|  | /* | 
|  | *  linux/arch/alpha/kernel/process.c | 
|  | * | 
|  | *  Copyright (C) 1995  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This file handles the architecture-dependent parts of process handling. | 
|  | */ | 
|  |  | 
|  | #include <linux/errno.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/unistd.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/user.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/major.h> | 
|  | #include <linux/stat.h> | 
|  | #include <linux/vt.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/elfcore.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/console.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <asm/reg.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/hwrpb.h> | 
|  | #include <asm/fpu.h> | 
|  |  | 
|  | #include "proto.h" | 
|  | #include "pci_impl.h" | 
|  |  | 
|  | /* | 
|  | * Power off function, if any | 
|  | */ | 
|  | void (*pm_power_off)(void) = machine_power_off; | 
|  | EXPORT_SYMBOL(pm_power_off); | 
|  |  | 
|  | void | 
|  | cpu_idle(void) | 
|  | { | 
|  | set_thread_flag(TIF_POLLING_NRFLAG); | 
|  |  | 
|  | while (1) { | 
|  | /* FIXME -- EV6 and LCA45 know how to power down | 
|  | the CPU.  */ | 
|  |  | 
|  | while (!need_resched()) | 
|  | cpu_relax(); | 
|  | schedule(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | struct halt_info { | 
|  | int mode; | 
|  | char *restart_cmd; | 
|  | }; | 
|  |  | 
|  | static void | 
|  | common_shutdown_1(void *generic_ptr) | 
|  | { | 
|  | struct halt_info *how = (struct halt_info *)generic_ptr; | 
|  | struct percpu_struct *cpup; | 
|  | unsigned long *pflags, flags; | 
|  | int cpuid = smp_processor_id(); | 
|  |  | 
|  | /* No point in taking interrupts anymore. */ | 
|  | local_irq_disable(); | 
|  |  | 
|  | cpup = (struct percpu_struct *) | 
|  | ((unsigned long)hwrpb + hwrpb->processor_offset | 
|  | + hwrpb->processor_size * cpuid); | 
|  | pflags = &cpup->flags; | 
|  | flags = *pflags; | 
|  |  | 
|  | /* Clear reason to "default"; clear "bootstrap in progress". */ | 
|  | flags &= ~0x00ff0001UL; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* Secondaries halt here. */ | 
|  | if (cpuid != boot_cpuid) { | 
|  | flags |= 0x00040000UL; /* "remain halted" */ | 
|  | *pflags = flags; | 
|  | set_cpu_present(cpuid, false); | 
|  | set_cpu_possible(cpuid, false); | 
|  | halt(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (how->mode == LINUX_REBOOT_CMD_RESTART) { | 
|  | if (!how->restart_cmd) { | 
|  | flags |= 0x00020000UL; /* "cold bootstrap" */ | 
|  | } else { | 
|  | /* For SRM, we could probably set environment | 
|  | variables to get this to work.  We'd have to | 
|  | delay this until after srm_paging_stop unless | 
|  | we ever got srm_fixup working. | 
|  |  | 
|  | At the moment, SRM will use the last boot device, | 
|  | but the file and flags will be the defaults, when | 
|  | doing a "warm" bootstrap.  */ | 
|  | flags |= 0x00030000UL; /* "warm bootstrap" */ | 
|  | } | 
|  | } else { | 
|  | flags |= 0x00040000UL; /* "remain halted" */ | 
|  | } | 
|  | *pflags = flags; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* Wait for the secondaries to halt. */ | 
|  | set_cpu_present(boot_cpuid, false); | 
|  | set_cpu_possible(boot_cpuid, false); | 
|  | while (cpus_weight(cpu_present_map)) | 
|  | barrier(); | 
|  | #endif | 
|  |  | 
|  | /* If booted from SRM, reset some of the original environment. */ | 
|  | if (alpha_using_srm) { | 
|  | #ifdef CONFIG_DUMMY_CONSOLE | 
