|  | /******************************************************************************* | 
|  |  | 
|  | Intel 10 Gigabit PCI Express Linux driver | 
|  | Copyright(c) 1999 - 2009 Intel Corporation. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify it | 
|  | under the terms and conditions of the GNU General Public License, | 
|  | version 2, as published by the Free Software Foundation. | 
|  |  | 
|  | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along with | 
|  | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  |  | 
|  | The full GNU General Public License is included in this distribution in | 
|  | the file called "COPYING". | 
|  |  | 
|  | Contact Information: | 
|  | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  |  | 
|  | *******************************************************************************/ | 
|  |  | 
|  | #include <linux/pci.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/netdevice.h> | 
|  |  | 
|  | #include "ixgbe.h" | 
|  | #include "ixgbe_common.h" | 
|  | #include "ixgbe_phy.h" | 
|  |  | 
|  | static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw); | 
|  | static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw); | 
|  | static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw); | 
|  | static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw); | 
|  | static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw); | 
|  | static void ixgbe_standby_eeprom(struct ixgbe_hw *hw); | 
|  | static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, | 
|  | u16 count); | 
|  | static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count); | 
|  | static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); | 
|  | static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); | 
|  | static void ixgbe_release_eeprom(struct ixgbe_hw *hw); | 
|  | static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw); | 
|  |  | 
|  | static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index); | 
|  | static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index); | 
|  | static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr); | 
|  | static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq); | 
|  |  | 
|  | /** | 
|  | *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Starts the hardware by filling the bus info structure and media type, clears | 
|  | *  all on chip counters, initializes receive address registers, multicast | 
|  | *  table, VLAN filter table, calls routine to set up link and flow control | 
|  | *  settings, and leaves transmit and receive units disabled and uninitialized | 
|  | **/ | 
|  | s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw) | 
|  | { | 
|  | u32 ctrl_ext; | 
|  |  | 
|  | /* Set the media type */ | 
|  | hw->phy.media_type = hw->mac.ops.get_media_type(hw); | 
|  |  | 
|  | /* Identify the PHY */ | 
|  | hw->phy.ops.identify(hw); | 
|  |  | 
|  | /* Clear the VLAN filter table */ | 
|  | hw->mac.ops.clear_vfta(hw); | 
|  |  | 
|  | /* Clear statistics registers */ | 
|  | hw->mac.ops.clear_hw_cntrs(hw); | 
|  |  | 
|  | /* Set No Snoop Disable */ | 
|  | ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT); | 
|  | ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  |  | 
|  | /* Setup flow control */ | 
|  | ixgbe_setup_fc(hw, 0); | 
|  |  | 
|  | /* Clear adapter stopped flag */ | 
|  | hw->adapter_stopped = false; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_init_hw_generic - Generic hardware initialization | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Initialize the hardware by resetting the hardware, filling the bus info | 
|  | *  structure and media type, clears all on chip counters, initializes receive | 
|  | *  address registers, multicast table, VLAN filter table, calls routine to set | 
|  | *  up link and flow control settings, and leaves transmit and receive units | 
|  | *  disabled and uninitialized | 
|  | **/ | 
|  | s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw) | 
|  | { | 
|  | s32 status; | 
|  |  | 
|  | /* Reset the hardware */ | 
|  | status = hw->mac.ops.reset_hw(hw); | 
|  |  | 
|  | if (status == 0) { | 
|  | /* Start the HW */ | 
|  | status = hw->mac.ops.start_hw(hw); | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Clears all hardware statistics counters by reading them from the hardware | 
|  | *  Statistics counters are clear on read. | 
|  | **/ | 
|  | s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw) | 
|  | { | 
|  | u16 i = 0; | 
|  |  | 
|  | IXGBE_READ_REG(hw, IXGBE_CRCERRS); | 
|  | IXGBE_READ_REG(hw, IXGBE_ILLERRC); | 
|  | IXGBE_READ_REG(hw, IXGBE_ERRBC); | 
|  | IXGBE_READ_REG(hw, IXGBE_MSPDC); | 
|  | for (i = 0; i < 8; i++) | 
|  | IXGBE_READ_REG(hw, IXGBE_MPC(i)); | 
|  |  | 
|  | IXGBE_READ_REG(hw, IXGBE_MLFC); | 
|  | IXGBE_READ_REG(hw, IXGBE_MRFC); | 
|  | IXGBE_READ_REG(hw, IXGBE_RLEC); | 
|  | IXGBE_READ_REG(hw, IXGBE_LXONTXC); | 
|  | IXGBE_READ_REG(hw, IXGBE_LXONRXC); | 
|  | IXGBE_READ_REG(hw, IXGBE_LXOFFTXC); | 
|  | IXGBE_READ_REG(hw, IXGBE_LXOFFRXC); | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | IXGBE_READ_REG(hw, IXGBE_PXONTXC(i)); | 
|  | IXGBE_READ_REG(hw, IXGBE_PXONRXC(i)); | 
|  | IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i)); | 
|  | IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i)); | 
|  | } | 
|  |  | 
|  | IXGBE_READ_REG(hw, IXGBE_PRC64); | 
|  | IXGBE_READ_REG(hw, IXGBE_PRC127); | 
|  | IXGBE_READ_REG(hw, IXGBE_PRC255); | 
|  | IXGBE_READ_REG(hw, IXGBE_PRC511); | 
|  | IXGBE_READ_REG(hw, IXGBE_PRC1023); | 
|  | IXGBE_READ_REG(hw, IXGBE_PRC1522); | 
|  | IXGBE_READ_REG(hw, IXGBE_GPRC); | 
|  | IXGBE_READ_REG(hw, IXGBE_BPRC); | 
|  | IXGBE_READ_REG(hw, IXGBE_MPRC); | 
|  | IXGBE_READ_REG(hw, IXGBE_GPTC); | 
|  | IXGBE_READ_REG(hw, IXGBE_GORCL); | 
|  | IXGBE_READ_REG(hw, IXGBE_GORCH); | 
|  | IXGBE_READ_REG(hw, IXGBE_GOTCL); | 
|  | IXGBE_READ_REG(hw, IXGBE_GOTCH); | 
|  | for (i = 0; i < 8; i++) | 
|  | IXGBE_READ_REG(hw, IXGBE_RNBC(i)); | 
|  | IXGBE_READ_REG(hw, IXGBE_RUC); | 
|  | IXGBE_READ_REG(hw, IXGBE_RFC); | 
|  | IXGBE_READ_REG(hw, IXGBE_ROC); | 
|  | IXGBE_READ_REG(hw, IXGBE_RJC); | 
|  | IXGBE_READ_REG(hw, IXGBE_MNGPRC); | 
|  | IXGBE_READ_REG(hw, IXGBE_MNGPDC); | 
|  | IXGBE_READ_REG(hw, IXGBE_MNGPTC); | 
|  | IXGBE_READ_REG(hw, IXGBE_TORL); | 
|  | IXGBE_READ_REG(hw, IXGBE_TORH); | 
|  | IXGBE_READ_REG(hw, IXGBE_TPR); | 
|  | IXGBE_READ_REG(hw, IXGBE_TPT); | 
|  | IXGBE_READ_REG(hw, IXGBE_PTC64); | 
|  | IXGBE_READ_REG(hw, IXGBE_PTC127); | 
|  | IXGBE_READ_REG(hw, IXGBE_PTC255); | 
|  | IXGBE_READ_REG(hw, IXGBE_PTC511); | 
|  | IXGBE_READ_REG(hw, IXGBE_PTC1023); | 
