 | 	 */ | 
 | 	if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info), | 
 | 					  &ap->info_dma))) { | 
 | 		ecode = -EAGAIN; | 
 | 		goto init_error; | 
 | 	} | 
 | 	ap->info = info; | 
 |  | 
 | 	/* | 
 | 	 * Get the memory for the skb rings. | 
 | 	 */ | 
 | 	if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) { | 
 | 		ecode = -EAGAIN; | 
 | 		goto init_error; | 
 | 	} | 
 |  | 
 | 	ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED, | 
 | 			    DRV_NAME, dev); | 
 | 	if (ecode) { | 
 | 		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", | 
 | 		       DRV_NAME, pdev->irq); | 
 | 		goto init_error; | 
 | 	} else | 
 | 		dev->irq = pdev->irq; | 
 |  | 
 | #ifdef INDEX_DEBUG | 
 | 	spin_lock_init(&ap->debug_lock); | 
 | 	ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1; | 
 | 	ap->last_std_rx = 0; | 
 | 	ap->last_mini_rx = 0; | 
 | #endif | 
 |  | 
 | 	memset(ap->info, 0, sizeof(struct ace_info)); | 
 | 	memset(ap->skb, 0, sizeof(struct ace_skb)); | 
 |  | 
 | 	ace_load_firmware(dev); | 
 | 	ap->fw_running = 0; | 
 |  | 
 | 	tmp_ptr = ap->info_dma; | 
 | 	writel(tmp_ptr >> 32, ®s->InfoPtrHi); | 
 | 	writel(tmp_ptr & 0xffffffff, ®s->InfoPtrLo); | 
 |  | 
 | 	memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event)); | 
 |  | 
 | 	set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma); | 
 | 	info->evt_ctrl.flags = 0; | 
 |  | 
 | 	*(ap->evt_prd) = 0; | 
 | 	wmb(); | 
 | 	set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma); | 
 | 	writel(0, ®s->EvtCsm); | 
 |  | 
 | 	set_aceaddr(&info->cmd_ctrl.rngptr, 0x100); | 
 | 	info->cmd_ctrl.flags = 0; | 
 | 	info->cmd_ctrl.max_len = 0; | 
 |  | 
 | 	for (i = 0; i < CMD_RING_ENTRIES; i++) | 
 | 		writel(0, ®s->CmdRng[i]); | 
 |  | 
 | 	writel(0, ®s->CmdPrd); | 
 | 	writel(0, ®s->CmdCsm); | 
 |  | 
 | 	tmp_ptr = ap->info_dma; | 
 | 	tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats); | 
 | 	set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr); | 
 |  | 
 | 	set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma); | 
 | 	info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE; | 
 | 	info->rx_std_ctrl.flags = | 
 | 	  RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG; | 
 |  | 
 | 	memset(ap->rx_std_ring, 0, | 
 | 	       RX_STD_RING_ENTRIES * sizeof(struct rx_desc)); | 
 |  | 
 | 	for (i = 0; i < RX_STD_RING_ENTRIES; i++) | 
 | 		ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM; | 
 |  | 
 | 	ap->rx_std_skbprd = 0; | 
 | 	atomic_set(&ap->cur_rx_bufs, 0); | 
 |  | 
 | 	set_aceaddr(&info->rx_jumbo_ctrl.rngptr, | 
 | 		    (ap->rx_ring_base_dma + | 
 | 		     (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES))); | 
 | 	info->rx_jumbo_ctrl.max_len = 0; | 
 | 	info->rx_jumbo_ctrl.flags = | 
 | 	  RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG; | 
 |  | 
 | 	memset(ap->rx_jumbo_ring, 0, | 
 | 	       RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc)); | 
 |  | 
 | 	for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) | 
 | 		ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO; | 
 |  | 
 | 	ap->rx_jumbo_skbprd = 0; | 
 | 	atomic_set(&ap->cur_jumbo_bufs, 0); | 
 |  | 
 | 	memset(ap->rx_mini_ring, 0, | 
 | 	       RX_MINI_RING_ENTRIES * sizeof(struct rx_desc)); | 
 |  | 
 | 	if (ap->version >= 2) { | 
 | 		set_aceaddr(&info->rx_mini_ctrl.rngptr, | 
 | 			    (ap->rx_ring_base_dma + | 
 | 			     (sizeof(struct rx_desc) * | 
 | 			      (RX_STD_RING_ENTRIES + | 
 | 			       RX_JUMBO_RING_ENTRIES)))); | 
 | 		info->rx_mini_ctrl.max_len = ACE_MINI_SIZE; | 
 | 		info->rx_mini_ctrl.flags = | 
 | 		  RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG; | 
 |  | 
 | 		for (i = 0; i < RX_MINI_RING_ENTRIES; i++) | 
 | 			ap->rx_mini_ring[i].flags = | 
 | 				BD_FLG_TCP_UDP_SUM | BD_FLG_MINI; | 
 | 	} else { | 
 | 		set_aceaddr(&info->rx_mini_ctrl.rngptr, 0); | 
 | 		info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE; | 
 | 		info->rx_mini_ctrl.max_len = 0; | 
 | 	} | 
 |  | 
 | 	ap->rx_mini_skbprd = 0; | 
 | 	atomic_set(&ap->cur_mini_bufs, 0); | 
 |  | 
 | 	set_aceaddr(&info->rx_return_ctrl.rngptr, | 
 | 		    (ap->rx_ring_base_dma + | 
 | 		     (sizeof(struct rx_desc) * | 
 | 		      (RX_STD_RING_ENTRIES + | 
 | 		       RX_JUMBO_RING_ENTRIES + | 
 | 		       RX_MINI_RING_ENTRIES)))); | 
 | 	info->rx_return_ctrl.flags = 0; | 
 | 	info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES; | 
 |  | 
 | 	memset(ap->rx_return_ring, 0, | 
 | 	       RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc)); | 
 |  | 
 | 	set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma); | 
 | 	*(ap->rx_ret_prd) = 0; | 
 |  | 
 | 	writel(TX_RING_BASE, ®s->WinBase); | 
 |  | 
 | 	if (ACE_IS_TIGON_I(ap)) { | 
 | 		ap->tx_ring = (__force struct tx_desc *) regs->Window; | 
 | 		for (i = 0; i < (TIGON_I_TX_RING_ENTRIES | 
 | 				 * sizeof(struct tx_desc)) / sizeof(u32); i++) | 
 | 			writel(0, (__force void __iomem *)ap->tx_ring  + i * 4); | 
 |  | 
 | 		set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE); | 
 | 	} else { | 
 | 		memset(ap->tx_ring, 0, | 
 | 		       MAX_TX_RING_ENTRIES * sizeof(struct tx_desc)); | 
 |  | 
 | 		set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma); | 
 | 	} | 
 |  | 
 | 	info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap); | 
 | 	tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG; | 
 |  | 
 | 	/* | 
 | 	 * The Tigon I does not like having the TX ring in host memory ;-( | 
 | 	 */ | 
 | 	if (!ACE_IS_TIGON_I(ap)) | 
 | 		tmp |= RCB_FLG_TX_HOST_RING; | 
 | #if TX_COAL_INTS_ONLY | 
 | 	tmp |= RCB_FLG_COAL_INT_ONLY; | 
 | #endif | 
 | 	info->tx_ctrl.flags = tmp; | 
 |  | 
 | 	set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma); | 
 |  | 
 | 	/* | 
 | 	 * Potential item for tuning parameter | 
 | 	 */ | 
 | #if 0 /* NO */ | 
 | 	writel(DMA_THRESH_16W, ®s->DmaReadCfg); | 
 | 	writel(DMA_THRESH_16W, ®s->DmaWriteCfg); | 
 | #else | 
 | 	writel(DMA_THRESH_8W, ®s->DmaReadCfg); | 
 | 	writel(DMA_THRESH_8W, ®s->DmaWriteCfg); | 
 | #endif | 
 |  | 
 | 	writel(0, ®s->MaskInt); | 
 | 	writel(1, ®s->IfIdx); | 
 | #if 0 | 
 | 	/* | 
 | 	 * McKinley boxes do not like us fiddling with AssistState | 
 | 	 * this early | 
 | 	 */ | 
 | 	writel(1, ®s->AssistState); | 
 | #endif | 
 |  | 
 | 	writel(DEF_STAT, ®s->TuneStatTicks); | 
 | 	writel(DEF_TRACE, ®s->TuneTrace); | 
 |  | 
 | 	ace_set_rxtx_parms(dev, 0); | 
 |  | 
 | 	if (board_idx == BOARD_IDX_OVERFLOW) { | 
 | 		printk(KERN_WARNING "%s: more than %i NICs detected, " | 
 | 		       "ignoring module parameters!\n", | 
 | 		       ap->name, ACE_MAX_MOD_PARMS); | 
 | 	} else if (board_idx >= 0) { | 
 | 		if (tx_coal_tick[board_idx]) | 
 | 			writel(tx_coal_tick[board_idx], | 
 | 			       ®s->TuneTxCoalTicks); | 
 | 		if (max_tx_desc[board_idx]) | 
 | 			writel(max_tx_desc[board_idx], ®s->TuneMaxTxDesc); | 
 |  | 
 | 		if (rx_coal_tick[board_idx]) | 
 | 			writel(rx_coal_tick[board_idx], | 
 | 			       ®s->TuneRxCoalTicks); | 
 | 		if (max_rx_desc[board_idx]) | 
 | 			writel(max_rx_desc[board_idx], ®s->TuneMaxRxDesc); | 
 |  | 
 | 		if (trace[board_idx]) | 
 | 			writel(trace[board_idx], ®s->TuneTrace); | 
 |  | 
 | 		if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64)) | 
 | 			writel(tx_ratio[board_idx], ®s->TxBufRat); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Default link parameters | 
 | 	 */ | 
 | 	tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB | | 
 | 		LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE; | 
 | 	if(ap->version >= 2) | 
 | 		tmp |= LNK_TX_FLOW_CTL_Y; | 
 |  | 
 | 	/* | 
 | 	 * Override link default parameters | 
 | 	 */ | 
 | 	if ((board_idx >= 0) && link_state[board_idx]) { | 
 | 		int option = link_state[board_idx]; | 
 |  | 
 | 		tmp = LNK_ENABLE; | 
 |  | 
 | 		if (option & 0x01) { | 
 | 			printk(KERN_INFO "%s: Setting half duplex link\n", | 
