|  | /* | 
|  | * net/sched/sch_red.c	Random Early Detection queue. | 
|  | * | 
|  | *		This program is free software; you can redistribute it and/or | 
|  | *		modify it under the terms of the GNU General Public License | 
|  | *		as published by the Free Software Foundation; either version | 
|  | *		2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> | 
|  | * | 
|  | * Changes: | 
|  | * J Hadi Salim <hadi@nortel.com> 980914:	computation fixes | 
|  | * Alexey Makarenko <makar@phoenix.kharkov.ua> 990814: qave on idle link was calculated incorrectly. | 
|  | * J Hadi Salim <hadi@nortelnetworks.com> 980816:  ECN support | 
|  | */ | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #include <linux/module.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/system.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/socket.h> | 
|  | #include <linux/sockios.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/if_ether.h> | 
|  | #include <linux/inet.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <net/ip.h> | 
|  | #include <net/route.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <net/sock.h> | 
|  | #include <net/pkt_sched.h> | 
|  | #include <net/inet_ecn.h> | 
|  | #include <net/dsfield.h> | 
|  |  | 
|  |  | 
|  | /*	Random Early Detection (RED) algorithm. | 
|  | ======================================= | 
|  |  | 
|  | Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways | 
|  | for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking. | 
|  |  | 
|  | This file codes a "divisionless" version of RED algorithm | 
|  | as written down in Fig.17 of the paper. | 
|  |  | 
|  | Short description. | 
|  | ------------------ | 
|  |  | 
|  | When a new packet arrives we calculate the average queue length: | 
|  |  | 
|  | avg = (1-W)*avg + W*current_queue_len, | 
|  |  | 
|  | W is the filter time constant (chosen as 2^(-Wlog)), it controls | 
|  | the inertia of the algorithm. To allow larger bursts, W should be | 
|  | decreased. | 
|  |  | 
|  | if (avg > th_max) -> packet marked (dropped). | 
|  | if (avg < th_min) -> packet passes. | 
|  | if (th_min < avg < th_max) we calculate probability: | 
|  |  | 
|  | Pb = max_P * (avg - th_min)/(th_max-th_min) | 
|  |  | 
|  | and mark (drop) packet with this probability. | 
|  | Pb changes from 0 (at avg==th_min) to max_P (avg==th_max). | 
|  | max_P should be small (not 1), usually 0.01..0.02 is good value. | 
|  |  | 
|  | max_P is chosen as a number, so that max_P/(th_max-th_min) | 
|  | is a negative power of two in order arithmetics to contain | 
|  | only shifts. | 
|  |  | 
|  |  | 
|  | Parameters, settable by user: | 
|  | ----------------------------- | 
|  |  | 
|  | limit		- bytes (must be > qth_max + burst) | 
|  |  | 
|  | Hard limit on queue length, should be chosen >qth_max | 
|  | to allow packet bursts. This parameter does not | 
|  | affect the algorithms behaviour and can be chosen | 
|  | arbitrarily high (well, less than ram size) | 
|  | Really, this limit will never be reached | 
|  | if RED works correctly. | 
|  |  | 
|  | qth_min		- bytes (should be < qth_max/2) | 
|  | qth_max		- bytes (should be at least 2*qth_min and less limit) | 
|  | Wlog	       	- bits (<32) log(1/W). | 
|  | Plog	       	- bits (<32) | 
|  |  | 
|  | Plog is related to max_P by formula: | 
|  |  | 
|  | max_P = (qth_max-qth_min)/2^Plog; | 
|  |  | 
|  | F.e. if qth_max=128K and qth_min=32K, then Plog=22 | 
|  | corresponds to max_P=0.02 | 
