|  | /* | 
|  | *  linux/mm/vmscan.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | * | 
|  | *  Swap reorganised 29.12.95, Stephen Tweedie. | 
|  | *  kswapd added: 7.1.96  sct | 
|  | *  Removed kswapd_ctl limits, and swap out as many pages as needed | 
|  | *  to bring the system back to freepages.high: 2.4.97, Rik van Riel. | 
|  | *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). | 
|  | *  Multiqueue VM started 5.8.00, Rik van Riel. | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/vmstat.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/buffer_head.h>	/* for try_to_release_page(), | 
|  | buffer_heads_over_limit */ | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/topology.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/rwsem.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/delayacct.h> | 
|  | #include <linux/sysctl.h> | 
|  |  | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/div64.h> | 
|  |  | 
|  | #include <linux/swapops.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/vmscan.h> | 
|  |  | 
|  | struct scan_control { | 
|  | /* Incremented by the number of inactive pages that were scanned */ | 
|  | unsigned long nr_scanned; | 
|  |  | 
|  | /* Number of pages freed so far during a call to shrink_zones() */ | 
|  | unsigned long nr_reclaimed; | 
|  |  | 
|  | /* How many pages shrink_list() should reclaim */ | 
|  | unsigned long nr_to_reclaim; | 
|  |  | 
|  | unsigned long hibernation_mode; | 
|  |  | 
|  | /* This context's GFP mask */ | 
|  | gfp_t gfp_mask; | 
|  |  | 
|  | int may_writepage; | 
|  |  | 
|  | /* Can mapped pages be reclaimed? */ | 
|  | int may_unmap; | 
|  |  | 
|  | /* Can pages be swapped as part of reclaim? */ | 
|  | int may_swap; | 
|  |  | 
|  | int swappiness; | 
|  |  | 
|  | int order; | 
|  |  | 
|  | /* | 
|  | * Intend to reclaim enough contenious memory rather than to reclaim | 
|  | * enough amount memory. I.e, it's the mode for high order allocation. | 
|  | */ | 
|  | bool lumpy_reclaim_mode; | 
|  |  | 
|  | /* Which cgroup do we reclaim from */ | 
|  | struct mem_cgroup *mem_cgroup; | 
|  |  | 
|  | /* | 
|  | * Nodemask of nodes allowed by the caller. If NULL, all nodes | 
|  | * are scanned. | 
|  | */ | 
|  | nodemask_t	*nodemask; | 
|  | }; | 
|  |  | 
|  | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) | 
|  |  | 
|  | #ifdef ARCH_HAS_PREFETCH | 
|  | #define prefetch_prev_lru_page(_page, _base, _field)			\ | 
|  | do {								\ | 
|  | if ((_page)->lru.prev != _base) {			\ | 
|  | struct page *prev;				\ | 
|  | \ | 
|  | prev = lru_to_page(&(_page->lru));		\ | 
|  | prefetch(&prev->_field);			\ | 
|  | }							\ | 
|  | } while (0) | 
|  | #else | 
|  | #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef ARCH_HAS_PREFETCHW | 
|  | #define prefetchw_prev_lru_page(_page, _base, _field)			\ | 
|  | do {								\ | 
|  | if ((_page)->lru.prev != _base) {			\ | 
|  | struct page *prev;				\ | 
|  | \ | 
|  | prev = lru_to_page(&(_page->lru));		\ | 
|  | prefetchw(&prev->_field);			\ | 
|  | }							\ | 
|  | } while (0) | 
|  | #else | 
|  | #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * From 0 .. 100.  Higher means more swappy. | 
|  | */ | 
|  | int vm_swappiness = 60; | 
|  | long vm_total_pages;	/* The total number of pages which the VM controls */ | 
|  |  | 
|  | static LIST_HEAD(shrinker_list); | 
|  | static DECLARE_RWSEM(shrinker_rwsem); | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_MEM_RES_CTLR | 
|  | #define scanning_global_lru(sc)	(!(sc)->mem_cgroup) | 
|  | #else | 
|  | #define scanning_global_lru(sc)	(1) | 
|  | #endif | 
|  |  | 
|  | static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone, | 
|  | struct scan_control *sc) | 
|  | { | 
|  | if (!scanning_global_lru(sc)) | 
|  | return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone); | 
|  |  | 
|  | return &zone->reclaim_stat; | 
|  | } | 
|  |  | 
|  | static unsigned long zone_nr_lru_pages(struct zone *zone, | 
|  | struct scan_control *sc, enum lru_list lru) | 
|  | { | 
|  | if (!scanning_global_lru(sc)) | 
|  | return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru); | 
|  |  | 
|  | return zone_page_state(zone, NR_LRU_BASE + lru); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Add a shrinker callback to be called from the vm | 
|  | */ | 
|  | void register_shrinker(struct shrinker *shrinker) | 
|  | { | 
|  | shrinker->nr = 0; | 
|  | down_write(&shrinker_rwsem); | 
|  | list_add_tail(&shrinker->list, &shrinker_list); | 
|  | up_write(&shrinker_rwsem); | 
|  | } | 
|  | EXPORT_SYMBOL(register_shrinker); | 
|  |  | 
|  | /* | 
|  | * Remove one | 
|  | */ | 
|  | void unregister_shrinker(struct shrinker *shrinker) | 
|  | { | 
|  | down_write(&shrinker_rwsem); | 
|  | list_del(&shrinker->list); | 
|  | up_write(&shrinker_rwsem); | 
|  | } | 
|  | EXPORT_SYMBOL(unregister_shrinker); | 
|  |  | 
|  | #define SHRINK_BATCH 128 | 
|  | /* | 
|  | * Call the shrink functions to age shrinkable caches | 
|  | * | 
|  | * Here we assume it costs one seek to replace a lru page and that it also | 
|  | * takes a seek to recreate a cache object.  With this in mind we age equal | 
|  | * percentages of the lru and ageable caches.  This should balance the seeks | 
|  | * generated by these structures. | 
|  | * | 
|  | * If the vm encountered mapped pages on the LRU it increase the pressure on | 
|  | * slab to avoid swapping. | 
|  | * | 
|  | * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. | 
|  | * | 
|  | * `lru_pages' represents the number of on-LRU pages in all the zones which | 
|  | * are eligible for the caller's allocation attempt.  It is used for balancing | 
|  | * slab reclaim versus page reclaim. | 
|  | * | 
|  | * Returns the number of slab objects which we shrunk. | 
|  | */ | 
|  | unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, | 
|  | unsigned long lru_pages) | 
|  | { | 
|  | struct shrinker *shrinker; | 
|  | unsigned long ret = 0; | 
|  |  | 
|  | if (scanned == 0) | 
|  | scanned = SWAP_CLUSTER_MAX; | 
|  |  | 
|  | if (!down_read_trylock(&shrinker_rwsem)) | 
|  | return 1;	/* Assume we'll be able to shrink next time */ | 
|  |  | 
|  | list_for_each_entry(shrinker, &shrinker_list, list) { | 
|  | unsigned long long delta; | 
|  | unsigned long total_scan; | 
|  | unsigned long max_pass; | 
|  |  | 
|  | max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask); | 
|  | delta = (4 * scanned) / shrinker->seeks; | 
|  | delta *= max_pass; | 
|  | do_div(delta, lru_pages + 1); | 
|  | shrinker->nr += delta; | 
|  | if (shrinker->nr < 0) { | 
|  | printk(KERN_ERR "shrink_slab: %pF negative objects to " | 
|  | "delete nr=%ld\n", | 
|  | shrinker->shrink, shrinker->nr); | 
|  | shrinker->nr = max_pass; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Avoid risking looping forever due to too large nr value: | 
|  | * never try to free more than twice the estimate number of | 
|  | * freeable entries. | 
|  | */ | 
|  | if (shrinker->nr > max_pass * 2) | 
|  | shrinker->nr = max_pass * 2; | 
|  |  | 
|  | total_scan = shrinker->nr; | 
|  | shrinker->nr = 0; | 
|  |  | 
|  | while (total_scan >= SHRINK_BATCH) { | 
|  | long this_scan = SHRINK_BATCH; | 
|  | int shrink_ret; | 
|  | int nr_before; | 
|  |  | 
|  | nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask); | 
|  | shrink_ret = (*shrinker->shrink)(shrinker, this_scan, | 
|  | gfp_mask); | 
|  | if (shrink_ret == -1) | 
|  | break; | 
|  | if (shrink_ret < nr_before) | 
|  | ret += nr_before - shrink_ret; | 
|  | count_vm_events(SLABS_SCANNED, this_scan); | 
|  | total_scan -= this_scan; | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | shrinker->nr += total_scan; | 
|  | } | 
|  | up_read(&shrinker_rwsem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int is_page_cache_freeable(struct page *page) | 
|  | { | 
|  | /* | 
|  | * A freeable page cache page is referenced only by the caller | 
|  | * that isolated the page, the page cache radix tree and | 
|  | * optional buffer heads at page->private. | 
|  | */ | 
|  | return page_count(page) - page_has_private(page) == 2; | 
|  | } | 
|  |  | 
|  | static int may_write_to_queue(struct backing_dev_info *bdi) | 
|  | { | 
|  | if (current->flags & PF_SWAPWRITE) | 
|  | return 1; | 
|  | if (!bdi_write_congested(bdi)) | 
|  | return 1; | 
|  | if (bdi == current->backing_dev_info) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We detected a synchronous write error writing a page out.  Probably | 
|  | * -ENOSPC.  We need to propagate that into the address_space for a subsequent | 
|  | * fsync(), msync() or close(). | 
|  | * | 
|  | * The tricky part is that after writepage we cannot touch the mapping: nothing | 
|  | * prevents it from being freed up.  But we have a ref on the page and once | 
|  | * that page is locked, the mapping is pinned. | 
|  | * | 
|  | * We're allowed to run sleeping lock_page() here because we know the caller has | 
|  | * __GFP_FS. | 
|  | */ | 
|  | static void handle_write_error(struct address_space *mapping, | 
|  | struct page *page, int error) | 
|  | { | 
|  | lock_page_nosync(page); | 
|  | if (page_mapping(page) == mapping) | 
|  | mapping_set_error(mapping, error); | 
|  | unlock_page(page); | 
|  | } | 
|  |  | 
|  | /* Request for sync pageout. */ | 
|  | enum pageout_io { | 
|  | PAGEOUT_IO_ASYNC, | 
|  | PAGEOUT_IO_SYNC, | 
|  | }; | 
|  |  | 
|  | /* possible outcome of pageout() */ | 
|  | typedef enum { | 
|  | /* failed to write page out, page is locked */ | 
|  | PAGE_KEEP, | 
|  | /* move page to the active list, page is locked */ | 
|  | PAGE_ACTIVATE, | 
|  | /* page has been sent to the disk successfully, page is unlocked */ | 
|  | PAGE_SUCCESS, | 
|  | /* page is clean and locked */ | 
|  | PAGE_CLEAN, | 
|  | } pageout_t; | 
|  |  | 
|  | /* | 
|  | * pageout is called by shrink_page_list() for each dirty page. | 
|  | * Calls ->writepage(). | 
|  | */ | 
|  | static pageout_t pageout(struct page *page, struct address_space *mapping, | 
|  | enum pageout_io sync_writeback) | 
|  | { | 
|  | /* | 
|  | * If the page is dirty, only perform writeback if that write | 
|  | * will be non-blocking.  To prevent this allocation from being | 
|  | * stalled by pagecache activity.  But note that there may be | 
|  | * stalls if we need to run get_block().  We could test | 
|  | * PagePrivate for that. | 
|  | * | 
|  | * If this process is currently in __generic_file_aio_write() against | 
|  | * this page's queue, we can perform writeback even if that | 
|  | * will block. | 
|  | * | 
|  | * If the page is swapcache, write it back even if that would | 
|  | * block, for some throttling. This happens by accident, because | 
|  | * swap_backing_dev_info is bust: it doesn't reflect the | 
|  | * congestion state of the swapdevs.  Easy to fix, if needed. | 
|  | */ | 
|  | if (!is_page_cache_freeable(page)) | 
|  | return PAGE_KEEP; | 
|  | if (!mapping) { | 
|  | /* | 
|  | * Some data journaling orphaned pages can have | 
|  | * page->mapping == NULL while being dirty with clean buffers. | 
|  | */ | 
|  | if (page_has_private(page)) { | 
|  | if (try_to_free_buffers(page)) { | 
|  | ClearPageDirty(page); | 
|  | printk("%s: orphaned page\n", __func__); | 
|  | return PAGE_CLEAN; | 
|  | } | 
|  | } | 
|  | return PAGE_KEEP; | 
|  | } | 
|  | if (mapping->a_ops->writepage == NULL) | 
|  | return PAGE_ACTIVATE; | 
|  | if (!may_write_to_queue(mapping->backing_dev_info)) | 
|  | return PAGE_KEEP; | 
|  |  | 
|  | if (clear_page_dirty_for_io(page)) { | 
|  | int res; | 
|  | struct writeback_control wbc = { | 
|  | .sync_mode = WB_SYNC_NONE, | 
|  | .nr_to_write = SWAP_CLUSTER_MAX, | 
|  | .range_start = 0, | 
|  | .range_end = LLONG_MAX, | 
|  | .nonblocking = 1, | 
|  | .for_reclaim = 1, | 
|  | }; | 
|  |  | 
|  | SetPageReclaim(page); | 
|  | res = mapping->a_ops->writepage(page, &wbc); | 
|  | if (res < 0) | 
|  | handle_write_error(mapping, page, res); | 
|  | if (res == AOP_WRITEPAGE_ACTIVATE) { | 
|  | ClearPageReclaim(page); | 
|  | return PAGE_ACTIVATE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait on writeback if requested to. This happens when | 
|  | * direct reclaiming a large contiguous area and the | 
|  | * first attempt to free a range of pages fails. | 
|  | */ | 
|  | if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC) | 
|  | wait_on_page_writeback(page); | 
|  |  | 
|  | if (!PageWriteback(page)) { | 
|  | /* synchronous write or broken a_ops? */ | 
|  | ClearPageReclaim(page); | 