 | 			       ap->name); | 
 | 			tmp &= ~LNK_FULL_DUPLEX; | 
 | 		} | 
 | 		if (option & 0x02) | 
 | 			tmp &= ~LNK_NEGOTIATE; | 
 | 		if (option & 0x10) | 
 | 			tmp |= LNK_10MB; | 
 | 		if (option & 0x20) | 
 | 			tmp |= LNK_100MB; | 
 | 		if (option & 0x40) | 
 | 			tmp |= LNK_1000MB; | 
 | 		if ((option & 0x70) == 0) { | 
 | 			printk(KERN_WARNING "%s: No media speed specified, " | 
 | 			       "forcing auto negotiation\n", ap->name); | 
 | 			tmp |= LNK_NEGOTIATE | LNK_1000MB | | 
 | 				LNK_100MB | LNK_10MB; | 
 | 		} | 
 | 		if ((option & 0x100) == 0) | 
 | 			tmp |= LNK_NEG_FCTL; | 
 | 		else | 
 | 			printk(KERN_INFO "%s: Disabling flow control " | 
 | 			       "negotiation\n", ap->name); | 
 | 		if (option & 0x200) | 
 | 			tmp |= LNK_RX_FLOW_CTL_Y; | 
 | 		if ((option & 0x400) && (ap->version >= 2)) { | 
 | 			printk(KERN_INFO "%s: Enabling TX flow control\n", | 
 | 			       ap->name); | 
 | 			tmp |= LNK_TX_FLOW_CTL_Y; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ap->link = tmp; | 
 | 	writel(tmp, ®s->TuneLink); | 
 | 	if (ap->version >= 2) | 
 | 		writel(tmp, ®s->TuneFastLink); | 
 |  | 
 | 	if (ACE_IS_TIGON_I(ap)) | 
 | 		writel(tigonFwStartAddr, ®s->Pc); | 
 | 	if (ap->version == 2) | 
 | 		writel(tigon2FwStartAddr, ®s->Pc); | 
 |  | 
 | 	writel(0, ®s->Mb0Lo); | 
 |  | 
 | 	/* | 
 | 	 * Set tx_csm before we start receiving interrupts, otherwise | 
 | 	 * the interrupt handler might think it is supposed to process | 
 | 	 * tx ints before we are up and running, which may cause a null | 
 | 	 * pointer access in the int handler. | 
 | 	 */ | 
 | 	ap->cur_rx = 0; | 
 | 	ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0; | 
 |  | 
 | 	wmb(); | 
 | 	ace_set_txprd(regs, ap, 0); | 
 | 	writel(0, ®s->RxRetCsm); | 
 |  | 
 | 	/* | 
 | 	 * Zero the stats before starting the interface | 
 | 	 */ | 
 | 	memset(&ap->stats, 0, sizeof(ap->stats)); | 
 |  | 
 |        /* | 
 | 	* Enable DMA engine now. | 
 | 	* If we do this sooner, Mckinley box pukes. | 
 | 	* I assume it's because Tigon II DMA engine wants to check | 
 | 	* *something* even before the CPU is started. | 
 | 	*/ | 
 |        writel(1, ®s->AssistState);  /* enable DMA */ | 
 |  | 
 | 	/* | 
 | 	 * Start the NIC CPU | 
 | 	 */ | 
 | 	writel(readl(®s->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), ®s->CpuCtrl); | 
 | 	readl(®s->CpuCtrl); | 
 |  | 
 | 	/* | 
 | 	 * Wait for the firmware to spin up - max 3 seconds. | 
 | 	 */ | 
 | 	myjif = jiffies + 3 * HZ; | 
 | 	while (time_before(jiffies, myjif) && !ap->fw_running) | 
 | 		cpu_relax(); | 
 |  | 
 | 	if (!ap->fw_running) { | 
 | 		printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name); | 
 |  | 
 | 		ace_dump_trace(ap); | 
 | 		writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); | 
 | 		readl(®s->CpuCtrl); | 
 |  | 
 | 		/* aman@sgi.com - account for badly behaving firmware/NIC: | 
 | 		 * - have observed that the NIC may continue to generate | 
 | 		 *   interrupts for some reason; attempt to stop it - halt | 
 | 		 *   second CPU for Tigon II cards, and also clear Mb0 | 
 | 		 * - if we're a module, we'll fail to load if this was | 
 | 		 *   the only GbE card in the system => if the kernel does | 
 | 		 *   see an interrupt from the NIC, code to handle it is | 
 | 		 *   gone and OOps! - so free_irq also | 
 | 		 */ | 
 | 		if (ap->version >= 2) | 
 | 			writel(readl(®s->CpuBCtrl) | CPU_HALT, | 
 | 			       ®s->CpuBCtrl); | 
 | 		writel(0, ®s->Mb0Lo); | 
 | 		readl(®s->Mb0Lo); | 
 |  | 
 | 		ecode = -EBUSY; | 
 | 		goto init_error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We load the ring here as there seem to be no way to tell the | 
 | 	 * firmware to wipe the ring without re-initializing it. | 
 | 	 */ | 
 | 	if (!test_and_set_bit(0, &ap->std_refill_busy)) | 
 | 		ace_load_std_rx_ring(ap, RX_RING_SIZE); | 
 | 	else | 
 | 		printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n", | 
 | 		       ap->name); | 
 | 	if (ap->version >= 2) { | 
 | 		if (!test_and_set_bit(0, &ap->mini_refill_busy)) | 
 | 			ace_load_mini_rx_ring(ap, RX_MINI_SIZE); | 
 | 		else | 
 | 			printk(KERN_ERR "%s: Someone is busy refilling " | 
 | 			       "the RX mini ring\n", ap->name); | 
 | 	} | 
 | 	return 0; | 
 |  | 
 |  init_error: | 
 | 	ace_init_cleanup(dev); | 
 | 	return ecode; | 
 | } | 
 |  | 
 |  | 
 | static void ace_set_rxtx_parms(struct net_device *dev, int jumbo) | 
 | { | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 	int board_idx = ap->board_idx; | 
 |  | 
 | 	if (board_idx >= 0) { | 
 | 		if (!jumbo) { | 
 | 			if (!tx_coal_tick[board_idx]) | 
 | 				writel(DEF_TX_COAL, ®s->TuneTxCoalTicks); | 
 | 			if (!max_tx_desc[board_idx]) | 
 | 				writel(DEF_TX_MAX_DESC, ®s->TuneMaxTxDesc); | 
 | 			if (!rx_coal_tick[board_idx]) | 
 | 				writel(DEF_RX_COAL, ®s->TuneRxCoalTicks); | 
 | 			if (!max_rx_desc[board_idx]) | 
 | 				writel(DEF_RX_MAX_DESC, ®s->TuneMaxRxDesc); | 
 | 			if (!tx_ratio[board_idx]) | 
 | 				writel(DEF_TX_RATIO, ®s->TxBufRat); | 
 | 		} else { | 
 | 			if (!tx_coal_tick[board_idx]) | 
 | 				writel(DEF_JUMBO_TX_COAL, | 
 | 				       ®s->TuneTxCoalTicks); | 
 | 			if (!max_tx_desc[board_idx]) | 
 | 				writel(DEF_JUMBO_TX_MAX_DESC, | 
 | 				       ®s->TuneMaxTxDesc); | 
 | 			if (!rx_coal_tick[board_idx]) | 
 | 				writel(DEF_JUMBO_RX_COAL, | 
 | 				       ®s->TuneRxCoalTicks); | 
 | 			if (!max_rx_desc[board_idx]) | 
 | 				writel(DEF_JUMBO_RX_MAX_DESC, | 
 | 				       ®s->TuneMaxRxDesc); | 
 | 			if (!tx_ratio[board_idx]) | 
 | 				writel(DEF_JUMBO_TX_RATIO, ®s->TxBufRat); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static void ace_watchdog(struct net_device *data) | 
 | { | 
 | 	struct net_device *dev = data; | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 	struct ace_regs __iomem *regs = ap->regs; | 
 |  | 
 | 	/* | 
 | 	 * We haven't received a stats update event for more than 2.5 | 
 | 	 * seconds and there is data in the transmit queue, thus we | 
 | 	 * asume the card is stuck. | 
 | 	 */ | 
 | 	if (*ap->tx_csm != ap->tx_ret_csm) { | 
 | 		printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n", | 
 | 		       dev->name, (unsigned int)readl(®s->HostCtrl)); | 
 | 		/* This can happen due to ieee flow control. */ | 
 | 	} else { | 
 | 		printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n", | 
 | 		       dev->name); | 
 | #if 0 | 
 | 		netif_wake_queue(dev); | 
 | #endif | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static void ace_tasklet(unsigned long dev) | 
 | { | 
 | 	struct ace_private *ap = netdev_priv((struct net_device *)dev); | 
 | 	int cur_size; | 
 |  | 
 | 	cur_size = atomic_read(&ap->cur_rx_bufs); | 
 | 	if ((cur_size < RX_LOW_STD_THRES) && | 
 | 	    !test_and_set_bit(0, &ap->std_refill_busy)) { | 
 | #ifdef DEBUG | 
 | 		printk("refilling buffers (current %i)\n", cur_size); | 
 | #endif | 
 | 		ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size); | 
 | 	} | 
 |  | 
 | 	if (ap->version >= 2) { | 
 | 		cur_size = atomic_read(&ap->cur_mini_bufs); | 
 | 		if ((cur_size < RX_LOW_MINI_THRES) && | 
 | 		    !test_and_set_bit(0, &ap->mini_refill_busy)) { | 
 | #ifdef DEBUG | 
 | 			printk("refilling mini buffers (current %i)\n", | 
 | 			       cur_size); | 
 | #endif | 
 | 			ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cur_size = atomic_read(&ap->cur_jumbo_bufs); | 
 | 	if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) && | 
 | 	    !test_and_set_bit(0, &ap->jumbo_refill_busy)) { | 
 | #ifdef DEBUG | 
 | 		printk("refilling jumbo buffers (current %i)\n", cur_size); | 
 | #endif | 
 | 		ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size); | 
 | 	} | 
 | 	ap->tasklet_pending = 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Copy the contents of the NIC's trace buffer to kernel memory. | 
 |  */ | 