|  |  | 
|  | Scell_log | 
|  | Stab | 
|  |  | 
|  | Lookup table for log((1-W)^(t/t_ave). | 
|  |  | 
|  |  | 
|  | NOTES: | 
|  |  | 
|  | Upper bound on W. | 
|  | ----------------- | 
|  |  | 
|  | If you want to allow bursts of L packets of size S, | 
|  | you should choose W: | 
|  |  | 
|  | L + 1 - th_min/S < (1-(1-W)^L)/W | 
|  |  | 
|  | th_min/S = 32         th_min/S = 4 | 
|  |  | 
|  | log(W)	L | 
|  | -1	33 | 
|  | -2	35 | 
|  | -3	39 | 
|  | -4	46 | 
|  | -5	57 | 
|  | -6	75 | 
|  | -7	101 | 
|  | -8	135 | 
|  | -9	190 | 
|  | etc. | 
|  | */ | 
|  |  | 
|  | struct red_sched_data | 
|  | { | 
|  | /* Parameters */ | 
|  | u32		limit;		/* HARD maximal queue length	*/ | 
|  | u32		qth_min;	/* Min average length threshold: A scaled */ | 
|  | u32		qth_max;	/* Max average length threshold: A scaled */ | 
|  | u32		Rmask; | 
|  | u32		Scell_max; | 
|  | unsigned char	flags; | 
|  | char		Wlog;		/* log(W)		*/ | 
|  | char		Plog;		/* random number bits	*/ | 
|  | char		Scell_log; | 
|  | u8		Stab[256]; | 
|  |  | 
|  | /* Variables */ | 
|  | unsigned long	qave;		/* Average queue length: A scaled */ | 
|  | int		qcount;		/* Packets since last random number generation */ | 
|  | u32		qR;		/* Cached random number */ | 
|  |  | 
|  | psched_time_t	qidlestart;	/* Start of idle period		*/ | 
|  | struct tc_red_xstats st; | 
|  | }; | 
|  |  | 
|  | static int red_ecn_mark(struct sk_buff *skb) | 
|  | { | 
|  | if (skb->nh.raw + 20 > skb->tail) | 
|  | return 0; | 
|  |  | 
|  | switch (skb->protocol) { | 
|  | case __constant_htons(ETH_P_IP): | 
|  | if (INET_ECN_is_not_ect(skb->nh.iph->tos)) | 
|  | return 0; | 
|  | IP_ECN_set_ce(skb->nh.iph); | 
|  | return 1; | 
|  | case __constant_htons(ETH_P_IPV6): | 
|  | if (INET_ECN_is_not_ect(ipv6_get_dsfield(skb->nh.ipv6h))) | 
|  | return 0; | 
|  | IP6_ECN_set_ce(skb->nh.ipv6h); | 
|  | return 1; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | red_enqueue(struct sk_buff *skb, struct Qdisc* sch) | 
|  | { | 
|  | struct red_sched_data *q = qdisc_priv(sch); | 
|  |  | 
|  | psched_time_t now; | 
|  |  | 
|  | if (!PSCHED_IS_PASTPERFECT(q->qidlestart)) { | 
|  | long us_idle; | 
|  | int  shift; | 
|  |  | 
|  | PSCHED_GET_TIME(now); | 
|  | us_idle = PSCHED_TDIFF_SAFE(now, q->qidlestart, q->Scell_max); | 
|  | PSCHED_SET_PASTPERFECT(q->qidlestart); | 
|  |  | 
|  | /* | 
|  | The problem: ideally, average length queue recalcultion should | 
|  | be done over constant clock intervals. This is too expensive, so that | 
|  | the calculation is driven by outgoing packets. | 
|  | When the queue is idle we have to model this clock by hand. | 
|  |  | 
|  | SF+VJ proposed to "generate" m = idletime/(average_pkt_size/bandwidth) | 
|  | dummy packets as a burst after idle time, i.e. | 
|  |  | 
|  | q->qave *= (1-W)^m | 
|  |  | 
|  | This is an apparently overcomplicated solution (f.e. we have to precompute | 
|  | a table to make this calculation in reasonable time) | 
|  | I believe that a simpler model may be used here, | 
|  | but it is field for experiments. | 
|  | */ | 
|  | shift = q->Stab[us_idle>>q->Scell_log]; | 
|  |  | 
|  | if (shift) { | 
|  | q->qave >>= shift; | 
|  | } else { | 
|  | /* Approximate initial part of exponent | 
|  | with linear function: | 
|  | (1-W)^m ~= 1-mW + ... | 
|  |  | 
|  | Seems, it is the best solution to | 
|  | problem of too coarce exponent tabulation. | 
|  | */ | 
|  |  | 
|  | us_idle = (q->qave * us_idle)>>q->Scell_log; | 