|  | } | 
|  | trace_mm_vmscan_writepage(page, | 
|  | trace_reclaim_flags(page, sync_writeback)); | 
|  | inc_zone_page_state(page, NR_VMSCAN_WRITE); | 
|  | return PAGE_SUCCESS; | 
|  | } | 
|  |  | 
|  | return PAGE_CLEAN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Same as remove_mapping, but if the page is removed from the mapping, it | 
|  | * gets returned with a refcount of 0. | 
|  | */ | 
|  | static int __remove_mapping(struct address_space *mapping, struct page *page) | 
|  | { | 
|  | BUG_ON(!PageLocked(page)); | 
|  | BUG_ON(mapping != page_mapping(page)); | 
|  |  | 
|  | spin_lock_irq(&mapping->tree_lock); | 
|  | /* | 
|  | * The non racy check for a busy page. | 
|  | * | 
|  | * Must be careful with the order of the tests. When someone has | 
|  | * a ref to the page, it may be possible that they dirty it then | 
|  | * drop the reference. So if PageDirty is tested before page_count | 
|  | * here, then the following race may occur: | 
|  | * | 
|  | * get_user_pages(&page); | 
|  | * [user mapping goes away] | 
|  | * write_to(page); | 
|  | *				!PageDirty(page)    [good] | 
|  | * SetPageDirty(page); | 
|  | * put_page(page); | 
|  | *				!page_count(page)   [good, discard it] | 
|  | * | 
|  | * [oops, our write_to data is lost] | 
|  | * | 
|  | * Reversing the order of the tests ensures such a situation cannot | 
|  | * escape unnoticed. The smp_rmb is needed to ensure the page->flags | 
|  | * load is not satisfied before that of page->_count. | 
|  | * | 
|  | * Note that if SetPageDirty is always performed via set_page_dirty, | 
|  | * and thus under tree_lock, then this ordering is not required. | 
|  | */ | 
|  | if (!page_freeze_refs(page, 2)) | 
|  | goto cannot_free; | 
|  | /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ | 
|  | if (unlikely(PageDirty(page))) { | 
|  | page_unfreeze_refs(page, 2); | 
|  | goto cannot_free; | 
|  | } | 
|  |  | 
|  | if (PageSwapCache(page)) { | 
|  | swp_entry_t swap = { .val = page_private(page) }; | 
|  | __delete_from_swap_cache(page); | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | swapcache_free(swap, page); | 
|  | } else { | 
|  | __remove_from_page_cache(page); | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | mem_cgroup_uncharge_cache_page(page); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | cannot_free: | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attempt to detach a locked page from its ->mapping.  If it is dirty or if | 
|  | * someone else has a ref on the page, abort and return 0.  If it was | 
|  | * successfully detached, return 1.  Assumes the caller has a single ref on | 
|  | * this page. | 
|  | */ | 
|  | int remove_mapping(struct address_space *mapping, struct page *page) | 
|  | { | 
|  | if (__remove_mapping(mapping, page)) { | 
|  | /* | 
|  | * Unfreezing the refcount with 1 rather than 2 effectively | 
|  | * drops the pagecache ref for us without requiring another | 
|  | * atomic operation. | 
|  | */ | 
|  | page_unfreeze_refs(page, 1); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * putback_lru_page - put previously isolated page onto appropriate LRU list | 
|  | * @page: page to be put back to appropriate lru list | 
|  | * | 
|  | * Add previously isolated @page to appropriate LRU list. | 
|  | * Page may still be unevictable for other reasons. | 
|  | * | 
|  | * lru_lock must not be held, interrupts must be enabled. | 
|  | */ | 
|  | void putback_lru_page(struct page *page) | 
|  | { | 
|  | int lru; | 
|  | int active = !!TestClearPageActive(page); | 
|  | int was_unevictable = PageUnevictable(page); | 
|  |  | 
|  | VM_BUG_ON(PageLRU(page)); | 
|  |  | 
|  | redo: | 
|  | ClearPageUnevictable(page); | 
|  |  | 
|  | if (page_evictable(page, NULL)) { | 
|  | /* | 
|  | * For evictable pages, we can use the cache. | 
|  | * In event of a race, worst case is we end up with an | 
|  | * unevictable page on [in]active list. | 
|  | * We know how to handle that. | 
|  | */ | 
|  | lru = active + page_lru_base_type(page); | 
|  | lru_cache_add_lru(page, lru); | 
|  | } else { | 
|  | /* | 
|  | * Put unevictable pages directly on zone's unevictable | 
|  | * list. | 
|  | */ | 
|  | lru = LRU_UNEVICTABLE; | 
|  | add_page_to_unevictable_list(page); | 
|  | /* | 
|  | * When racing with an mlock clearing (page is | 
|  | * unlocked), make sure that if the other thread does | 
|  | * not observe our setting of PG_lru and fails | 
|  | * isolation, we see PG_mlocked cleared below and move | 
|  | * the page back to the evictable list. | 
|  | * | 
|  | * The other side is TestClearPageMlocked(). | 
|  | */ | 
|  | smp_mb(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * page's status can change while we move it among lru. If an evictable | 
|  | * page is on unevictable list, it never be freed. To avoid that, | 
|  | * check after we added it to the list, again. | 
|  | */ | 
|  | if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) { | 
|  | if (!isolate_lru_page(page)) { | 
|  | put_page(page); | 
|  | goto redo; | 
|  | } | 
|  | /* This means someone else dropped this page from LRU | 
|  | * So, it will be freed or putback to LRU again. There is | 
|  | * nothing to do here. | 
|  | */ | 
|  | } | 
|  |  | 
|  | if (was_unevictable && lru != LRU_UNEVICTABLE) | 
|  | count_vm_event(UNEVICTABLE_PGRESCUED); | 
|  | else if (!was_unevictable && lru == LRU_UNEVICTABLE) | 
|  | count_vm_event(UNEVICTABLE_PGCULLED); | 
|  |  | 
|  | put_page(page);		/* drop ref from isolate */ | 
|  | } | 
|  |  | 
|  | enum page_references { | 
|  | PAGEREF_RECLAIM, | 
|  | PAGEREF_RECLAIM_CLEAN, | 
|  | PAGEREF_KEEP, | 
|  | PAGEREF_ACTIVATE, | 
|  | }; | 
|  |  | 
|  | static enum page_references page_check_references(struct page *page, | 
|  | struct scan_control *sc) | 
|  | { | 
|  | int referenced_ptes, referenced_page; | 
|  | unsigned long vm_flags; | 
|  |  | 
|  | referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags); | 
|  | referenced_page = TestClearPageReferenced(page); | 
|  |  | 
|  | /* Lumpy reclaim - ignore references */ | 
|  | if (sc->lumpy_reclaim_mode) | 
|  | return PAGEREF_RECLAIM; | 
|  |  | 
|  | /* | 
|  | * Mlock lost the isolation race with us.  Let try_to_unmap() | 
|  | * move the page to the unevictable list. | 
|  | */ | 
|  | if (vm_flags & VM_LOCKED) | 
|  | return PAGEREF_RECLAIM; | 
|  |  | 
|  | if (referenced_ptes) { | 
|  | if (PageAnon(page)) | 
|  | return PAGEREF_ACTIVATE; | 
|  | /* | 
|  | * All mapped pages start out with page table | 
|  | * references from the instantiating fault, so we need | 
|  | * to look twice if a mapped file page is used more | 
|  | * than once. | 
|  | * | 
|  | * Mark it and spare it for another trip around the | 
|  | * inactive list.  Another page table reference will | 
|  | * lead to its activation. | 
|  | * | 
|  | * Note: the mark is set for activated pages as well | 
|  | * so that recently deactivated but used pages are | 
|  | * quickly recovered. | 
|  | */ | 
|  | SetPageReferenced(page); | 
|  |  | 
|  | if (referenced_page) | 
|  | return PAGEREF_ACTIVATE; | 
|  |  | 
|  | return PAGEREF_KEEP; | 
|  | } | 
|  |  | 
|  | /* Reclaim if clean, defer dirty pages to writeback */ | 
|  | if (referenced_page) | 
|  | return PAGEREF_RECLAIM_CLEAN; | 
|  |  | 
|  | return PAGEREF_RECLAIM; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack void free_page_list(struct list_head *free_pages) | 
|  | { | 
|  | struct pagevec freed_pvec; | 
|  | struct page *page, *tmp; | 
|  |  | 
|  | pagevec_init(&freed_pvec, 1); | 
|  |  | 
|  | list_for_each_entry_safe(page, tmp, free_pages, lru) { | 
|  | list_del(&page->lru); | 
|  | if (!pagevec_add(&freed_pvec, page)) { | 
|  | __pagevec_free(&freed_pvec); | 
|  | pagevec_reinit(&freed_pvec); | 
|  | } | 
|  | } | 
|  |  | 
|  | pagevec_free(&freed_pvec); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * shrink_page_list() returns the number of reclaimed pages | 
|  | */ | 
|  | static unsigned long shrink_page_list(struct list_head *page_list, | 
|  | struct scan_control *sc, | 
|  | enum pageout_io sync_writeback) | 
|  | { | 
|  | LIST_HEAD(ret_pages); | 
|  | LIST_HEAD(free_pages); | 
|  | int pgactivate = 0; | 
|  | unsigned long nr_reclaimed = 0; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | while (!list_empty(page_list)) { | 
|  | enum page_references references; | 
|  | struct address_space *mapping; | 
|  | struct page *page; | 
|  | int may_enter_fs; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | page = lru_to_page(page_list); | 
|  | list_del(&page->lru); | 
|  |  | 
|  | if (!trylock_page(page)) | 
|  | goto keep; | 
|  |  | 
|  | VM_BUG_ON(PageActive(page)); | 
|  |  | 
|  | sc->nr_scanned++; | 
|  |  | 
|  | if (unlikely(!page_evictable(page, NULL))) | 
|  | goto cull_mlocked; | 
|  |  | 
|  | if (!sc->may_unmap && page_mapped(page)) | 
|  | goto keep_locked; | 
|  |  | 
|  | /* Double the slab pressure for mapped and swapcache pages */ | 
|  | if (page_mapped(page) || PageSwapCache(page)) | 
|  | sc->nr_scanned++; | 
|  |  | 
|  | may_enter_fs = (sc->gfp_mask & __GFP_FS) || | 
|  | (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); | 
|  |  | 
|  | if (PageWriteback(page)) { | 
|  | /* | 
|  | * Synchronous reclaim is performed in two passes, | 
|  | * first an asynchronous pass over the list to | 
|  | * start parallel writeback, and a second synchronous | 
|  | * pass to wait for the IO to complete.  Wait here | 
|  | * for any page for which writeback has already | 
|  | * started. | 
|  | */ | 
|  | if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs) | 
|  | wait_on_page_writeback(page); | 
|  | else | 
|  | goto keep_locked; | 
|  | } | 
|  |  | 
|  | references = page_check_references(page, sc); | 
|  | switch (references) { | 
|  | case PAGEREF_ACTIVATE: | 
|  | goto activate_locked; | 
|  | case PAGEREF_KEEP: | 
|  | goto keep_locked; | 
|  | case PAGEREF_RECLAIM: | 
|  | case PAGEREF_RECLAIM_CLEAN: | 
|  | ; /* try to reclaim the page below */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Anonymous process memory has backing store? | 
|  | * Try to allocate it some swap space here. | 
|  | */ | 
|  | if (PageAnon(page) && !PageSwapCache(page)) { | 
|  | if (!(sc->gfp_mask & __GFP_IO)) | 
|  | goto keep_locked; | 
|  | if (!add_to_swap(page)) | 
|  | goto activate_locked; | 
|  | may_enter_fs = 1; | 
|  | } | 
|  |  | 
|  | mapping = page_mapping(page); | 
|  |  | 
|  | /* | 
|  | * The page is mapped into the page tables of one or more | 
|  | * processes. Try to unmap it here. | 
|  | */ | 
|  | if (page_mapped(page) && mapping) { | 
|  | switch (try_to_unmap(page, TTU_UNMAP)) { | 
|  | case SWAP_FAIL: | 
|  | goto activate_locked; | 
|  | case SWAP_AGAIN: | 
|  | goto keep_locked; | 
|  | case SWAP_MLOCK: | 
|  | goto cull_mlocked; | 
|  | case SWAP_SUCCESS: | 
|  | ; /* try to free the page below */ | 
|  | } | 
|  | } | 
|  |  | 
|  | if (PageDirty(page)) { | 
|  | if (references == PAGEREF_RECLAIM_CLEAN) | 
|  | goto keep_locked; | 
|  | if (!may_enter_fs) | 
|  | goto keep_locked; | 
|  | if (!sc->may_writepage) | 
|  | goto keep_locked; | 
|  |  | 
|  | /* Page is dirty, try to write it out here */ | 
|  | switch (pageout(page, mapping, sync_writeback)) { | 
|  | case PAGE_KEEP: | 
|  | goto keep_locked; | 
|  | case PAGE_ACTIVATE: | 
|  | goto activate_locked; | 
|  | case PAGE_SUCCESS: | 
|  | if (PageWriteback(page) || PageDirty(page)) | 
|  | goto keep; | 
|  | /* | 
|  | * A synchronous write - probably a ramdisk.  Go | 
|  | * ahead and try to reclaim the page. | 
|  | */ | 
|  | if (!trylock_page(page)) | 
|  | goto keep; | 
|  | if (PageDirty(page) || PageWriteback(page)) | 
|  | goto keep_locked; | 
|  | mapping = page_mapping(page); | 
|  | case PAGE_CLEAN: | 
|  | ; /* try to free the page below */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the page has buffers, try to free the buffer mappings | 
|  | * associated with this page. If we succeed we try to free | 
|  | * the page as well. | 
|  | * | 
|  | * We do this even if the page is PageDirty(). | 
|  | * try_to_release_page() does not perform I/O, but it is | 
|  | * possible for a page to have PageDirty set, but it is actually | 
|  | * clean (all its buffers are clean).  This happens if the | 
|  | * buffers were written out directly, with submit_bh(). ext3 | 
|  | * will do this, as well as the blockdev mapping. | 
|  | * try_to_release_page() will discover that cleanness and will | 