 | static void ace_dump_trace(struct ace_private *ap) | 
 | { | 
 | #if 0 | 
 | 	if (!ap->trace_buf) | 
 | 		if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL))) | 
 | 		    return; | 
 | #endif | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Load the standard rx ring. | 
 |  * | 
 |  * Loading rings is safe without holding the spin lock since this is | 
 |  * done only before the device is enabled, thus no interrupts are | 
 |  * generated and by the interrupt handler/tasklet handler. | 
 |  */ | 
 | static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs) | 
 | { | 
 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 	short i, idx; | 
 |  | 
 |  | 
 | 	prefetchw(&ap->cur_rx_bufs); | 
 |  | 
 | 	idx = ap->rx_std_skbprd; | 
 |  | 
 | 	for (i = 0; i < nr_bufs; i++) { | 
 | 		struct sk_buff *skb; | 
 | 		struct rx_desc *rd; | 
 | 		dma_addr_t mapping; | 
 |  | 
 | 		skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC); | 
 | 		if (!skb) | 
 | 			break; | 
 |  | 
 | 		skb_reserve(skb, NET_IP_ALIGN); | 
 | 		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | 
 | 				       offset_in_page(skb->data), | 
 | 				       ACE_STD_BUFSIZE, | 
 | 				       PCI_DMA_FROMDEVICE); | 
 | 		ap->skb->rx_std_skbuff[idx].skb = skb; | 
 | 		pci_unmap_addr_set(&ap->skb->rx_std_skbuff[idx], | 
 | 				   mapping, mapping); | 
 |  | 
 | 		rd = &ap->rx_std_ring[idx]; | 
 | 		set_aceaddr(&rd->addr, mapping); | 
 | 		rd->size = ACE_STD_BUFSIZE; | 
 | 		rd->idx = idx; | 
 | 		idx = (idx + 1) % RX_STD_RING_ENTRIES; | 
 | 	} | 
 |  | 
 | 	if (!i) | 
 | 		goto error_out; | 
 |  | 
 | 	atomic_add(i, &ap->cur_rx_bufs); | 
 | 	ap->rx_std_skbprd = idx; | 
 |  | 
 | 	if (ACE_IS_TIGON_I(ap)) { | 
 | 		struct cmd cmd; | 
 | 		cmd.evt = C_SET_RX_PRD_IDX; | 
 | 		cmd.code = 0; | 
 | 		cmd.idx = ap->rx_std_skbprd; | 
 | 		ace_issue_cmd(regs, &cmd); | 
 | 	} else { | 
 | 		writel(idx, ®s->RxStdPrd); | 
 | 		wmb(); | 
 | 	} | 
 |  | 
 |  out: | 
 | 	clear_bit(0, &ap->std_refill_busy); | 
 | 	return; | 
 |  | 
 |  error_out: | 
 | 	printk(KERN_INFO "Out of memory when allocating " | 
 | 	       "standard receive buffers\n"); | 
 | 	goto out; | 
 | } | 
 |  | 
 |  | 
 | static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs) | 
 | { | 
 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 	short i, idx; | 
 |  | 
 | 	prefetchw(&ap->cur_mini_bufs); | 
 |  | 
 | 	idx = ap->rx_mini_skbprd; | 
 | 	for (i = 0; i < nr_bufs; i++) { | 
 | 		struct sk_buff *skb; | 
 | 		struct rx_desc *rd; | 
 | 		dma_addr_t mapping; | 
 |  | 
 | 		skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC); | 
 | 		if (!skb) | 
 | 			break; | 
 |  | 
 | 		skb_reserve(skb, NET_IP_ALIGN); | 
 | 		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | 
 | 				       offset_in_page(skb->data), | 
 | 				       ACE_MINI_BUFSIZE, | 
 | 				       PCI_DMA_FROMDEVICE); | 
 | 		ap->skb->rx_mini_skbuff[idx].skb = skb; | 
 | 		pci_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx], | 
 | 				   mapping, mapping); | 
 |  | 
 | 		rd = &ap->rx_mini_ring[idx]; | 
 | 		set_aceaddr(&rd->addr, mapping); | 
 | 		rd->size = ACE_MINI_BUFSIZE; | 
 | 		rd->idx = idx; | 
 | 		idx = (idx + 1) % RX_MINI_RING_ENTRIES; | 
 | 	} | 
 |  | 
 | 	if (!i) | 
 | 		goto error_out; | 
 |  | 
 | 	atomic_add(i, &ap->cur_mini_bufs); | 
 |  | 
 | 	ap->rx_mini_skbprd = idx; | 
 |  | 
 | 	writel(idx, ®s->RxMiniPrd); | 
 | 	wmb(); | 
 |  | 
 |  out: | 
 | 	clear_bit(0, &ap->mini_refill_busy); | 
 | 	return; | 
 |  error_out: | 
 | 	printk(KERN_INFO "Out of memory when allocating " | 
 | 	       "mini receive buffers\n"); | 
 | 	goto out; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Load the jumbo rx ring, this may happen at any time if the MTU | 
 |  * is changed to a value > 1500. | 
 |  */ | 
 | static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs) | 
 | { | 
 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 	short i, idx; | 
 |  | 
 | 	idx = ap->rx_jumbo_skbprd; | 
 |  | 
 | 	for (i = 0; i < nr_bufs; i++) { | 
 | 		struct sk_buff *skb; | 
 | 		struct rx_desc *rd; | 
 | 		dma_addr_t mapping; | 
 |  | 
 | 		skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC); | 
 | 		if (!skb) | 
 | 			break; | 
 |  | 
 | 		skb_reserve(skb, NET_IP_ALIGN); | 
 | 		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | 
 | 				       offset_in_page(skb->data), | 
 | 				       ACE_JUMBO_BUFSIZE, | 
 | 				       PCI_DMA_FROMDEVICE); | 
 | 		ap->skb->rx_jumbo_skbuff[idx].skb = skb; | 
 | 		pci_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx], | 
 | 				   mapping, mapping); | 
 |  | 
 | 		rd = &ap->rx_jumbo_ring[idx]; | 
 | 		set_aceaddr(&rd->addr, mapping); | 
 | 		rd->size = ACE_JUMBO_BUFSIZE; | 
 | 		rd->idx = idx; | 
 | 		idx = (idx + 1) % RX_JUMBO_RING_ENTRIES; | 
 | 	} | 
 |  | 
 | 	if (!i) | 
 | 		goto error_out; | 
 |  | 
 | 	atomic_add(i, &ap->cur_jumbo_bufs); | 
 | 	ap->rx_jumbo_skbprd = idx; | 
 |  | 
 | 	if (ACE_IS_TIGON_I(ap)) { | 
 | 		struct cmd cmd; | 
 | 		cmd.evt = C_SET_RX_JUMBO_PRD_IDX; | 
 | 		cmd.code = 0; | 
 | 		cmd.idx = ap->rx_jumbo_skbprd; | 
 | 		ace_issue_cmd(regs, &cmd); | 
 | 	} else { | 
 | 		writel(idx, ®s->RxJumboPrd); | 
 | 		wmb(); | 
 | 	} | 
 |  | 
 |  out: | 
 | 	clear_bit(0, &ap->jumbo_refill_busy); | 
 | 	return; | 
 |  error_out: | 
 | 	if (net_ratelimit()) | 
 | 		printk(KERN_INFO "Out of memory when allocating " | 
 | 		       "jumbo receive buffers\n"); | 
 | 	goto out; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * All events are considered to be slow (RX/TX ints do not generate | 
 |  * events) and are handled here, outside the main interrupt handler, | 
 |  * to reduce the size of the handler. | 
 |  */ | 
 | static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd) | 
 | { | 
 | 	struct ace_private *ap; | 
 |  | 
 | 	ap = netdev_priv(dev); | 
 |  | 
 | 	while (evtcsm != evtprd) { | 
 | 		switch (ap->evt_ring[evtcsm].evt) { | 
 | 		case E_FW_RUNNING: | 
 | 			printk(KERN_INFO "%s: Firmware up and running\n", | 
 | 			       ap->name); | 
 | 			ap->fw_running = 1; | 
 | 			wmb(); | 
 | 			break; | 
 | 		case E_STATS_UPDATED: | 
 | 			break; | 
 | 		case E_LNK_STATE: | 
 | 		{ | 
 | 			u16 code = ap->evt_ring[evtcsm].code; | 
 | 			switch (code) { | 
 | 			case E_C_LINK_UP: | 
 | 			{ | 
 | 				u32 state = readl(&ap->regs->GigLnkState); | 
 | 				printk(KERN_WARNING "%s: Optical link UP " | 
 | 				       "(%s Duplex, Flow Control: %s%s)\n", | 
 | 				       ap->name, | 
 | 				       state & LNK_FULL_DUPLEX ? "Full":"Half", | 
 | 				       state & LNK_TX_FLOW_CTL_Y ? "TX " : "", | 
 | 				       state & LNK_RX_FLOW_CTL_Y ? "RX" : ""); | 
 | 				break; | 
 | 			} | 
 | 			case E_C_LINK_DOWN: | 
 | 				printk(KERN_WARNING "%s: Optical link DOWN\n", | 
 | 				       ap->name); | 
 | 				break; | 
 | 			case E_C_LINK_10_100: | 
 | 				printk(KERN_WARNING "%s: 10/100BaseT link " | 
 | 				       "UP\n", ap->name); | 
 | 				break; | 
 | 			default: | 
 | 				printk(KERN_ERR "%s: Unknown optical link " | 
 | 				       "state %02x\n", ap->name, code); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		case E_ERROR: | 
 | 			switch(ap->evt_ring[evtcsm].code) { | 
 | 			case E_C_ERR_INVAL_CMD: | 
 | 				printk(KERN_ERR "%s: invalid command error\n", | 
 | 				       ap->name); | 
 | 				break; | 
 | 			case E_C_ERR_UNIMP_CMD: | 
 | 				printk(KERN_ERR "%s: unimplemented command " | 
 | 				       "error\n", ap->name); | 
 | 				break; | 
 | 			case E_C_ERR_BAD_CFG: | 
 | 				printk(KERN_ERR "%s: bad config error\n", | 
 | 				       ap->name); | 
 | 				break; | 
 | 			default: | 
 | 				printk(KERN_ERR "%s: unknown error %02x\n", | 
 | 				       ap->name, ap->evt_ring[evtcsm].code); | 
 | 			} | 
 | 			break; | 
 | 		case E_RESET_JUMBO_RNG: | 
 | 		{ | 
 | 			int i; | 
 | 			for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { | 
