| /******************************************************************************* | 
 |  | 
 |   Copyright(c) 2006 Tundra Semiconductor Corporation. | 
 |  | 
 |   This program is free software; you can redistribute it and/or modify it | 
 |   under the terms of the GNU General Public License as published by the Free | 
 |   Software Foundation; either version 2 of the License, or (at your option) | 
 |   any later version. | 
 |  | 
 |   This program is distributed in the hope that it will be useful, but WITHOUT | 
 |   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |   more details. | 
 |  | 
 |   You should have received a copy of the GNU General Public License along with | 
 |   this program; if not, write to the Free Software Foundation, Inc., 59 | 
 |   Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
 |  | 
 | *******************************************************************************/ | 
 |  | 
 | /* This driver is based on the driver code originally developed | 
 |  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by | 
 |  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation | 
 |  * | 
 |  * Currently changes from original version are: | 
 |  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com) | 
 |  * - modifications to handle two ports independently and support for | 
 |  *   additional PHY devices (alexandre.bounine@tundra.com) | 
 |  * - Get hardware information from platform device. (tie-fei.zang@freescale.com) | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/types.h> | 
 | #include <linux/init.h> | 
 | #include <linux/net.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/crc32.h> | 
 | #include <linux/mii.h> | 
 | #include <linux/device.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/rtnetlink.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/platform_device.h> | 
 |  | 
 | #include <asm/system.h> | 
 | #include <asm/io.h> | 
 | #include <asm/tsi108.h> | 
 |  | 
 | #include "tsi108_eth.h" | 
 |  | 
 | #define MII_READ_DELAY 10000	/* max link wait time in msec */ | 
 |  | 
 | #define TSI108_RXRING_LEN     256 | 
 |  | 
 | /* NOTE: The driver currently does not support receiving packets | 
 |  * larger than the buffer size, so don't decrease this (unless you | 
 |  * want to add such support). | 
 |  */ | 
 | #define TSI108_RXBUF_SIZE     1536 | 
 |  | 
 | #define TSI108_TXRING_LEN     256 | 
 |  | 
 | #define TSI108_TX_INT_FREQ    64 | 
 |  | 
 | /* Check the phy status every half a second. */ | 
 | #define CHECK_PHY_INTERVAL (HZ/2) | 
 |  | 
 | static int tsi108_init_one(struct platform_device *pdev); | 
 | static int tsi108_ether_remove(struct platform_device *pdev); | 
 |  | 
 | struct tsi108_prv_data { | 
 | 	void  __iomem *regs;	/* Base of normal regs */ | 
 | 	void  __iomem *phyregs;	/* Base of register bank used for PHY access */ | 
 |  | 
 | 	struct net_device *dev; | 
 | 	struct napi_struct napi; | 
 |  | 
 | 	unsigned int phy;		/* Index of PHY for this interface */ | 
 | 	unsigned int irq_num; | 
 | 	unsigned int id; | 
 | 	unsigned int phy_type; | 
 |  | 
 | 	struct timer_list timer;/* Timer that triggers the check phy function */ | 
 | 	unsigned int rxtail;	/* Next entry in rxring to read */ | 
 | 	unsigned int rxhead;	/* Next entry in rxring to give a new buffer */ | 
 | 	unsigned int rxfree;	/* Number of free, allocated RX buffers */ | 
 |  | 
 | 	unsigned int rxpending;	/* Non-zero if there are still descriptors | 
 | 				 * to be processed from a previous descriptor | 
 | 				 * interrupt condition that has been cleared */ | 
 |  | 
 | 	unsigned int txtail;	/* Next TX descriptor to check status on */ | 
 | 	unsigned int txhead;	/* Next TX descriptor to use */ | 
 |  | 
 | 	/* Number of free TX descriptors.  This could be calculated from | 
 | 	 * rxhead and rxtail if one descriptor were left unused to disambiguate | 
 | 	 * full and empty conditions, but it's simpler to just keep track | 
 | 	 * explicitly. */ | 
 |  | 
 | 	unsigned int txfree; | 
 |  | 
 | 	unsigned int phy_ok;		/* The PHY is currently powered on. */ | 
 |  | 
 | 	/* PHY status (duplex is 1 for half, 2 for full, | 
 | 	 * so that the default 0 indicates that neither has | 
 | 	 * yet been configured). */ | 
 |  | 
 | 	unsigned int link_up; | 
 | 	unsigned int speed; | 
 | 	unsigned int duplex; | 
 |  | 
 | 	tx_desc *txring; | 
 | 	rx_desc *rxring; | 
 | 	struct sk_buff *txskbs[TSI108_TXRING_LEN]; | 
 | 	struct sk_buff *rxskbs[TSI108_RXRING_LEN]; | 
 |  | 
 | 	dma_addr_t txdma, rxdma; | 
 |  | 
 | 	/* txlock nests in misclock and phy_lock */ | 
 |  | 
 | 	spinlock_t txlock, misclock; | 
 |  | 
 | 	/* stats is used to hold the upper bits of each hardware counter, | 
 | 	 * and tmpstats is used to hold the full values for returning | 
 | 	 * to the caller of get_stats().  They must be separate in case | 
 | 	 * an overflow interrupt occurs before the stats are consumed. | 
 | 	 */ | 
 |  | 
 | 	struct net_device_stats stats; | 
 | 	struct net_device_stats tmpstats; | 
 |  | 
 | 	/* These stats are kept separate in hardware, thus require individual | 
 | 	 * fields for handling carry.  They are combined in get_stats. | 
 | 	 */ | 
 |  | 
 | 	unsigned long rx_fcs;	/* Add to rx_frame_errors */ | 
 | 	unsigned long rx_short_fcs;	/* Add to rx_frame_errors */ | 
 | 	unsigned long rx_long_fcs;	/* Add to rx_frame_errors */ | 
 | 	unsigned long rx_underruns;	/* Add to rx_length_errors */ | 
 | 	unsigned long rx_overruns;	/* Add to rx_length_errors */ | 
 |  | 
 | 	unsigned long tx_coll_abort;	/* Add to tx_aborted_errors/collisions */ | 
 | 	unsigned long tx_pause_drop;	/* Add to tx_aborted_errors */ | 
 |  | 
 | 	unsigned long mc_hash[16]; | 
 | 	u32 msg_enable;			/* debug message level */ | 
 | 	struct mii_if_info mii_if; | 
 | 	unsigned int init_media; | 
 | }; | 
 |  | 
 | /* Structure for a device driver */ | 
 |  | 
 | static struct platform_driver tsi_eth_driver = { | 
 | 	.probe = tsi108_init_one, | 
 | 	.remove = tsi108_ether_remove, | 
 | 	.driver	= { | 
 | 		.name = "tsi-ethernet", | 
 | 	}, | 
 | }; | 
 |  | 
 | static void tsi108_timed_checker(unsigned long dev_ptr); | 
 |  | 
 | static void dump_eth_one(struct net_device *dev) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 |  | 
 | 	printk("Dumping %s...\n", dev->name); | 
 | 	printk("intstat %x intmask %x phy_ok %d" | 
 | 	       " link %d speed %d duplex %d\n", | 
 | 	       TSI_READ(TSI108_EC_INTSTAT), | 
 | 	       TSI_READ(TSI108_EC_INTMASK), data->phy_ok, | 
 | 	       data->link_up, data->speed, data->duplex); | 
 |  | 
 | 	printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n", | 
 | 	       data->txhead, data->txtail, data->txfree, | 
 | 	       TSI_READ(TSI108_EC_TXSTAT), | 
 | 	       TSI_READ(TSI108_EC_TXESTAT), | 
 | 	       TSI_READ(TSI108_EC_TXERR)); | 
 |  | 
 | 	printk("RX: head %d, tail %d, free %d, stat %x," | 
 | 	       " estat %x, err %x, pending %d\n\n", | 
 | 	       data->rxhead, data->rxtail, data->rxfree, | 
 | 	       TSI_READ(TSI108_EC_RXSTAT), | 
 | 	       TSI_READ(TSI108_EC_RXESTAT), | 
 | 	       TSI_READ(TSI108_EC_RXERR), data->rxpending); | 
 | } | 
 |  | 