|  | * drop the buffers and mark the page clean - it can be freed. | 
|  | * | 
|  | * Rarely, pages can have buffers and no ->mapping.  These are | 
|  | * the pages which were not successfully invalidated in | 
|  | * truncate_complete_page().  We try to drop those buffers here | 
|  | * and if that worked, and the page is no longer mapped into | 
|  | * process address space (page_count == 1) it can be freed. | 
|  | * Otherwise, leave the page on the LRU so it is swappable. | 
|  | */ | 
|  | if (page_has_private(page)) { | 
|  | if (!try_to_release_page(page, sc->gfp_mask)) | 
|  | goto activate_locked; | 
|  | if (!mapping && page_count(page) == 1) { | 
|  | unlock_page(page); | 
|  | if (put_page_testzero(page)) | 
|  | goto free_it; | 
|  | else { | 
|  | /* | 
|  | * rare race with speculative reference. | 
|  | * the speculative reference will free | 
|  | * this page shortly, so we may | 
|  | * increment nr_reclaimed here (and | 
|  | * leave it off the LRU). | 
|  | */ | 
|  | nr_reclaimed++; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!mapping || !__remove_mapping(mapping, page)) | 
|  | goto keep_locked; | 
|  |  | 
|  | /* | 
|  | * At this point, we have no other references and there is | 
|  | * no way to pick any more up (removed from LRU, removed | 
|  | * from pagecache). Can use non-atomic bitops now (and | 
|  | * we obviously don't have to worry about waking up a process | 
|  | * waiting on the page lock, because there are no references. | 
|  | */ | 
|  | __clear_page_locked(page); | 
|  | free_it: | 
|  | nr_reclaimed++; | 
|  |  | 
|  | /* | 
|  | * Is there need to periodically free_page_list? It would | 
|  | * appear not as the counts should be low | 
|  | */ | 
|  | list_add(&page->lru, &free_pages); | 
|  | continue; | 
|  |  | 
|  | cull_mlocked: | 
|  | if (PageSwapCache(page)) | 
|  | try_to_free_swap(page); | 
|  | unlock_page(page); | 
|  | putback_lru_page(page); | 
|  | continue; | 
|  |  | 
|  | activate_locked: | 
|  | /* Not a candidate for swapping, so reclaim swap space. */ | 
|  | if (PageSwapCache(page) && vm_swap_full()) | 
|  | try_to_free_swap(page); | 
|  | VM_BUG_ON(PageActive(page)); | 
|  | SetPageActive(page); | 
|  | pgactivate++; | 
|  | keep_locked: | 
|  | unlock_page(page); | 
|  | keep: | 
|  | list_add(&page->lru, &ret_pages); | 
|  | VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); | 
|  | } | 
|  |  | 
|  | free_page_list(&free_pages); | 
|  |  | 
|  | list_splice(&ret_pages, page_list); | 
|  | count_vm_events(PGACTIVATE, pgactivate); | 
|  | return nr_reclaimed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attempt to remove the specified page from its LRU.  Only take this page | 
|  | * if it is of the appropriate PageActive status.  Pages which are being | 
|  | * freed elsewhere are also ignored. | 
|  | * | 
|  | * page:	page to consider | 
|  | * mode:	one of the LRU isolation modes defined above | 
|  | * | 
|  | * returns 0 on success, -ve errno on failure. | 
|  | */ | 
|  | int __isolate_lru_page(struct page *page, int mode, int file) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | /* Only take pages on the LRU. */ | 
|  | if (!PageLRU(page)) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * When checking the active state, we need to be sure we are | 
|  | * dealing with comparible boolean values.  Take the logical not | 
|  | * of each. | 
|  | */ | 
|  | if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) | 
|  | return ret; | 
|  |  | 
|  | if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * When this function is being called for lumpy reclaim, we | 
|  | * initially look into all LRU pages, active, inactive and | 
|  | * unevictable; only give shrink_page_list evictable pages. | 
|  | */ | 
|  | if (PageUnevictable(page)) | 
|  | return ret; | 
|  |  | 
|  | ret = -EBUSY; | 
|  |  | 
|  | if (likely(get_page_unless_zero(page))) { | 
|  | /* | 
|  | * Be careful not to clear PageLRU until after we're | 
|  | * sure the page is not being freed elsewhere -- the | 
|  | * page release code relies on it. | 
|  | */ | 
|  | ClearPageLRU(page); | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * zone->lru_lock is heavily contended.  Some of the functions that | 
|  | * shrink the lists perform better by taking out a batch of pages | 
|  | * and working on them outside the LRU lock. | 
|  | * | 
|  | * For pagecache intensive workloads, this function is the hottest | 
|  | * spot in the kernel (apart from copy_*_user functions). | 
|  | * | 
|  | * Appropriate locks must be held before calling this function. | 
|  | * | 
|  | * @nr_to_scan:	The number of pages to look through on the list. | 
|  | * @src:	The LRU list to pull pages off. | 
|  | * @dst:	The temp list to put pages on to. | 
|  | * @scanned:	The number of pages that were scanned. | 
|  | * @order:	The caller's attempted allocation order | 
|  | * @mode:	One of the LRU isolation modes | 
|  | * @file:	True [1] if isolating file [!anon] pages | 
|  | * | 
|  | * returns how many pages were moved onto *@dst. | 
|  | */ | 
|  | static unsigned long isolate_lru_pages(unsigned long nr_to_scan, | 
|  | struct list_head *src, struct list_head *dst, | 
|  | unsigned long *scanned, int order, int mode, int file) | 
|  | { | 
|  | unsigned long nr_taken = 0; | 
|  | unsigned long nr_lumpy_taken = 0; | 
|  | unsigned long nr_lumpy_dirty = 0; | 
|  | unsigned long nr_lumpy_failed = 0; | 
|  | unsigned long scan; | 
|  |  | 
|  | for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { | 
|  | struct page *page; | 
|  | unsigned long pfn; | 
|  | unsigned long end_pfn; | 
|  | unsigned long page_pfn; | 
|  | int zone_id; | 
|  |  | 
|  | page = lru_to_page(src); | 
|  | prefetchw_prev_lru_page(page, src, flags); | 
|  |  | 
|  | VM_BUG_ON(!PageLRU(page)); | 
|  |  | 
|  | switch (__isolate_lru_page(page, mode, file)) { | 
|  | case 0: | 
|  | list_move(&page->lru, dst); | 
|  | mem_cgroup_del_lru(page); | 
|  | nr_taken++; | 
|  | break; | 
|  |  | 
|  | case -EBUSY: | 
|  | /* else it is being freed elsewhere */ | 
|  | list_move(&page->lru, src); | 
|  | mem_cgroup_rotate_lru_list(page, page_lru(page)); | 
|  | continue; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (!order) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Attempt to take all pages in the order aligned region | 
|  | * surrounding the tag page.  Only take those pages of | 
|  | * the same active state as that tag page.  We may safely | 
|  | * round the target page pfn down to the requested order | 
|  | * as the mem_map is guarenteed valid out to MAX_ORDER, | 
|  | * where that page is in a different zone we will detect | 
|  | * it from its zone id and abort this block scan. | 
|  | */ | 
|  | zone_id = page_zone_id(page); | 
|  | page_pfn = page_to_pfn(page); | 
|  | pfn = page_pfn & ~((1 << order) - 1); | 
|  | end_pfn = pfn + (1 << order); | 
|  | for (; pfn < end_pfn; pfn++) { | 
|  | struct page *cursor_page; | 
|  |  | 
|  | /* The target page is in the block, ignore it. */ | 
|  | if (unlikely(pfn == page_pfn)) | 
|  | continue; | 
|  |  | 
|  | /* Avoid holes within the zone. */ | 
|  | if (unlikely(!pfn_valid_within(pfn))) | 
|  | break; | 
|  |  | 
|  | cursor_page = pfn_to_page(pfn); | 
|  |  | 
|  | /* Check that we have not crossed a zone boundary. */ | 
|  | if (unlikely(page_zone_id(cursor_page) != zone_id)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * If we don't have enough swap space, reclaiming of | 
|  | * anon page which don't already have a swap slot is | 
|  | * pointless. | 
|  | */ | 
|  | if (nr_swap_pages <= 0 && PageAnon(cursor_page) && | 
|  | !PageSwapCache(cursor_page)) | 
|  | continue; | 
|  |  | 
|  | if (__isolate_lru_page(cursor_page, mode, file) == 0) { | 
|  | list_move(&cursor_page->lru, dst); | 
|  | mem_cgroup_del_lru(cursor_page); | 
|  | nr_taken++; | 
|  | nr_lumpy_taken++; | 
|  | if (PageDirty(cursor_page)) | 
|  | nr_lumpy_dirty++; | 
|  | scan++; | 
|  | } else { | 
|  | if (mode == ISOLATE_BOTH && | 
|  | page_count(cursor_page)) | 
|  | nr_lumpy_failed++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | *scanned = scan; | 
|  |  | 
|  | trace_mm_vmscan_lru_isolate(order, | 
|  | nr_to_scan, scan, | 
|  | nr_taken, | 
|  | nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed, | 
|  | mode); | 
|  | return nr_taken; | 
|  | } | 
|  |  | 
|  | static unsigned long isolate_pages_global(unsigned long nr, | 
|  | struct list_head *dst, | 
|  | unsigned long *scanned, int order, | 
|  | int mode, struct zone *z, | 
|  | int active, int file) | 
|  | { | 
|  | int lru = LRU_BASE; | 
|  | if (active) | 
|  | lru += LRU_ACTIVE; | 
|  | if (file) | 
|  | lru += LRU_FILE; | 
|  | return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order, | 
|  | mode, file); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * clear_active_flags() is a helper for shrink_active_list(), clearing | 
|  | * any active bits from the pages in the list. | 
|  | */ | 
|  | static unsigned long clear_active_flags(struct list_head *page_list, | 
|  | unsigned int *count) | 
|  | { | 
|  | int nr_active = 0; | 
|  | int lru; | 
|  | struct page *page; | 
|  |  | 
|  | list_for_each_entry(page, page_list, lru) { | 
|  | lru = page_lru_base_type(page); | 
|  | if (PageActive(page)) { | 
|  | lru += LRU_ACTIVE; | 
|  | ClearPageActive(page); | 
|  | nr_active++; | 
|  | } | 
|  | if (count) | 
|  | count[lru]++; | 
|  | } | 
|  |  | 
|  | return nr_active; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * isolate_lru_page - tries to isolate a page from its LRU list | 
|  | * @page: page to isolate from its LRU list | 
|  | * | 
|  | * Isolates a @page from an LRU list, clears PageLRU and adjusts the | 
|  | * vmstat statistic corresponding to whatever LRU list the page was on. | 
|  | * | 
|  | * Returns 0 if the page was removed from an LRU list. | 
|  | * Returns -EBUSY if the page was not on an LRU list. | 
|  | * | 
|  | * The returned page will have PageLRU() cleared.  If it was found on | 
|  | * the active list, it will have PageActive set.  If it was found on | 
|  | * the unevictable list, it will have the PageUnevictable bit set. That flag | 
|  | * may need to be cleared by the caller before letting the page go. | 
|  | * | 
|  | * The vmstat statistic corresponding to the list on which the page was | 
|  | * found will be decremented. | 
|  | * | 
|  | * Restrictions: | 
|  | * (1) Must be called with an elevated refcount on the page. This is a | 
|  | *     fundamentnal difference from isolate_lru_pages (which is called | 
|  | *     without a stable reference). | 
|  | * (2) the lru_lock must not be held. | 
|  | * (3) interrupts must be enabled. | 
|  | */ | 
|  | int isolate_lru_page(struct page *page) | 
|  | { | 
|  | int ret = -EBUSY; | 
|  |  | 
|  | if (PageLRU(page)) { | 
|  | struct zone *zone = page_zone(page); | 
|  |  | 
|  | spin_lock_irq(&zone->lru_lock); | 
|  | if (PageLRU(page) && get_page_unless_zero(page)) { | 
|  | int lru = page_lru(page); | 
|  | ret = 0; | 
|  | ClearPageLRU(page); | 
|  |  | 
|  | del_page_from_lru_list(zone, page, lru); | 
|  | } | 
|  | spin_unlock_irq(&zone->lru_lock); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Are there way too many processes in the direct reclaim path already? | 
|  | */ | 
|  | static int too_many_isolated(struct zone *zone, int file, | 
|  | struct scan_control *sc) | 
|  | { | 
|  | unsigned long inactive, isolated; | 
|  |  | 
|  | if (current_is_kswapd()) | 
|  | return 0; | 
|  |  | 
|  | if (!scanning_global_lru(sc)) | 
|  | return 0; | 
|  |  | 
|  | if (file) { | 
|  | inactive = zone_page_state(zone, NR_INACTIVE_FILE); | 
|  | isolated = zone_page_state(zone, NR_ISOLATED_FILE); | 
|  | } else { | 
|  | inactive = zone_page_state(zone, NR_INACTIVE_ANON); | 
|  | isolated = zone_page_state(zone, NR_ISOLATED_ANON); | 
|  | } | 
|  |  | 
|  | return isolated > inactive; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TODO: Try merging with migrations version of putback_lru_pages | 
|  | */ | 
|  | static noinline_for_stack void | 
|  | putback_lru_pages(struct zone *zone, struct scan_control *sc, | 
|  | unsigned long nr_anon, unsigned long nr_file, | 
|  | struct list_head *page_list) | 
|  | { | 
|  | struct page *page; | 
|  | struct pagevec pvec; | 
|  | struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); | 
|  |  | 
|  | pagevec_init(&pvec, 1); | 
|  |  | 
|  | /* | 
|  | * Put back any unfreeable pages. | 
|  | */ | 
|  | spin_lock(&zone->lru_lock); | 
|  | while (!list_empty(page_list)) { | 