|  | /* If we've gotten here after SysRq-b, leave interrupt | 
|  | context before taking over the console. */ | 
|  | if (in_interrupt()) | 
|  | irq_exit(); | 
|  | /* This has the effect of resetting the VGA video origin.  */ | 
|  | take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1); | 
|  | #endif | 
|  | pci_restore_srm_config(); | 
|  | set_hae(srm_hae); | 
|  | } | 
|  |  | 
|  | if (alpha_mv.kill_arch) | 
|  | alpha_mv.kill_arch(how->mode); | 
|  |  | 
|  | if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) { | 
|  | /* Unfortunately, since MILO doesn't currently understand | 
|  | the hwrpb bits above, we can't reliably halt the | 
|  | processor and keep it halted.  So just loop.  */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (alpha_using_srm) | 
|  | srm_paging_stop(); | 
|  |  | 
|  | halt(); | 
|  | } | 
|  |  | 
|  | static void | 
|  | common_shutdown(int mode, char *restart_cmd) | 
|  | { | 
|  | struct halt_info args; | 
|  | args.mode = mode; | 
|  | args.restart_cmd = restart_cmd; | 
|  | on_each_cpu(common_shutdown_1, &args, 0); | 
|  | } | 
|  |  | 
|  | void | 
|  | machine_restart(char *restart_cmd) | 
|  | { | 
|  | common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd); | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | machine_halt(void) | 
|  | { | 
|  | common_shutdown(LINUX_REBOOT_CMD_HALT, NULL); | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | machine_power_off(void) | 
|  | { | 
|  | common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Used by sysrq-p, among others.  I don't believe r9-r15 are ever | 
|  | saved in the context it's used.  */ | 
|  |  | 
|  | void | 
|  | show_regs(struct pt_regs *regs) | 
|  | { | 
|  | dik_show_regs(regs, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Re-start a thread when doing execve() | 
|  | */ | 
|  | void | 
|  | start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp) | 
|  | { | 
|  | set_fs(USER_DS); | 
|  | regs->pc = pc; | 
|  | regs->ps = 8; | 
|  | wrusp(sp); | 
|  | } | 
|  | EXPORT_SYMBOL(start_thread); | 
|  |  | 
|  | /* | 
|  | * Free current thread data structures etc.. | 
|  | */ | 
|  | void | 
|  | exit_thread(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | void | 
|  | flush_thread(void) | 
|  | { | 
|  | /* Arrange for each exec'ed process to start off with a clean slate | 
|  | with respect to the FPU.  This is all exceptions disabled.  */ | 
|  | current_thread_info()->ieee_state = 0; | 
|  | wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0)); | 
|  |  | 
|  | /* Clean slate for TLS.  */ | 
|  | current_thread_info()->pcb.unique = 0; | 
|  | } | 
|  |  | 
|  | void | 
|  | release_thread(struct task_struct *dead_task) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * "alpha_clone()".. By the time we get here, the | 
|  | * non-volatile registers have also been saved on the | 
|  | * stack. We do some ugly pointer stuff here.. (see | 
|  | * also copy_thread) | 
|  | * | 
|  | * Notice that "fork()" is implemented in terms of clone, | 
|  | * with parameters (SIGCHLD, 0). | 
|  | */ | 
|  | int | 
|  | alpha_clone(unsigned long clone_flags, unsigned long usp, | 
|  | int __user *parent_tid, int __user *child_tid, | 
|  | unsigned long tls_value, struct pt_regs *regs) | 
|  | { | 
|  | if (!usp) | 
|  | usp = rdusp(); | 
|  |  | 
|  | return do_fork(clone_flags, usp, regs, 0, parent_tid, child_tid); | 
|  | } | 
|  |  | 
|  | int | 
|  | alpha_vfork(struct pt_regs *regs) | 
|  | { | 