 | /* Synchronization is needed between the thread and up/down events. | 
 |  * Note that the PHY is accessed through the same registers for both | 
 |  * interfaces, so this can't be made interface-specific. | 
 |  */ | 
 |  | 
 | static DEFINE_SPINLOCK(phy_lock); | 
 |  | 
 | static int tsi108_read_mii(struct tsi108_prv_data *data, int reg) | 
 | { | 
 | 	unsigned i; | 
 |  | 
 | 	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR, | 
 | 				(data->phy << TSI108_MAC_MII_ADDR_PHY) | | 
 | 				(reg << TSI108_MAC_MII_ADDR_REG)); | 
 | 	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0); | 
 | 	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ); | 
 | 	for (i = 0; i < 100; i++) { | 
 | 		if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) & | 
 | 		      (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY))) | 
 | 			break; | 
 | 		udelay(10); | 
 | 	} | 
 |  | 
 | 	if (i == 100) | 
 | 		return 0xffff; | 
 | 	else | 
 | 		return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN)); | 
 | } | 
 |  | 
 | static void tsi108_write_mii(struct tsi108_prv_data *data, | 
 | 				int reg, u16 val) | 
 | { | 
 | 	unsigned i = 100; | 
 | 	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR, | 
 | 				(data->phy << TSI108_MAC_MII_ADDR_PHY) | | 
 | 				(reg << TSI108_MAC_MII_ADDR_REG)); | 
 | 	TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val); | 
 | 	while (i--) { | 
 | 		if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) & | 
 | 			TSI108_MAC_MII_IND_BUSY)) | 
 | 			break; | 
 | 		udelay(10); | 
 | 	} | 
 | } | 
 |  | 
 | static int tsi108_mdio_read(struct net_device *dev, int addr, int reg) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 | 	return tsi108_read_mii(data, reg); | 
 | } | 
 |  | 
 | static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 | 	tsi108_write_mii(data, reg, val); | 
 | } | 
 |  | 
 | static inline void tsi108_write_tbi(struct tsi108_prv_data *data, | 
 | 					int reg, u16 val) | 
 | { | 
 | 	unsigned i = 1000; | 
 | 	TSI_WRITE(TSI108_MAC_MII_ADDR, | 
 | 			     (0x1e << TSI108_MAC_MII_ADDR_PHY) | 
 | 			     | (reg << TSI108_MAC_MII_ADDR_REG)); | 
 | 	TSI_WRITE(TSI108_MAC_MII_DATAOUT, val); | 
 | 	while(i--) { | 
 | 		if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY)) | 
 | 			return; | 
 | 		udelay(10); | 
 | 	} | 
 | 	printk(KERN_ERR "%s function time out \n", __FUNCTION__); | 
 | } | 
 |  | 
 | static int mii_speed(struct mii_if_info *mii) | 
 | { | 
 | 	int advert, lpa, val, media; | 
 | 	int lpa2 = 0; | 
 | 	int speed; | 
 |  | 
 | 	if (!mii_link_ok(mii)) | 
 | 		return 0; | 
 |  | 
 | 	val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR); | 
 | 	if ((val & BMSR_ANEGCOMPLETE) == 0) | 
 | 		return 0; | 
 |  | 
 | 	advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE); | 
 | 	lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA); | 
 | 	media = mii_nway_result(advert & lpa); | 
 |  | 
 | 	if (mii->supports_gmii) | 
 | 		lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000); | 
 |  | 
 | 	speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 : | 
 | 			(media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10); | 
 | 	return speed; | 
 | } | 
 |  | 
 | static void tsi108_check_phy(struct net_device *dev) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 | 	u32 mac_cfg2_reg, portctrl_reg; | 
 | 	u32 duplex; | 
 | 	u32 speed; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* Do a dummy read, as for some reason the first read | 
 | 	 * after a link becomes up returns link down, even if | 
 | 	 * it's been a while since the link came up. | 
 | 	 */ | 
 |  | 
 | 	spin_lock_irqsave(&phy_lock, flags); | 
 |  | 
 | 	if (!data->phy_ok) | 
 | 		goto out; | 
 |  | 
 | 	tsi108_read_mii(data, MII_BMSR); | 
 |  | 
 | 	duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media); | 
 | 	data->init_media = 0; | 
 |  | 
 | 	if (netif_carrier_ok(dev)) { | 
 |  | 
 | 		speed = mii_speed(&data->mii_if); | 
 |  | 
 | 		if ((speed != data->speed) || duplex) { | 
 |  | 
 | 			mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2); | 
 | 			portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL); | 
 |  | 
 | 			mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK; | 
 |  | 
 | 			if (speed == 1000) { | 
 | 				mac_cfg2_reg |= TSI108_MAC_CFG2_GIG; | 
 | 				portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG; | 
 | 			} else { | 
 | 				mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG; | 
 | 				portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG; | 
 | 			} | 
 |  | 
 | 			data->speed = speed; | 
 |  | 
 | 			if (data->mii_if.full_duplex) { | 
 | 				mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX; | 
 | 				portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX; | 
 | 				data->duplex = 2; | 
 | 			} else { | 
 | 				mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX; | 
 | 				portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX; | 
 | 				data->duplex = 1; | 
 | 			} | 
 |  | 
 | 			TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg); | 
 | 			TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg); | 
 |  | 
 | 			if (data->link_up == 0) { | 
 | 				/* The manual says it can take 3-4 usecs for the speed change | 
 | 				 * to take effect. | 
 | 				 */ | 
 | 				udelay(5); | 
 |  | 
 | 				spin_lock(&data->txlock); | 
 | 				if (is_valid_ether_addr(dev->dev_addr) && data->txfree) | 
 | 					netif_wake_queue(dev); | 
 |  | 
 | 				data->link_up = 1; | 
 | 				spin_unlock(&data->txlock); | 
 | 			} | 
 | 		} | 
 |  | 
 | 	} else { | 
 | 		if (data->link_up == 1) { | 
 | 			netif_stop_queue(dev); | 
 | 			data->link_up = 0; | 
 | 			printk(KERN_NOTICE "%s : link is down\n", dev->name); | 
 | 		} | 
 |  | 
 | 		goto out; | 
 | 	} | 
 |  | 
 |  | 
 | out: | 
 | 	spin_unlock_irqrestore(&phy_lock, flags); | 
 | } | 
 |  | 
 | static inline void | 
 | tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift, | 
 | 		      unsigned long *upper) | 
 | { | 
 | 	if (carry & carry_bit) | 
 | 		*upper += carry_shift; | 
 | } | 
 |  | 
 | static void tsi108_stat_carry(struct net_device *dev) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 | 	u32 carry1, carry2; | 
 |  | 
 | 	spin_lock_irq(&data->misclock); | 
 |  | 
 | 	carry1 = TSI_READ(TSI108_STAT_CARRY1); | 
 | 	carry2 = TSI_READ(TSI108_STAT_CARRY2); | 
 |  | 
 | 	TSI_WRITE(TSI108_STAT_CARRY1, carry1); | 
 | 	TSI_WRITE(TSI108_STAT_CARRY2, carry2); | 
 |  | 
 | 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES, | 
 | 			      TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes); | 
 |  | 
 | 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS, | 
 | 			      TSI108_STAT_RXPKTS_CARRY, | 
 | 			      &data->stats.rx_packets); | 
 |  | 
 | 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS, | 
 | 			      TSI108_STAT_RXFCS_CARRY, &data->rx_fcs); | 
 |  | 
 | 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST, | 
 | 			      TSI108_STAT_RXMCAST_CARRY, | 
 | 			      &data->stats.multicast); | 
 |  | 
 | 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN, | 
 | 			      TSI108_STAT_RXALIGN_CARRY, | 
 | 			      &data->stats.rx_frame_errors); | 