|  | int lru; | 
|  | page = lru_to_page(page_list); | 
|  | VM_BUG_ON(PageLRU(page)); | 
|  | list_del(&page->lru); | 
|  | if (unlikely(!page_evictable(page, NULL))) { | 
|  | spin_unlock_irq(&zone->lru_lock); | 
|  | putback_lru_page(page); | 
|  | spin_lock_irq(&zone->lru_lock); | 
|  | continue; | 
|  | } | 
|  | SetPageLRU(page); | 
|  | lru = page_lru(page); | 
|  | add_page_to_lru_list(zone, page, lru); | 
|  | if (is_active_lru(lru)) { | 
|  | int file = is_file_lru(lru); | 
|  | reclaim_stat->recent_rotated[file]++; | 
|  | } | 
|  | if (!pagevec_add(&pvec, page)) { | 
|  | spin_unlock_irq(&zone->lru_lock); | 
|  | __pagevec_release(&pvec); | 
|  | spin_lock_irq(&zone->lru_lock); | 
|  | } | 
|  | } | 
|  | __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon); | 
|  | __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file); | 
|  |  | 
|  | spin_unlock_irq(&zone->lru_lock); | 
|  | pagevec_release(&pvec); | 
|  | } | 
|  |  | 
|  | static noinline_for_stack void update_isolated_counts(struct zone *zone, | 
|  | struct scan_control *sc, | 
|  | unsigned long *nr_anon, | 
|  | unsigned long *nr_file, | 
|  | struct list_head *isolated_list) | 
|  | { | 
|  | unsigned long nr_active; | 
|  | unsigned int count[NR_LRU_LISTS] = { 0, }; | 
|  | struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); | 
|  |  | 
|  | nr_active = clear_active_flags(isolated_list, count); | 
|  | __count_vm_events(PGDEACTIVATE, nr_active); | 
|  |  | 
|  | __mod_zone_page_state(zone, NR_ACTIVE_FILE, | 
|  | -count[LRU_ACTIVE_FILE]); | 
|  | __mod_zone_page_state(zone, NR_INACTIVE_FILE, | 
|  | -count[LRU_INACTIVE_FILE]); | 
|  | __mod_zone_page_state(zone, NR_ACTIVE_ANON, | 
|  | -count[LRU_ACTIVE_ANON]); | 
|  | __mod_zone_page_state(zone, NR_INACTIVE_ANON, | 
|  | -count[LRU_INACTIVE_ANON]); | 
|  |  | 
|  | *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON]; | 
|  | *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE]; | 
|  | __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon); | 
|  | __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file); | 
|  |  | 
|  | reclaim_stat->recent_scanned[0] += *nr_anon; | 
|  | reclaim_stat->recent_scanned[1] += *nr_file; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns true if the caller should wait to clean dirty/writeback pages. | 
|  | * | 
|  | * If we are direct reclaiming for contiguous pages and we do not reclaim | 
|  | * everything in the list, try again and wait for writeback IO to complete. | 
|  | * This will stall high-order allocations noticeably. Only do that when really | 
|  | * need to free the pages under high memory pressure. | 
|  | */ | 
|  | static inline bool should_reclaim_stall(unsigned long nr_taken, | 
|  | unsigned long nr_freed, | 
|  | int priority, | 
|  | struct scan_control *sc) | 
|  | { | 
|  | int lumpy_stall_priority; | 
|  |  | 
|  | /* kswapd should not stall on sync IO */ | 
|  | if (current_is_kswapd()) | 
|  | return false; | 
|  |  | 
|  | /* Only stall on lumpy reclaim */ | 
|  | if (!sc->lumpy_reclaim_mode) | 
|  | return false; | 
|  |  | 
|  | /* If we have relaimed everything on the isolated list, no stall */ | 
|  | if (nr_freed == nr_taken) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * For high-order allocations, there are two stall thresholds. | 
|  | * High-cost allocations stall immediately where as lower | 
|  | * order allocations such as stacks require the scanning | 
|  | * priority to be much higher before stalling. | 
|  | */ | 
|  | if (sc->order > PAGE_ALLOC_COSTLY_ORDER) | 
|  | lumpy_stall_priority = DEF_PRIORITY; | 
|  | else | 
|  | lumpy_stall_priority = DEF_PRIORITY / 3; | 
|  |  | 
|  | return priority <= lumpy_stall_priority; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * shrink_inactive_list() is a helper for shrink_zone().  It returns the number | 
|  | * of reclaimed pages | 
|  | */ | 
|  | static noinline_for_stack unsigned long | 
|  | shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone, | 
|  | struct scan_control *sc, int priority, int file) | 
|  | { | 
|  | LIST_HEAD(page_list); | 
|  | unsigned long nr_scanned; | 
|  | unsigned long nr_reclaimed = 0; | 
|  | unsigned long nr_taken; | 
|  | unsigned long nr_active; | 
|  | unsigned long nr_anon; | 
|  | unsigned long nr_file; | 
|  |  | 
|  | while (unlikely(too_many_isolated(zone, file, sc))) { | 
|  | congestion_wait(BLK_RW_ASYNC, HZ/10); | 
|  |  | 
|  | /* We are about to die and free our memory. Return now. */ | 
|  | if (fatal_signal_pending(current)) | 
|  | return SWAP_CLUSTER_MAX; | 
|  | } | 
|  |  | 
|  |  | 
|  | lru_add_drain(); | 
|  | spin_lock_irq(&zone->lru_lock); | 
|  |  | 
|  | if (scanning_global_lru(sc)) { | 
|  | nr_taken = isolate_pages_global(nr_to_scan, | 
|  | &page_list, &nr_scanned, sc->order, | 
|  | sc->lumpy_reclaim_mode ? | 
|  | ISOLATE_BOTH : ISOLATE_INACTIVE, | 
|  | zone, 0, file); | 
|  | zone->pages_scanned += nr_scanned; | 
|  | if (current_is_kswapd()) | 
|  | __count_zone_vm_events(PGSCAN_KSWAPD, zone, | 
|  | nr_scanned); | 
|  | else | 
|  | __count_zone_vm_events(PGSCAN_DIRECT, zone, | 
|  | nr_scanned); | 
|  | } else { | 
|  | nr_taken = mem_cgroup_isolate_pages(nr_to_scan, | 
|  | &page_list, &nr_scanned, sc->order, | 
|  | sc->lumpy_reclaim_mode ? | 
|  | ISOLATE_BOTH : ISOLATE_INACTIVE, | 
|  | zone, sc->mem_cgroup, | 
|  | 0, file); | 
|  | /* | 
|  | * mem_cgroup_isolate_pages() keeps track of | 
|  | * scanned pages on its own. | 
|  | */ | 
|  | } | 
|  |  | 
|  | if (nr_taken == 0) { | 
|  | spin_unlock_irq(&zone->lru_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list); | 
|  |  | 
|  | spin_unlock_irq(&zone->lru_lock); | 
|  |  | 
|  | nr_reclaimed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); | 
|  |  | 
|  | /* Check if we should syncronously wait for writeback */ | 
|  | if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) { | 
|  | congestion_wait(BLK_RW_ASYNC, HZ/10); | 
|  |  | 
|  | /* | 
|  | * The attempt at page out may have made some | 
|  | * of the pages active, mark them inactive again. | 
|  | */ | 
|  | nr_active = clear_active_flags(&page_list, NULL); | 
|  | count_vm_events(PGDEACTIVATE, nr_active); | 
|  |  | 
|  | nr_reclaimed += shrink_page_list(&page_list, sc, PAGEOUT_IO_SYNC); | 
|  | } | 
|  |  | 
|  | local_irq_disable(); | 
|  | if (current_is_kswapd()) | 
|  | __count_vm_events(KSWAPD_STEAL, nr_reclaimed); | 
|  | __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed); | 
|  |  | 
|  | putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list); | 
|  | return nr_reclaimed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This moves pages from the active list to the inactive list. | 
|  | * | 
|  | * We move them the other way if the page is referenced by one or more | 
|  | * processes, from rmap. | 
|  | * | 
|  | * If the pages are mostly unmapped, the processing is fast and it is | 
|  | * appropriate to hold zone->lru_lock across the whole operation.  But if | 
|  | * the pages are mapped, the processing is slow (page_referenced()) so we | 
|  | * should drop zone->lru_lock around each page.  It's impossible to balance | 
|  | * this, so instead we remove the pages from the LRU while processing them. | 
|  | * It is safe to rely on PG_active against the non-LRU pages in here because | 
|  | * nobody will play with that bit on a non-LRU page. | 
|  | * | 
|  | * The downside is that we have to touch page->_count against each page. | 
|  | * But we had to alter page->flags anyway. | 
|  | */ | 
|  |  | 
|  | static void move_active_pages_to_lru(struct zone *zone, | 
|  | struct list_head *list, | 
|  | enum lru_list lru) | 
|  | { | 
|  | unsigned long pgmoved = 0; | 
|  | struct pagevec pvec; | 
|  | struct page *page; | 
|  |  | 
|  | pagevec_init(&pvec, 1); | 
|  |  | 
|  | while (!list_empty(list)) { | 
|  | page = lru_to_page(list); | 
|  |  | 
|  | VM_BUG_ON(PageLRU(page)); | 
|  | SetPageLRU(page); | 
|  |  | 
|  | list_move(&page->lru, &zone->lru[lru].list); | 
|  | mem_cgroup_add_lru_list(page, lru); | 
|  | pgmoved++; | 
|  |  | 
|  | if (!pagevec_add(&pvec, page) || list_empty(list)) { | 
|  | spin_unlock_irq(&zone->lru_lock); | 
|  | if (buffer_heads_over_limit) | 
|  | pagevec_strip(&pvec); | 
|  | __pagevec_release(&pvec); | 
|  | spin_lock_irq(&zone->lru_lock); | 
|  | } | 
|  | } | 
|  | __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); | 
|  | if (!is_active_lru(lru)) | 
|  | __count_vm_events(PGDEACTIVATE, pgmoved); | 
|  | } | 
|  |  | 
|  | static void shrink_active_list(unsigned long nr_pages, struct zone *zone, | 
|  | struct scan_control *sc, int priority, int file) | 
|  | { | 
|  | unsigned long nr_taken; | 
|  | unsigned long pgscanned; | 
|  | unsigned long vm_flags; | 
|  | LIST_HEAD(l_hold);	/* The pages which were snipped off */ | 
|  | LIST_HEAD(l_active); | 
|  | LIST_HEAD(l_inactive); | 
|  | struct page *page; | 
|  | struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); | 
|  | unsigned long nr_rotated = 0; | 
|  |  | 
|  | lru_add_drain(); | 
|  | spin_lock_irq(&zone->lru_lock); | 
|  | if (scanning_global_lru(sc)) { | 
|  | nr_taken = isolate_pages_global(nr_pages, &l_hold, | 
|  | &pgscanned, sc->order, | 
|  | ISOLATE_ACTIVE, zone, | 
|  | 1, file); | 
|  | zone->pages_scanned += pgscanned; | 
|  | } else { | 
|  | nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold, | 
|  | &pgscanned, sc->order, | 
|  | ISOLATE_ACTIVE, zone, | 
|  | sc->mem_cgroup, 1, file); | 
|  | /* | 
|  | * mem_cgroup_isolate_pages() keeps track of | 
|  | * scanned pages on its own. | 
|  | */ | 
|  | } | 
|  |  | 
|  | reclaim_stat->recent_scanned[file] += nr_taken; | 
|  |  | 
|  | __count_zone_vm_events(PGREFILL, zone, pgscanned); | 
|  | if (file) | 
|  | __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken); | 
|  | else | 
|  | __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken); | 
|  | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); | 
|  | spin_unlock_irq(&zone->lru_lock); | 
|  |  | 
|  | while (!list_empty(&l_hold)) { | 
|  | cond_resched(); | 
|  | page = lru_to_page(&l_hold); | 
|  | list_del(&page->lru); | 
|  |  | 
|  | if (unlikely(!page_evictable(page, NULL))) { | 
|  | putback_lru_page(page); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) { | 
|  | nr_rotated++; | 
|  | /* | 
|  | * Identify referenced, file-backed active pages and | 
|  | * give them one more trip around the active list. So | 
|  | * that executable code get better chances to stay in | 
|  | * memory under moderate memory pressure.  Anon pages | 
|  | * are not likely to be evicted by use-once streaming | 
|  | * IO, plus JVM can create lots of anon VM_EXEC pages, | 
|  | * so we ignore them here. | 
|  | */ | 
|  | if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { | 
|  | list_add(&page->lru, &l_active); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | ClearPageActive(page);	/* we are de-activating */ | 
|  | list_add(&page->lru, &l_inactive); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move pages back to the lru list. | 
|  | */ | 
|  | spin_lock_irq(&zone->lru_lock); | 
|  | /* | 
|  | * Count referenced pages from currently used mappings as rotated, | 
|  | * even though only some of them are actually re-activated.  This | 
|  | * helps balance scan pressure between file and anonymous pages in | 
|  | * get_scan_ratio. | 
|  | */ | 
|  | reclaim_stat->recent_rotated[file] += nr_rotated; | 
|  |  | 
|  | move_active_pages_to_lru(zone, &l_active, | 
|  | LRU_ACTIVE + file * LRU_FILE); | 
|  | move_active_pages_to_lru(zone, &l_inactive, | 
|  | LRU_BASE   + file * LRU_FILE); | 
|  | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); | 
|  | spin_unlock_irq(&zone->lru_lock); | 
|  | } | 
|  |  | 
|  | static int inactive_anon_is_low_global(struct zone *zone) | 
|  | { | 
|  | unsigned long active, inactive; | 
|  |  | 
|  | active = zone_page_state(zone, NR_ACTIVE_ANON); | 
|  | inactive = zone_page_state(zone, NR_INACTIVE_ANON); | 
|  |  | 
|  | if (inactive * zone->inactive_ratio < active) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * inactive_anon_is_low - check if anonymous pages need to be deactivated | 
|  | * @zone: zone to check | 
|  | * @sc:   scan control of this context | 
|  | * | 
|  | * Returns true if the zone does not have enough inactive anon pages, | 
|  | * meaning some active anon pages need to be deactivated. | 
|  | */ | 
|  | static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc) | 