|  | if (us_idle < q->qave/2) | 
|  | q->qave -= us_idle; | 
|  | else | 
|  | q->qave >>= 1; | 
|  | } | 
|  | } else { | 
|  | q->qave += sch->qstats.backlog - (q->qave >> q->Wlog); | 
|  | /* NOTE: | 
|  | q->qave is fixed point number with point at Wlog. | 
|  | The formulae above is equvalent to floating point | 
|  | version: | 
|  |  | 
|  | qave = qave*(1-W) + sch->qstats.backlog*W; | 
|  | --ANK (980924) | 
|  | */ | 
|  | } | 
|  |  | 
|  | if (q->qave < q->qth_min) { | 
|  | q->qcount = -1; | 
|  | enqueue: | 
|  | if (sch->qstats.backlog + skb->len <= q->limit) { | 
|  | __skb_queue_tail(&sch->q, skb); | 
|  | sch->qstats.backlog += skb->len; | 
|  | sch->bstats.bytes += skb->len; | 
|  | sch->bstats.packets++; | 
|  | return NET_XMIT_SUCCESS; | 
|  | } else { | 
|  | q->st.pdrop++; | 
|  | } | 
|  | kfree_skb(skb); | 
|  | sch->qstats.drops++; | 
|  | return NET_XMIT_DROP; | 
|  | } | 
|  | if (q->qave >= q->qth_max) { | 
|  | q->qcount = -1; | 
|  | sch->qstats.overlimits++; | 
|  | mark: | 
|  | if  (!(q->flags&TC_RED_ECN) || !red_ecn_mark(skb)) { | 
|  | q->st.early++; | 
|  | goto drop; | 
|  | } | 
|  | q->st.marked++; | 
|  | goto enqueue; | 
|  | } | 
|  |  | 
|  | if (++q->qcount) { | 
|  | /* The formula used below causes questions. | 
|  |  | 
|  | OK. qR is random number in the interval 0..Rmask | 
|  | i.e. 0..(2^Plog). If we used floating point | 
|  | arithmetics, it would be: (2^Plog)*rnd_num, | 
|  | where rnd_num is less 1. | 
|  |  | 
|  | Taking into account, that qave have fixed | 
|  | point at Wlog, and Plog is related to max_P by | 
|  | max_P = (qth_max-qth_min)/2^Plog; two lines | 
|  | below have the following floating point equivalent: | 
|  |  | 
|  | max_P*(qave - qth_min)/(qth_max-qth_min) < rnd/qcount | 
|  |  | 
|  | Any questions? --ANK (980924) | 
|  | */ | 
|  | if (((q->qave - q->qth_min)>>q->Wlog)*q->qcount < q->qR) | 
|  | goto enqueue; | 
|  | q->qcount = 0; | 
|  | q->qR = net_random()&q->Rmask; | 
|  | sch->qstats.overlimits++; | 
|  | goto mark; | 
|  | } | 
|  | q->qR = net_random()&q->Rmask; | 
|  | goto enqueue; | 
|  |  | 
|  | drop: | 
|  | kfree_skb(skb); | 
|  | sch->qstats.drops++; | 
|  | return NET_XMIT_CN; | 
|  | } | 
|  |  | 
|  | static int | 
|  | red_requeue(struct sk_buff *skb, struct Qdisc* sch) | 
|  | { | 
|  | struct red_sched_data *q = qdisc_priv(sch); | 
|  |  | 
|  | PSCHED_SET_PASTPERFECT(q->qidlestart); | 
|  |  | 
|  | __skb_queue_head(&sch->q, skb); | 
|  | sch->qstats.backlog += skb->len; | 
|  | sch->qstats.requeues++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct sk_buff * | 
|  | red_dequeue(struct Qdisc* sch) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | struct red_sched_data *q = qdisc_priv(sch); | 
|  |  | 
|  | skb = __skb_dequeue(&sch->q); | 
|  | if (skb) { | 
|  | sch->qstats.backlog -= skb->len; | 
|  | return skb; | 
|  | } | 
|  | PSCHED_GET_TIME(q->qidlestart); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static unsigned int red_drop(struct Qdisc* sch) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | struct red_sched_data *q = qdisc_priv(sch); | 
|  |  | 
|  | skb = __skb_dequeue_tail(&sch->q); | 
|  | if (skb) { | 
|  | unsigned int len = skb->len; | 
|  | sch->qstats.backlog -= len; | 
|  | sch->qstats.drops++; | 
|  | q->st.other++; | 
|  | kfree_skb(skb); | 
|  | return len; | 
|  | } | 
|  | PSCHED_GET_TIME(q->qidlestart); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void red_reset(struct Qdisc* sch) | 