|  | IXGBE_READ_REG(hw, IXGBE_PTC1522); | 
|  | IXGBE_READ_REG(hw, IXGBE_MPTC); | 
|  | IXGBE_READ_REG(hw, IXGBE_BPTC); | 
|  | for (i = 0; i < 16; i++) { | 
|  | IXGBE_READ_REG(hw, IXGBE_QPRC(i)); | 
|  | IXGBE_READ_REG(hw, IXGBE_QBRC(i)); | 
|  | IXGBE_READ_REG(hw, IXGBE_QPTC(i)); | 
|  | IXGBE_READ_REG(hw, IXGBE_QBTC(i)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_read_pba_num_generic - Reads part number from EEPROM | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @pba_num: stores the part number from the EEPROM | 
|  | * | 
|  | *  Reads the part number from the EEPROM. | 
|  | **/ | 
|  | s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 data; | 
|  |  | 
|  | ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "NVM Read Error\n"); | 
|  | return ret_val; | 
|  | } | 
|  | *pba_num = (u32)(data << 16); | 
|  |  | 
|  | ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "NVM Read Error\n"); | 
|  | return ret_val; | 
|  | } | 
|  | *pba_num |= data; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_get_mac_addr_generic - Generic get MAC address | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @mac_addr: Adapter MAC address | 
|  | * | 
|  | *  Reads the adapter's MAC address from first Receive Address Register (RAR0) | 
|  | *  A reset of the adapter must be performed prior to calling this function | 
|  | *  in order for the MAC address to have been loaded from the EEPROM into RAR0 | 
|  | **/ | 
|  | s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr) | 
|  | { | 
|  | u32 rar_high; | 
|  | u32 rar_low; | 
|  | u16 i; | 
|  |  | 
|  | rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0)); | 
|  | rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0)); | 
|  |  | 
|  | for (i = 0; i < 4; i++) | 
|  | mac_addr[i] = (u8)(rar_low >> (i*8)); | 
|  |  | 
|  | for (i = 0; i < 2; i++) | 
|  | mac_addr[i+4] = (u8)(rar_high >> (i*8)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_get_bus_info_generic - Generic set PCI bus info | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure | 
|  | **/ | 
|  | s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw) | 
|  | { | 
|  | struct ixgbe_adapter *adapter = hw->back; | 
|  | struct ixgbe_mac_info *mac = &hw->mac; | 
|  | u16 link_status; | 
|  |  | 
|  | hw->bus.type = ixgbe_bus_type_pci_express; | 
|  |  | 
|  | /* Get the negotiated link width and speed from PCI config space */ | 
|  | pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS, | 
|  | &link_status); | 
|  |  | 
|  | switch (link_status & IXGBE_PCI_LINK_WIDTH) { | 
|  | case IXGBE_PCI_LINK_WIDTH_1: | 
|  | hw->bus.width = ixgbe_bus_width_pcie_x1; | 
|  | break; | 
|  | case IXGBE_PCI_LINK_WIDTH_2: | 
|  | hw->bus.width = ixgbe_bus_width_pcie_x2; | 
|  | break; | 
|  | case IXGBE_PCI_LINK_WIDTH_4: | 
|  | hw->bus.width = ixgbe_bus_width_pcie_x4; | 
|  | break; | 
|  | case IXGBE_PCI_LINK_WIDTH_8: | 
|  | hw->bus.width = ixgbe_bus_width_pcie_x8; | 
|  | break; | 
|  | default: | 
|  | hw->bus.width = ixgbe_bus_width_unknown; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (link_status & IXGBE_PCI_LINK_SPEED) { | 
|  | case IXGBE_PCI_LINK_SPEED_2500: | 
|  | hw->bus.speed = ixgbe_bus_speed_2500; | 
|  | break; | 
|  | case IXGBE_PCI_LINK_SPEED_5000: | 
|  | hw->bus.speed = ixgbe_bus_speed_5000; | 
|  | break; | 
|  | default: | 
|  | hw->bus.speed = ixgbe_bus_speed_unknown; | 
|  | break; | 
|  | } | 
|  |  | 
|  | mac->ops.set_lan_id(hw); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Determines the LAN function id by reading memory-mapped registers | 
|  | *  and swaps the port value if requested. | 
|  | **/ | 
|  | void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw) | 
|  | { | 
|  | struct ixgbe_bus_info *bus = &hw->bus; | 
|  | u32 reg; | 
|  |  | 
|  | reg = IXGBE_READ_REG(hw, IXGBE_STATUS); | 
|  | bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT; | 
|  | bus->lan_id = bus->func; | 
|  |  | 
|  | /* check for a port swap */ | 
|  | reg = IXGBE_READ_REG(hw, IXGBE_FACTPS); | 
|  | if (reg & IXGBE_FACTPS_LFS) | 
|  | bus->func ^= 0x1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts, | 
|  | *  disables transmit and receive units. The adapter_stopped flag is used by | 
|  | *  the shared code and drivers to determine if the adapter is in a stopped | 
|  | *  state and should not touch the hardware. | 
|  | **/ | 
|  | s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw) | 
|  | { | 
|  | u32 number_of_queues; | 
|  | u32 reg_val; | 
|  | u16 i; | 
|  |  | 
|  | /* | 
|  | * Set the adapter_stopped flag so other driver functions stop touching | 
|  | * the hardware | 
|  | */ | 
|  | hw->adapter_stopped = true; | 
|  |  | 
|  | /* Disable the receive unit */ | 
|  | reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL); | 
|  | reg_val &= ~(IXGBE_RXCTRL_RXEN); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  | msleep(2); | 
|  |  | 
|  | /* Clear interrupt mask to stop from interrupts being generated */ | 
|  | IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK); | 
|  |  | 
|  | /* Clear any pending interrupts */ | 
|  | IXGBE_READ_REG(hw, IXGBE_EICR); | 
|  |  | 
|  | /* Disable the transmit unit.  Each queue must be disabled. */ | 
|  | number_of_queues = hw->mac.max_tx_queues; | 
|  | for (i = 0; i < number_of_queues; i++) { | 
|  | reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i)); | 
|  | if (reg_val & IXGBE_TXDCTL_ENABLE) { | 
|  | reg_val &= ~IXGBE_TXDCTL_ENABLE; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prevent the PCI-E bus from from hanging by disabling PCI-E master | 
|  | * access and verify no pending requests | 
|  | */ | 
|  | if (ixgbe_disable_pcie_master(hw) != 0) | 
|  | hw_dbg(hw, "PCI-E Master disable polling has failed.\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_led_on_generic - Turns on the software controllable LEDs. | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @index: led number to turn on | 
|  | **/ | 
|  | s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index) | 
|  | { | 
|  | u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); | 
|  |  | 
|  | /* To turn on the LED, set mode to ON. */ | 
|  | led_reg &= ~IXGBE_LED_MODE_MASK(index); | 
|  | led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_led_off_generic - Turns off the software controllable LEDs. | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @index: led number to turn off | 
|  | **/ | 
|  | s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index) | 
|  | { | 
|  | u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); | 
|  |  | 
|  | /* To turn off the LED, set mode to OFF. */ | 