|  | { | 
|  | int low; | 
|  |  | 
|  | if (scanning_global_lru(sc)) | 
|  | low = inactive_anon_is_low_global(zone); | 
|  | else | 
|  | low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup); | 
|  | return low; | 
|  | } | 
|  |  | 
|  | static int inactive_file_is_low_global(struct zone *zone) | 
|  | { | 
|  | unsigned long active, inactive; | 
|  |  | 
|  | active = zone_page_state(zone, NR_ACTIVE_FILE); | 
|  | inactive = zone_page_state(zone, NR_INACTIVE_FILE); | 
|  |  | 
|  | return (active > inactive); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * inactive_file_is_low - check if file pages need to be deactivated | 
|  | * @zone: zone to check | 
|  | * @sc:   scan control of this context | 
|  | * | 
|  | * When the system is doing streaming IO, memory pressure here | 
|  | * ensures that active file pages get deactivated, until more | 
|  | * than half of the file pages are on the inactive list. | 
|  | * | 
|  | * Once we get to that situation, protect the system's working | 
|  | * set from being evicted by disabling active file page aging. | 
|  | * | 
|  | * This uses a different ratio than the anonymous pages, because | 
|  | * the page cache uses a use-once replacement algorithm. | 
|  | */ | 
|  | static int inactive_file_is_low(struct zone *zone, struct scan_control *sc) | 
|  | { | 
|  | int low; | 
|  |  | 
|  | if (scanning_global_lru(sc)) | 
|  | low = inactive_file_is_low_global(zone); | 
|  | else | 
|  | low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup); | 
|  | return low; | 
|  | } | 
|  |  | 
|  | static int inactive_list_is_low(struct zone *zone, struct scan_control *sc, | 
|  | int file) | 
|  | { | 
|  | if (file) | 
|  | return inactive_file_is_low(zone, sc); | 
|  | else | 
|  | return inactive_anon_is_low(zone, sc); | 
|  | } | 
|  |  | 
|  | static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, | 
|  | struct zone *zone, struct scan_control *sc, int priority) | 
|  | { | 
|  | int file = is_file_lru(lru); | 
|  |  | 
|  | if (is_active_lru(lru)) { | 
|  | if (inactive_list_is_low(zone, sc, file)) | 
|  | shrink_active_list(nr_to_scan, zone, sc, priority, file); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return shrink_inactive_list(nr_to_scan, zone, sc, priority, file); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Smallish @nr_to_scan's are deposited in @nr_saved_scan, | 
|  | * until we collected @swap_cluster_max pages to scan. | 
|  | */ | 
|  | static unsigned long nr_scan_try_batch(unsigned long nr_to_scan, | 
|  | unsigned long *nr_saved_scan) | 
|  | { | 
|  | unsigned long nr; | 
|  |  | 
|  | *nr_saved_scan += nr_to_scan; | 
|  | nr = *nr_saved_scan; | 
|  |  | 
|  | if (nr >= SWAP_CLUSTER_MAX) | 
|  | *nr_saved_scan = 0; | 
|  | else | 
|  | nr = 0; | 
|  |  | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine how aggressively the anon and file LRU lists should be | 
|  | * scanned.  The relative value of each set of LRU lists is determined | 
|  | * by looking at the fraction of the pages scanned we did rotate back | 
|  | * onto the active list instead of evict. | 
|  | * | 
|  | * nr[0] = anon pages to scan; nr[1] = file pages to scan | 
|  | */ | 
|  | static void get_scan_count(struct zone *zone, struct scan_control *sc, | 
|  | unsigned long *nr, int priority) | 
|  | { | 
|  | unsigned long anon, file, free; | 
|  | unsigned long anon_prio, file_prio; | 
|  | unsigned long ap, fp; | 
|  | struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); | 
|  | u64 fraction[2], denominator; | 
|  | enum lru_list l; | 
|  | int noswap = 0; | 
|  |  | 
|  | /* If we have no swap space, do not bother scanning anon pages. */ | 
|  | if (!sc->may_swap || (nr_swap_pages <= 0)) { | 
|  | noswap = 1; | 
|  | fraction[0] = 0; | 
|  | fraction[1] = 1; | 
|  | denominator = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) + | 
|  | zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON); | 
|  | file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) + | 
|  | zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE); | 
|  |  | 
|  | if (scanning_global_lru(sc)) { | 
|  | free  = zone_page_state(zone, NR_FREE_PAGES); | 
|  | /* If we have very few page cache pages, | 
|  | force-scan anon pages. */ | 
|  | if (unlikely(file + free <= high_wmark_pages(zone))) { | 
|  | fraction[0] = 1; | 
|  | fraction[1] = 0; | 
|  | denominator = 1; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * With swappiness at 100, anonymous and file have the same priority. | 
|  | * This scanning priority is essentially the inverse of IO cost. | 
|  | */ | 
|  | anon_prio = sc->swappiness; | 
|  | file_prio = 200 - sc->swappiness; | 
|  |  | 
|  | /* | 
|  | * OK, so we have swap space and a fair amount of page cache | 
|  | * pages.  We use the recently rotated / recently scanned | 
|  | * ratios to determine how valuable each cache is. | 
|  | * | 
|  | * Because workloads change over time (and to avoid overflow) | 
|  | * we keep these statistics as a floating average, which ends | 
|  | * up weighing recent references more than old ones. | 
|  | * | 
|  | * anon in [0], file in [1] | 
|  | */ | 
|  | spin_lock_irq(&zone->lru_lock); | 
|  | if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { | 
|  | reclaim_stat->recent_scanned[0] /= 2; | 
|  | reclaim_stat->recent_rotated[0] /= 2; | 
|  | } | 
|  |  | 
|  | if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { | 
|  | reclaim_stat->recent_scanned[1] /= 2; | 
|  | reclaim_stat->recent_rotated[1] /= 2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The amount of pressure on anon vs file pages is inversely | 
|  | * proportional to the fraction of recently scanned pages on | 
|  | * each list that were recently referenced and in active use. | 
|  | */ | 
|  | ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1); | 
|  | ap /= reclaim_stat->recent_rotated[0] + 1; | 
|  |  | 
|  | fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1); | 
|  | fp /= reclaim_stat->recent_rotated[1] + 1; | 
|  | spin_unlock_irq(&zone->lru_lock); | 
|  |  | 
|  | fraction[0] = ap; | 
|  | fraction[1] = fp; | 
|  | denominator = ap + fp + 1; | 
|  | out: | 
|  | for_each_evictable_lru(l) { | 
|  | int file = is_file_lru(l); | 
|  | unsigned long scan; | 
|  |  | 
|  | scan = zone_nr_lru_pages(zone, sc, l); | 
|  | if (priority || noswap) { | 
|  | scan >>= priority; | 
|  | scan = div64_u64(scan * fraction[file], denominator); | 
|  | } | 
|  | nr[l] = nr_scan_try_batch(scan, | 
|  | &reclaim_stat->nr_saved_scan[l]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc) | 
|  | { | 
|  | /* | 
|  | * If we need a large contiguous chunk of memory, or have | 
|  | * trouble getting a small set of contiguous pages, we | 
|  | * will reclaim both active and inactive pages. | 
|  | */ | 
|  | if (sc->order > PAGE_ALLOC_COSTLY_ORDER) | 
|  | sc->lumpy_reclaim_mode = 1; | 
|  | else if (sc->order && priority < DEF_PRIORITY - 2) | 
|  | sc->lumpy_reclaim_mode = 1; | 
|  | else | 
|  | sc->lumpy_reclaim_mode = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim. | 
|  | */ | 
|  | static void shrink_zone(int priority, struct zone *zone, | 
|  | struct scan_control *sc) | 
|  | { | 
|  | unsigned long nr[NR_LRU_LISTS]; | 
|  | unsigned long nr_to_scan; | 
|  | enum lru_list l; | 
|  | unsigned long nr_reclaimed = sc->nr_reclaimed; | 
|  | unsigned long nr_to_reclaim = sc->nr_to_reclaim; | 
|  |  | 
|  | get_scan_count(zone, sc, nr, priority); | 
|  |  | 
|  | set_lumpy_reclaim_mode(priority, sc); | 
|  |  | 
|  | while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || | 
|  | nr[LRU_INACTIVE_FILE]) { | 
|  | for_each_evictable_lru(l) { | 
|  | if (nr[l]) { | 
|  | nr_to_scan = min_t(unsigned long, | 
|  | nr[l], SWAP_CLUSTER_MAX); | 
|  | nr[l] -= nr_to_scan; | 
|  |  | 
|  | nr_reclaimed += shrink_list(l, nr_to_scan, | 
|  | zone, sc, priority); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * On large memory systems, scan >> priority can become | 
|  | * really large. This is fine for the starting priority; | 
|  | * we want to put equal scanning pressure on each zone. | 
|  | * However, if the VM has a harder time of freeing pages, | 
|  | * with multiple processes reclaiming pages, the total | 
|  | * freeing target can get unreasonably large. | 
|  | */ | 
|  | if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY) | 
|  | break; | 
|  | } | 
|  |  | 
|  | sc->nr_reclaimed = nr_reclaimed; | 
|  |  | 
|  | /* | 
|  | * Even if we did not try to evict anon pages at all, we want to | 
|  | * rebalance the anon lru active/inactive ratio. | 
|  | */ | 
|  | if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0) | 
|  | shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); | 
|  |  | 
|  | throttle_vm_writeout(sc->gfp_mask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the direct reclaim path, for page-allocating processes.  We only | 
|  | * try to reclaim pages from zones which will satisfy the caller's allocation | 
|  | * request. | 
|  | * | 
|  | * We reclaim from a zone even if that zone is over high_wmark_pages(zone). | 
|  | * Because: | 
|  | * a) The caller may be trying to free *extra* pages to satisfy a higher-order | 
|  | *    allocation or | 
|  | * b) The target zone may be at high_wmark_pages(zone) but the lower zones | 
|  | *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min' | 
|  | *    zone defense algorithm. | 
|  | * | 
|  | * If a zone is deemed to be full of pinned pages then just give it a light | 
|  | * scan then give up on it. | 
|  | */ | 
|  | static bool shrink_zones(int priority, struct zonelist *zonelist, | 
|  | struct scan_control *sc) | 
|  | { | 
|  | struct zoneref *z; | 
|  | struct zone *zone; | 
|  | bool all_unreclaimable = true; | 
|  |  | 
|  | for_each_zone_zonelist_nodemask(zone, z, zonelist, | 
|  | gfp_zone(sc->gfp_mask), sc->nodemask) { | 
|  | if (!populated_zone(zone)) | 
|  | continue; | 
|  | /* | 
|  | * Take care memory controller reclaiming has small influence | 
|  | * to global LRU. | 
|  | */ | 
|  | if (scanning_global_lru(sc)) { | 
|  | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | 
|  | continue; | 
|  | if (zone->all_unreclaimable && priority != DEF_PRIORITY) | 
|  | continue;	/* Let kswapd poll it */ | 
|  | } | 
|  |  | 
|  | shrink_zone(priority, zone, sc); | 
|  | all_unreclaimable = false; | 
|  | } | 
|  | return all_unreclaimable; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the main entry point to direct page reclaim. | 
|  | * | 
|  | * If a full scan of the inactive list fails to free enough memory then we | 
|  | * are "out of memory" and something needs to be killed. | 
|  | * | 
|  | * If the caller is !__GFP_FS then the probability of a failure is reasonably | 
|  | * high - the zone may be full of dirty or under-writeback pages, which this | 
|  | * caller can't do much about.  We kick the writeback threads and take explicit | 
|  | * naps in the hope that some of these pages can be written.  But if the | 
|  | * allocating task holds filesystem locks which prevent writeout this might not | 
|  | * work, and the allocation attempt will fail. | 
|  | * | 
|  | * returns:	0, if no pages reclaimed | 
|  | * 		else, the number of pages reclaimed | 
|  | */ | 
|  | static unsigned long do_try_to_free_pages(struct zonelist *zonelist, | 
|  | struct scan_control *sc) | 
|  | { | 
|  | int priority; | 
|  | bool all_unreclaimable; | 
|  | unsigned long total_scanned = 0; | 
|  | struct reclaim_state *reclaim_state = current->reclaim_state; | 
|  | struct zoneref *z; | 
|  | struct zone *zone; | 
|  | unsigned long writeback_threshold; | 
|  |  | 
|  | get_mems_allowed(); | 
|  | delayacct_freepages_start(); | 
|  |  | 
|  | if (scanning_global_lru(sc)) | 
|  | count_vm_event(ALLOCSTALL); | 
|  |  | 
|  | for (priority = DEF_PRIORITY; priority >= 0; priority--) { | 
|  | sc->nr_scanned = 0; | 
|  | if (!priority) | 
|  | disable_swap_token(); | 
|  | all_unreclaimable = shrink_zones(priority, zonelist, sc); | 
|  | /* | 
|  | * Don't shrink slabs when reclaiming memory from | 
|  | * over limit cgroups | 
|  | */ | 
|  | if (scanning_global_lru(sc)) { | 
|  | unsigned long lru_pages = 0; | 
|  | for_each_zone_zonelist(zone, z, zonelist, | 
|  | gfp_zone(sc->gfp_mask)) { | 
|  | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | 
|  | continue; | 
|  |  | 
|  | lru_pages += zone_reclaimable_pages(zone); | 
|  | } | 
|  |  | 
|  | shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); | 