 |  | 
 | 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH, | 
 | 			      TSI108_STAT_RXLENGTH_CARRY, | 
 | 			      &data->stats.rx_length_errors); | 
 |  | 
 | 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT, | 
 | 			      TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns); | 
 |  | 
 | 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO, | 
 | 			      TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns); | 
 |  | 
 | 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG, | 
 | 			      TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs); | 
 |  | 
 | 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER, | 
 | 			      TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs); | 
 |  | 
 | 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP, | 
 | 			      TSI108_STAT_RXDROP_CARRY, | 
 | 			      &data->stats.rx_missed_errors); | 
 |  | 
 | 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES, | 
 | 			      TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes); | 
 |  | 
 | 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS, | 
 | 			      TSI108_STAT_TXPKTS_CARRY, | 
 | 			      &data->stats.tx_packets); | 
 |  | 
 | 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF, | 
 | 			      TSI108_STAT_TXEXDEF_CARRY, | 
 | 			      &data->stats.tx_aborted_errors); | 
 |  | 
 | 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL, | 
 | 			      TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort); | 
 |  | 
 | 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL, | 
 | 			      TSI108_STAT_TXTCOL_CARRY, | 
 | 			      &data->stats.collisions); | 
 |  | 
 | 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE, | 
 | 			      TSI108_STAT_TXPAUSEDROP_CARRY, | 
 | 			      &data->tx_pause_drop); | 
 |  | 
 | 	spin_unlock_irq(&data->misclock); | 
 | } | 
 |  | 
 | /* Read a stat counter atomically with respect to carries. | 
 |  * data->misclock must be held. | 
 |  */ | 
 | static inline unsigned long | 
 | tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit, | 
 | 		 int carry_shift, unsigned long *upper) | 
 | { | 
 | 	int carryreg; | 
 | 	unsigned long val; | 
 |  | 
 | 	if (reg < 0xb0) | 
 | 		carryreg = TSI108_STAT_CARRY1; | 
 | 	else | 
 | 		carryreg = TSI108_STAT_CARRY2; | 
 |  | 
 |       again: | 
 | 	val = TSI_READ(reg) | *upper; | 
 |  | 
 | 	/* Check to see if it overflowed, but the interrupt hasn't | 
 | 	 * been serviced yet.  If so, handle the carry here, and | 
 | 	 * try again. | 
 | 	 */ | 
 |  | 
 | 	if (unlikely(TSI_READ(carryreg) & carry_bit)) { | 
 | 		*upper += carry_shift; | 
 | 		TSI_WRITE(carryreg, carry_bit); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | static struct net_device_stats *tsi108_get_stats(struct net_device *dev) | 
 | { | 
 | 	unsigned long excol; | 
 |  | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 | 	spin_lock_irq(&data->misclock); | 
 |  | 
 | 	data->tmpstats.rx_packets = | 
 | 	    tsi108_read_stat(data, TSI108_STAT_RXPKTS, | 
 | 			     TSI108_STAT_CARRY1_RXPKTS, | 
 | 			     TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets); | 
 |  | 
 | 	data->tmpstats.tx_packets = | 
 | 	    tsi108_read_stat(data, TSI108_STAT_TXPKTS, | 
 | 			     TSI108_STAT_CARRY2_TXPKTS, | 
 | 			     TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets); | 
 |  | 
 | 	data->tmpstats.rx_bytes = | 
 | 	    tsi108_read_stat(data, TSI108_STAT_RXBYTES, | 
 | 			     TSI108_STAT_CARRY1_RXBYTES, | 
 | 			     TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes); | 
 |  | 
 | 	data->tmpstats.tx_bytes = | 
 | 	    tsi108_read_stat(data, TSI108_STAT_TXBYTES, | 
 | 			     TSI108_STAT_CARRY2_TXBYTES, | 
 | 			     TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes); | 
 |  | 
 | 	data->tmpstats.multicast = | 
 | 	    tsi108_read_stat(data, TSI108_STAT_RXMCAST, | 
 | 			     TSI108_STAT_CARRY1_RXMCAST, | 
 | 			     TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast); | 
 |  | 
 | 	excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL, | 
 | 				 TSI108_STAT_CARRY2_TXEXCOL, | 
 | 				 TSI108_STAT_TXEXCOL_CARRY, | 
 | 				 &data->tx_coll_abort); | 
 |  | 
 | 	data->tmpstats.collisions = | 
 | 	    tsi108_read_stat(data, TSI108_STAT_TXTCOL, | 
 | 			     TSI108_STAT_CARRY2_TXTCOL, | 
 | 			     TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions); | 
 |  | 
 | 	data->tmpstats.collisions += excol; | 
 |  | 
 | 	data->tmpstats.rx_length_errors = | 
 | 	    tsi108_read_stat(data, TSI108_STAT_RXLENGTH, | 
 | 			     TSI108_STAT_CARRY1_RXLENGTH, | 
 | 			     TSI108_STAT_RXLENGTH_CARRY, | 
 | 			     &data->stats.rx_length_errors); | 
 |  | 
 | 	data->tmpstats.rx_length_errors += | 
 | 	    tsi108_read_stat(data, TSI108_STAT_RXRUNT, | 
 | 			     TSI108_STAT_CARRY1_RXRUNT, | 
 | 			     TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns); | 
 |  | 
 | 	data->tmpstats.rx_length_errors += | 
 | 	    tsi108_read_stat(data, TSI108_STAT_RXJUMBO, | 
 | 			     TSI108_STAT_CARRY1_RXJUMBO, | 
 | 			     TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns); | 
 |  | 
 | 	data->tmpstats.rx_frame_errors = | 
 | 	    tsi108_read_stat(data, TSI108_STAT_RXALIGN, | 
 | 			     TSI108_STAT_CARRY1_RXALIGN, | 
 | 			     TSI108_STAT_RXALIGN_CARRY, | 
 | 			     &data->stats.rx_frame_errors); | 
 |  | 
 | 	data->tmpstats.rx_frame_errors += | 
 | 	    tsi108_read_stat(data, TSI108_STAT_RXFCS, | 
 | 			     TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY, | 
 | 			     &data->rx_fcs); | 
 |  | 
 | 	data->tmpstats.rx_frame_errors += | 
 | 	    tsi108_read_stat(data, TSI108_STAT_RXFRAG, | 
 | 			     TSI108_STAT_CARRY1_RXFRAG, | 
 | 			     TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs); | 
 |  | 
 | 	data->tmpstats.rx_missed_errors = | 
 | 	    tsi108_read_stat(data, TSI108_STAT_RXDROP, | 
 | 			     TSI108_STAT_CARRY1_RXDROP, | 
 | 			     TSI108_STAT_RXDROP_CARRY, | 
 | 			     &data->stats.rx_missed_errors); | 
 |  | 
 | 	/* These three are maintained by software. */ | 
 | 	data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors; | 
 | 	data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors; | 
 |  | 
 | 	data->tmpstats.tx_aborted_errors = | 
 | 	    tsi108_read_stat(data, TSI108_STAT_TXEXDEF, | 
 | 			     TSI108_STAT_CARRY2_TXEXDEF, | 
 | 			     TSI108_STAT_TXEXDEF_CARRY, | 
 | 			     &data->stats.tx_aborted_errors); | 
 |  | 
 | 	data->tmpstats.tx_aborted_errors += | 
 | 	    tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP, | 
 | 			     TSI108_STAT_CARRY2_TXPAUSE, | 
 | 			     TSI108_STAT_TXPAUSEDROP_CARRY, | 
 | 			     &data->tx_pause_drop); | 
 |  | 
 | 	data->tmpstats.tx_aborted_errors += excol; | 
 |  | 
 | 	data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors; | 
 | 	data->tmpstats.rx_errors = data->tmpstats.rx_length_errors + | 
 | 	    data->tmpstats.rx_crc_errors + | 
 | 	    data->tmpstats.rx_frame_errors + | 
 | 	    data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors; | 
 |  | 
 | 	spin_unlock_irq(&data->misclock); | 
 | 	return &data->tmpstats; | 
 | } | 
 |  | 
 | static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev) | 
 | { | 