 | 				if (ap->skb->rx_jumbo_skbuff[i].skb) { | 
 | 					ap->rx_jumbo_ring[i].size = 0; | 
 | 					set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0); | 
 | 					dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb); | 
 | 					ap->skb->rx_jumbo_skbuff[i].skb = NULL; | 
 | 				} | 
 | 			} | 
 |  | 
 |  			if (ACE_IS_TIGON_I(ap)) { | 
 |  				struct cmd cmd; | 
 |  				cmd.evt = C_SET_RX_JUMBO_PRD_IDX; | 
 |  				cmd.code = 0; | 
 |  				cmd.idx = 0; | 
 |  				ace_issue_cmd(ap->regs, &cmd); | 
 |  			} else { | 
 |  				writel(0, &((ap->regs)->RxJumboPrd)); | 
 |  				wmb(); | 
 |  			} | 
 |  | 
 | 			ap->jumbo = 0; | 
 | 			ap->rx_jumbo_skbprd = 0; | 
 | 			printk(KERN_INFO "%s: Jumbo ring flushed\n", | 
 | 			       ap->name); | 
 | 			clear_bit(0, &ap->jumbo_refill_busy); | 
 | 			break; | 
 | 		} | 
 | 		default: | 
 | 			printk(KERN_ERR "%s: Unhandled event 0x%02x\n", | 
 | 			       ap->name, ap->evt_ring[evtcsm].evt); | 
 | 		} | 
 | 		evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES; | 
 | 	} | 
 |  | 
 | 	return evtcsm; | 
 | } | 
 |  | 
 |  | 
 | static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm) | 
 | { | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 	u32 idx; | 
 | 	int mini_count = 0, std_count = 0; | 
 |  | 
 | 	idx = rxretcsm; | 
 |  | 
 | 	prefetchw(&ap->cur_rx_bufs); | 
 | 	prefetchw(&ap->cur_mini_bufs); | 
 |  | 
 | 	while (idx != rxretprd) { | 
 | 		struct ring_info *rip; | 
 | 		struct sk_buff *skb; | 
 | 		struct rx_desc *rxdesc, *retdesc; | 
 | 		u32 skbidx; | 
 | 		int bd_flags, desc_type, mapsize; | 
 | 		u16 csum; | 
 |  | 
 |  | 
 | 		/* make sure the rx descriptor isn't read before rxretprd */ | 
 | 		if (idx == rxretcsm) | 
 | 			rmb(); | 
 |  | 
 | 		retdesc = &ap->rx_return_ring[idx]; | 
 | 		skbidx = retdesc->idx; | 
 | 		bd_flags = retdesc->flags; | 
 | 		desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI); | 
 |  | 
 | 		switch(desc_type) { | 
 | 			/* | 
 | 			 * Normal frames do not have any flags set | 
 | 			 * | 
 | 			 * Mini and normal frames arrive frequently, | 
 | 			 * so use a local counter to avoid doing | 
 | 			 * atomic operations for each packet arriving. | 
 | 			 */ | 
 | 		case 0: | 
 | 			rip = &ap->skb->rx_std_skbuff[skbidx]; | 
 | 			mapsize = ACE_STD_BUFSIZE; | 
 | 			rxdesc = &ap->rx_std_ring[skbidx]; | 
 | 			std_count++; | 
 | 			break; | 
 | 		case BD_FLG_JUMBO: | 
 | 			rip = &ap->skb->rx_jumbo_skbuff[skbidx]; | 
 | 			mapsize = ACE_JUMBO_BUFSIZE; | 
 | 			rxdesc = &ap->rx_jumbo_ring[skbidx]; | 
 | 			atomic_dec(&ap->cur_jumbo_bufs); | 
 | 			break; | 
 | 		case BD_FLG_MINI: | 
 | 			rip = &ap->skb->rx_mini_skbuff[skbidx]; | 
 | 			mapsize = ACE_MINI_BUFSIZE; | 
 | 			rxdesc = &ap->rx_mini_ring[skbidx]; | 
 | 			mini_count++; | 
 | 			break; | 
 | 		default: | 
 | 			printk(KERN_INFO "%s: unknown frame type (0x%02x) " | 
 | 			       "returned by NIC\n", dev->name, | 
 | 			       retdesc->flags); | 
 | 			goto error; | 
 | 		} | 
 |  | 
 | 		skb = rip->skb; | 
 | 		rip->skb = NULL; | 
 | 		pci_unmap_page(ap->pdev, | 
 | 			       pci_unmap_addr(rip, mapping), | 
 | 			       mapsize, | 
 | 			       PCI_DMA_FROMDEVICE); | 
 | 		skb_put(skb, retdesc->size); | 
 |  | 
 | 		/* | 
 | 		 * Fly baby, fly! | 
 | 		 */ | 
 | 		csum = retdesc->tcp_udp_csum; | 
 |  | 
 | 		skb->protocol = eth_type_trans(skb, dev); | 
 |  | 
 | 		/* | 
 | 		 * Instead of forcing the poor tigon mips cpu to calculate | 
 | 		 * pseudo hdr checksum, we do this ourselves. | 
 | 		 */ | 
 | 		if (bd_flags & BD_FLG_TCP_UDP_SUM) { | 
 | 			skb->csum = htons(csum); | 
 | 			skb->ip_summed = CHECKSUM_COMPLETE; | 
 | 		} else { | 
 | 			skb->ip_summed = CHECKSUM_NONE; | 
 | 		} | 
 |  | 
 | 		/* send it up */ | 
 | #if ACENIC_DO_VLAN | 
 | 		if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) { | 
 | 			vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan); | 
 | 		} else | 
 | #endif | 
 | 			netif_rx(skb); | 
 |  | 
 | 		dev->last_rx = jiffies; | 
 | 		ap->stats.rx_packets++; | 
 | 		ap->stats.rx_bytes += retdesc->size; | 
 |  | 
 | 		idx = (idx + 1) % RX_RETURN_RING_ENTRIES; | 
 | 	} | 
 |  | 
 | 	atomic_sub(std_count, &ap->cur_rx_bufs); | 
 | 	if (!ACE_IS_TIGON_I(ap)) | 
 | 		atomic_sub(mini_count, &ap->cur_mini_bufs); | 
 |  | 
 |  out: | 
 | 	/* | 
 | 	 * According to the documentation RxRetCsm is obsolete with | 
 | 	 * the 12.3.x Firmware - my Tigon I NICs seem to disagree! | 
 | 	 */ | 
 | 	if (ACE_IS_TIGON_I(ap)) { | 
 | 		writel(idx, &ap->regs->RxRetCsm); | 
 | 	} | 
 | 	ap->cur_rx = idx; | 
 |  | 
 | 	return; | 
 |  error: | 
 | 	idx = rxretprd; | 
 | 	goto out; | 
 | } | 
 |  | 
 |  | 
 | static inline void ace_tx_int(struct net_device *dev, | 
 | 			      u32 txcsm, u32 idx) | 
 | { | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 |  | 
 | 	do { | 
 | 		struct sk_buff *skb; | 
 | 		dma_addr_t mapping; | 
 | 		struct tx_ring_info *info; | 
 |  | 
 | 		info = ap->skb->tx_skbuff + idx; | 
 | 		skb = info->skb; | 
 | 		mapping = pci_unmap_addr(info, mapping); | 
 |  | 
 | 		if (mapping) { | 
 | 			pci_unmap_page(ap->pdev, mapping, | 
 | 				       pci_unmap_len(info, maplen), | 
 | 				       PCI_DMA_TODEVICE); | 
 | 			pci_unmap_addr_set(info, mapping, 0); | 
 | 		} | 
 |  | 
 | 		if (skb) { | 
 | 			ap->stats.tx_packets++; | 
 | 			ap->stats.tx_bytes += skb->len; | 
 | 			dev_kfree_skb_irq(skb); | 
 | 			info->skb = NULL; | 
 | 		} | 
 |  | 
 | 		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | 
 | 	} while (idx != txcsm); | 
 |  | 
 | 	if (netif_queue_stopped(dev)) | 
 | 		netif_wake_queue(dev); | 
 |  | 
 | 	wmb(); | 
 | 	ap->tx_ret_csm = txcsm; | 
 |  | 
 | 	/* So... tx_ret_csm is advanced _after_ check for device wakeup. | 
 | 	 * | 
 | 	 * We could try to make it before. In this case we would get | 
 | 	 * the following race condition: hard_start_xmit on other cpu | 
 | 	 * enters after we advanced tx_ret_csm and fills space, | 
 | 	 * which we have just freed, so that we make illegal device wakeup. | 
 | 	 * There is no good way to workaround this (at entry | 
 | 	 * to ace_start_xmit detects this condition and prevents | 
 | 	 * ring corruption, but it is not a good workaround.) | 
 | 	 * | 
 | 	 * When tx_ret_csm is advanced after, we wake up device _only_ | 
 | 	 * if we really have some space in ring (though the core doing | 
 | 	 * hard_start_xmit can see full ring for some period and has to | 
 | 	 * synchronize.) Superb. | 
 | 	 * BUT! We get another subtle race condition. hard_start_xmit | 
 | 	 * may think that ring is full between wakeup and advancing | 
 | 	 * tx_ret_csm and will stop device instantly! It is not so bad. | 
 | 	 * We are guaranteed that there is something in ring, so that | 
 | 	 * the next irq will resume transmission. To speedup this we could | 
 | 	 * mark descriptor, which closes ring with BD_FLG_COAL_NOW | 
 | 	 * (see ace_start_xmit). | 
 | 	 * | 
 | 	 * Well, this dilemma exists in all lock-free devices. | 
 | 	 * We, following scheme used in drivers by Donald Becker, | 
 | 	 * select the least dangerous. | 
 | 	 *							--ANK | 
 | 	 */ | 
 | } | 
 |  | 
 |  | 
 | static irqreturn_t ace_interrupt(int irq, void *dev_id) | 
 | { | 
 | 	struct net_device *dev = (struct net_device *)dev_id; | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 	u32 idx; | 
 | 	u32 txcsm, rxretcsm, rxretprd; | 
 | 	u32 evtcsm, evtprd; | 
 |  | 
 | 	/* | 
 | 	 * In case of PCI shared interrupts or spurious interrupts, | 
 | 	 * we want to make sure it is actually our interrupt before | 
 | 	 * spending any time in here. | 
 | 	 */ | 
 | 	if (!(readl(®s->HostCtrl) & IN_INT)) | 
 | 		return IRQ_NONE; | 
 |  | 
 | 	/* | 
 | 	 * ACK intr now. Otherwise we will lose updates to rx_ret_prd, | 
 | 	 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before | 
 | 	 * writel(0, ®s->Mb0Lo). | 