|  | led_reg &= ~IXGBE_LED_MODE_MASK(index); | 
|  | led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Initializes the EEPROM parameters ixgbe_eeprom_info within the | 
|  | *  ixgbe_hw struct in order to set up EEPROM access. | 
|  | **/ | 
|  | s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw) | 
|  | { | 
|  | struct ixgbe_eeprom_info *eeprom = &hw->eeprom; | 
|  | u32 eec; | 
|  | u16 eeprom_size; | 
|  |  | 
|  | if (eeprom->type == ixgbe_eeprom_uninitialized) { | 
|  | eeprom->type = ixgbe_eeprom_none; | 
|  | /* Set default semaphore delay to 10ms which is a well | 
|  | * tested value */ | 
|  | eeprom->semaphore_delay = 10; | 
|  |  | 
|  | /* | 
|  | * Check for EEPROM present first. | 
|  | * If not present leave as none | 
|  | */ | 
|  | eec = IXGBE_READ_REG(hw, IXGBE_EEC); | 
|  | if (eec & IXGBE_EEC_PRES) { | 
|  | eeprom->type = ixgbe_eeprom_spi; | 
|  |  | 
|  | /* | 
|  | * SPI EEPROM is assumed here.  This code would need to | 
|  | * change if a future EEPROM is not SPI. | 
|  | */ | 
|  | eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >> | 
|  | IXGBE_EEC_SIZE_SHIFT); | 
|  | eeprom->word_size = 1 << (eeprom_size + | 
|  | IXGBE_EEPROM_WORD_SIZE_SHIFT); | 
|  | } | 
|  |  | 
|  | if (eec & IXGBE_EEC_ADDR_SIZE) | 
|  | eeprom->address_bits = 16; | 
|  | else | 
|  | eeprom->address_bits = 8; | 
|  | hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: " | 
|  | "%d\n", eeprom->type, eeprom->word_size, | 
|  | eeprom->address_bits); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @offset: offset within the EEPROM to be written to | 
|  | *  @data: 16 bit word to be written to the EEPROM | 
|  | * | 
|  | *  If ixgbe_eeprom_update_checksum is not called after this function, the | 
|  | *  EEPROM will most likely contain an invalid checksum. | 
|  | **/ | 
|  | s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data) | 
|  | { | 
|  | s32 status; | 
|  | u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI; | 
|  |  | 
|  | hw->eeprom.ops.init_params(hw); | 
|  |  | 
|  | if (offset >= hw->eeprom.word_size) { | 
|  | status = IXGBE_ERR_EEPROM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Prepare the EEPROM for writing  */ | 
|  | status = ixgbe_acquire_eeprom(hw); | 
|  |  | 
|  | if (status == 0) { | 
|  | if (ixgbe_ready_eeprom(hw) != 0) { | 
|  | ixgbe_release_eeprom(hw); | 
|  | status = IXGBE_ERR_EEPROM; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (status == 0) { | 
|  | ixgbe_standby_eeprom(hw); | 
|  |  | 
|  | /*  Send the WRITE ENABLE command (8 bit opcode )  */ | 
|  | ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI, | 
|  | IXGBE_EEPROM_OPCODE_BITS); | 
|  |  | 
|  | ixgbe_standby_eeprom(hw); | 
|  |  | 
|  | /* | 
|  | * Some SPI eeproms use the 8th address bit embedded in the | 
|  | * opcode | 
|  | */ | 
|  | if ((hw->eeprom.address_bits == 8) && (offset >= 128)) | 
|  | write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; | 
|  |  | 
|  | /* Send the Write command (8-bit opcode + addr) */ | 
|  | ixgbe_shift_out_eeprom_bits(hw, write_opcode, | 
|  | IXGBE_EEPROM_OPCODE_BITS); | 
|  | ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2), | 
|  | hw->eeprom.address_bits); | 
|  |  | 
|  | /* Send the data */ | 
|  | data = (data >> 8) | (data << 8); | 
|  | ixgbe_shift_out_eeprom_bits(hw, data, 16); | 
|  | ixgbe_standby_eeprom(hw); | 
|  |  | 
|  | msleep(hw->eeprom.semaphore_delay); | 
|  | /* Done with writing - release the EEPROM */ | 
|  | ixgbe_release_eeprom(hw); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @offset: offset within the EEPROM to be read | 
|  | *  @data: read 16 bit value from EEPROM | 
|  | * | 
|  | *  Reads 16 bit value from EEPROM through bit-bang method | 
|  | **/ | 
|  | s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, | 
|  | u16 *data) | 
|  | { | 
|  | s32 status; | 
|  | u16 word_in; | 
|  | u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI; | 
|  |  | 
|  | hw->eeprom.ops.init_params(hw); | 
|  |  | 
|  | if (offset >= hw->eeprom.word_size) { | 
|  | status = IXGBE_ERR_EEPROM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Prepare the EEPROM for reading  */ | 
|  | status = ixgbe_acquire_eeprom(hw); | 
|  |  | 
|  | if (status == 0) { | 
|  | if (ixgbe_ready_eeprom(hw) != 0) { | 
|  | ixgbe_release_eeprom(hw); | 
|  | status = IXGBE_ERR_EEPROM; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (status == 0) { | 
|  | ixgbe_standby_eeprom(hw); | 
|  |  | 
|  | /* | 
|  | * Some SPI eeproms use the 8th address bit embedded in the | 
|  | * opcode | 
|  | */ | 
|  | if ((hw->eeprom.address_bits == 8) && (offset >= 128)) | 
|  | read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; | 
|  |  | 
|  | /* Send the READ command (opcode + addr) */ | 
|  | ixgbe_shift_out_eeprom_bits(hw, read_opcode, | 
|  | IXGBE_EEPROM_OPCODE_BITS); | 
|  | ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2), | 
|  | hw->eeprom.address_bits); | 
|  |  | 
|  | /* Read the data. */ | 
|  | word_in = ixgbe_shift_in_eeprom_bits(hw, 16); | 
|  | *data = (word_in >> 8) | (word_in << 8); | 
|  |  | 
|  | /* End this read operation */ | 
|  | ixgbe_release_eeprom(hw); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_read_eeprom_generic - Read EEPROM word using EERD | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @offset: offset of  word in the EEPROM to read | 
|  | *  @data: word read from the EEPROM | 
|  | * | 
|  | *  Reads a 16 bit word from the EEPROM using the EERD register. | 
|  | **/ | 
|  | s32 ixgbe_read_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 *data) | 
|  | { | 
|  | u32 eerd; | 
|  | s32 status; | 
|  |  | 
|  | hw->eeprom.ops.init_params(hw); | 
|  |  | 
|  | if (offset >= hw->eeprom.word_size) { | 
|  | status = IXGBE_ERR_EEPROM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | eerd = (offset << IXGBE_EEPROM_READ_ADDR_SHIFT) + | 
|  | IXGBE_EEPROM_READ_REG_START; | 
|  |  | 
|  | IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd); | 
|  | status = ixgbe_poll_eeprom_eerd_done(hw); | 
|  |  | 
|  | if (status == 0) | 
|  | *data = (IXGBE_READ_REG(hw, IXGBE_EERD) >> | 
|  | IXGBE_EEPROM_READ_REG_DATA); | 
|  | else | 
|  | hw_dbg(hw, "Eeprom read timed out\n"); | 
|  |  | 
|  | out: | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_poll_eeprom_eerd_done - Poll EERD status | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Polls the status bit (bit 1) of the EERD to determine when the read is done. | 
|  | **/ | 
|  | static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw) | 
|  | { | 
|  | u32 i; | 
|  | u32 reg; | 
|  | s32 status = IXGBE_ERR_EEPROM; | 
|  |  | 