|  | return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), | 
|  | regs, 0, NULL, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy an alpha thread.. | 
|  | * | 
|  | * Note the "stack_offset" stuff: when returning to kernel mode, we need | 
|  | * to have some extra stack-space for the kernel stack that still exists | 
|  | * after the "ret_from_fork".  When returning to user mode, we only want | 
|  | * the space needed by the syscall stack frame (ie "struct pt_regs"). | 
|  | * Use the passed "regs" pointer to determine how much space we need | 
|  | * for a kernel fork(). | 
|  | */ | 
|  |  | 
|  | int | 
|  | copy_thread(unsigned long clone_flags, unsigned long usp, | 
|  | unsigned long unused, | 
|  | struct task_struct * p, struct pt_regs * regs) | 
|  | { | 
|  | extern void ret_from_fork(void); | 
|  |  | 
|  | struct thread_info *childti = task_thread_info(p); | 
|  | struct pt_regs * childregs; | 
|  | struct switch_stack * childstack, *stack; | 
|  | unsigned long stack_offset, settls; | 
|  |  | 
|  | stack_offset = PAGE_SIZE - sizeof(struct pt_regs); | 
|  | if (!(regs->ps & 8)) | 
|  | stack_offset = (PAGE_SIZE-1) & (unsigned long) regs; | 
|  | childregs = (struct pt_regs *) | 
|  | (stack_offset + PAGE_SIZE + task_stack_page(p)); | 
|  |  | 
|  | *childregs = *regs; | 
|  | settls = regs->r20; | 
|  | childregs->r0 = 0; | 
|  | childregs->r19 = 0; | 
|  | childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */ | 
|  | regs->r20 = 0; | 
|  | stack = ((struct switch_stack *) regs) - 1; | 
|  | childstack = ((struct switch_stack *) childregs) - 1; | 
|  | *childstack = *stack; | 
|  | childstack->r26 = (unsigned long) ret_from_fork; | 
|  | childti->pcb.usp = usp; | 
|  | childti->pcb.ksp = (unsigned long) childstack; | 
|  | childti->pcb.flags = 1;	/* set FEN, clear everything else */ | 
|  |  | 
|  | /* Set a new TLS for the child thread?  Peek back into the | 
|  | syscall arguments that we saved on syscall entry.  Oops, | 
|  | except we'd have clobbered it with the parent/child set | 
|  | of r20.  Read the saved copy.  */ | 
|  | /* Note: if CLONE_SETTLS is not set, then we must inherit the | 
|  | value from the parent, which will have been set by the block | 
|  | copy in dup_task_struct.  This is non-intuitive, but is | 
|  | required for proper operation in the case of a threaded | 
|  | application calling fork.  */ | 
|  | if (clone_flags & CLONE_SETTLS) | 
|  | childti->pcb.unique = settls; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill in the user structure for a ELF core dump. | 
|  | */ | 
|  | void | 
|  | dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti) | 
|  | { | 
|  | /* switch stack follows right below pt_regs: */ | 
|  | struct switch_stack * sw = ((struct switch_stack *) pt) - 1; | 
|  |  | 
|  | dest[ 0] = pt->r0; | 
|  | dest[ 1] = pt->r1; | 
|  | dest[ 2] = pt->r2; | 
|  | dest[ 3] = pt->r3; | 
|  | dest[ 4] = pt->r4; | 
|  | dest[ 5] = pt->r5; | 
|  | dest[ 6] = pt->r6; | 
|  | dest[ 7] = pt->r7; | 
|  | dest[ 8] = pt->r8; | 
|  | dest[ 9] = sw->r9; | 
|  | dest[10] = sw->r10; | 
|  | dest[11] = sw->r11; | 
|  | dest[12] = sw->r12; | 
|  | dest[13] = sw->r13; | 
|  | dest[14] = sw->r14; | 
|  | dest[15] = sw->r15; | 
|  | dest[16] = pt->r16; | 
|  | dest[17] = pt->r17; | 
|  | dest[18] = pt->r18; | 
|  | dest[19] = pt->r19; | 
|  | dest[20] = pt->r20; | 
|  | dest[21] = pt->r21; | 
|  | dest[22] = pt->r22; | 
|  | dest[23] = pt->r23; | 
|  | dest[24] = pt->r24; | 
|  | dest[25] = pt->r25; | 