 | 	 * | 
 | 	 * "IRQ avoidance" recommended in docs applies to IRQs served | 
 | 	 * threads and it is wrong even for that case. | 
 | 	 */ | 
 | 	writel(0, ®s->Mb0Lo); | 
 | 	readl(®s->Mb0Lo); | 
 |  | 
 | 	/* | 
 | 	 * There is no conflict between transmit handling in | 
 | 	 * start_xmit and receive processing, thus there is no reason | 
 | 	 * to take a spin lock for RX handling. Wait until we start | 
 | 	 * working on the other stuff - hey we don't need a spin lock | 
 | 	 * anymore. | 
 | 	 */ | 
 | 	rxretprd = *ap->rx_ret_prd; | 
 | 	rxretcsm = ap->cur_rx; | 
 |  | 
 | 	if (rxretprd != rxretcsm) | 
 | 		ace_rx_int(dev, rxretprd, rxretcsm); | 
 |  | 
 | 	txcsm = *ap->tx_csm; | 
 | 	idx = ap->tx_ret_csm; | 
 |  | 
 | 	if (txcsm != idx) { | 
 | 		/* | 
 | 		 * If each skb takes only one descriptor this check degenerates | 
 | 		 * to identity, because new space has just been opened. | 
 | 		 * But if skbs are fragmented we must check that this index | 
 | 		 * update releases enough of space, otherwise we just | 
 | 		 * wait for device to make more work. | 
 | 		 */ | 
 | 		if (!tx_ring_full(ap, txcsm, ap->tx_prd)) | 
 | 			ace_tx_int(dev, txcsm, idx); | 
 | 	} | 
 |  | 
 | 	evtcsm = readl(®s->EvtCsm); | 
 | 	evtprd = *ap->evt_prd; | 
 |  | 
 | 	if (evtcsm != evtprd) { | 
 | 		evtcsm = ace_handle_event(dev, evtcsm, evtprd); | 
 | 		writel(evtcsm, ®s->EvtCsm); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * This has to go last in the interrupt handler and run with | 
 | 	 * the spin lock released ... what lock? | 
 | 	 */ | 
 | 	if (netif_running(dev)) { | 
 | 		int cur_size; | 
 | 		int run_tasklet = 0; | 
 |  | 
 | 		cur_size = atomic_read(&ap->cur_rx_bufs); | 
 | 		if (cur_size < RX_LOW_STD_THRES) { | 
 | 			if ((cur_size < RX_PANIC_STD_THRES) && | 
 | 			    !test_and_set_bit(0, &ap->std_refill_busy)) { | 
 | #ifdef DEBUG | 
 | 				printk("low on std buffers %i\n", cur_size); | 
 | #endif | 
 | 				ace_load_std_rx_ring(ap, | 
 | 						     RX_RING_SIZE - cur_size); | 
 | 			} else | 
 | 				run_tasklet = 1; | 
 | 		} | 
 |  | 
 | 		if (!ACE_IS_TIGON_I(ap)) { | 
 | 			cur_size = atomic_read(&ap->cur_mini_bufs); | 
 | 			if (cur_size < RX_LOW_MINI_THRES) { | 
 | 				if ((cur_size < RX_PANIC_MINI_THRES) && | 
 | 				    !test_and_set_bit(0, | 
 | 						      &ap->mini_refill_busy)) { | 
 | #ifdef DEBUG | 
 | 					printk("low on mini buffers %i\n", | 
 | 					       cur_size); | 
 | #endif | 
 | 					ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size); | 
 | 				} else | 
 | 					run_tasklet = 1; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (ap->jumbo) { | 
 | 			cur_size = atomic_read(&ap->cur_jumbo_bufs); | 
 | 			if (cur_size < RX_LOW_JUMBO_THRES) { | 
 | 				if ((cur_size < RX_PANIC_JUMBO_THRES) && | 
 | 				    !test_and_set_bit(0, | 
 | 						      &ap->jumbo_refill_busy)){ | 
 | #ifdef DEBUG | 
 | 					printk("low on jumbo buffers %i\n", | 
 | 					       cur_size); | 
 | #endif | 
 | 					ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size); | 
 | 				} else | 
 | 					run_tasklet = 1; | 
 | 			} | 
 | 		} | 
 | 		if (run_tasklet && !ap->tasklet_pending) { | 
 | 			ap->tasklet_pending = 1; | 
 | 			tasklet_schedule(&ap->ace_tasklet); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 |  | 
 | #if ACENIC_DO_VLAN | 
 | static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp) | 
 | { | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	ace_mask_irq(dev); | 
 |  | 
 | 	ap->vlgrp = grp; | 
 |  | 
 | 	ace_unmask_irq(dev); | 
 | 	local_irq_restore(flags); | 
 | } | 
 | #endif /* ACENIC_DO_VLAN */ | 
 |  | 
 |  | 
 | static int ace_open(struct net_device *dev) | 
 | { | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 	struct cmd cmd; | 
 |  | 
 | 	if (!(ap->fw_running)) { | 
 | 		printk(KERN_WARNING "%s: Firmware not running!\n", dev->name); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	writel(dev->mtu + ETH_HLEN + 4, ®s->IfMtu); | 
 |  | 
 | 	cmd.evt = C_CLEAR_STATS; | 
 | 	cmd.code = 0; | 
 | 	cmd.idx = 0; | 
 | 	ace_issue_cmd(regs, &cmd); | 
 |  | 
 | 	cmd.evt = C_HOST_STATE; | 
 | 	cmd.code = C_C_STACK_UP; | 
 | 	cmd.idx = 0; | 
 | 	ace_issue_cmd(regs, &cmd); | 
 |  | 
 | 	if (ap->jumbo && | 
 | 	    !test_and_set_bit(0, &ap->jumbo_refill_busy)) | 
 | 		ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE); | 
 |  | 
 | 	if (dev->flags & IFF_PROMISC) { | 
 | 		cmd.evt = C_SET_PROMISC_MODE; | 
 | 		cmd.code = C_C_PROMISC_ENABLE; | 
 | 		cmd.idx = 0; | 
 | 		ace_issue_cmd(regs, &cmd); | 
 |  | 
 | 		ap->promisc = 1; | 
 | 	}else | 
 | 		ap->promisc = 0; | 
 | 	ap->mcast_all = 0; | 
 |  | 
 | #if 0 | 
 | 	cmd.evt = C_LNK_NEGOTIATION; | 
 | 	cmd.code = 0; | 
 | 	cmd.idx = 0; | 
 | 	ace_issue_cmd(regs, &cmd); | 
 | #endif | 
 |  | 
 | 	netif_start_queue(dev); | 
 |  | 
 | 	/* | 
 | 	 * Setup the bottom half rx ring refill handler | 
 | 	 */ | 
 | 	tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static int ace_close(struct net_device *dev) | 
 | { | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 	struct cmd cmd; | 
 | 	unsigned long flags; | 
 | 	short i; | 
 |  | 
 | 	/* | 
 | 	 * Without (or before) releasing irq and stopping hardware, this | 
 | 	 * is an absolute non-sense, by the way. It will be reset instantly | 
 | 	 * by the first irq. | 
 | 	 */ | 
 | 	netif_stop_queue(dev); | 
 |  | 
 |  | 
 | 	if (ap->promisc) { | 
 | 		cmd.evt = C_SET_PROMISC_MODE; | 
 | 		cmd.code = C_C_PROMISC_DISABLE; | 
 | 		cmd.idx = 0; | 
 | 		ace_issue_cmd(regs, &cmd); | 
 | 		ap->promisc = 0; | 
 | 	} | 
 |  | 
 | 	cmd.evt = C_HOST_STATE; | 
 | 	cmd.code = C_C_STACK_DOWN; | 
 | 	cmd.idx = 0; | 
 | 	ace_issue_cmd(regs, &cmd); | 
 |  | 
 | 	tasklet_kill(&ap->ace_tasklet); | 
 |  | 
 | 	/* | 
 | 	 * Make sure one CPU is not processing packets while | 
 | 	 * buffers are being released by another. | 
 | 	 */ | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	ace_mask_irq(dev); | 
 |  | 
 | 	for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) { | 
 | 		struct sk_buff *skb; | 
 | 		dma_addr_t mapping; | 
 | 		struct tx_ring_info *info; | 
 |  | 
 | 		info = ap->skb->tx_skbuff + i; | 
 | 		skb = info->skb; | 
 | 		mapping = pci_unmap_addr(info, mapping); | 
 |  | 
 | 		if (mapping) { | 
 | 			if (ACE_IS_TIGON_I(ap)) { | 
 | 				/* NB: TIGON_1 is special, tx_ring is in io space */ | 
 | 				struct tx_desc __iomem *tx; | 
 | 				tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i]; | 
 | 				writel(0, &tx->addr.addrhi); | 
 | 				writel(0, &tx->addr.addrlo); | 
 | 				writel(0, &tx->flagsize); | 
 | 			} else | 
 | 				memset(ap->tx_ring + i, 0, | 
 | 				       sizeof(struct tx_desc)); | 
 | 			pci_unmap_page(ap->pdev, mapping, | 
 | 				       pci_unmap_len(info, maplen), | 
 | 				       PCI_DMA_TODEVICE); | 
 | 			pci_unmap_addr_set(info, mapping, 0); | 
 | 		} | 
 | 		if (skb) { | 
 | 			dev_kfree_skb(skb); | 
 | 			info->skb = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ap->jumbo) { | 
 | 		cmd.evt = C_RESET_JUMBO_RNG; | 
 | 		cmd.code = 0; | 
 | 		cmd.idx = 0; | 
 | 		ace_issue_cmd(regs, &cmd); | 
 | 	} | 
 |  | 
 | 	ace_unmask_irq(dev); | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static inline dma_addr_t | 
 | ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb, | 
 | 	       struct sk_buff *tail, u32 idx) | 
 | { | 
 | 	dma_addr_t mapping; | 
 | 	struct tx_ring_info *info; | 
 |  | 
 | 	mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | 
 | 			       offset_in_page(skb->data), | 
 | 			       skb->len, PCI_DMA_TODEVICE); | 
 |  | 
 | 	info = ap->skb->tx_skbuff + idx; | 
 | 	info->skb = tail; | 
 | 	pci_unmap_addr_set(info, mapping, mapping); | 
 | 	pci_unmap_len_set(info, maplen, skb->len); | 
 | 	return mapping; | 
 | } | 
 |  | 
 |  | 
 | static inline void | 
 | ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr, | 