|  | for (i = 0; i < IXGBE_EERD_ATTEMPTS; i++) { | 
|  | reg = IXGBE_READ_REG(hw, IXGBE_EERD); | 
|  | if (reg & IXGBE_EEPROM_READ_REG_DONE) { | 
|  | status = 0; | 
|  | break; | 
|  | } | 
|  | udelay(5); | 
|  | } | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Prepares EEPROM for access using bit-bang method. This function should | 
|  | *  be called before issuing a command to the EEPROM. | 
|  | **/ | 
|  | static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw) | 
|  | { | 
|  | s32 status = 0; | 
|  | u32 eec = 0; | 
|  | u32 i; | 
|  |  | 
|  | if (ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0) | 
|  | status = IXGBE_ERR_SWFW_SYNC; | 
|  |  | 
|  | if (status == 0) { | 
|  | eec = IXGBE_READ_REG(hw, IXGBE_EEC); | 
|  |  | 
|  | /* Request EEPROM Access */ | 
|  | eec |= IXGBE_EEC_REQ; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); | 
|  |  | 
|  | for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) { | 
|  | eec = IXGBE_READ_REG(hw, IXGBE_EEC); | 
|  | if (eec & IXGBE_EEC_GNT) | 
|  | break; | 
|  | udelay(5); | 
|  | } | 
|  |  | 
|  | /* Release if grant not acquired */ | 
|  | if (!(eec & IXGBE_EEC_GNT)) { | 
|  | eec &= ~IXGBE_EEC_REQ; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); | 
|  | hw_dbg(hw, "Could not acquire EEPROM grant\n"); | 
|  |  | 
|  | ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); | 
|  | status = IXGBE_ERR_EEPROM; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Setup EEPROM for Read/Write */ | 
|  | if (status == 0) { | 
|  | /* Clear CS and SK */ | 
|  | eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  | udelay(1); | 
|  | } | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_get_eeprom_semaphore - Get hardware semaphore | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method | 
|  | **/ | 
|  | static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw) | 
|  | { | 
|  | s32 status = IXGBE_ERR_EEPROM; | 
|  | u32 timeout; | 
|  | u32 i; | 
|  | u32 swsm; | 
|  |  | 
|  | /* Set timeout value based on size of EEPROM */ | 
|  | timeout = hw->eeprom.word_size + 1; | 
|  |  | 
|  | /* Get SMBI software semaphore between device drivers first */ | 
|  | for (i = 0; i < timeout; i++) { | 
|  | /* | 
|  | * If the SMBI bit is 0 when we read it, then the bit will be | 
|  | * set and we have the semaphore | 
|  | */ | 
|  | swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); | 
|  | if (!(swsm & IXGBE_SWSM_SMBI)) { | 
|  | status = 0; | 
|  | break; | 
|  | } | 
|  | msleep(1); | 
|  | } | 
|  |  | 
|  | /* Now get the semaphore between SW/FW through the SWESMBI bit */ | 
|  | if (status == 0) { | 
|  | for (i = 0; i < timeout; i++) { | 
|  | swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); | 
|  |  | 
|  | /* Set the SW EEPROM semaphore bit to request access */ | 
|  | swsm |= IXGBE_SWSM_SWESMBI; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm); | 
|  |  | 
|  | /* | 
|  | * If we set the bit successfully then we got the | 
|  | * semaphore. | 
|  | */ | 
|  | swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); | 
|  | if (swsm & IXGBE_SWSM_SWESMBI) | 
|  | break; | 
|  |  | 
|  | udelay(50); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release semaphores and return error if SW EEPROM semaphore | 
|  | * was not granted because we don't have access to the EEPROM | 
|  | */ | 
|  | if (i >= timeout) { | 
|  | hw_dbg(hw, "Driver can't access the Eeprom - Semaphore " | 
|  | "not granted.\n"); | 
|  | ixgbe_release_eeprom_semaphore(hw); | 
|  | status = IXGBE_ERR_EEPROM; | 
|  | } | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_release_eeprom_semaphore - Release hardware semaphore | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  This function clears hardware semaphore bits. | 
|  | **/ | 
|  | static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw) | 
|  | { | 
|  | u32 swsm; | 
|  |  | 
|  | swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); | 
|  |  | 
|  | /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */ | 
|  | swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_ready_eeprom - Polls for EEPROM ready | 
|  | *  @hw: pointer to hardware structure | 
|  | **/ | 
|  | static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw) | 
|  | { | 
|  | s32 status = 0; | 
|  | u16 i; | 
|  | u8 spi_stat_reg; | 
|  |  | 
|  | /* | 
|  | * Read "Status Register" repeatedly until the LSB is cleared.  The | 
|  | * EEPROM will signal that the command has been completed by clearing | 
|  | * bit 0 of the internal status register.  If it's not cleared within | 
|  | * 5 milliseconds, then error out. | 
|  | */ | 
|  | for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) { | 
|  | ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI, | 
|  | IXGBE_EEPROM_OPCODE_BITS); | 
|  | spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8); | 
|  | if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI)) | 
|  | break; | 
|  |  | 
|  | udelay(5); | 
|  | ixgbe_standby_eeprom(hw); | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * On some parts, SPI write time could vary from 0-20mSec on 3.3V | 
|  | * devices (and only 0-5mSec on 5V devices) | 
|  | */ | 
|  | if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) { | 
|  | hw_dbg(hw, "SPI EEPROM Status error\n"); | 
|  | status = IXGBE_ERR_EEPROM; | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state | 
|  | *  @hw: pointer to hardware structure | 
|  | **/ | 
|  | static void ixgbe_standby_eeprom(struct ixgbe_hw *hw) | 
|  | { | 
|  | u32 eec; | 
|  |  | 
|  | eec = IXGBE_READ_REG(hw, IXGBE_EEC); | 
|  |  | 
|  | /* Toggle CS to flush commands */ | 
|  | eec |= IXGBE_EEC_CS; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  | udelay(1); | 
|  | eec &= ~IXGBE_EEC_CS; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  | udelay(1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM. | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @data: data to send to the EEPROM | 
|  | *  @count: number of bits to shift out | 
|  | **/ | 
|  | static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, | 
|  | u16 count) | 
|  | { | 
|  | u32 eec; | 
|  | u32 mask; | 
|  | u32 i; | 
|  |  | 
|  | eec = IXGBE_READ_REG(hw, IXGBE_EEC); | 
|  |  | 
|  | /* | 
|  | * Mask is used to shift "count" bits of "data" out to the EEPROM | 
|  | * one bit at a time.  Determine the starting bit based on count | 
|  | */ | 
|  | mask = 0x01 << (count - 1); | 
|  |  | 
|  | for (i = 0; i < count; i++) { | 
|  | /* | 
|  | * A "1" is shifted out to the EEPROM by setting bit "DI" to a | 
|  | * "1", and then raising and then lowering the clock (the SK | 