 | 	TSI_WRITE(TSI108_EC_RXQ_PTRHIGH, | 
 | 			     TSI108_EC_RXQ_PTRHIGH_VALID); | 
 |  | 
 | 	TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO | 
 | 			     | TSI108_EC_RXCTRL_QUEUE0); | 
 | } | 
 |  | 
 | static void tsi108_restart_tx(struct tsi108_prv_data * data) | 
 | { | 
 | 	TSI_WRITE(TSI108_EC_TXQ_PTRHIGH, | 
 | 			     TSI108_EC_TXQ_PTRHIGH_VALID); | 
 |  | 
 | 	TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT | | 
 | 			     TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0); | 
 | } | 
 |  | 
 | /* txlock must be held by caller, with IRQs disabled, and | 
 |  * with permission to re-enable them when the lock is dropped. | 
 |  */ | 
 | static void tsi108_complete_tx(struct net_device *dev) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 | 	int tx; | 
 | 	struct sk_buff *skb; | 
 | 	int release = 0; | 
 |  | 
 | 	while (!data->txfree || data->txhead != data->txtail) { | 
 | 		tx = data->txtail; | 
 |  | 
 | 		if (data->txring[tx].misc & TSI108_TX_OWN) | 
 | 			break; | 
 |  | 
 | 		skb = data->txskbs[tx]; | 
 |  | 
 | 		if (!(data->txring[tx].misc & TSI108_TX_OK)) | 
 | 			printk("%s: bad tx packet, misc %x\n", | 
 | 			       dev->name, data->txring[tx].misc); | 
 |  | 
 | 		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN; | 
 | 		data->txfree++; | 
 |  | 
 | 		if (data->txring[tx].misc & TSI108_TX_EOF) { | 
 | 			dev_kfree_skb_any(skb); | 
 | 			release++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (release) { | 
 | 		if (is_valid_ether_addr(dev->dev_addr) && data->link_up) | 
 | 			netif_wake_queue(dev); | 
 | 	} | 
 | } | 
 |  | 
 | static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 | 	int frags = skb_shinfo(skb)->nr_frags + 1; | 
 | 	int i; | 
 |  | 
 | 	if (!data->phy_ok && net_ratelimit()) | 
 | 		printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name); | 
 |  | 
 | 	if (!data->link_up) { | 
 | 		printk(KERN_ERR "%s: Transmit while link is down!\n", | 
 | 		       dev->name); | 
 | 		netif_stop_queue(dev); | 
 | 		return NETDEV_TX_BUSY; | 
 | 	} | 
 |  | 
 | 	if (data->txfree < MAX_SKB_FRAGS + 1) { | 
 | 		netif_stop_queue(dev); | 
 |  | 
 | 		if (net_ratelimit()) | 
 | 			printk(KERN_ERR "%s: Transmit with full tx ring!\n", | 
 | 			       dev->name); | 
 | 		return NETDEV_TX_BUSY; | 
 | 	} | 
 |  | 
 | 	if (data->txfree - frags < MAX_SKB_FRAGS + 1) { | 
 | 		netif_stop_queue(dev); | 
 | 	} | 
 |  | 
 | 	spin_lock_irq(&data->txlock); | 
 |  | 
 | 	for (i = 0; i < frags; i++) { | 
 | 		int misc = 0; | 
 | 		int tx = data->txhead; | 
 |  | 
 | 		/* This is done to mark every TSI108_TX_INT_FREQ tx buffers with | 
 | 		 * the interrupt bit.  TX descriptor-complete interrupts are | 
 | 		 * enabled when the queue fills up, and masked when there is | 
 | 		 * still free space.  This way, when saturating the outbound | 
 | 		 * link, the tx interrupts are kept to a reasonable level. | 
 | 		 * When the queue is not full, reclamation of skbs still occurs | 
 | 		 * as new packets are transmitted, or on a queue-empty | 
 | 		 * interrupt. | 
 | 		 */ | 
 |  | 
 | 		if ((tx % TSI108_TX_INT_FREQ == 0) && | 
 | 		    ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ)) | 
 | 			misc = TSI108_TX_INT; | 
 |  | 
 | 		data->txskbs[tx] = skb; | 
 |  | 
 | 		if (i == 0) { | 
 | 			data->txring[tx].buf0 = dma_map_single(NULL, skb->data, | 
 | 					skb->len - skb->data_len, DMA_TO_DEVICE); | 
 | 			data->txring[tx].len = skb->len - skb->data_len; | 
 | 			misc |= TSI108_TX_SOF; | 
 | 		} else { | 
 | 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; | 
 |  | 
 | 			data->txring[tx].buf0 = | 
 | 			    dma_map_page(NULL, frag->page, frag->page_offset, | 
 | 					    frag->size, DMA_TO_DEVICE); | 
 | 			data->txring[tx].len = frag->size; | 
 | 		} | 
 |  | 
 | 		if (i == frags - 1) | 
 | 			misc |= TSI108_TX_EOF; | 
 |  | 
 | 		if (netif_msg_pktdata(data)) { | 
 | 			int i; | 
 | 			printk("%s: Tx Frame contents (%d)\n", dev->name, | 
 | 			       skb->len); | 
 | 			for (i = 0; i < skb->len; i++) | 
 | 				printk(" %2.2x", skb->data[i]); | 
 | 			printk(".\n"); | 
 | 		} | 
 | 		data->txring[tx].misc = misc | TSI108_TX_OWN; | 
 |  | 
 | 		data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN; | 
 | 		data->txfree--; | 
 | 	} | 
 |  | 
 | 	tsi108_complete_tx(dev); | 
 |  | 
 | 	/* This must be done after the check for completed tx descriptors, | 
 | 	 * so that the tail pointer is correct. | 
 | 	 */ | 
 |  | 
 | 	if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0)) | 
 | 		tsi108_restart_tx(data); | 
 |  | 
 | 	spin_unlock_irq(&data->txlock); | 
 | 	return NETDEV_TX_OK; | 
 | } | 
 |  | 
 | static int tsi108_complete_rx(struct net_device *dev, int budget) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 | 	int done = 0; | 
 |  | 
 | 	while (data->rxfree && done != budget) { | 
 | 		int rx = data->rxtail; | 
 | 		struct sk_buff *skb; | 
 |  | 
 | 		if (data->rxring[rx].misc & TSI108_RX_OWN) | 
 | 			break; | 
 |  | 
 | 		skb = data->rxskbs[rx]; | 
 | 		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN; | 
 | 		data->rxfree--; | 
 | 		done++; | 
 |  | 
 | 		if (data->rxring[rx].misc & TSI108_RX_BAD) { | 
 | 			spin_lock_irq(&data->misclock); | 
 |  | 
 | 			if (data->rxring[rx].misc & TSI108_RX_CRC) | 
 | 				data->stats.rx_crc_errors++; | 
 | 			if (data->rxring[rx].misc & TSI108_RX_OVER) | 
 | 				data->stats.rx_fifo_errors++; | 
 |  | 
 | 			spin_unlock_irq(&data->misclock); | 
 |  | 
 | 			dev_kfree_skb_any(skb); | 
 | 			continue; | 
 | 		} | 
 | 		if (netif_msg_pktdata(data)) { | 
 | 			int i; | 
 | 			printk("%s: Rx Frame contents (%d)\n", | 
 | 			       dev->name, data->rxring[rx].len); | 
 | 			for (i = 0; i < data->rxring[rx].len; i++) | 
 | 				printk(" %2.2x", skb->data[i]); | 
 | 			printk(".\n"); | 
 | 		} | 
 |  | 
 | 		skb_put(skb, data->rxring[rx].len); | 
 | 		skb->protocol = eth_type_trans(skb, dev); | 
 | 		netif_receive_skb(skb); | 
 | 		dev->last_rx = jiffies; | 
 | 	} | 
 |  | 
 | 	return done; | 
 | } | 
 |  | 
 | static int tsi108_refill_rx(struct net_device *dev, int budget) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 | 	int done = 0; | 
 |  | 
 | 	while (data->rxfree != TSI108_RXRING_LEN && done != budget) { | 
 | 		int rx = data->rxhead; | 
 | 		struct sk_buff *skb; | 
 |  | 
 | 		data->rxskbs[rx] = skb = dev_alloc_skb(TSI108_RXBUF_SIZE + 2); | 
 | 		if (!skb) | 
 | 			break; | 
 |  | 
 | 		skb_reserve(skb, 2); /* Align the data on a 4-byte boundary. */ | 
 |  | 
 | 		data->rxring[rx].buf0 = dma_map_single(NULL, skb->data, | 
 | 							TSI108_RX_SKB_SIZE, | 
 | 							DMA_FROM_DEVICE); | 
 |  | 
 | 		/* Sometimes the hardware sets blen to zero after packet | 
 | 		 * reception, even though the manual says that it's only ever | 
 | 		 * modified by the driver. | 
 | 		 */ | 
 |  | 
 | 		data->rxring[rx].blen = TSI108_RX_SKB_SIZE; | 
 | 		data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT; | 
 |  | 
 | 		data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN; | 
 | 		data->rxfree++; | 
 | 		done++; | 
 | 	} | 
 |  | 
 | 	if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) & | 
 | 			   TSI108_EC_RXSTAT_QUEUE0)) | 