 | 	       u32 flagsize, u32 vlan_tag) | 
 | { | 
 | #if !USE_TX_COAL_NOW | 
 | 	flagsize &= ~BD_FLG_COAL_NOW; | 
 | #endif | 
 |  | 
 | 	if (ACE_IS_TIGON_I(ap)) { | 
 | 		struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc; | 
 | 		writel(addr >> 32, &io->addr.addrhi); | 
 | 		writel(addr & 0xffffffff, &io->addr.addrlo); | 
 | 		writel(flagsize, &io->flagsize); | 
 | #if ACENIC_DO_VLAN | 
 | 		writel(vlan_tag, &io->vlanres); | 
 | #endif | 
 | 	} else { | 
 | 		desc->addr.addrhi = addr >> 32; | 
 | 		desc->addr.addrlo = addr; | 
 | 		desc->flagsize = flagsize; | 
 | #if ACENIC_DO_VLAN | 
 | 		desc->vlanres = vlan_tag; | 
 | #endif | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static int ace_start_xmit(struct sk_buff *skb, struct net_device *dev) | 
 | { | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 	struct tx_desc *desc; | 
 | 	u32 idx, flagsize; | 
 | 	unsigned long maxjiff = jiffies + 3*HZ; | 
 |  | 
 | restart: | 
 | 	idx = ap->tx_prd; | 
 |  | 
 | 	if (tx_ring_full(ap, ap->tx_ret_csm, idx)) | 
 | 		goto overflow; | 
 |  | 
 | 	if (!skb_shinfo(skb)->nr_frags)	{ | 
 | 		dma_addr_t mapping; | 
 | 		u32 vlan_tag = 0; | 
 |  | 
 | 		mapping = ace_map_tx_skb(ap, skb, skb, idx); | 
 | 		flagsize = (skb->len << 16) | (BD_FLG_END); | 
 | 		if (skb->ip_summed == CHECKSUM_PARTIAL) | 
 | 			flagsize |= BD_FLG_TCP_UDP_SUM; | 
 | #if ACENIC_DO_VLAN | 
 | 		if (vlan_tx_tag_present(skb)) { | 
 | 			flagsize |= BD_FLG_VLAN_TAG; | 
 | 			vlan_tag = vlan_tx_tag_get(skb); | 
 | 		} | 
 | #endif | 
 | 		desc = ap->tx_ring + idx; | 
 | 		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | 
 |  | 
 | 		/* Look at ace_tx_int for explanations. */ | 
 | 		if (tx_ring_full(ap, ap->tx_ret_csm, idx)) | 
 | 			flagsize |= BD_FLG_COAL_NOW; | 
 |  | 
 | 		ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); | 
 | 	} else { | 
 | 		dma_addr_t mapping; | 
 | 		u32 vlan_tag = 0; | 
 | 		int i, len = 0; | 
 |  | 
 | 		mapping = ace_map_tx_skb(ap, skb, NULL, idx); | 
 | 		flagsize = (skb_headlen(skb) << 16); | 
 | 		if (skb->ip_summed == CHECKSUM_PARTIAL) | 
 | 			flagsize |= BD_FLG_TCP_UDP_SUM; | 
 | #if ACENIC_DO_VLAN | 
 | 		if (vlan_tx_tag_present(skb)) { | 
 | 			flagsize |= BD_FLG_VLAN_TAG; | 
 | 			vlan_tag = vlan_tx_tag_get(skb); | 
 | 		} | 
 | #endif | 
 |  | 
 | 		ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag); | 
 |  | 
 | 		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | 
 |  | 
 | 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
 | 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
 | 			struct tx_ring_info *info; | 
 |  | 
 | 			len += frag->size; | 
 | 			info = ap->skb->tx_skbuff + idx; | 
 | 			desc = ap->tx_ring + idx; | 
 |  | 
 | 			mapping = pci_map_page(ap->pdev, frag->page, | 
 | 					       frag->page_offset, frag->size, | 
 | 					       PCI_DMA_TODEVICE); | 
 |  | 
 | 			flagsize = (frag->size << 16); | 
 | 			if (skb->ip_summed == CHECKSUM_PARTIAL) | 
 | 				flagsize |= BD_FLG_TCP_UDP_SUM; | 
 | 			idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | 
 |  | 
 | 			if (i == skb_shinfo(skb)->nr_frags - 1) { | 
 | 				flagsize |= BD_FLG_END; | 
 | 				if (tx_ring_full(ap, ap->tx_ret_csm, idx)) | 
 | 					flagsize |= BD_FLG_COAL_NOW; | 
 |  | 
 | 				/* | 
 | 				 * Only the last fragment frees | 
 | 				 * the skb! | 
 | 				 */ | 
 | 				info->skb = skb; | 
 | 			} else { | 
 | 				info->skb = NULL; | 
 | 			} | 
 | 			pci_unmap_addr_set(info, mapping, mapping); | 
 | 			pci_unmap_len_set(info, maplen, frag->size); | 
 | 			ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); | 
 | 		} | 
 | 	} | 
 |  | 
 |  	wmb(); | 
 |  	ap->tx_prd = idx; | 
 |  	ace_set_txprd(regs, ap, idx); | 
 |  | 
 | 	if (flagsize & BD_FLG_COAL_NOW) { | 
 | 		netif_stop_queue(dev); | 
 |  | 
 | 		/* | 
 | 		 * A TX-descriptor producer (an IRQ) might have gotten | 
 | 		 * inbetween, making the ring free again. Since xmit is | 
 | 		 * serialized, this is the only situation we have to | 
 | 		 * re-test. | 
 | 		 */ | 
 | 		if (!tx_ring_full(ap, ap->tx_ret_csm, idx)) | 
 | 			netif_wake_queue(dev); | 
 | 	} | 
 |  | 
 | 	dev->trans_start = jiffies; | 
 | 	return NETDEV_TX_OK; | 
 |  | 
 | overflow: | 
 | 	/* | 
 | 	 * This race condition is unavoidable with lock-free drivers. | 
 | 	 * We wake up the queue _before_ tx_prd is advanced, so that we can | 
 | 	 * enter hard_start_xmit too early, while tx ring still looks closed. | 
 | 	 * This happens ~1-4 times per 100000 packets, so that we can allow | 
 | 	 * to loop syncing to other CPU. Probably, we need an additional | 
 | 	 * wmb() in ace_tx_intr as well. | 
 | 	 * | 
 | 	 * Note that this race is relieved by reserving one more entry | 
 | 	 * in tx ring than it is necessary (see original non-SG driver). | 
 | 	 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which | 
 | 	 * is already overkill. | 
 | 	 * | 
 | 	 * Alternative is to return with 1 not throttling queue. In this | 
 | 	 * case loop becomes longer, no more useful effects. | 
 | 	 */ | 
 | 	if (time_before(jiffies, maxjiff)) { | 
 | 		barrier(); | 
 | 		cpu_relax(); | 
 | 		goto restart; | 
 | 	} | 
 |  | 
 | 	/* The ring is stuck full. */ | 
 | 	printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name); | 
 | 	return NETDEV_TX_BUSY; | 
 | } | 
 |  | 
 |  | 
 | static int ace_change_mtu(struct net_device *dev, int new_mtu) | 
 | { | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 	struct ace_regs __iomem *regs = ap->regs; | 
 |  | 
 | 	if (new_mtu > ACE_JUMBO_MTU) | 
 | 		return -EINVAL; | 
 |  | 
 | 	writel(new_mtu + ETH_HLEN + 4, ®s->IfMtu); | 
 | 	dev->mtu = new_mtu; | 
 |  | 
 | 	if (new_mtu > ACE_STD_MTU) { | 
 | 		if (!(ap->jumbo)) { | 
 | 			printk(KERN_INFO "%s: Enabling Jumbo frame " | 
 | 			       "support\n", dev->name); | 
 | 			ap->jumbo = 1; | 
 | 			if (!test_and_set_bit(0, &ap->jumbo_refill_busy)) | 
 | 				ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE); | 
 | 			ace_set_rxtx_parms(dev, 1); | 
 | 		} | 
 | 	} else { | 
 | 		while (test_and_set_bit(0, &ap->jumbo_refill_busy)); | 
 | 		ace_sync_irq(dev->irq); | 
 | 		ace_set_rxtx_parms(dev, 0); | 
 | 		if (ap->jumbo) { | 
 | 			struct cmd cmd; | 
 |  | 
 | 			cmd.evt = C_RESET_JUMBO_RNG; | 
 | 			cmd.code = 0; | 
 | 			cmd.idx = 0; | 
 | 			ace_issue_cmd(regs, &cmd); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | 
 | { | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 	u32 link; | 
 |  | 
 | 	memset(ecmd, 0, sizeof(struct ethtool_cmd)); | 
 | 	ecmd->supported = | 
 | 		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | | 
 | 		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | | 
 | 		 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | | 
 | 		 SUPPORTED_Autoneg | SUPPORTED_FIBRE); | 
 |  | 
 | 	ecmd->port = PORT_FIBRE; | 
 | 	ecmd->transceiver = XCVR_INTERNAL; | 
 |  | 
 | 	link = readl(®s->GigLnkState); | 
 | 	if (link & LNK_1000MB) | 
 | 		ecmd->speed = SPEED_1000; | 
 | 	else { | 
 | 		link = readl(®s->FastLnkState); | 
 | 		if (link & LNK_100MB) | 
 | 			ecmd->speed = SPEED_100; | 
 | 		else if (link & LNK_10MB) | 
 | 			ecmd->speed = SPEED_10; | 
 | 		else | 
 | 			ecmd->speed = 0; | 
 | 	} | 
 | 	if (link & LNK_FULL_DUPLEX) | 
 | 		ecmd->duplex = DUPLEX_FULL; | 
 | 	else | 
 | 		ecmd->duplex = DUPLEX_HALF; | 
 |  | 
 | 	if (link & LNK_NEGOTIATE) | 
 | 		ecmd->autoneg = AUTONEG_ENABLE; | 
 | 	else | 
 | 		ecmd->autoneg = AUTONEG_DISABLE; | 
 |  | 
 | #if 0 | 
 | 	/* | 
 | 	 * Current struct ethtool_cmd is insufficient | 
 | 	 */ | 
 | 	ecmd->trace = readl(®s->TuneTrace); | 
 |  | 
 | 	ecmd->txcoal = readl(®s->TuneTxCoalTicks); | 
 | 	ecmd->rxcoal = readl(®s->TuneRxCoalTicks); | 
 | #endif | 
 | 	ecmd->maxtxpkt = readl(®s->TuneMaxTxDesc); | 
 | 	ecmd->maxrxpkt = readl(®s->TuneMaxRxDesc); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | 
 | { | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 	u32 link, speed; | 
 |  | 
 | 	link = readl(®s->GigLnkState); | 
 | 	if (link & LNK_1000MB) | 
 | 		speed = SPEED_1000; | 
 | 	else { | 
 | 		link = readl(®s->FastLnkState); | 
 | 		if (link & LNK_100MB) | 
 | 			speed = SPEED_100; | 
 | 		else if (link & LNK_10MB) | 
 | 			speed = SPEED_10; | 
 | 		else | 
 | 			speed = SPEED_100; | 
 | 	} | 
 |  | 
 | 	link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB | | 
 | 		LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL; | 
 | 	if (!ACE_IS_TIGON_I(ap)) | 
 | 		link |= LNK_TX_FLOW_CTL_Y; | 
 | 	if (ecmd->autoneg == AUTONEG_ENABLE) | 
 | 		link |= LNK_NEGOTIATE; | 
 | 	if (ecmd->speed != speed) { | 
 | 		link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB); | 
 | 		switch (speed) { | 
 | 		case SPEED_1000: | 
 | 			link |= LNK_1000MB; | 
 | 			break; | 
 | 		case SPEED_100: | 
 | 			link |= LNK_100MB; | 
 | 			break; | 
 | 		case SPEED_10: | 
 | 			link |= LNK_10MB; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ecmd->duplex == DUPLEX_FULL) | 
 | 		link |= LNK_FULL_DUPLEX; | 
 |  | 
 | 	if (link != ap->link) { | 
 | 		struct cmd cmd; | 
 | 		printk(KERN_INFO "%s: Renegotiating link state\n", | 
 | 		       dev->name); | 
 |  | 
 | 		ap->link = link; | 
 | 		writel(link, ®s->TuneLink); | 
 | 		if (!ACE_IS_TIGON_I(ap)) | 
 | 			writel(link, ®s->TuneFastLink); | 
 | 		wmb(); | 
 |  | 
 | 		cmd.evt = C_LNK_NEGOTIATION; | 
 | 		cmd.code = 0; | 
 | 		cmd.idx = 0; | 
 | 		ace_issue_cmd(regs, &cmd); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void ace_get_drvinfo(struct net_device *dev, | 
 | 			    struct ethtool_drvinfo *info) | 
 | { | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 |  | 
 | 	strlcpy(info->driver, "acenic", sizeof(info->driver)); | 
 | 	snprintf(info->version, sizeof(info->version), "%i.%i.%i", | 
 | 		tigonFwReleaseMajor, tigonFwReleaseMinor, | 
 | 		tigonFwReleaseFix); | 
 |  | 
 | 	if (ap->pdev) | 
 | 		strlcpy(info->bus_info, pci_name(ap->pdev), | 
 | 			sizeof(info->bus_info)); | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * Set the hardware MAC address. | 
 |  */ | 
 | static int ace_set_mac_addr(struct net_device *dev, void *p) | 
 | { | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 	struct sockaddr *addr=p; | 
 | 	u8 *da; | 
 | 	struct cmd cmd; | 
 |  | 
 | 	if(netif_running(dev)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	memcpy(dev->dev_addr, addr->sa_data,dev->addr_len); | 
 |  | 
 | 	da = (u8 *)dev->dev_addr; | 
 |  | 
 | 	writel(da[0] << 8 | da[1], ®s->MacAddrHi); | 
 | 	writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5], | 
 | 	       ®s->MacAddrLo); | 
 |  | 
 | 	cmd.evt = C_SET_MAC_ADDR; | 
 | 	cmd.code = 0; | 
 | 	cmd.idx = 0; | 
 | 	ace_issue_cmd(regs, &cmd); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static void ace_set_multicast_list(struct net_device *dev) | 
 | { | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 	struct cmd cmd; | 
 |  | 
 | 	if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) { | 
 | 		cmd.evt = C_SET_MULTICAST_MODE; | 
 | 		cmd.code = C_C_MCAST_ENABLE; | 
 | 		cmd.idx = 0; | 
 | 		ace_issue_cmd(regs, &cmd); | 
 | 		ap->mcast_all = 1; | 
 | 	} else if (ap->mcast_all) { | 
 | 		cmd.evt = C_SET_MULTICAST_MODE; | 
 | 		cmd.code = C_C_MCAST_DISABLE; | 
 | 		cmd.idx = 0; | 
 | 		ace_issue_cmd(regs, &cmd); | 
 | 		ap->mcast_all = 0; | 
 | 	} | 
 |  | 
 | 	if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) { | 
 | 		cmd.evt = C_SET_PROMISC_MODE; | 
 | 		cmd.code = C_C_PROMISC_ENABLE; | 
 | 		cmd.idx = 0; | 
 | 		ace_issue_cmd(regs, &cmd); | 
 | 		ap->promisc = 1; | 
 | 	}else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) { | 
 | 		cmd.evt = C_SET_PROMISC_MODE; | 
 | 		cmd.code = C_C_PROMISC_DISABLE; | 
 | 		cmd.idx = 0; | 
 | 		ace_issue_cmd(regs, &cmd); | 
 | 		ap->promisc = 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For the time being multicast relies on the upper layers | 
 | 	 * filtering it properly. The Firmware does not allow one to | 
 | 	 * set the entire multicast list at a time and keeping track of | 
 | 	 * it here is going to be messy. | 
 | 	 */ | 
 | 	if ((dev->mc_count) && !(ap->mcast_all)) { | 
 | 		cmd.evt = C_SET_MULTICAST_MODE; | 
 | 		cmd.code = C_C_MCAST_ENABLE; | 
 | 		cmd.idx = 0; | 
 | 		ace_issue_cmd(regs, &cmd); | 
 | 	}else if (!ap->mcast_all) { | 
 | 		cmd.evt = C_SET_MULTICAST_MODE; | 
 | 		cmd.code = C_C_MCAST_DISABLE; | 
 | 		cmd.idx = 0; | 
 | 		ace_issue_cmd(regs, &cmd); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static struct net_device_stats *ace_get_stats(struct net_device *dev) | 
 | { | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 	struct ace_mac_stats __iomem *mac_stats = | 
 | 		(struct ace_mac_stats __iomem *)ap->regs->Stats; | 
 |  | 
 | 	ap->stats.rx_missed_errors = readl(&mac_stats->drop_space); | 
 | 	ap->stats.multicast = readl(&mac_stats->kept_mc); | 
 | 	ap->stats.collisions = readl(&mac_stats->coll); | 
 |  | 
 | 	return &ap->stats; | 
 | } | 
 |  | 
 |  | 
 | static void __devinit ace_copy(struct ace_regs __iomem *regs, void *src, | 
 | 			    u32 dest, int size) | 
 | { | 
 | 	void __iomem *tdest; | 
 | 	u32 *wsrc; | 
 | 	short tsize, i; | 
 |  | 
 | 	if (size <= 0) | 
 | 		return; | 
 |  | 
 | 	while (size > 0) { | 
 | 		tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), | 
 | 			    min_t(u32, size, ACE_WINDOW_SIZE)); | 
 | 		tdest = (void __iomem *) ®s->Window + | 
 | 			(dest & (ACE_WINDOW_SIZE - 1)); | 
 | 		writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); | 
 | 		/* | 
 | 		 * This requires byte swapping on big endian, however | 
 | 		 * writel does that for us | 
 | 		 */ | 
 | 		wsrc = src; | 
 | 		for (i = 0; i < (tsize / 4); i++) { | 
 | 			writel(wsrc[i], tdest + i*4); | 
 | 		} | 
 | 		dest += tsize; | 
 | 		src += tsize; | 
 | 		size -= tsize; | 
 | 	} | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 |  | 
 | static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size) | 
 | { | 
 | 	void __iomem *tdest; | 
 | 	short tsize = 0, i; | 
 |  | 
 | 	if (size <= 0) | 
 | 		return; | 
 |  | 
 | 	while (size > 0) { | 
 | 		tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), | 
 | 				min_t(u32, size, ACE_WINDOW_SIZE)); | 
 | 		tdest = (void __iomem *) ®s->Window + | 
 | 			(dest & (ACE_WINDOW_SIZE - 1)); | 
 | 		writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); | 
 |  | 
 | 		for (i = 0; i < (tsize / 4); i++) { | 
 | 			writel(0, tdest + i*4); | 
 | 		} | 
 |  | 
 | 		dest += tsize; | 
 | 		size -= tsize; | 
 | 	} | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Download the firmware into the SRAM on the NIC | 
 |  * | 
 |  * This operation requires the NIC to be halted and is performed with | 
 |  * interrupts disabled and with the spinlock hold. | 
 |  */ | 
 | static int __devinit ace_load_firmware(struct net_device *dev) | 
 | { | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 	struct ace_regs __iomem *regs = ap->regs; | 
 |  | 
 | 	if (!(readl(®s->CpuCtrl) & CPU_HALTED)) { | 
 | 		printk(KERN_ERR "%s: trying to download firmware while the " | 
 | 		       "CPU is running!\n", ap->name); | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Do not try to clear more than 512KB or we end up seeing | 
 | 	 * funny things on NICs with only 512KB SRAM | 
 | 	 */ | 
 | 	ace_clear(regs, 0x2000, 0x80000-0x2000); | 
 | 	if (ACE_IS_TIGON_I(ap)) { | 
 | 		ace_copy(regs, tigonFwText, tigonFwTextAddr, tigonFwTextLen); | 
 | 		ace_copy(regs, tigonFwData, tigonFwDataAddr, tigonFwDataLen); | 
 | 		ace_copy(regs, tigonFwRodata, tigonFwRodataAddr, | 
 | 			 tigonFwRodataLen); | 
 | 		ace_clear(regs, tigonFwBssAddr, tigonFwBssLen); | 
 | 		ace_clear(regs, tigonFwSbssAddr, tigonFwSbssLen); | 
 | 	}else if (ap->version == 2) { | 