|  | if (reclaim_state) { | 
|  | sc->nr_reclaimed += reclaim_state->reclaimed_slab; | 
|  | reclaim_state->reclaimed_slab = 0; | 
|  | } | 
|  | } | 
|  | total_scanned += sc->nr_scanned; | 
|  | if (sc->nr_reclaimed >= sc->nr_to_reclaim) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Try to write back as many pages as we just scanned.  This | 
|  | * tends to cause slow streaming writers to write data to the | 
|  | * disk smoothly, at the dirtying rate, which is nice.   But | 
|  | * that's undesirable in laptop mode, where we *want* lumpy | 
|  | * writeout.  So in laptop mode, write out the whole world. | 
|  | */ | 
|  | writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; | 
|  | if (total_scanned > writeback_threshold) { | 
|  | wakeup_flusher_threads(laptop_mode ? 0 : total_scanned); | 
|  | sc->may_writepage = 1; | 
|  | } | 
|  |  | 
|  | /* Take a nap, wait for some writeback to complete */ | 
|  | if (!sc->hibernation_mode && sc->nr_scanned && | 
|  | priority < DEF_PRIORITY - 2) | 
|  | congestion_wait(BLK_RW_ASYNC, HZ/10); | 
|  | } | 
|  |  | 
|  | out: | 
|  | /* | 
|  | * Now that we've scanned all the zones at this priority level, note | 
|  | * that level within the zone so that the next thread which performs | 
|  | * scanning of this zone will immediately start out at this priority | 
|  | * level.  This affects only the decision whether or not to bring | 
|  | * mapped pages onto the inactive list. | 
|  | */ | 
|  | if (priority < 0) | 
|  | priority = 0; | 
|  |  | 
|  | delayacct_freepages_end(); | 
|  | put_mems_allowed(); | 
|  |  | 
|  | if (sc->nr_reclaimed) | 
|  | return sc->nr_reclaimed; | 
|  |  | 
|  | /* top priority shrink_zones still had more to do? don't OOM, then */ | 
|  | if (scanning_global_lru(sc) && !all_unreclaimable) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, | 
|  | gfp_t gfp_mask, nodemask_t *nodemask) | 
|  | { | 
|  | unsigned long nr_reclaimed; | 
|  | struct scan_control sc = { | 
|  | .gfp_mask = gfp_mask, | 
|  | .may_writepage = !laptop_mode, | 
|  | .nr_to_reclaim = SWAP_CLUSTER_MAX, | 
|  | .may_unmap = 1, | 
|  | .may_swap = 1, | 
|  | .swappiness = vm_swappiness, | 
|  | .order = order, | 
|  | .mem_cgroup = NULL, | 
|  | .nodemask = nodemask, | 
|  | }; | 
|  |  | 
|  | trace_mm_vmscan_direct_reclaim_begin(order, | 
|  | sc.may_writepage, | 
|  | gfp_mask); | 
|  |  | 
|  | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | 
|  |  | 
|  | trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); | 
|  |  | 
|  | return nr_reclaimed; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_MEM_RES_CTLR | 
|  |  | 
|  | unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, | 
|  | gfp_t gfp_mask, bool noswap, | 
|  | unsigned int swappiness, | 
|  | struct zone *zone) | 
|  | { | 
|  | struct scan_control sc = { | 
|  | .nr_to_reclaim = SWAP_CLUSTER_MAX, | 
|  | .may_writepage = !laptop_mode, | 
|  | .may_unmap = 1, | 
|  | .may_swap = !noswap, | 
|  | .swappiness = swappiness, | 
|  | .order = 0, | 
|  | .mem_cgroup = mem, | 
|  | }; | 
|  | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | | 
|  | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | 
|  |  | 
|  | trace_mm_vmscan_memcg_softlimit_reclaim_begin(0, | 
|  | sc.may_writepage, | 
|  | sc.gfp_mask); | 
|  |  | 
|  | /* | 
|  | * NOTE: Although we can get the priority field, using it | 
|  | * here is not a good idea, since it limits the pages we can scan. | 
|  | * if we don't reclaim here, the shrink_zone from balance_pgdat | 
|  | * will pick up pages from other mem cgroup's as well. We hack | 
|  | * the priority and make it zero. | 
|  | */ | 
|  | shrink_zone(0, zone, &sc); | 
|  |  | 
|  | trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); | 
|  |  | 
|  | return sc.nr_reclaimed; | 
|  | } | 
|  |  | 
|  | unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, | 
|  | gfp_t gfp_mask, | 
|  | bool noswap, | 
|  | unsigned int swappiness) | 
|  | { | 
|  | struct zonelist *zonelist; | 
|  | unsigned long nr_reclaimed; | 
|  | struct scan_control sc = { | 
|  | .may_writepage = !laptop_mode, | 
|  | .may_unmap = 1, | 
|  | .may_swap = !noswap, | 
|  | .nr_to_reclaim = SWAP_CLUSTER_MAX, | 
|  | .swappiness = swappiness, | 
|  | .order = 0, | 
|  | .mem_cgroup = mem_cont, | 
|  | .nodemask = NULL, /* we don't care the placement */ | 
|  | }; | 
|  |  | 
|  | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | | 
|  | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | 
|  | zonelist = NODE_DATA(numa_node_id())->node_zonelists; | 
|  |  | 
|  | trace_mm_vmscan_memcg_reclaim_begin(0, | 
|  | sc.may_writepage, | 
|  | sc.gfp_mask); | 
|  |  | 
|  | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | 
|  |  | 
|  | trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); | 
|  |  | 
|  | return nr_reclaimed; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* is kswapd sleeping prematurely? */ | 
|  | static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ | 
|  | if (remaining) | 
|  | return 1; | 
|  |  | 
|  | /* If after HZ/10, a zone is below the high mark, it's premature */ | 
|  | for (i = 0; i < pgdat->nr_zones; i++) { | 
|  | struct zone *zone = pgdat->node_zones + i; | 
|  |  | 
|  | if (!populated_zone(zone)) | 
|  | continue; | 
|  |  | 
|  | if (zone->all_unreclaimable) | 
|  | continue; | 
|  |  | 
|  | if (!zone_watermark_ok(zone, order, high_wmark_pages(zone), | 
|  | 0, 0)) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For kswapd, balance_pgdat() will work across all this node's zones until | 
|  | * they are all at high_wmark_pages(zone). | 
|  | * | 
|  | * Returns the number of pages which were actually freed. | 
|  | * | 
|  | * There is special handling here for zones which are full of pinned pages. | 
|  | * This can happen if the pages are all mlocked, or if they are all used by | 
|  | * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb. | 
|  | * What we do is to detect the case where all pages in the zone have been | 
|  | * scanned twice and there has been zero successful reclaim.  Mark the zone as | 
|  | * dead and from now on, only perform a short scan.  Basically we're polling | 
|  | * the zone for when the problem goes away. | 
|  | * | 
|  | * kswapd scans the zones in the highmem->normal->dma direction.  It skips | 
|  | * zones which have free_pages > high_wmark_pages(zone), but once a zone is | 
|  | * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the | 
|  | * lower zones regardless of the number of free pages in the lower zones. This | 
|  | * interoperates with the page allocator fallback scheme to ensure that aging | 
|  | * of pages is balanced across the zones. | 
|  | */ | 
|  | static unsigned long balance_pgdat(pg_data_t *pgdat, int order) | 
|  | { | 
|  | int all_zones_ok; | 
|  | int priority; | 
|  | int i; | 
|  | unsigned long total_scanned; | 
|  | struct reclaim_state *reclaim_state = current->reclaim_state; | 
|  | struct scan_control sc = { | 
|  | .gfp_mask = GFP_KERNEL, | 
|  | .may_unmap = 1, | 
|  | .may_swap = 1, | 
|  | /* | 
|  | * kswapd doesn't want to be bailed out while reclaim. because | 
|  | * we want to put equal scanning pressure on each zone. | 
|  | */ | 
|  | .nr_to_reclaim = ULONG_MAX, | 
|  | .swappiness = vm_swappiness, | 
|  | .order = order, | 
|  | .mem_cgroup = NULL, | 
|  | }; | 
|  | loop_again: | 
|  | total_scanned = 0; | 
|  | sc.nr_reclaimed = 0; | 
|  | sc.may_writepage = !laptop_mode; | 
|  | count_vm_event(PAGEOUTRUN); | 
|  |  | 
|  | for (priority = DEF_PRIORITY; priority >= 0; priority--) { | 
|  | int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */ | 
|  | unsigned long lru_pages = 0; | 
|  | int has_under_min_watermark_zone = 0; | 
|  |  | 
|  | /* The swap token gets in the way of swapout... */ | 
|  | if (!priority) | 
|  | disable_swap_token(); | 
|  |  | 
|  | all_zones_ok = 1; | 
|  |  | 
|  | /* | 
|  | * Scan in the highmem->dma direction for the highest | 
|  | * zone which needs scanning | 
|  | */ | 
|  | for (i = pgdat->nr_zones - 1; i >= 0; i--) { | 
|  | struct zone *zone = pgdat->node_zones + i; | 
|  |  | 
|  | if (!populated_zone(zone)) | 
|  | continue; | 
|  |  | 
|  | if (zone->all_unreclaimable && priority != DEF_PRIORITY) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Do some background aging of the anon list, to give | 
|  | * pages a chance to be referenced before reclaiming. | 
|  | */ | 
|  | if (inactive_anon_is_low(zone, &sc)) | 
|  | shrink_active_list(SWAP_CLUSTER_MAX, zone, | 
|  | &sc, priority, 0); | 
|  |  | 
|  | if (!zone_watermark_ok(zone, order, | 
|  | high_wmark_pages(zone), 0, 0)) { | 
|  | end_zone = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (i < 0) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i <= end_zone; i++) { | 
|  | struct zone *zone = pgdat->node_zones + i; | 
|  |  | 
|  | lru_pages += zone_reclaimable_pages(zone); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now scan the zone in the dma->highmem direction, stopping | 
|  | * at the last zone which needs scanning. | 
|  | * | 
|  | * We do this because the page allocator works in the opposite | 
|  | * direction.  This prevents the page allocator from allocating | 
|  | * pages behind kswapd's direction of progress, which would | 
|  | * cause too much scanning of the lower zones. | 
|  | */ | 
|  | for (i = 0; i <= end_zone; i++) { | 
|  | struct zone *zone = pgdat->node_zones + i; | 
|  | int nr_slab; | 
|  |  | 
|  | if (!populated_zone(zone)) | 
|  | continue; | 
|  |  | 
|  | if (zone->all_unreclaimable && priority != DEF_PRIORITY) | 
|  | continue; | 
|  |  | 
|  | sc.nr_scanned = 0; | 
|  |  | 
|  | /* | 
|  | * Call soft limit reclaim before calling shrink_zone. | 
|  | * For now we ignore the return value | 
|  | */ | 
|  | mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask); | 
|  |  | 
|  | /* | 
|  | * We put equal pressure on every zone, unless one | 
|  | * zone has way too many pages free already. | 
|  | */ | 
|  | if (!zone_watermark_ok(zone, order, | 
|  | 8*high_wmark_pages(zone), end_zone, 0)) | 
|  | shrink_zone(priority, zone, &sc); | 
|  | reclaim_state->reclaimed_slab = 0; | 
|  | nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, | 
|  | lru_pages); | 
|  | sc.nr_reclaimed += reclaim_state->reclaimed_slab; | 
|  | total_scanned += sc.nr_scanned; | 
|  | if (zone->all_unreclaimable) | 
|  | continue; | 
|  | if (nr_slab == 0 && | 
|  | zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6)) | 
|  | zone->all_unreclaimable = 1; | 
|  | /* | 
|  | * If we've done a decent amount of scanning and | 
|  | * the reclaim ratio is low, start doing writepage | 
|  | * even in laptop mode | 
|  | */ | 
|  | if (total_scanned > SWAP_CLUSTER_MAX * 2 && | 
|  | total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2) | 
|  | sc.may_writepage = 1; | 
|  |  | 
|  | if (!zone_watermark_ok(zone, order, | 
|  | high_wmark_pages(zone), end_zone, 0)) { | 
|  | all_zones_ok = 0; | 
|  | /* | 
|  | * We are still under min water mark.  This | 
|  | * means that we have a GFP_ATOMIC allocation | 
|  | * failure risk. Hurry up! | 
|  | */ | 
|  | if (!zone_watermark_ok(zone, order, | 
|  | min_wmark_pages(zone), end_zone, 0)) | 
|  | has_under_min_watermark_zone = 1; | 
|  | } | 
|  |  | 
|  | } | 
|  | if (all_zones_ok) | 
|  | break;		/* kswapd: all done */ | 
|  | /* | 
|  | * OK, kswapd is getting into trouble.  Take a nap, then take | 
|  | * another pass across the zones. | 
|  | */ | 
|  | if (total_scanned && (priority < DEF_PRIORITY - 2)) { | 
|  | if (has_under_min_watermark_zone) | 
|  | count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT); | 
|  | else | 
|  | congestion_wait(BLK_RW_ASYNC, HZ/10); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We do this so kswapd doesn't build up large priorities for | 
|  | * example when it is freeing in parallel with allocators. It | 
|  | * matches the direct reclaim path behaviour in terms of impact | 
|  | * on zone->*_priority. | 
|  | */ | 
|  | if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) | 
|  | break; | 
|  | } | 
|  | out: | 
|  | if (!all_zones_ok) { | 
|  | cond_resched(); | 
|  |  | 
|  | try_to_freeze(); | 
|  |  | 
|  | /* | 
|  | * Fragmentation may mean that the system cannot be | 
|  | * rebalanced for high-order allocations in all zones. | 
|  | * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX, | 
|  | * it means the zones have been fully scanned and are still | 
|  | * not balanced. For high-order allocations, there is | 