 | 		tsi108_restart_rx(data, dev); | 
 |  | 
 | 	return done; | 
 | } | 
 |  | 
 | static int tsi108_poll(struct napi_struct *napi, int budget) | 
 | { | 
 | 	struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi); | 
 | 	struct net_device *dev = data->dev; | 
 | 	u32 estat = TSI_READ(TSI108_EC_RXESTAT); | 
 | 	u32 intstat = TSI_READ(TSI108_EC_INTSTAT); | 
 | 	int num_received = 0, num_filled = 0; | 
 |  | 
 | 	intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH | | 
 | 	    TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT; | 
 |  | 
 | 	TSI_WRITE(TSI108_EC_RXESTAT, estat); | 
 | 	TSI_WRITE(TSI108_EC_INTSTAT, intstat); | 
 |  | 
 | 	if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT)) | 
 | 		num_received = tsi108_complete_rx(dev, budget); | 
 |  | 
 | 	/* This should normally fill no more slots than the number of | 
 | 	 * packets received in tsi108_complete_rx().  The exception | 
 | 	 * is when we previously ran out of memory for RX SKBs.  In that | 
 | 	 * case, it's helpful to obey the budget, not only so that the | 
 | 	 * CPU isn't hogged, but so that memory (which may still be low) | 
 | 	 * is not hogged by one device. | 
 | 	 * | 
 | 	 * A work unit is considered to be two SKBs to allow us to catch | 
 | 	 * up when the ring has shrunk due to out-of-memory but we're | 
 | 	 * still removing the full budget's worth of packets each time. | 
 | 	 */ | 
 |  | 
 | 	if (data->rxfree < TSI108_RXRING_LEN) | 
 | 		num_filled = tsi108_refill_rx(dev, budget * 2); | 
 |  | 
 | 	if (intstat & TSI108_INT_RXERROR) { | 
 | 		u32 err = TSI_READ(TSI108_EC_RXERR); | 
 | 		TSI_WRITE(TSI108_EC_RXERR, err); | 
 |  | 
 | 		if (err) { | 
 | 			if (net_ratelimit()) | 
 | 				printk(KERN_DEBUG "%s: RX error %x\n", | 
 | 				       dev->name, err); | 
 |  | 
 | 			if (!(TSI_READ(TSI108_EC_RXSTAT) & | 
 | 			      TSI108_EC_RXSTAT_QUEUE0)) | 
 | 				tsi108_restart_rx(data, dev); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (intstat & TSI108_INT_RXOVERRUN) { | 
 | 		spin_lock_irq(&data->misclock); | 
 | 		data->stats.rx_fifo_errors++; | 
 | 		spin_unlock_irq(&data->misclock); | 
 | 	} | 
 |  | 
 | 	if (num_received < budget) { | 
 | 		data->rxpending = 0; | 
 | 		netif_rx_complete(dev, napi); | 
 |  | 
 | 		TSI_WRITE(TSI108_EC_INTMASK, | 
 | 				     TSI_READ(TSI108_EC_INTMASK) | 
 | 				     & ~(TSI108_INT_RXQUEUE0 | 
 | 					 | TSI108_INT_RXTHRESH | | 
 | 					 TSI108_INT_RXOVERRUN | | 
 | 					 TSI108_INT_RXERROR | | 
 | 					 TSI108_INT_RXWAIT)); | 
 | 	} else { | 
 | 		data->rxpending = 1; | 
 | 	} | 
 |  | 
 | 	return num_received; | 
 | } | 
 |  | 
 | static void tsi108_rx_int(struct net_device *dev) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 |  | 
 | 	/* A race could cause dev to already be scheduled, so it's not an | 
 | 	 * error if that happens (and interrupts shouldn't be re-masked, | 
 | 	 * because that can cause harmful races, if poll has already | 
 | 	 * unmasked them but not cleared LINK_STATE_SCHED). | 
 | 	 * | 
 | 	 * This can happen if this code races with tsi108_poll(), which masks | 
 | 	 * the interrupts after tsi108_irq_one() read the mask, but before | 
 | 	 * netif_rx_schedule is called.  It could also happen due to calls | 
 | 	 * from tsi108_check_rxring(). | 
 | 	 */ | 
 |  | 
 | 	if (netif_rx_schedule_prep(dev, &data->napi)) { | 
 | 		/* Mask, rather than ack, the receive interrupts.  The ack | 
 | 		 * will happen in tsi108_poll(). | 
 | 		 */ | 
 |  | 
 | 		TSI_WRITE(TSI108_EC_INTMASK, | 
 | 				     TSI_READ(TSI108_EC_INTMASK) | | 
 | 				     TSI108_INT_RXQUEUE0 | 
 | 				     | TSI108_INT_RXTHRESH | | 
 | 				     TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | | 
 | 				     TSI108_INT_RXWAIT); | 
 | 		__netif_rx_schedule(dev, &data->napi); | 
 | 	} else { | 
 | 		if (!netif_running(dev)) { | 
 | 			/* This can happen if an interrupt occurs while the | 
 | 			 * interface is being brought down, as the START | 
 | 			 * bit is cleared before the stop function is called. | 
 | 			 * | 
 | 			 * In this case, the interrupts must be masked, or | 
 | 			 * they will continue indefinitely. | 
 | 			 * | 
 | 			 * There's a race here if the interface is brought down | 
 | 			 * and then up in rapid succession, as the device could | 
 | 			 * be made running after the above check and before | 
 | 			 * the masking below.  This will only happen if the IRQ | 
 | 			 * thread has a lower priority than the task brining | 
 | 			 * up the interface.  Fixing this race would likely | 
 | 			 * require changes in generic code. | 
 | 			 */ | 
 |  | 
 | 			TSI_WRITE(TSI108_EC_INTMASK, | 
 | 					     TSI_READ | 
 | 					     (TSI108_EC_INTMASK) | | 
 | 					     TSI108_INT_RXQUEUE0 | | 
 | 					     TSI108_INT_RXTHRESH | | 
 | 					     TSI108_INT_RXOVERRUN | | 
 | 					     TSI108_INT_RXERROR | | 
 | 					     TSI108_INT_RXWAIT); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* If the RX ring has run out of memory, try periodically | 
 |  * to allocate some more, as otherwise poll would never | 
 |  * get called (apart from the initial end-of-queue condition). | 
 |  * | 
 |  * This is called once per second (by default) from the thread. | 
 |  */ | 
 |  | 
 | static void tsi108_check_rxring(struct net_device *dev) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 |  | 
 | 	/* A poll is scheduled, as opposed to caling tsi108_refill_rx | 
 | 	 * directly, so as to keep the receive path single-threaded | 
 | 	 * (and thus not needing a lock). | 
 | 	 */ | 
 |  | 
 | 	if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4) | 
 | 		tsi108_rx_int(dev); | 
 | } | 
 |  | 
 | static void tsi108_tx_int(struct net_device *dev) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 | 	u32 estat = TSI_READ(TSI108_EC_TXESTAT); | 
 |  | 
 | 	TSI_WRITE(TSI108_EC_TXESTAT, estat); | 
 | 	TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 | | 
 | 			     TSI108_INT_TXIDLE | TSI108_INT_TXERROR); | 
 | 	if (estat & TSI108_EC_TXESTAT_Q0_ERR) { | 
 | 		u32 err = TSI_READ(TSI108_EC_TXERR); | 
 | 		TSI_WRITE(TSI108_EC_TXERR, err); | 
 |  | 
 | 		if (err && net_ratelimit()) | 
 | 			printk(KERN_ERR "%s: TX error %x\n", dev->name, err); | 
 | 	} | 
 |  | 
 | 	if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) { | 
 | 		spin_lock(&data->txlock); | 
 | 		tsi108_complete_tx(dev); | 
 | 		spin_unlock(&data->txlock); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static irqreturn_t tsi108_irq(int irq, void *dev_id) | 
 | { | 
 | 	struct net_device *dev = dev_id; | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 | 	u32 stat = TSI_READ(TSI108_EC_INTSTAT); | 
 |  | 
 | 	if (!(stat & TSI108_INT_ANY)) | 
 | 		return IRQ_NONE;	/* Not our interrupt */ | 
 |  | 
 | 	stat &= ~TSI_READ(TSI108_EC_INTMASK); | 
 |  | 
 | 	if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE | | 
 | 		    TSI108_INT_TXERROR)) | 
 | 		tsi108_tx_int(dev); | 
 | 	if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH | | 
 | 		    TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN | | 
 | 		    TSI108_INT_RXERROR)) | 
 | 		tsi108_rx_int(dev); | 
 |  | 
 | 	if (stat & TSI108_INT_SFN) { | 