 | 		ace_clear(regs, tigon2FwBssAddr, tigon2FwBssLen); | 
 | 		ace_clear(regs, tigon2FwSbssAddr, tigon2FwSbssLen); | 
 | 		ace_copy(regs, tigon2FwText, tigon2FwTextAddr,tigon2FwTextLen); | 
 | 		ace_copy(regs, tigon2FwRodata, tigon2FwRodataAddr, | 
 | 			 tigon2FwRodataLen); | 
 | 		ace_copy(regs, tigon2FwData, tigon2FwDataAddr,tigon2FwDataLen); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * The eeprom on the AceNIC is an Atmel i2c EEPROM. | 
 |  * | 
 |  * Accessing the EEPROM is `interesting' to say the least - don't read | 
 |  * this code right after dinner. | 
 |  * | 
 |  * This is all about black magic and bit-banging the device .... I | 
 |  * wonder in what hospital they have put the guy who designed the i2c | 
 |  * specs. | 
 |  * | 
 |  * Oh yes, this is only the beginning! | 
 |  * | 
 |  * Thanks to Stevarino Webinski for helping tracking down the bugs in the | 
 |  * code i2c readout code by beta testing all my hacks. | 
 |  */ | 
 | static void __devinit eeprom_start(struct ace_regs __iomem *regs) | 
 | { | 
 | 	u32 local; | 
 |  | 
 | 	readl(®s->LocalCtrl); | 
 | 	udelay(ACE_SHORT_DELAY); | 
 | 	local = readl(®s->LocalCtrl); | 
 | 	local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE; | 
 | 	writel(local, ®s->LocalCtrl); | 
 | 	readl(®s->LocalCtrl); | 
 | 	mb(); | 
 | 	udelay(ACE_SHORT_DELAY); | 
 | 	local |= EEPROM_CLK_OUT; | 
 | 	writel(local, ®s->LocalCtrl); | 
 | 	readl(®s->LocalCtrl); | 
 | 	mb(); | 
 | 	udelay(ACE_SHORT_DELAY); | 
 | 	local &= ~EEPROM_DATA_OUT; | 
 | 	writel(local, ®s->LocalCtrl); | 
 | 	readl(®s->LocalCtrl); | 
 | 	mb(); | 
 | 	udelay(ACE_SHORT_DELAY); | 
 | 	local &= ~EEPROM_CLK_OUT; | 
 | 	writel(local, ®s->LocalCtrl); | 
 | 	readl(®s->LocalCtrl); | 
 | 	mb(); | 
 | } | 
 |  | 
 |  | 
 | static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic) | 
 | { | 
 | 	short i; | 
 | 	u32 local; | 
 |  | 
 | 	udelay(ACE_SHORT_DELAY); | 
 | 	local = readl(®s->LocalCtrl); | 
 | 	local &= ~EEPROM_DATA_OUT; | 
 | 	local |= EEPROM_WRITE_ENABLE; | 
 | 	writel(local, ®s->LocalCtrl); | 
 | 	readl(®s->LocalCtrl); | 
 | 	mb(); | 
 |  | 
 | 	for (i = 0; i < 8; i++, magic <<= 1) { | 
 | 		udelay(ACE_SHORT_DELAY); | 
 | 		if (magic & 0x80) | 
 | 			local |= EEPROM_DATA_OUT; | 
 | 		else | 
 | 			local &= ~EEPROM_DATA_OUT; | 
 | 		writel(local, ®s->LocalCtrl); | 
 | 		readl(®s->LocalCtrl); | 
 | 		mb(); | 
 |  | 
 | 		udelay(ACE_SHORT_DELAY); | 
 | 		local |= EEPROM_CLK_OUT; | 
 | 		writel(local, ®s->LocalCtrl); | 
 | 		readl(®s->LocalCtrl); | 
 | 		mb(); | 
 | 		udelay(ACE_SHORT_DELAY); | 
 | 		local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT); | 
 | 		writel(local, ®s->LocalCtrl); | 
 | 		readl(®s->LocalCtrl); | 
 | 		mb(); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs) | 
 | { | 
 | 	int state; | 
 | 	u32 local; | 
 |  | 
 | 	local = readl(®s->LocalCtrl); | 
 | 	local &= ~EEPROM_WRITE_ENABLE; | 
 | 	writel(local, ®s->LocalCtrl); | 
 | 	readl(®s->LocalCtrl); | 
 | 	mb(); | 
 | 	udelay(ACE_LONG_DELAY); | 
 | 	local |= EEPROM_CLK_OUT; | 
 | 	writel(local, ®s->LocalCtrl); | 
 | 	readl(®s->LocalCtrl); | 
 | 	mb(); | 
 | 	udelay(ACE_SHORT_DELAY); | 
 | 	/* sample data in middle of high clk */ | 
 | 	state = (readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0; | 
 | 	udelay(ACE_SHORT_DELAY); | 
 | 	mb(); | 
 | 	writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); | 
 | 	readl(®s->LocalCtrl); | 
 | 	mb(); | 
 |  | 
 | 	return state; | 
 | } | 
 |  | 
 |  | 
 | static void __devinit eeprom_stop(struct ace_regs __iomem *regs) | 
 | { | 
 | 	u32 local; | 
 |  | 
 | 	udelay(ACE_SHORT_DELAY); | 
 | 	local = readl(®s->LocalCtrl); | 
 | 	local |= EEPROM_WRITE_ENABLE; | 
 | 	writel(local, ®s->LocalCtrl); | 
 | 	readl(®s->LocalCtrl); | 
 | 	mb(); | 
 | 	udelay(ACE_SHORT_DELAY); | 
 | 	local &= ~EEPROM_DATA_OUT; | 
 | 	writel(local, ®s->LocalCtrl); | 
 | 	readl(®s->LocalCtrl); | 
 | 	mb(); | 
 | 	udelay(ACE_SHORT_DELAY); | 
 | 	local |= EEPROM_CLK_OUT; | 
 | 	writel(local, ®s->LocalCtrl); | 
 | 	readl(®s->LocalCtrl); | 
 | 	mb(); | 
 | 	udelay(ACE_SHORT_DELAY); | 
 | 	local |= EEPROM_DATA_OUT; | 
 | 	writel(local, ®s->LocalCtrl); | 
 | 	readl(®s->LocalCtrl); | 
 | 	mb(); | 
 | 	udelay(ACE_LONG_DELAY); | 
 | 	local &= ~EEPROM_CLK_OUT; | 
 | 	writel(local, ®s->LocalCtrl); | 
 | 	mb(); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Read a whole byte from the EEPROM. | 
 |  */ | 
 | static int __devinit read_eeprom_byte(struct net_device *dev, | 
 | 				   unsigned long offset) | 
 | { | 
 | 	struct ace_private *ap = netdev_priv(dev); | 
 | 	struct ace_regs __iomem *regs = ap->regs; | 
 | 	unsigned long flags; | 
 | 	u32 local; | 
 | 	int result = 0; | 
 | 	short i; | 
 |  | 
 | 	/* | 
 | 	 * Don't take interrupts on this CPU will bit banging | 
 | 	 * the %#%#@$ I2C device | 
 | 	 */ | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	eeprom_start(regs); | 
 |  | 
 | 	eeprom_prep(regs, EEPROM_WRITE_SELECT); | 
 | 	if (eeprom_check_ack(regs)) { | 
 | 		local_irq_restore(flags); | 
 | 		printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name); | 
 | 		result = -EIO; | 
 | 		goto eeprom_read_error; | 
 | 	} | 
 |  | 
 | 	eeprom_prep(regs, (offset >> 8) & 0xff); | 
 | 	if (eeprom_check_ack(regs)) { | 
 | 		local_irq_restore(flags); | 
 | 		printk(KERN_ERR "%s: Unable to set address byte 0\n", | 
 | 		       ap->name); | 
 | 		result = -EIO; | 
 | 		goto eeprom_read_error; | 
 | 	} | 
 |  | 
 | 	eeprom_prep(regs, offset & 0xff); | 
 | 	if (eeprom_check_ack(regs)) { | 
 | 		local_irq_restore(flags); | 
 | 		printk(KERN_ERR "%s: Unable to set address byte 1\n", | 
 | 		       ap->name); | 
 | 		result = -EIO; | 
 | 		goto eeprom_read_error; | 
 | 	} | 
 |  | 
 | 	eeprom_start(regs); | 
 | 	eeprom_prep(regs, EEPROM_READ_SELECT); | 
 | 	if (eeprom_check_ack(regs)) { | 
 | 		local_irq_restore(flags); | 
 | 		printk(KERN_ERR "%s: Unable to set READ_SELECT\n", | 
 | 		       ap->name); | 
 | 		result = -EIO; | 
 | 		goto eeprom_read_error; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < 8; i++) { | 
 | 		local = readl(®s->LocalCtrl); | 
 | 		local &= ~EEPROM_WRITE_ENABLE; | 
 | 		writel(local, ®s->LocalCtrl); | 
 | 		readl(®s->LocalCtrl); | 
 | 		udelay(ACE_LONG_DELAY); | 
 | 		mb(); | 
 | 		local |= EEPROM_CLK_OUT; | 
 | 		writel(local, ®s->LocalCtrl); | 
 | 		readl(®s->LocalCtrl); | 
 | 		mb(); | 
 | 		udelay(ACE_SHORT_DELAY); | 
 | 		/* sample data mid high clk */ | 
 | 		result = (result << 1) | | 
 | 			((readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0); | 
 | 		udelay(ACE_SHORT_DELAY); | 
 | 		mb(); | 
 | 		local = readl(®s->LocalCtrl); | 
 | 		local &= ~EEPROM_CLK_OUT; | 
 | 		writel(local, ®s->LocalCtrl); | 
 | 		readl(®s->LocalCtrl); | 
 | 		udelay(ACE_SHORT_DELAY); | 
 | 		mb(); | 
 | 		if (i == 7) { | 
 | 			local |= EEPROM_WRITE_ENABLE; | 
 | 			writel(local, ®s->LocalCtrl); | 
 | 			readl(®s->LocalCtrl); | 
 | 			mb(); | 
 | 			udelay(ACE_SHORT_DELAY); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	local |= EEPROM_DATA_OUT; | 
 | 	writel(local, ®s->LocalCtrl); | 
 | 	readl(®s->LocalCtrl); | 
 | 	mb(); | 
 | 	udelay(ACE_SHORT_DELAY); | 
 | 	writel(readl(®s->LocalCtrl) | EEPROM_CLK_OUT, ®s->LocalCtrl); | 
 | 	readl(®s->LocalCtrl); | 
 | 	udelay(ACE_LONG_DELAY); | 
 | 	writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); | 
 | 	readl(®s->LocalCtrl); | 
 | 	mb(); | 
 | 	udelay(ACE_SHORT_DELAY); | 
 | 	eeprom_stop(regs); | 
 |  | 
 | 	local_irq_restore(flags); | 
 |  out: | 
 | 	return result; | 
 |  | 
 |  eeprom_read_error: | 
 | 	printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n", | 
 | 	       ap->name, offset); | 
 | 	goto out; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Local variables: | 
 |  * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h   -c -o acenic.o acenic.c" | 
 |  * End: | 
 |  */ |