|  | { | 
|  | struct red_sched_data *q = qdisc_priv(sch); | 
|  |  | 
|  | __skb_queue_purge(&sch->q); | 
|  | sch->qstats.backlog = 0; | 
|  | PSCHED_SET_PASTPERFECT(q->qidlestart); | 
|  | q->qave = 0; | 
|  | q->qcount = -1; | 
|  | } | 
|  |  | 
|  | static int red_change(struct Qdisc *sch, struct rtattr *opt) | 
|  | { | 
|  | struct red_sched_data *q = qdisc_priv(sch); | 
|  | struct rtattr *tb[TCA_RED_STAB]; | 
|  | struct tc_red_qopt *ctl; | 
|  |  | 
|  | if (opt == NULL || | 
|  | rtattr_parse_nested(tb, TCA_RED_STAB, opt) || | 
|  | tb[TCA_RED_PARMS-1] == 0 || tb[TCA_RED_STAB-1] == 0 || | 
|  | RTA_PAYLOAD(tb[TCA_RED_PARMS-1]) < sizeof(*ctl) || | 
|  | RTA_PAYLOAD(tb[TCA_RED_STAB-1]) < 256) | 
|  | return -EINVAL; | 
|  |  | 
|  | ctl = RTA_DATA(tb[TCA_RED_PARMS-1]); | 
|  |  | 
|  | sch_tree_lock(sch); | 
|  | q->flags = ctl->flags; | 
|  | q->Wlog = ctl->Wlog; | 
|  | q->Plog = ctl->Plog; | 
|  | q->Rmask = ctl->Plog < 32 ? ((1<<ctl->Plog) - 1) : ~0UL; | 
|  | q->Scell_log = ctl->Scell_log; | 
|  | q->Scell_max = (255<<q->Scell_log); | 
|  | q->qth_min = ctl->qth_min<<ctl->Wlog; | 
|  | q->qth_max = ctl->qth_max<<ctl->Wlog; | 
|  | q->limit = ctl->limit; | 
|  | memcpy(q->Stab, RTA_DATA(tb[TCA_RED_STAB-1]), 256); | 
|  |  | 
|  | q->qcount = -1; | 
|  | if (skb_queue_len(&sch->q) == 0) | 
|  | PSCHED_SET_PASTPERFECT(q->qidlestart); | 
|  | sch_tree_unlock(sch); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int red_init(struct Qdisc* sch, struct rtattr *opt) | 
|  | { | 
|  | return red_change(sch, opt); | 
|  | } | 
|  |  | 
|  | static int red_dump(struct Qdisc *sch, struct sk_buff *skb) | 
|  | { | 
|  | struct red_sched_data *q = qdisc_priv(sch); | 
|  | unsigned char	 *b = skb->tail; | 
|  | struct rtattr *rta; | 
|  | struct tc_red_qopt opt; | 
|  |  | 
|  | rta = (struct rtattr*)b; | 
|  | RTA_PUT(skb, TCA_OPTIONS, 0, NULL); | 
|  | opt.limit = q->limit; | 
|  | opt.qth_min = q->qth_min>>q->Wlog; | 
|  | opt.qth_max = q->qth_max>>q->Wlog; | 
|  | opt.Wlog = q->Wlog; | 
|  | opt.Plog = q->Plog; | 
|  | opt.Scell_log = q->Scell_log; | 
|  | opt.flags = q->flags; | 
|  | RTA_PUT(skb, TCA_RED_PARMS, sizeof(opt), &opt); | 
|  | rta->rta_len = skb->tail - b; | 
|  |  | 
|  | return skb->len; | 
|  |  | 
|  | rtattr_failure: | 
|  | skb_trim(skb, b - skb->data); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int red_dump_stats(struct Qdisc *sch, struct gnet_dump *d) | 
|  | { | 
|  | struct red_sched_data *q = qdisc_priv(sch); | 
|  |  | 
|  | return gnet_stats_copy_app(d, &q->st, sizeof(q->st)); | 
|  | } | 
|  |  | 
|  | static struct Qdisc_ops red_qdisc_ops = { | 
|  | .next		=	NULL, | 
|  | .cl_ops		=	NULL, | 
|  | .id		=	"red", | 
|  | .priv_size	=	sizeof(struct red_sched_data), | 
|  | .enqueue	=	red_enqueue, | 
|  | .dequeue	=	red_dequeue, | 
|  | .requeue	=	red_requeue, | 
|  | .drop		=	red_drop, | 
|  | .init		=	red_init, | 
|  | .reset		=	red_reset, | 
|  | .change		=	red_change, | 
|  | .dump		=	red_dump, | 
|  | .dump_stats	=	red_dump_stats, | 
|  | .owner		=	THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static int __init red_module_init(void) | 
|  | { | 
|  | return register_qdisc(&red_qdisc_ops); | 
|  | } | 
|  | static void __exit red_module_exit(void) | 
|  | { | 
|  | unregister_qdisc(&red_qdisc_ops); | 
|  | } | 
|  | module_init(red_module_init) | 
|  | module_exit(red_module_exit) | 
|  | MODULE_LICENSE("GPL"); |