|  | * little point trying all over again as kswapd may | 
|  | * infinite loop. | 
|  | * | 
|  | * Instead, recheck all watermarks at order-0 as they | 
|  | * are the most important. If watermarks are ok, kswapd will go | 
|  | * back to sleep. High-order users can still perform direct | 
|  | * reclaim if they wish. | 
|  | */ | 
|  | if (sc.nr_reclaimed < SWAP_CLUSTER_MAX) | 
|  | order = sc.order = 0; | 
|  |  | 
|  | goto loop_again; | 
|  | } | 
|  |  | 
|  | return sc.nr_reclaimed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The background pageout daemon, started as a kernel thread | 
|  | * from the init process. | 
|  | * | 
|  | * This basically trickles out pages so that we have _some_ | 
|  | * free memory available even if there is no other activity | 
|  | * that frees anything up. This is needed for things like routing | 
|  | * etc, where we otherwise might have all activity going on in | 
|  | * asynchronous contexts that cannot page things out. | 
|  | * | 
|  | * If there are applications that are active memory-allocators | 
|  | * (most normal use), this basically shouldn't matter. | 
|  | */ | 
|  | static int kswapd(void *p) | 
|  | { | 
|  | unsigned long order; | 
|  | pg_data_t *pgdat = (pg_data_t*)p; | 
|  | struct task_struct *tsk = current; | 
|  | DEFINE_WAIT(wait); | 
|  | struct reclaim_state reclaim_state = { | 
|  | .reclaimed_slab = 0, | 
|  | }; | 
|  | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); | 
|  |  | 
|  | lockdep_set_current_reclaim_state(GFP_KERNEL); | 
|  |  | 
|  | if (!cpumask_empty(cpumask)) | 
|  | set_cpus_allowed_ptr(tsk, cpumask); | 
|  | current->reclaim_state = &reclaim_state; | 
|  |  | 
|  | /* | 
|  | * Tell the memory management that we're a "memory allocator", | 
|  | * and that if we need more memory we should get access to it | 
|  | * regardless (see "__alloc_pages()"). "kswapd" should | 
|  | * never get caught in the normal page freeing logic. | 
|  | * | 
|  | * (Kswapd normally doesn't need memory anyway, but sometimes | 
|  | * you need a small amount of memory in order to be able to | 
|  | * page out something else, and this flag essentially protects | 
|  | * us from recursively trying to free more memory as we're | 
|  | * trying to free the first piece of memory in the first place). | 
|  | */ | 
|  | tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; | 
|  | set_freezable(); | 
|  |  | 
|  | order = 0; | 
|  | for ( ; ; ) { | 
|  | unsigned long new_order; | 
|  | int ret; | 
|  |  | 
|  | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | 
|  | new_order = pgdat->kswapd_max_order; | 
|  | pgdat->kswapd_max_order = 0; | 
|  | if (order < new_order) { | 
|  | /* | 
|  | * Don't sleep if someone wants a larger 'order' | 
|  | * allocation | 
|  | */ | 
|  | order = new_order; | 
|  | } else { | 
|  | if (!freezing(current) && !kthread_should_stop()) { | 
|  | long remaining = 0; | 
|  |  | 
|  | /* Try to sleep for a short interval */ | 
|  | if (!sleeping_prematurely(pgdat, order, remaining)) { | 
|  | remaining = schedule_timeout(HZ/10); | 
|  | finish_wait(&pgdat->kswapd_wait, &wait); | 
|  | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After a short sleep, check if it was a | 
|  | * premature sleep. If not, then go fully | 
|  | * to sleep until explicitly woken up | 
|  | */ | 
|  | if (!sleeping_prematurely(pgdat, order, remaining)) { | 
|  | trace_mm_vmscan_kswapd_sleep(pgdat->node_id); | 
|  | schedule(); | 
|  | } else { | 
|  | if (remaining) | 
|  | count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); | 
|  | else | 
|  | count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); | 
|  | } | 
|  | } | 
|  |  | 
|  | order = pgdat->kswapd_max_order; | 
|  | } | 
|  | finish_wait(&pgdat->kswapd_wait, &wait); | 
|  |  | 
|  | ret = try_to_freeze(); | 
|  | if (kthread_should_stop()) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * We can speed up thawing tasks if we don't call balance_pgdat | 
|  | * after returning from the refrigerator | 
|  | */ | 
|  | if (!ret) { | 
|  | trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); | 
|  | balance_pgdat(pgdat, order); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A zone is low on free memory, so wake its kswapd task to service it. | 
|  | */ | 
|  | void wakeup_kswapd(struct zone *zone, int order) | 
|  | { | 
|  | pg_data_t *pgdat; | 
|  |  | 
|  | if (!populated_zone(zone)) | 
|  | return; | 
|  |  | 
|  | pgdat = zone->zone_pgdat; | 
|  | if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0)) | 
|  | return; | 
|  | if (pgdat->kswapd_max_order < order) | 
|  | pgdat->kswapd_max_order = order; | 
|  | trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); | 
|  | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | 
|  | return; | 
|  | if (!waitqueue_active(&pgdat->kswapd_wait)) | 
|  | return; | 
|  | wake_up_interruptible(&pgdat->kswapd_wait); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The reclaimable count would be mostly accurate. | 
|  | * The less reclaimable pages may be | 
|  | * - mlocked pages, which will be moved to unevictable list when encountered | 
|  | * - mapped pages, which may require several travels to be reclaimed | 
|  | * - dirty pages, which is not "instantly" reclaimable | 
|  | */ | 
|  | unsigned long global_reclaimable_pages(void) | 
|  | { | 
|  | int nr; | 
|  |  | 
|  | nr = global_page_state(NR_ACTIVE_FILE) + | 
|  | global_page_state(NR_INACTIVE_FILE); | 
|  |  | 
|  | if (nr_swap_pages > 0) | 
|  | nr += global_page_state(NR_ACTIVE_ANON) + | 
|  | global_page_state(NR_INACTIVE_ANON); | 
|  |  | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | unsigned long zone_reclaimable_pages(struct zone *zone) | 
|  | { | 
|  | int nr; | 
|  |  | 
|  | nr = zone_page_state(zone, NR_ACTIVE_FILE) + | 
|  | zone_page_state(zone, NR_INACTIVE_FILE); | 
|  |  | 
|  | if (nr_swap_pages > 0) | 
|  | nr += zone_page_state(zone, NR_ACTIVE_ANON) + | 
|  | zone_page_state(zone, NR_INACTIVE_ANON); | 
|  |  | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HIBERNATION | 
|  | /* | 
|  | * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of | 
|  | * freed pages. | 
|  | * | 
|  | * Rather than trying to age LRUs the aim is to preserve the overall | 
|  | * LRU order by reclaiming preferentially | 
|  | * inactive > active > active referenced > active mapped | 
|  | */ | 
|  | unsigned long shrink_all_memory(unsigned long nr_to_reclaim) | 
|  | { | 
|  | struct reclaim_state reclaim_state; | 
|  | struct scan_control sc = { | 
|  | .gfp_mask = GFP_HIGHUSER_MOVABLE, | 
|  | .may_swap = 1, | 
|  | .may_unmap = 1, | 
|  | .may_writepage = 1, | 
|  | .nr_to_reclaim = nr_to_reclaim, | 
|  | .hibernation_mode = 1, | 
|  | .swappiness = vm_swappiness, | 
|  | .order = 0, | 
|  | }; | 
|  | struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); | 
|  | struct task_struct *p = current; | 
|  | unsigned long nr_reclaimed; | 
|  |  | 
|  | p->flags |= PF_MEMALLOC; | 
|  | lockdep_set_current_reclaim_state(sc.gfp_mask); | 
|  | reclaim_state.reclaimed_slab = 0; | 
|  | p->reclaim_state = &reclaim_state; | 
|  |  | 
|  | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | 
|  |  | 
|  | p->reclaim_state = NULL; | 
|  | lockdep_clear_current_reclaim_state(); | 
|  | p->flags &= ~PF_MEMALLOC; | 
|  |  | 
|  | return nr_reclaimed; | 
|  | } | 
|  | #endif /* CONFIG_HIBERNATION */ | 
|  |  | 
|  | /* It's optimal to keep kswapds on the same CPUs as their memory, but | 
|  | not required for correctness.  So if the last cpu in a node goes | 
|  | away, we get changed to run anywhere: as the first one comes back, | 
|  | restore their cpu bindings. */ | 
|  | static int __devinit cpu_callback(struct notifier_block *nfb, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { | 
|  | for_each_node_state(nid, N_HIGH_MEMORY) { | 
|  | pg_data_t *pgdat = NODE_DATA(nid); | 
|  | const struct cpumask *mask; | 
|  |  | 
|  | mask = cpumask_of_node(pgdat->node_id); | 
|  |  | 
|  | if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) | 
|  | /* One of our CPUs online: restore mask */ | 
|  | set_cpus_allowed_ptr(pgdat->kswapd, mask); | 
|  | } | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This kswapd start function will be called by init and node-hot-add. | 
|  | * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. | 
|  | */ | 
|  | int kswapd_run(int nid) | 
|  | { | 
|  | pg_data_t *pgdat = NODE_DATA(nid); | 
|  | int ret = 0; | 
|  |  | 
|  | if (pgdat->kswapd) | 
|  | return 0; | 
|  |  | 
|  | pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); | 
|  | if (IS_ERR(pgdat->kswapd)) { | 
|  | /* failure at boot is fatal */ | 
|  | BUG_ON(system_state == SYSTEM_BOOTING); | 
|  | printk("Failed to start kswapd on node %d\n",nid); | 
|  | ret = -1; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called by memory hotplug when all memory in a node is offlined. | 
|  | */ | 
|  | void kswapd_stop(int nid) | 
|  | { | 
|  | struct task_struct *kswapd = NODE_DATA(nid)->kswapd; | 
|  |  | 
|  | if (kswapd) | 
|  | kthread_stop(kswapd); | 
|  | } | 
|  |  | 
|  | static int __init kswapd_init(void) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | swap_setup(); | 
|  | for_each_node_state(nid, N_HIGH_MEMORY) | 
|  | kswapd_run(nid); | 
|  | hotcpu_notifier(cpu_callback, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | module_init(kswapd_init) | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * Zone reclaim mode | 
|  | * | 
|  | * If non-zero call zone_reclaim when the number of free pages falls below | 
|  | * the watermarks. | 
|  | */ | 
|  | int zone_reclaim_mode __read_mostly; | 
|  |  | 
|  | #define RECLAIM_OFF 0 | 
|  | #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */ | 
|  | #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */ | 
|  | #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */ | 
|  |  | 
|  | /* | 
|  | * Priority for ZONE_RECLAIM. This determines the fraction of pages | 
|  | * of a node considered for each zone_reclaim. 4 scans 1/16th of | 
|  | * a zone. | 
|  | */ | 
|  | #define ZONE_RECLAIM_PRIORITY 4 | 
|  |  | 
|  | /* | 
|  | * Percentage of pages in a zone that must be unmapped for zone_reclaim to | 
|  | * occur. | 
|  | */ | 
|  | int sysctl_min_unmapped_ratio = 1; | 
|  |  | 
|  | /* | 
|  | * If the number of slab pages in a zone grows beyond this percentage then | 
|  | * slab reclaim needs to occur. | 
|  | */ | 
|  | int sysctl_min_slab_ratio = 5; | 
|  |  | 
|  | static inline unsigned long zone_unmapped_file_pages(struct zone *zone) | 
|  | { | 
|  | unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); | 
|  | unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + | 
|  | zone_page_state(zone, NR_ACTIVE_FILE); | 
|  |  | 
|  | /* | 
|  | * It's possible for there to be more file mapped pages than | 
|  | * accounted for by the pages on the file LRU lists because | 
|  | * tmpfs pages accounted for as ANON can also be FILE_MAPPED | 
|  | */ | 
|  | return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; | 
|  | } | 
|  |  | 
|  | /* Work out how many page cache pages we can reclaim in this reclaim_mode */ | 
|  | static long zone_pagecache_reclaimable(struct zone *zone) | 
|  | { | 
|  | long nr_pagecache_reclaimable; | 
|  | long delta = 0; | 
|  |  | 
|  | /* | 
|  | * If RECLAIM_SWAP is set, then all file pages are considered | 
|  | * potentially reclaimable. Otherwise, we have to worry about | 
|  | * pages like swapcache and zone_unmapped_file_pages() provides | 
|  | * a better estimate | 
|  | */ | 
|  | if (zone_reclaim_mode & RECLAIM_SWAP) | 
|  | nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); | 
|  | else | 
|  | nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); | 
|  |  | 
|  | /* If we can't clean pages, remove dirty pages from consideration */ | 
|  | if (!(zone_reclaim_mode & RECLAIM_WRITE)) | 
|  | delta += zone_page_state(zone, NR_FILE_DIRTY); | 
|  |  | 
|  | /* Watch for any possible underflows due to delta */ | 
|  | if (unlikely(delta > nr_pagecache_reclaimable)) | 
|  | delta = nr_pagecache_reclaimable; | 
|  |  | 
|  | return nr_pagecache_reclaimable - delta; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to free up some pages from this zone through reclaim. | 
|  | */ | 
|  | static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) | 
|  | { | 
|  | /* Minimum pages needed in order to stay on node */ | 
|  | const unsigned long nr_pages = 1 << order; | 
|  | struct task_struct *p = current; | 