|  | * bit controls the clock input to the EEPROM).  A "0" is | 
|  | * shifted out to the EEPROM by setting "DI" to "0" and then | 
|  | * raising and then lowering the clock. | 
|  | */ | 
|  | if (data & mask) | 
|  | eec |= IXGBE_EEC_DI; | 
|  | else | 
|  | eec &= ~IXGBE_EEC_DI; | 
|  |  | 
|  | IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  |  | 
|  | udelay(1); | 
|  |  | 
|  | ixgbe_raise_eeprom_clk(hw, &eec); | 
|  | ixgbe_lower_eeprom_clk(hw, &eec); | 
|  |  | 
|  | /* | 
|  | * Shift mask to signify next bit of data to shift in to the | 
|  | * EEPROM | 
|  | */ | 
|  | mask = mask >> 1; | 
|  | }; | 
|  |  | 
|  | /* We leave the "DI" bit set to "0" when we leave this routine. */ | 
|  | eec &= ~IXGBE_EEC_DI; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM | 
|  | *  @hw: pointer to hardware structure | 
|  | **/ | 
|  | static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count) | 
|  | { | 
|  | u32 eec; | 
|  | u32 i; | 
|  | u16 data = 0; | 
|  |  | 
|  | /* | 
|  | * In order to read a register from the EEPROM, we need to shift | 
|  | * 'count' bits in from the EEPROM. Bits are "shifted in" by raising | 
|  | * the clock input to the EEPROM (setting the SK bit), and then reading | 
|  | * the value of the "DO" bit.  During this "shifting in" process the | 
|  | * "DI" bit should always be clear. | 
|  | */ | 
|  | eec = IXGBE_READ_REG(hw, IXGBE_EEC); | 
|  |  | 
|  | eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI); | 
|  |  | 
|  | for (i = 0; i < count; i++) { | 
|  | data = data << 1; | 
|  | ixgbe_raise_eeprom_clk(hw, &eec); | 
|  |  | 
|  | eec = IXGBE_READ_REG(hw, IXGBE_EEC); | 
|  |  | 
|  | eec &= ~(IXGBE_EEC_DI); | 
|  | if (eec & IXGBE_EEC_DO) | 
|  | data |= 1; | 
|  |  | 
|  | ixgbe_lower_eeprom_clk(hw, &eec); | 
|  | } | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input. | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @eec: EEC register's current value | 
|  | **/ | 
|  | static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) | 
|  | { | 
|  | /* | 
|  | * Raise the clock input to the EEPROM | 
|  | * (setting the SK bit), then delay | 
|  | */ | 
|  | *eec = *eec | IXGBE_EEC_SK; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  | udelay(1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input. | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @eecd: EECD's current value | 
|  | **/ | 
|  | static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) | 
|  | { | 
|  | /* | 
|  | * Lower the clock input to the EEPROM (clearing the SK bit), then | 
|  | * delay | 
|  | */ | 
|  | *eec = *eec & ~IXGBE_EEC_SK; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  | udelay(1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_release_eeprom - Release EEPROM, release semaphores | 
|  | *  @hw: pointer to hardware structure | 
|  | **/ | 
|  | static void ixgbe_release_eeprom(struct ixgbe_hw *hw) | 
|  | { | 
|  | u32 eec; | 
|  |  | 
|  | eec = IXGBE_READ_REG(hw, IXGBE_EEC); | 
|  |  | 
|  | eec |= IXGBE_EEC_CS;  /* Pull CS high */ | 
|  | eec &= ~IXGBE_EEC_SK; /* Lower SCK */ | 
|  |  | 
|  | IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  |  | 
|  | udelay(1); | 
|  |  | 
|  | /* Stop requesting EEPROM access */ | 
|  | eec &= ~IXGBE_EEC_REQ; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); | 
|  |  | 
|  | ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_calc_eeprom_checksum - Calculates and returns the checksum | 
|  | *  @hw: pointer to hardware structure | 
|  | **/ | 
|  | static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw) | 
|  | { | 
|  | u16 i; | 
|  | u16 j; | 
|  | u16 checksum = 0; | 
|  | u16 length = 0; | 
|  | u16 pointer = 0; | 
|  | u16 word = 0; | 
|  |  | 
|  | /* Include 0x0-0x3F in the checksum */ | 
|  | for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) { | 
|  | if (hw->eeprom.ops.read(hw, i, &word) != 0) { | 
|  | hw_dbg(hw, "EEPROM read failed\n"); | 
|  | break; | 
|  | } | 
|  | checksum += word; | 
|  | } | 
|  |  | 
|  | /* Include all data from pointers except for the fw pointer */ | 
|  | for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) { | 
|  | hw->eeprom.ops.read(hw, i, &pointer); | 
|  |  | 
|  | /* Make sure the pointer seems valid */ | 
|  | if (pointer != 0xFFFF && pointer != 0) { | 
|  | hw->eeprom.ops.read(hw, pointer, &length); | 
|  |  | 
|  | if (length != 0xFFFF && length != 0) { | 
|  | for (j = pointer+1; j <= pointer+length; j++) { | 
|  | hw->eeprom.ops.read(hw, j, &word); | 
|  | checksum += word; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | checksum = (u16)IXGBE_EEPROM_SUM - checksum; | 
|  |  | 
|  | return checksum; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @checksum_val: calculated checksum | 
|  | * | 
|  | *  Performs checksum calculation and validates the EEPROM checksum.  If the | 
|  | *  caller does not need checksum_val, the value can be NULL. | 
|  | **/ | 
|  | s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw, | 
|  | u16 *checksum_val) | 
|  | { | 
|  | s32 status; | 
|  | u16 checksum; | 
|  | u16 read_checksum = 0; | 
|  |  | 
|  | /* | 
|  | * Read the first word from the EEPROM. If this times out or fails, do | 
|  | * not continue or we could be in for a very long wait while every | 
|  | * EEPROM read fails | 
|  | */ | 
|  | status = hw->eeprom.ops.read(hw, 0, &checksum); | 
|  |  | 
|  | if (status == 0) { | 
|  | checksum = ixgbe_calc_eeprom_checksum(hw); | 
|  |  | 
|  | hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum); | 
|  |  | 
|  | /* | 
|  | * Verify read checksum from EEPROM is the same as | 
|  | * calculated checksum | 
|  | */ | 
|  | if (read_checksum != checksum) | 
|  | status = IXGBE_ERR_EEPROM_CHECKSUM; | 
|  |  | 
|  | /* If the user cares, return the calculated checksum */ | 
|  | if (checksum_val) | 
|  | *checksum_val = checksum; | 
|  | } else { | 
|  | hw_dbg(hw, "EEPROM read failed\n"); | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum | 
|  | *  @hw: pointer to hardware structure | 
|  | **/ | 
|  | s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw) | 
|  | { | 
|  | s32 status; | 
|  | u16 checksum; | 
|  |  | 
|  | /* | 
|  | * Read the first word from the EEPROM. If this times out or fails, do | 
|  | * not continue or we could be in for a very long wait while every | 
|  | * EEPROM read fails | 
|  | */ | 
|  | status = hw->eeprom.ops.read(hw, 0, &checksum); | 
|  |  | 
|  | if (status == 0) { | 
|  | checksum = ixgbe_calc_eeprom_checksum(hw); | 
|  | status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, | 
|  | checksum); | 
|  | } else { | 