 | 		if (net_ratelimit()) | 
 | 			printk(KERN_DEBUG "%s: SFN error\n", dev->name); | 
 | 		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN); | 
 | 	} | 
 |  | 
 | 	if (stat & TSI108_INT_STATCARRY) { | 
 | 		tsi108_stat_carry(dev); | 
 | 		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY); | 
 | 	} | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static void tsi108_stop_ethernet(struct net_device *dev) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 | 	int i = 1000; | 
 | 	/* Disable all TX and RX queues ... */ | 
 | 	TSI_WRITE(TSI108_EC_TXCTRL, 0); | 
 | 	TSI_WRITE(TSI108_EC_RXCTRL, 0); | 
 |  | 
 | 	/* ...and wait for them to become idle */ | 
 | 	while(i--) { | 
 | 		if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE)) | 
 | 			break; | 
 | 		udelay(10); | 
 | 	} | 
 | 	i = 1000; | 
 | 	while(i--){ | 
 | 		if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE)) | 
 | 			return; | 
 | 		udelay(10); | 
 | 	} | 
 | 	printk(KERN_ERR "%s function time out \n", __FUNCTION__); | 
 | } | 
 |  | 
 | static void tsi108_reset_ether(struct tsi108_prv_data * data) | 
 | { | 
 | 	TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST); | 
 | 	udelay(100); | 
 | 	TSI_WRITE(TSI108_MAC_CFG1, 0); | 
 |  | 
 | 	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST); | 
 | 	udelay(100); | 
 | 	TSI_WRITE(TSI108_EC_PORTCTRL, | 
 | 			     TSI_READ(TSI108_EC_PORTCTRL) & | 
 | 			     ~TSI108_EC_PORTCTRL_STATRST); | 
 |  | 
 | 	TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST); | 
 | 	udelay(100); | 
 | 	TSI_WRITE(TSI108_EC_TXCFG, | 
 | 			     TSI_READ(TSI108_EC_TXCFG) & | 
 | 			     ~TSI108_EC_TXCFG_RST); | 
 |  | 
 | 	TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST); | 
 | 	udelay(100); | 
 | 	TSI_WRITE(TSI108_EC_RXCFG, | 
 | 			     TSI_READ(TSI108_EC_RXCFG) & | 
 | 			     ~TSI108_EC_RXCFG_RST); | 
 |  | 
 | 	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG, | 
 | 			     TSI_READ(TSI108_MAC_MII_MGMT_CFG) | | 
 | 			     TSI108_MAC_MII_MGMT_RST); | 
 | 	udelay(100); | 
 | 	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG, | 
 | 			     (TSI_READ(TSI108_MAC_MII_MGMT_CFG) & | 
 | 			     ~(TSI108_MAC_MII_MGMT_RST | | 
 | 			       TSI108_MAC_MII_MGMT_CLK)) | 0x07); | 
 | } | 
 |  | 
 | static int tsi108_get_mac(struct net_device *dev) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 | 	u32 word1 = TSI_READ(TSI108_MAC_ADDR1); | 
 | 	u32 word2 = TSI_READ(TSI108_MAC_ADDR2); | 
 |  | 
 | 	/* Note that the octets are reversed from what the manual says, | 
 | 	 * producing an even weirder ordering... | 
 | 	 */ | 
 | 	if (word2 == 0 && word1 == 0) { | 
 | 		dev->dev_addr[0] = 0x00; | 
 | 		dev->dev_addr[1] = 0x06; | 
 | 		dev->dev_addr[2] = 0xd2; | 
 | 		dev->dev_addr[3] = 0x00; | 
 | 		dev->dev_addr[4] = 0x00; | 
 | 		if (0x8 == data->phy) | 
 | 			dev->dev_addr[5] = 0x01; | 
 | 		else | 
 | 			dev->dev_addr[5] = 0x02; | 
 |  | 
 | 		word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24); | 
 |  | 
 | 		word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) | | 
 | 		    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24); | 
 |  | 
 | 		TSI_WRITE(TSI108_MAC_ADDR1, word1); | 
 | 		TSI_WRITE(TSI108_MAC_ADDR2, word2); | 
 | 	} else { | 
 | 		dev->dev_addr[0] = (word2 >> 16) & 0xff; | 
 | 		dev->dev_addr[1] = (word2 >> 24) & 0xff; | 
 | 		dev->dev_addr[2] = (word1 >> 0) & 0xff; | 
 | 		dev->dev_addr[3] = (word1 >> 8) & 0xff; | 
 | 		dev->dev_addr[4] = (word1 >> 16) & 0xff; | 
 | 		dev->dev_addr[5] = (word1 >> 24) & 0xff; | 
 | 	} | 
 |  | 
 | 	if (!is_valid_ether_addr(dev->dev_addr)) { | 
 | 		printk("KERN_ERR: word1: %08x, word2: %08x\n", word1, word2); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int tsi108_set_mac(struct net_device *dev, void *addr) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 | 	u32 word1, word2; | 
 | 	int i; | 
 |  | 
 | 	if (!is_valid_ether_addr(addr)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	for (i = 0; i < 6; i++) | 
 | 		/* +2 is for the offset of the HW addr type */ | 
 | 		dev->dev_addr[i] = ((unsigned char *)addr)[i + 2]; | 
 |  | 
 | 	word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24); | 
 |  | 
 | 	word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) | | 
 | 	    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24); | 
 |  | 
 | 	spin_lock_irq(&data->misclock); | 
 | 	TSI_WRITE(TSI108_MAC_ADDR1, word1); | 
 | 	TSI_WRITE(TSI108_MAC_ADDR2, word2); | 
 | 	spin_lock(&data->txlock); | 
 |  | 
 | 	if (data->txfree && data->link_up) | 
 | 		netif_wake_queue(dev); | 
 |  | 
 | 	spin_unlock(&data->txlock); | 
 | 	spin_unlock_irq(&data->misclock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Protected by dev->xmit_lock. */ | 
 | static void tsi108_set_rx_mode(struct net_device *dev) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 | 	u32 rxcfg = TSI_READ(TSI108_EC_RXCFG); | 
 |  | 
 | 	if (dev->flags & IFF_PROMISC) { | 
 | 		rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH); | 
 | 		rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE); | 
 |  | 
 | 	if (dev->flags & IFF_ALLMULTI || dev->mc_count) { | 
 | 		int i; | 
 | 		struct dev_mc_list *mc = dev->mc_list; | 
 | 		rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH; | 
 |  | 
 | 		memset(data->mc_hash, 0, sizeof(data->mc_hash)); | 
 |  | 
 | 		while (mc) { | 
 | 			u32 hash, crc; | 
 |  | 
 | 			if (mc->dmi_addrlen == 6) { | 
 | 				crc = ether_crc(6, mc->dmi_addr); | 
 | 				hash = crc >> 23; | 
 |  | 
 | 				__set_bit(hash, &data->mc_hash[0]); | 
 | 			} else { | 
 | 				printk(KERN_ERR | 
 | 				       "%s: got multicast address of length %d " | 
 | 				       "instead of 6.\n", dev->name, | 
 | 				       mc->dmi_addrlen); | 
 | 			} | 
 |  | 
 | 			mc = mc->next; | 
 | 		} | 
 |  | 
 | 		TSI_WRITE(TSI108_EC_HASHADDR, | 
 | 				     TSI108_EC_HASHADDR_AUTOINC | | 
 | 				     TSI108_EC_HASHADDR_MCAST); | 
 |  | 
 | 		for (i = 0; i < 16; i++) { | 
 | 			/* The manual says that the hardware may drop | 
 | 			 * back-to-back writes to the data register. | 
 | 			 */ | 
 | 			udelay(1); | 
 | 			TSI_WRITE(TSI108_EC_HASHDATA, | 
 | 					     data->mc_hash[i]); | 
 | 		} | 
 | 	} | 
 |  | 
 |       out: | 
 | 	TSI_WRITE(TSI108_EC_RXCFG, rxcfg); | 
 | } | 
 |  | 
 | static void tsi108_init_phy(struct net_device *dev) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 | 	u32 i = 0; | 
 | 	u16 phyval = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&phy_lock, flags); | 
 |  | 
 | 	tsi108_write_mii(data, MII_BMCR, BMCR_RESET); | 
 | 	while (i--){ | 
 | 		if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET)) | 
 | 			break; | 
 | 		udelay(10); | 
 | 	} | 
 | 	if (i == 0) | 
 | 		printk(KERN_ERR "%s function time out \n", __FUNCTION__); | 
 |  | 
 | 	if (data->phy_type == TSI108_PHY_BCM54XX) { | 
 | 		tsi108_write_mii(data, 0x09, 0x0300); | 
 | 		tsi108_write_mii(data, 0x10, 0x1020); | 
 | 		tsi108_write_mii(data, 0x1c, 0x8c00); | 
 | 	} | 
 |  | 
 | 	tsi108_write_mii(data, | 
 | 			 MII_BMCR, | 
 | 			 BMCR_ANENABLE | BMCR_ANRESTART); | 
 | 	while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART) | 
 | 		cpu_relax(); | 