|  | dest[26] = pt->r26; | 
|  | dest[27] = pt->r27; | 
|  | dest[28] = pt->r28; | 
|  | dest[29] = pt->gp; | 
|  | dest[30] = rdusp(); | 
|  | dest[31] = pt->pc; | 
|  |  | 
|  | /* Once upon a time this was the PS value.  Which is stupid | 
|  | since that is always 8 for usermode.  Usurped for the more | 
|  | useful value of the thread's UNIQUE field.  */ | 
|  | dest[32] = ti->pcb.unique; | 
|  | } | 
|  | EXPORT_SYMBOL(dump_elf_thread); | 
|  |  | 
|  | int | 
|  | dump_elf_task(elf_greg_t *dest, struct task_struct *task) | 
|  | { | 
|  | dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task)); | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL(dump_elf_task); | 
|  |  | 
|  | int | 
|  | dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task) | 
|  | { | 
|  | struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1; | 
|  | memcpy(dest, sw->fp, 32 * 8); | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL(dump_elf_task_fp); | 
|  |  | 
|  | /* | 
|  | * sys_execve() executes a new program. | 
|  | */ | 
|  | asmlinkage int | 
|  | do_sys_execve(char __user *ufilename, char __user * __user *argv, | 
|  | char __user * __user *envp, struct pt_regs *regs) | 
|  | { | 
|  | int error; | 
|  | char *filename; | 
|  |  | 
|  | filename = getname(ufilename); | 
|  | error = PTR_ERR(filename); | 
|  | if (IS_ERR(filename)) | 
|  | goto out; | 
|  | error = do_execve(filename, argv, envp, regs); | 
|  | putname(filename); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return saved PC of a blocked thread.  This assumes the frame | 
|  | * pointer is the 6th saved long on the kernel stack and that the | 
|  | * saved return address is the first long in the frame.  This all | 
|  | * holds provided the thread blocked through a call to schedule() ($15 | 
|  | * is the frame pointer in schedule() and $15 is saved at offset 48 by | 
|  | * entry.S:do_switch_stack). | 
|  | * | 
|  | * Under heavy swap load I've seen this lose in an ugly way.  So do | 
|  | * some extra sanity checking on the ranges we expect these pointers | 
|  | * to be in so that we can fail gracefully.  This is just for ps after | 
|  | * all.  -- r~ | 
|  | */ | 
|  |  | 
|  | unsigned long | 
|  | thread_saved_pc(struct task_struct *t) | 
|  | { | 
|  | unsigned long base = (unsigned long)task_stack_page(t); | 
|  | unsigned long fp, sp = task_thread_info(t)->pcb.ksp; | 
|  |  | 
|  | if (sp > base && sp+6*8 < base + 16*1024) { | 
|  | fp = ((unsigned long*)sp)[6]; | 
|  | if (fp > sp && fp < base + 16*1024) | 
|  | return *(unsigned long *)fp; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned long | 
|  | get_wchan(struct task_struct *p) | 
|  | { | 
|  | unsigned long schedule_frame; | 
|  | unsigned long pc; | 
|  | if (!p || p == current || p->state == TASK_RUNNING) | 
|  | return 0; | 
|  | /* | 
|  | * This one depends on the frame size of schedule().  Do a | 
|  | * "disass schedule" in gdb to find the frame size.  Also, the | 
|  | * code assumes that sleep_on() follows immediately after | 
|  | * interruptible_sleep_on() and that add_timer() follows | 
|  | * immediately after interruptible_sleep().  Ugly, isn't it? | 
|  | * Maybe adding a wchan field to task_struct would be better, | 
|  | * after all... | 
|  | */ | 
|  |  | 
|  | pc = thread_saved_pc(p); | 
|  | if (in_sched_functions(pc)) { | 
|  | schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6]; | 
|  | return ((unsigned long *)schedule_frame)[12]; | 
|  | } | 
|  | return pc; | 
|  | } |