|  | hw_dbg(hw, "EEPROM read failed\n"); | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_validate_mac_addr - Validate MAC address | 
|  | *  @mac_addr: pointer to MAC address. | 
|  | * | 
|  | *  Tests a MAC address to ensure it is a valid Individual Address | 
|  | **/ | 
|  | s32 ixgbe_validate_mac_addr(u8 *mac_addr) | 
|  | { | 
|  | s32 status = 0; | 
|  |  | 
|  | /* Make sure it is not a multicast address */ | 
|  | if (IXGBE_IS_MULTICAST(mac_addr)) | 
|  | status = IXGBE_ERR_INVALID_MAC_ADDR; | 
|  | /* Not a broadcast address */ | 
|  | else if (IXGBE_IS_BROADCAST(mac_addr)) | 
|  | status = IXGBE_ERR_INVALID_MAC_ADDR; | 
|  | /* Reject the zero address */ | 
|  | else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 && | 
|  | mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) | 
|  | status = IXGBE_ERR_INVALID_MAC_ADDR; | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_set_rar_generic - Set Rx address register | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @index: Receive address register to write | 
|  | *  @addr: Address to put into receive address register | 
|  | *  @vmdq: VMDq "set" or "pool" index | 
|  | *  @enable_addr: set flag that address is active | 
|  | * | 
|  | *  Puts an ethernet address into a receive address register. | 
|  | **/ | 
|  | s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq, | 
|  | u32 enable_addr) | 
|  | { | 
|  | u32 rar_low, rar_high; | 
|  | u32 rar_entries = hw->mac.num_rar_entries; | 
|  |  | 
|  | /* setup VMDq pool selection before this RAR gets enabled */ | 
|  | hw->mac.ops.set_vmdq(hw, index, vmdq); | 
|  |  | 
|  | /* Make sure we are using a valid rar index range */ | 
|  | if (index < rar_entries) { | 
|  | /* | 
|  | * HW expects these in little endian so we reverse the byte | 
|  | * order from network order (big endian) to little endian | 
|  | */ | 
|  | rar_low = ((u32)addr[0] | | 
|  | ((u32)addr[1] << 8) | | 
|  | ((u32)addr[2] << 16) | | 
|  | ((u32)addr[3] << 24)); | 
|  | /* | 
|  | * Some parts put the VMDq setting in the extra RAH bits, | 
|  | * so save everything except the lower 16 bits that hold part | 
|  | * of the address and the address valid bit. | 
|  | */ | 
|  | rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); | 
|  | rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); | 
|  | rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8)); | 
|  |  | 
|  | if (enable_addr != 0) | 
|  | rar_high |= IXGBE_RAH_AV; | 
|  |  | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); | 
|  | } else { | 
|  | hw_dbg(hw, "RAR index %d is out of range.\n", index); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_clear_rar_generic - Remove Rx address register | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @index: Receive address register to write | 
|  | * | 
|  | *  Clears an ethernet address from a receive address register. | 
|  | **/ | 
|  | s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index) | 
|  | { | 
|  | u32 rar_high; | 
|  | u32 rar_entries = hw->mac.num_rar_entries; | 
|  |  | 
|  | /* Make sure we are using a valid rar index range */ | 
|  | if (index < rar_entries) { | 
|  | /* | 
|  | * Some parts put the VMDq setting in the extra RAH bits, | 
|  | * so save everything except the lower 16 bits that hold part | 
|  | * of the address and the address valid bit. | 
|  | */ | 
|  | rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); | 
|  | rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); | 
|  |  | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); | 
|  | } else { | 
|  | hw_dbg(hw, "RAR index %d is out of range.\n", index); | 
|  | } | 
|  |  | 
|  | /* clear VMDq pool/queue selection for this RAR */ | 
|  | hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_enable_rar - Enable Rx address register | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @index: index into the RAR table | 
|  | * | 
|  | *  Enables the select receive address register. | 
|  | **/ | 
|  | static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index) | 
|  | { | 
|  | u32 rar_high; | 
|  |  | 
|  | rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); | 
|  | rar_high |= IXGBE_RAH_AV; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_disable_rar - Disable Rx address register | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @index: index into the RAR table | 
|  | * | 
|  | *  Disables the select receive address register. | 
|  | **/ | 
|  | static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index) | 
|  | { | 
|  | u32 rar_high; | 
|  |  | 
|  | rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); | 
|  | rar_high &= (~IXGBE_RAH_AV); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_init_rx_addrs_generic - Initializes receive address filters. | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Places the MAC address in receive address register 0 and clears the rest | 
|  | *  of the receive address registers. Clears the multicast table. Assumes | 
|  | *  the receiver is in reset when the routine is called. | 
|  | **/ | 
|  | s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw) | 
|  | { | 
|  | u32 i; | 
|  | u32 rar_entries = hw->mac.num_rar_entries; | 
|  |  | 
|  | /* | 
|  | * If the current mac address is valid, assume it is a software override | 
|  | * to the permanent address. | 
|  | * Otherwise, use the permanent address from the eeprom. | 
|  | */ | 
|  | if (ixgbe_validate_mac_addr(hw->mac.addr) == | 
|  | IXGBE_ERR_INVALID_MAC_ADDR) { | 
|  | /* Get the MAC address from the RAR0 for later reference */ | 
|  | hw->mac.ops.get_mac_addr(hw, hw->mac.addr); | 
|  |  | 
|  | hw_dbg(hw, " Keeping Current RAR0 Addr =%.2X %.2X %.2X ", | 
|  | hw->mac.addr[0], hw->mac.addr[1], | 
|  | hw->mac.addr[2]); | 
|  | hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3], | 
|  | hw->mac.addr[4], hw->mac.addr[5]); | 
|  | } else { | 
|  | /* Setup the receive address. */ | 
|  | hw_dbg(hw, "Overriding MAC Address in RAR[0]\n"); | 
|  | hw_dbg(hw, " New MAC Addr =%.2X %.2X %.2X ", | 
|  | hw->mac.addr[0], hw->mac.addr[1], | 
|  | hw->mac.addr[2]); | 
|  | hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3], | 
|  | hw->mac.addr[4], hw->mac.addr[5]); | 
|  |  | 
|  | hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV); | 
|  | } | 
|  | hw->addr_ctrl.overflow_promisc = 0; | 
|  |  | 
|  | hw->addr_ctrl.rar_used_count = 1; | 
|  |  | 
|  | /* Zero out the other receive addresses. */ | 
|  | hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1); | 
|  | for (i = 1; i < rar_entries; i++) { | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0); | 
|  | } | 
|  |  | 