 |  | 
 | 	/* Set G/MII mode and receive clock select in TBI control #2.  The | 
 | 	 * second port won't work if this isn't done, even though we don't | 
 | 	 * use TBI mode. | 
 | 	 */ | 
 |  | 
 | 	tsi108_write_tbi(data, 0x11, 0x30); | 
 |  | 
 | 	/* FIXME: It seems to take more than 2 back-to-back reads to the | 
 | 	 * PHY_STAT register before the link up status bit is set. | 
 | 	 */ | 
 |  | 
 | 	data->link_up = 1; | 
 |  | 
 | 	while (!((phyval = tsi108_read_mii(data, MII_BMSR)) & | 
 | 		 BMSR_LSTATUS)) { | 
 | 		if (i++ > (MII_READ_DELAY / 10)) { | 
 | 			data->link_up = 0; | 
 | 			break; | 
 | 		} | 
 | 		spin_unlock_irqrestore(&phy_lock, flags); | 
 | 		msleep(10); | 
 | 		spin_lock_irqsave(&phy_lock, flags); | 
 | 	} | 
 |  | 
 | 	printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval); | 
 | 	data->phy_ok = 1; | 
 | 	data->init_media = 1; | 
 | 	spin_unlock_irqrestore(&phy_lock, flags); | 
 | } | 
 |  | 
 | static void tsi108_kill_phy(struct net_device *dev) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&phy_lock, flags); | 
 | 	tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN); | 
 | 	data->phy_ok = 0; | 
 | 	spin_unlock_irqrestore(&phy_lock, flags); | 
 | } | 
 |  | 
 | static int tsi108_open(struct net_device *dev) | 
 | { | 
 | 	int i; | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 | 	unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc); | 
 | 	unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc); | 
 |  | 
 | 	i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev); | 
 | 	if (i != 0) { | 
 | 		printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n", | 
 | 		       data->id, data->irq_num); | 
 | 		return i; | 
 | 	} else { | 
 | 		dev->irq = data->irq_num; | 
 | 		printk(KERN_NOTICE | 
 | 		       "tsi108_open : Port %d Assigned IRQ %d to %s\n", | 
 | 		       data->id, dev->irq, dev->name); | 
 | 	} | 
 |  | 
 | 	data->rxring = dma_alloc_coherent(NULL, rxring_size, | 
 | 			&data->rxdma, GFP_KERNEL); | 
 |  | 
 | 	if (!data->rxring) { | 
 | 		printk(KERN_DEBUG | 
 | 		       "TSI108_ETH: failed to allocate memory for rxring!\n"); | 
 | 		return -ENOMEM; | 
 | 	} else { | 
 | 		memset(data->rxring, 0, rxring_size); | 
 | 	} | 
 |  | 
 | 	data->txring = dma_alloc_coherent(NULL, txring_size, | 
 | 			&data->txdma, GFP_KERNEL); | 
 |  | 
 | 	if (!data->txring) { | 
 | 		printk(KERN_DEBUG | 
 | 		       "TSI108_ETH: failed to allocate memory for txring!\n"); | 
 | 		pci_free_consistent(0, rxring_size, data->rxring, data->rxdma); | 
 | 		return -ENOMEM; | 
 | 	} else { | 
 | 		memset(data->txring, 0, txring_size); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < TSI108_RXRING_LEN; i++) { | 
 | 		data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc); | 
 | 		data->rxring[i].blen = TSI108_RXBUF_SIZE; | 
 | 		data->rxring[i].vlan = 0; | 
 | 	} | 
 |  | 
 | 	data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma; | 
 |  | 
 | 	data->rxtail = 0; | 
 | 	data->rxhead = 0; | 
 |  | 
 | 	for (i = 0; i < TSI108_RXRING_LEN; i++) { | 
 | 		struct sk_buff *skb = dev_alloc_skb(TSI108_RXBUF_SIZE + NET_IP_ALIGN); | 
 |  | 
 | 		if (!skb) { | 
 | 			/* Bah.  No memory for now, but maybe we'll get | 
 | 			 * some more later. | 
 | 			 * For now, we'll live with the smaller ring. | 
 | 			 */ | 
 | 			printk(KERN_WARNING | 
 | 			       "%s: Could only allocate %d receive skb(s).\n", | 
 | 			       dev->name, i); | 
 | 			data->rxhead = i; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		data->rxskbs[i] = skb; | 
 | 		/* Align the payload on a 4-byte boundary */ | 
 | 		skb_reserve(skb, 2); | 
 | 		data->rxskbs[i] = skb; | 
 | 		data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data); | 
 | 		data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT; | 
 | 	} | 
 |  | 
 | 	data->rxfree = i; | 
 | 	TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma); | 
 |  | 
 | 	for (i = 0; i < TSI108_TXRING_LEN; i++) { | 
 | 		data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc); | 
 | 		data->txring[i].misc = 0; | 
 | 	} | 
 |  | 
 | 	data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma; | 
 | 	data->txtail = 0; | 
 | 	data->txhead = 0; | 
 | 	data->txfree = TSI108_TXRING_LEN; | 
 | 	TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma); | 
 | 	tsi108_init_phy(dev); | 
 |  | 
 | 	napi_enable(&data->napi); | 
 |  | 
 | 	setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev); | 
 | 	mod_timer(&data->timer, jiffies + 1); | 
 |  | 
 | 	tsi108_restart_rx(data, dev); | 
 |  | 
 | 	TSI_WRITE(TSI108_EC_INTSTAT, ~0); | 
 |  | 
 | 	TSI_WRITE(TSI108_EC_INTMASK, | 
 | 			     ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR | | 
 | 			       TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 | | 
 | 			       TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT | | 
 | 			       TSI108_INT_SFN | TSI108_INT_STATCARRY)); | 
 |  | 
 | 	TSI_WRITE(TSI108_MAC_CFG1, | 
 | 			     TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN); | 
 | 	netif_start_queue(dev); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int tsi108_close(struct net_device *dev) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 |  | 
 | 	netif_stop_queue(dev); | 
 | 	napi_disable(&data->napi); | 
 |  | 
 | 	del_timer_sync(&data->timer); | 
 |  | 
 | 	tsi108_stop_ethernet(dev); | 
 | 	tsi108_kill_phy(dev); | 
 | 	TSI_WRITE(TSI108_EC_INTMASK, ~0); | 
 | 	TSI_WRITE(TSI108_MAC_CFG1, 0); | 
 |  | 
 | 	/* Check for any pending TX packets, and drop them. */ | 
 |  | 
 | 	while (!data->txfree || data->txhead != data->txtail) { | 
 | 		int tx = data->txtail; | 
 | 		struct sk_buff *skb; | 
 | 		skb = data->txskbs[tx]; | 
 | 		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN; | 
 | 		data->txfree++; | 
 | 		dev_kfree_skb(skb); | 
 | 	} | 
 |  | 
 | 	synchronize_irq(data->irq_num); | 
 | 	free_irq(data->irq_num, dev); | 
 |  | 
 | 	/* Discard the RX ring. */ | 
 |  | 
 | 	while (data->rxfree) { | 
 | 		int rx = data->rxtail; | 
 | 		struct sk_buff *skb; | 
 |  | 
 | 		skb = data->rxskbs[rx]; | 
 | 		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN; | 
 | 		data->rxfree--; | 
 | 		dev_kfree_skb(skb); | 
 | 	} | 
 |  | 
 | 	dma_free_coherent(0, | 
 | 			    TSI108_RXRING_LEN * sizeof(rx_desc), | 
 | 			    data->rxring, data->rxdma); | 
 | 	dma_free_coherent(0, | 
 | 			    TSI108_TXRING_LEN * sizeof(tx_desc), | 
 | 			    data->txring, data->txdma); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void tsi108_init_mac(struct net_device *dev) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 |  | 
 | 	TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE | | 
 | 			     TSI108_MAC_CFG2_PADCRC); | 
 |  | 
 | 	TSI_WRITE(TSI108_EC_TXTHRESH, | 
 | 			     (192 << TSI108_EC_TXTHRESH_STARTFILL) | | 
 | 			     (192 << TSI108_EC_TXTHRESH_STOPFILL)); | 
 |  | 
 | 	TSI_WRITE(TSI108_STAT_CARRYMASK1, | 
 | 			     ~(TSI108_STAT_CARRY1_RXBYTES | | 
 | 			       TSI108_STAT_CARRY1_RXPKTS | | 
 | 			       TSI108_STAT_CARRY1_RXFCS | | 
 | 			       TSI108_STAT_CARRY1_RXMCAST | | 
 | 			       TSI108_STAT_CARRY1_RXALIGN | | 
 | 			       TSI108_STAT_CARRY1_RXLENGTH | | 