|  | struct reclaim_state reclaim_state; | 
|  | int priority; | 
|  | struct scan_control sc = { | 
|  | .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), | 
|  | .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), | 
|  | .may_swap = 1, | 
|  | .nr_to_reclaim = max_t(unsigned long, nr_pages, | 
|  | SWAP_CLUSTER_MAX), | 
|  | .gfp_mask = gfp_mask, | 
|  | .swappiness = vm_swappiness, | 
|  | .order = order, | 
|  | }; | 
|  | unsigned long nr_slab_pages0, nr_slab_pages1; | 
|  |  | 
|  | cond_resched(); | 
|  | /* | 
|  | * We need to be able to allocate from the reserves for RECLAIM_SWAP | 
|  | * and we also need to be able to write out pages for RECLAIM_WRITE | 
|  | * and RECLAIM_SWAP. | 
|  | */ | 
|  | p->flags |= PF_MEMALLOC | PF_SWAPWRITE; | 
|  | lockdep_set_current_reclaim_state(gfp_mask); | 
|  | reclaim_state.reclaimed_slab = 0; | 
|  | p->reclaim_state = &reclaim_state; | 
|  |  | 
|  | if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { | 
|  | /* | 
|  | * Free memory by calling shrink zone with increasing | 
|  | * priorities until we have enough memory freed. | 
|  | */ | 
|  | priority = ZONE_RECLAIM_PRIORITY; | 
|  | do { | 
|  | shrink_zone(priority, zone, &sc); | 
|  | priority--; | 
|  | } while (priority >= 0 && sc.nr_reclaimed < nr_pages); | 
|  | } | 
|  |  | 
|  | nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); | 
|  | if (nr_slab_pages0 > zone->min_slab_pages) { | 
|  | /* | 
|  | * shrink_slab() does not currently allow us to determine how | 
|  | * many pages were freed in this zone. So we take the current | 
|  | * number of slab pages and shake the slab until it is reduced | 
|  | * by the same nr_pages that we used for reclaiming unmapped | 
|  | * pages. | 
|  | * | 
|  | * Note that shrink_slab will free memory on all zones and may | 
|  | * take a long time. | 
|  | */ | 
|  | for (;;) { | 
|  | unsigned long lru_pages = zone_reclaimable_pages(zone); | 
|  |  | 
|  | /* No reclaimable slab or very low memory pressure */ | 
|  | if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages)) | 
|  | break; | 
|  |  | 
|  | /* Freed enough memory */ | 
|  | nr_slab_pages1 = zone_page_state(zone, | 
|  | NR_SLAB_RECLAIMABLE); | 
|  | if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update nr_reclaimed by the number of slab pages we | 
|  | * reclaimed from this zone. | 
|  | */ | 
|  | nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); | 
|  | if (nr_slab_pages1 < nr_slab_pages0) | 
|  | sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; | 
|  | } | 
|  |  | 
|  | p->reclaim_state = NULL; | 
|  | current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); | 
|  | lockdep_clear_current_reclaim_state(); | 
|  | return sc.nr_reclaimed >= nr_pages; | 
|  | } | 
|  |  | 
|  | int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) | 
|  | { | 
|  | int node_id; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Zone reclaim reclaims unmapped file backed pages and | 
|  | * slab pages if we are over the defined limits. | 
|  | * | 
|  | * A small portion of unmapped file backed pages is needed for | 
|  | * file I/O otherwise pages read by file I/O will be immediately | 
|  | * thrown out if the zone is overallocated. So we do not reclaim | 
|  | * if less than a specified percentage of the zone is used by | 
|  | * unmapped file backed pages. | 
|  | */ | 
|  | if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && | 
|  | zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) | 
|  | return ZONE_RECLAIM_FULL; | 
|  |  | 
|  | if (zone->all_unreclaimable) | 
|  | return ZONE_RECLAIM_FULL; | 
|  |  | 
|  | /* | 
|  | * Do not scan if the allocation should not be delayed. | 
|  | */ | 
|  | if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) | 
|  | return ZONE_RECLAIM_NOSCAN; | 
|  |  | 
|  | /* | 
|  | * Only run zone reclaim on the local zone or on zones that do not | 
|  | * have associated processors. This will favor the local processor | 
|  | * over remote processors and spread off node memory allocations | 
|  | * as wide as possible. | 
|  | */ | 
|  | node_id = zone_to_nid(zone); | 
|  | if (node_state(node_id, N_CPU) && node_id != numa_node_id()) | 
|  | return ZONE_RECLAIM_NOSCAN; | 
|  |  | 
|  | if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) | 
|  | return ZONE_RECLAIM_NOSCAN; | 
|  |  | 
|  | ret = __zone_reclaim(zone, gfp_mask, order); | 
|  | zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); | 
|  |  | 
|  | if (!ret) | 
|  | count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * page_evictable - test whether a page is evictable | 
|  | * @page: the page to test | 
|  | * @vma: the VMA in which the page is or will be mapped, may be NULL | 
|  | * | 
|  | * Test whether page is evictable--i.e., should be placed on active/inactive | 
|  | * lists vs unevictable list.  The vma argument is !NULL when called from the | 
|  | * fault path to determine how to instantate a new page. | 
|  | * | 
|  | * Reasons page might not be evictable: | 
|  | * (1) page's mapping marked unevictable | 
|  | * (2) page is part of an mlocked VMA | 
|  | * | 
|  | */ | 
|  | int page_evictable(struct page *page, struct vm_area_struct *vma) | 
|  | { | 
|  |  | 
|  | if (mapping_unevictable(page_mapping(page))) | 
|  | return 0; | 
|  |  | 
|  | if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page))) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list | 
|  | * @page: page to check evictability and move to appropriate lru list | 
|  | * @zone: zone page is in | 
|  | * | 
|  | * Checks a page for evictability and moves the page to the appropriate | 
|  | * zone lru list. | 
|  | * | 
|  | * Restrictions: zone->lru_lock must be held, page must be on LRU and must | 
|  | * have PageUnevictable set. | 
|  | */ | 
|  | static void check_move_unevictable_page(struct page *page, struct zone *zone) | 
|  | { | 
|  | VM_BUG_ON(PageActive(page)); | 
|  |  | 
|  | retry: | 
|  | ClearPageUnevictable(page); | 
|  | if (page_evictable(page, NULL)) { | 
|  | enum lru_list l = page_lru_base_type(page); | 
|  |  | 
|  | __dec_zone_state(zone, NR_UNEVICTABLE); | 
|  | list_move(&page->lru, &zone->lru[l].list); | 
|  | mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l); | 
|  | __inc_zone_state(zone, NR_INACTIVE_ANON + l); | 
|  | __count_vm_event(UNEVICTABLE_PGRESCUED); | 
|  | } else { | 
|  | /* | 
|  | * rotate unevictable list | 
|  | */ | 
|  | SetPageUnevictable(page); | 
|  | list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list); | 
|  | mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE); | 
|  | if (page_evictable(page, NULL)) | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * scan_mapping_unevictable_pages - scan an address space for evictable pages | 
|  | * @mapping: struct address_space to scan for evictable pages | 
|  | * | 
|  | * Scan all pages in mapping.  Check unevictable pages for | 
|  | * evictability and move them to the appropriate zone lru list. | 
|  | */ | 
|  | void scan_mapping_unevictable_pages(struct address_space *mapping) | 
|  | { | 
|  | pgoff_t next = 0; | 
|  | pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >> | 
|  | PAGE_CACHE_SHIFT; | 
|  | struct zone *zone; | 
|  | struct pagevec pvec; | 
|  |  | 
|  | if (mapping->nrpages == 0) | 
|  | return; | 
|  |  | 
|  | pagevec_init(&pvec, 0); | 
|  | while (next < end && | 
|  | pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { | 
|  | int i; | 
|  | int pg_scanned = 0; | 
|  |  | 
|  | zone = NULL; | 
|  |  | 
|  | for (i = 0; i < pagevec_count(&pvec); i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  | pgoff_t page_index = page->index; | 
|  | struct zone *pagezone = page_zone(page); | 
|  |  | 
|  | pg_scanned++; | 
|  | if (page_index > next) | 
|  | next = page_index; | 
|  | next++; | 
|  |  | 
|  | if (pagezone != zone) { | 
|  | if (zone) | 
|  | spin_unlock_irq(&zone->lru_lock); | 
|  | zone = pagezone; | 
|  | spin_lock_irq(&zone->lru_lock); | 
|  | } | 
|  |  | 
|  | if (PageLRU(page) && PageUnevictable(page)) | 
|  | check_move_unevictable_page(page, zone); | 
|  | } | 
|  | if (zone) | 
|  | spin_unlock_irq(&zone->lru_lock); | 
|  | pagevec_release(&pvec); | 
|  |  | 
|  | count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | * scan_zone_unevictable_pages - check unevictable list for evictable pages | 
|  | * @zone - zone of which to scan the unevictable list | 
|  | * | 
|  | * Scan @zone's unevictable LRU lists to check for pages that have become | 
|  | * evictable.  Move those that have to @zone's inactive list where they | 
|  | * become candidates for reclaim, unless shrink_inactive_zone() decides | 
|  | * to reactivate them.  Pages that are still unevictable are rotated | 
|  | * back onto @zone's unevictable list. | 
|  | */ | 
|  | #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */ | 
|  | static void scan_zone_unevictable_pages(struct zone *zone) | 
|  | { | 
|  | struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list; | 
|  | unsigned long scan; | 
|  | unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE); | 
|  |  | 
|  | while (nr_to_scan > 0) { | 
|  | unsigned long batch_size = min(nr_to_scan, | 
|  | SCAN_UNEVICTABLE_BATCH_SIZE); | 
|  |  | 
|  | spin_lock_irq(&zone->lru_lock); | 
|  | for (scan = 0;  scan < batch_size; scan++) { | 
|  | struct page *page = lru_to_page(l_unevictable); | 
|  |  | 
|  | if (!trylock_page(page)) | 
|  | continue; | 
|  |  | 
|  | prefetchw_prev_lru_page(page, l_unevictable, flags); | 
|  |  | 
|  | if (likely(PageLRU(page) && PageUnevictable(page))) | 
|  | check_move_unevictable_page(page, zone); | 
|  |  | 
|  | unlock_page(page); | 
|  | } | 
|  | spin_unlock_irq(&zone->lru_lock); | 
|  |  | 
|  | nr_to_scan -= batch_size; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages | 
|  | * | 
|  | * A really big hammer:  scan all zones' unevictable LRU lists to check for | 
|  | * pages that have become evictable.  Move those back to the zones' | 
|  | * inactive list where they become candidates for reclaim. | 
|  | * This occurs when, e.g., we have unswappable pages on the unevictable lists, | 
|  | * and we add swap to the system.  As such, it runs in the context of a task | 
|  | * that has possibly/probably made some previously unevictable pages | 
|  | * evictable. | 
|  | */ | 
|  | static void scan_all_zones_unevictable_pages(void) | 
|  | { | 
|  | struct zone *zone; | 
|  |  | 
|  | for_each_zone(zone) { | 
|  | scan_zone_unevictable_pages(zone); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of | 
|  | * all nodes' unevictable lists for evictable pages | 
|  | */ | 
|  | unsigned long scan_unevictable_pages; | 
|  |  | 
|  | int scan_unevictable_handler(struct ctl_table *table, int write, | 
|  | void __user *buffer, | 
|  | size_t *length, loff_t *ppos) | 
|  | { | 
|  | proc_doulongvec_minmax(table, write, buffer, length, ppos); | 
|  |  | 
|  | if (write && *(unsigned long *)table->data) | 
|  | scan_all_zones_unevictable_pages(); | 
|  |  | 
|  | scan_unevictable_pages = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * per node 'scan_unevictable_pages' attribute.  On demand re-scan of | 
|  | * a specified node's per zone unevictable lists for evictable pages. | 
|  | */ | 
|  |  | 
|  | static ssize_t read_scan_unevictable_node(struct sys_device *dev, | 
|  | struct sysdev_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "0\n");	/* always zero; should fit... */ | 
|  | } | 
|  |  | 
|  | static ssize_t write_scan_unevictable_node(struct sys_device *dev, | 
|  | struct sysdev_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | struct zone *node_zones = NODE_DATA(dev->id)->node_zones; | 
|  | struct zone *zone; | 
|  | unsigned long res; | 
|  | unsigned long req = strict_strtoul(buf, 10, &res); | 
|  |  | 
|  | if (!req) | 
|  | return 1;	/* zero is no-op */ | 
|  |  | 
|  | for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { | 
|  | if (!populated_zone(zone)) | 
|  | continue; | 
|  | scan_zone_unevictable_pages(zone); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, | 
|  | read_scan_unevictable_node, | 
|  | write_scan_unevictable_node); | 
|  |  | 
|  | int scan_unevictable_register_node(struct node *node) | 
|  | { | 
|  | return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages); | 
|  | } | 
|  |  | 
|  | void scan_unevictable_unregister_node(struct node *node) | 
|  | { | 
|  | sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages); | 
|  | } | 
|  |  |