|  | /* Clear the MTA */ | 
|  | hw->addr_ctrl.mc_addr_in_rar_count = 0; | 
|  | hw->addr_ctrl.mta_in_use = 0; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); | 
|  |  | 
|  | hw_dbg(hw, " Clearing MTA\n"); | 
|  | for (i = 0; i < hw->mac.mcft_size; i++) | 
|  | IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0); | 
|  |  | 
|  | if (hw->mac.ops.init_uta_tables) | 
|  | hw->mac.ops.init_uta_tables(hw); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_add_uc_addr - Adds a secondary unicast address. | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @addr: new address | 
|  | * | 
|  | *  Adds it to unused receive address register or goes into promiscuous mode. | 
|  | **/ | 
|  | static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq) | 
|  | { | 
|  | u32 rar_entries = hw->mac.num_rar_entries; | 
|  | u32 rar; | 
|  |  | 
|  | hw_dbg(hw, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n", | 
|  | addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]); | 
|  |  | 
|  | /* | 
|  | * Place this address in the RAR if there is room, | 
|  | * else put the controller into promiscuous mode | 
|  | */ | 
|  | if (hw->addr_ctrl.rar_used_count < rar_entries) { | 
|  | rar = hw->addr_ctrl.rar_used_count - | 
|  | hw->addr_ctrl.mc_addr_in_rar_count; | 
|  | hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV); | 
|  | hw_dbg(hw, "Added a secondary address to RAR[%d]\n", rar); | 
|  | hw->addr_ctrl.rar_used_count++; | 
|  | } else { | 
|  | hw->addr_ctrl.overflow_promisc++; | 
|  | } | 
|  |  | 
|  | hw_dbg(hw, "ixgbe_add_uc_addr Complete\n"); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @addr_list: the list of new addresses | 
|  | *  @addr_count: number of addresses | 
|  | *  @next: iterator function to walk the address list | 
|  | * | 
|  | *  The given list replaces any existing list.  Clears the secondary addrs from | 
|  | *  receive address registers.  Uses unused receive address registers for the | 
|  | *  first secondary addresses, and falls back to promiscuous mode as needed. | 
|  | * | 
|  | *  Drivers using secondary unicast addresses must set user_set_promisc when | 
|  | *  manually putting the device into promiscuous mode. | 
|  | **/ | 
|  | s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, | 
|  | struct list_head *uc_list) | 
|  | { | 
|  | u32 i; | 
|  | u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc; | 
|  | u32 uc_addr_in_use; | 
|  | u32 fctrl; | 
|  | struct netdev_hw_addr *ha; | 
|  |  | 
|  | /* | 
|  | * Clear accounting of old secondary address list, | 
|  | * don't count RAR[0] | 
|  | */ | 
|  | uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1; | 
|  | hw->addr_ctrl.rar_used_count -= uc_addr_in_use; | 
|  | hw->addr_ctrl.overflow_promisc = 0; | 
|  |  | 
|  | /* Zero out the other receive addresses */ | 
|  | hw_dbg(hw, "Clearing RAR[1-%d]\n", uc_addr_in_use); | 
|  | for (i = 1; i <= uc_addr_in_use; i++) { | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0); | 
|  | } | 
|  |  | 
|  | /* Add the new addresses */ | 
|  | list_for_each_entry(ha, uc_list, list) { | 
|  | hw_dbg(hw, " Adding the secondary addresses:\n"); | 
|  | ixgbe_add_uc_addr(hw, ha->addr, 0); | 
|  | } | 
|  |  | 
|  | if (hw->addr_ctrl.overflow_promisc) { | 
|  | /* enable promisc if not already in overflow or set by user */ | 
|  | if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) { | 
|  | hw_dbg(hw, " Entering address overflow promisc mode\n"); | 
|  | fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL); | 
|  | fctrl |= IXGBE_FCTRL_UPE; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl); | 
|  | } | 
|  | } else { | 
|  | /* only disable if set by overflow, not by user */ | 
|  | if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) { | 
|  | hw_dbg(hw, " Leaving address overflow promisc mode\n"); | 
|  | fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL); | 
|  | fctrl &= ~IXGBE_FCTRL_UPE; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl); | 
|  | } | 
|  | } | 
|  |  | 
|  | hw_dbg(hw, "ixgbe_update_uc_addr_list_generic Complete\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_mta_vector - Determines bit-vector in multicast table to set | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @mc_addr: the multicast address | 
|  | * | 
|  | *  Extracts the 12 bits, from a multicast address, to determine which | 
|  | *  bit-vector to set in the multicast table. The hardware uses 12 bits, from | 
|  | *  incoming rx multicast addresses, to determine the bit-vector to check in | 
|  | *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set | 
|  | *  by the MO field of the MCSTCTRL. The MO field is set during initialization | 
|  | *  to mc_filter_type. | 
|  | **/ | 
|  | static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr) | 
|  | { | 
|  | u32 vector = 0; | 
|  |  | 
|  | switch (hw->mac.mc_filter_type) { | 
|  | case 0:   /* use bits [47:36] of the address */ | 
|  | vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); | 
|  | break; | 
|  | case 1:   /* use bits [46:35] of the address */ | 
|  | vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); | 
|  | break; | 
|  | case 2:   /* use bits [45:34] of the address */ | 
|  | vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); | 
|  | break; | 
|  | case 3:   /* use bits [43:32] of the address */ | 
|  | vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); | 
|  | break; | 
|  | default:  /* Invalid mc_filter_type */ | 
|  | hw_dbg(hw, "MC filter type param set incorrectly\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* vector can only be 12-bits or boundary will be exceeded */ | 
|  | vector &= 0xFFF; | 
|  | return vector; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_set_mta - Set bit-vector in multicast table | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @hash_value: Multicast address hash value | 
|  | * | 
|  | *  Sets the bit-vector in the multicast table. | 
|  | **/ | 
|  | static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr) | 
|  | { | 
|  | u32 vector; | 
|  | u32 vector_bit; | 
|  | u32 vector_reg; | 
|  | u32 mta_reg; | 
|  |  | 
|  | hw->addr_ctrl.mta_in_use++; | 
|  |  | 
|  | vector = ixgbe_mta_vector(hw, mc_addr); | 
|  | hw_dbg(hw, " bit-vector = 0x%03X\n", vector); | 
|  |  | 
|  | /* | 
|  | * The MTA is a register array of 128 32-bit registers. It is treated | 
|  | * like an array of 4096 bits.  We want to set bit | 
|  | * BitArray[vector_value]. So we figure out what register the bit is | 
|  | * in, read it, OR in the new bit, then write back the new value.  The | 
|  | * register is determined by the upper 7 bits of the vector value and | 