 | 			       TSI108_STAT_CARRY1_RXRUNT | | 
 | 			       TSI108_STAT_CARRY1_RXJUMBO | | 
 | 			       TSI108_STAT_CARRY1_RXFRAG | | 
 | 			       TSI108_STAT_CARRY1_RXJABBER | | 
 | 			       TSI108_STAT_CARRY1_RXDROP)); | 
 |  | 
 | 	TSI_WRITE(TSI108_STAT_CARRYMASK2, | 
 | 			     ~(TSI108_STAT_CARRY2_TXBYTES | | 
 | 			       TSI108_STAT_CARRY2_TXPKTS | | 
 | 			       TSI108_STAT_CARRY2_TXEXDEF | | 
 | 			       TSI108_STAT_CARRY2_TXEXCOL | | 
 | 			       TSI108_STAT_CARRY2_TXTCOL | | 
 | 			       TSI108_STAT_CARRY2_TXPAUSE)); | 
 |  | 
 | 	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN); | 
 | 	TSI_WRITE(TSI108_MAC_CFG1, 0); | 
 |  | 
 | 	TSI_WRITE(TSI108_EC_RXCFG, | 
 | 			     TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE); | 
 |  | 
 | 	TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT | | 
 | 			     TSI108_EC_TXQ_CFG_EOQ_OWN_INT | | 
 | 			     TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT << | 
 | 						TSI108_EC_TXQ_CFG_SFNPORT)); | 
 |  | 
 | 	TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT | | 
 | 			     TSI108_EC_RXQ_CFG_EOQ_OWN_INT | | 
 | 			     TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT << | 
 | 						TSI108_EC_RXQ_CFG_SFNPORT)); | 
 |  | 
 | 	TSI_WRITE(TSI108_EC_TXQ_BUFCFG, | 
 | 			     TSI108_EC_TXQ_BUFCFG_BURST256 | | 
 | 			     TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT << | 
 | 						TSI108_EC_TXQ_BUFCFG_SFNPORT)); | 
 |  | 
 | 	TSI_WRITE(TSI108_EC_RXQ_BUFCFG, | 
 | 			     TSI108_EC_RXQ_BUFCFG_BURST256 | | 
 | 			     TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT << | 
 | 						TSI108_EC_RXQ_BUFCFG_SFNPORT)); | 
 |  | 
 | 	TSI_WRITE(TSI108_EC_INTMASK, ~0); | 
 | } | 
 |  | 
 | static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | 
 | { | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 | 	return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL); | 
 | } | 
 |  | 
 | static int | 
 | tsi108_init_one(struct platform_device *pdev) | 
 | { | 
 | 	struct net_device *dev = NULL; | 
 | 	struct tsi108_prv_data *data = NULL; | 
 | 	hw_info *einfo; | 
 | 	int err = 0; | 
 | 	DECLARE_MAC_BUF(mac); | 
 |  | 
 | 	einfo = pdev->dev.platform_data; | 
 |  | 
 | 	if (NULL == einfo) { | 
 | 		printk(KERN_ERR "tsi-eth %d: Missing additional data!\n", | 
 | 		       pdev->id); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* Create an ethernet device instance */ | 
 |  | 
 | 	dev = alloc_etherdev(sizeof(struct tsi108_prv_data)); | 
 | 	if (!dev) { | 
 | 		printk("tsi108_eth: Could not allocate a device structure\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	printk("tsi108_eth%d: probe...\n", pdev->id); | 
 | 	data = netdev_priv(dev); | 
 | 	data->dev = dev; | 
 |  | 
 | 	pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n", | 
 | 			pdev->id, einfo->regs, einfo->phyregs, | 
 | 			einfo->phy, einfo->irq_num); | 
 |  | 
 | 	data->regs = ioremap(einfo->regs, 0x400); | 
 | 	if (NULL == data->regs) { | 
 | 		err = -ENOMEM; | 
 | 		goto regs_fail; | 
 | 	} | 
 |  | 
 | 	data->phyregs = ioremap(einfo->phyregs, 0x400); | 
 | 	if (NULL == data->phyregs) { | 
 | 		err = -ENOMEM; | 
 | 		goto regs_fail; | 
 | 	} | 
 | /* MII setup */ | 
 | 	data->mii_if.dev = dev; | 
 | 	data->mii_if.mdio_read = tsi108_mdio_read; | 
 | 	data->mii_if.mdio_write = tsi108_mdio_write; | 
 | 	data->mii_if.phy_id = einfo->phy; | 
 | 	data->mii_if.phy_id_mask = 0x1f; | 
 | 	data->mii_if.reg_num_mask = 0x1f; | 
 | 	data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if); | 
 |  | 
 | 	data->phy = einfo->phy; | 
 | 	data->phy_type = einfo->phy_type; | 
 | 	data->irq_num = einfo->irq_num; | 
 | 	data->id = pdev->id; | 
 | 	dev->open = tsi108_open; | 
 | 	dev->stop = tsi108_close; | 
 | 	dev->hard_start_xmit = tsi108_send_packet; | 
 | 	dev->set_mac_address = tsi108_set_mac; | 
 | 	dev->set_multicast_list = tsi108_set_rx_mode; | 
 | 	dev->get_stats = tsi108_get_stats; | 
 | 	netif_napi_add(dev, &data->napi, tsi108_poll, 64); | 
 | 	dev->do_ioctl = tsi108_do_ioctl; | 
 |  | 
 | 	/* Apparently, the Linux networking code won't use scatter-gather | 
 | 	 * if the hardware doesn't do checksums.  However, it's faster | 
 | 	 * to checksum in place and use SG, as (among other reasons) | 
 | 	 * the cache won't be dirtied (which then has to be flushed | 
 | 	 * before DMA).  The checksumming is done by the driver (via | 
 | 	 * a new function skb_csum_dev() in net/core/skbuff.c). | 
 | 	 */ | 
 |  | 
 | 	dev->features = NETIF_F_HIGHDMA; | 
 |  | 
 | 	spin_lock_init(&data->txlock); | 
 | 	spin_lock_init(&data->misclock); | 
 |  | 
 | 	tsi108_reset_ether(data); | 
 | 	tsi108_kill_phy(dev); | 
 |  | 
 | 	if ((err = tsi108_get_mac(dev)) != 0) { | 
 | 		printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n", | 
 | 		       dev->name); | 
 | 		goto register_fail; | 
 | 	} | 
 |  | 
 | 	tsi108_init_mac(dev); | 
 | 	err = register_netdev(dev); | 
 | 	if (err) { | 
 | 		printk(KERN_ERR "%s: Cannot register net device, aborting.\n", | 
 | 				dev->name); | 
 | 		goto register_fail; | 
 | 	} | 
 |  | 
 | 	printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %s\n", | 
 | 	       dev->name, print_mac(mac, dev->dev_addr)); | 
 | #ifdef DEBUG | 
 | 	data->msg_enable = DEBUG; | 
 | 	dump_eth_one(dev); | 
 | #endif | 
 |  | 
 | 	return 0; | 
 |  | 
 | register_fail: | 
 | 	iounmap(data->regs); | 
 | 	iounmap(data->phyregs); | 
 |  | 
 | regs_fail: | 
 | 	free_netdev(dev); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* There's no way to either get interrupts from the PHY when | 
 |  * something changes, or to have the Tsi108 automatically communicate | 
 |  * with the PHY to reconfigure itself. | 
 |  * | 
 |  * Thus, we have to do it using a timer. | 
 |  */ | 
 |  | 
 | static void tsi108_timed_checker(unsigned long dev_ptr) | 
 | { | 
 | 	struct net_device *dev = (struct net_device *)dev_ptr; | 
 | 	struct tsi108_prv_data *data = netdev_priv(dev); | 
 |  | 
 | 	tsi108_check_phy(dev); | 
 | 	tsi108_check_rxring(dev); | 
 | 	mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL); | 
 | } | 
 |  | 
 | static int tsi108_ether_init(void) | 
 | { | 
 | 	int ret; | 
 | 	ret = platform_driver_register (&tsi_eth_driver); | 
 | 	if (ret < 0){ | 
 | 		printk("tsi108_ether_init: error initializing ethernet " | 
 | 		       "device\n"); | 
 | 		return ret; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int tsi108_ether_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct net_device *dev = platform_get_drvdata(pdev); | 
 | 	struct tsi108_prv_data *priv = netdev_priv(dev); | 
 |  | 
 | 	unregister_netdev(dev); | 
 | 	tsi108_stop_ethernet(dev); | 
 | 	platform_set_drvdata(pdev, NULL); | 
 | 	iounmap(priv->regs); | 
 | 	iounmap(priv->phyregs); | 
 | 	free_netdev(dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 | static void tsi108_ether_exit(void) | 
 | { | 
 | 	platform_driver_unregister(&tsi_eth_driver); | 
 | } | 
 |  | 
 | module_init(tsi108_ether_init); | 
 | module_exit(tsi108_ether_exit); | 
 |  | 
 | MODULE_AUTHOR("Tundra Semiconductor Corporation"); | 
 | MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver"); | 
 | MODULE_LICENSE("GPL"); |