|  | * the bit within that register are determined by the lower 5 bits of | 
|  | * the value. | 
|  | */ | 
|  | vector_reg = (vector >> 5) & 0x7F; | 
|  | vector_bit = vector & 0x1F; | 
|  | mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg)); | 
|  | mta_reg |= (1 << vector_bit); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @mc_addr_list: the list of new multicast addresses | 
|  | *  @mc_addr_count: number of addresses | 
|  | *  @next: iterator function to walk the multicast address list | 
|  | * | 
|  | *  The given list replaces any existing list. Clears the MC addrs from receive | 
|  | *  address registers and the multicast table. Uses unused receive address | 
|  | *  registers for the first multicast addresses, and hashes the rest into the | 
|  | *  multicast table. | 
|  | **/ | 
|  | s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list, | 
|  | u32 mc_addr_count, ixgbe_mc_addr_itr next) | 
|  | { | 
|  | u32 i; | 
|  | u32 vmdq; | 
|  |  | 
|  | /* | 
|  | * Set the new number of MC addresses that we are being requested to | 
|  | * use. | 
|  | */ | 
|  | hw->addr_ctrl.num_mc_addrs = mc_addr_count; | 
|  | hw->addr_ctrl.mta_in_use = 0; | 
|  |  | 
|  | /* Clear the MTA */ | 
|  | hw_dbg(hw, " Clearing MTA\n"); | 
|  | for (i = 0; i < hw->mac.mcft_size; i++) | 
|  | IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0); | 
|  |  | 
|  | /* Add the new addresses */ | 
|  | for (i = 0; i < mc_addr_count; i++) { | 
|  | hw_dbg(hw, " Adding the multicast addresses:\n"); | 
|  | ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq)); | 
|  | } | 
|  |  | 
|  | /* Enable mta */ | 
|  | if (hw->addr_ctrl.mta_in_use > 0) | 
|  | IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, | 
|  | IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type); | 
|  |  | 
|  | hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_enable_mc_generic - Enable multicast address in RAR | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Enables multicast address in RAR and the use of the multicast hash table. | 
|  | **/ | 
|  | s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw) | 
|  | { | 
|  | u32 i; | 
|  | u32 rar_entries = hw->mac.num_rar_entries; | 
|  | struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; | 
|  |  | 
|  | if (a->mc_addr_in_rar_count > 0) | 
|  | for (i = (rar_entries - a->mc_addr_in_rar_count); | 
|  | i < rar_entries; i++) | 
|  | ixgbe_enable_rar(hw, i); | 
|  |  | 
|  | if (a->mta_in_use > 0) | 
|  | IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE | | 
|  | hw->mac.mc_filter_type); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_disable_mc_generic - Disable multicast address in RAR | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Disables multicast address in RAR and the use of the multicast hash table. | 
|  | **/ | 
|  | s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw) | 
|  | { | 
|  | u32 i; | 
|  | u32 rar_entries = hw->mac.num_rar_entries; | 
|  | struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; | 
|  |  | 
|  | if (a->mc_addr_in_rar_count > 0) | 
|  | for (i = (rar_entries - a->mc_addr_in_rar_count); | 
|  | i < rar_entries; i++) | 
|  | ixgbe_disable_rar(hw, i); | 
|  |  | 
|  | if (a->mta_in_use > 0) | 
|  | IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_fc_enable_generic - Enable flow control | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @packetbuf_num: packet buffer number (0-7) | 
|  | * | 
|  | *  Enable flow control according to the current settings. | 
|  | **/ | 
|  | s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u32 mflcn_reg, fccfg_reg; | 
|  | u32 reg; | 
|  | u32 rx_pba_size; | 
|  |  | 
|  | #ifdef CONFIG_DCB | 
|  | if (hw->fc.requested_mode == ixgbe_fc_pfc) | 
|  | goto out; | 
|  |  | 
|  | #endif /* CONFIG_DCB */ | 
|  | /* Negotiate the fc mode to use */ | 
|  | ret_val = ixgbe_fc_autoneg(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | /* Disable any previous flow control settings */ | 
|  | mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN); | 
|  | mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE); | 
|  |  | 
|  | fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG); | 
|  | fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY); | 
|  |  | 
|  | /* | 
|  | * The possible values of fc.current_mode are: | 
|  | * 0: Flow control is completely disabled | 
|  | * 1: Rx flow control is enabled (we can receive pause frames, | 
|  | *    but not send pause frames). | 
|  | * 2: Tx flow control is enabled (we can send pause frames but | 
|  | *    we do not support receiving pause frames). | 
|  | * 3: Both Rx and Tx flow control (symmetric) are enabled. | 
|  | * 4: Priority Flow Control is enabled. | 
|  | * other: Invalid. | 
|  | */ | 
|  | switch (hw->fc.current_mode) { | 
|  | case ixgbe_fc_none: | 
|  | /* | 
|  | * Flow control is disabled by software override or autoneg. | 
|  | * The code below will actually disable it in the HW. | 
|  | */ | 
|  | break; | 
|  | case ixgbe_fc_rx_pause: | 
|  | /* | 
|  | * Rx Flow control is enabled and Tx Flow control is | 
|  | * disabled by software override. Since there really | 
|  | * isn't a way to advertise that we are capable of RX | 
|  | * Pause ONLY, we will advertise that we support both | 
|  | * symmetric and asymmetric Rx PAUSE.  Later, we will | 
|  | * disable the adapter's ability to send PAUSE frames. | 
|  | */ | 
|  | mflcn_reg |= IXGBE_MFLCN_RFCE; | 
|  | break; | 
|  | case ixgbe_fc_tx_pause: | 
|  | /* | 
|  | * Tx Flow control is enabled, and Rx Flow control is | 
|  | * disabled by software override. | 
|  | */ | 
|  | fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; | 
|  | break; | 
|  | case ixgbe_fc_full: | 
|  | /* Flow control (both Rx and Tx) is enabled by SW override. */ | 
|  | mflcn_reg |= IXGBE_MFLCN_RFCE; | 
|  | fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; | 
|  | break; | 
|  | #ifdef CONFIG_DCB | 
|  | case ixgbe_fc_pfc: | 
|  | goto out; | 
|  | break; | 
|  | #endif /* CONFIG_DCB */ | 
|  | default: | 
|  | hw_dbg(hw, "Flow control param set incorrectly\n"); | 
|  | ret_val = -IXGBE_ERR_CONFIG; | 
|  | goto out; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Set 802.3x based flow control settings. */ | 
|  | mflcn_reg |= IXGBE_MFLCN_DPF; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg); | 
|  |  | 
|  | reg = IXGBE_READ_REG(hw, IXGBE_MTQC); | 
|  | /* Thresholds are different for link flow control when in DCB mode */ | 
|  | if (reg & IXGBE_MTQC_RT_ENA) { | 
|  | rx_pba_size = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num)); | 
|  |  | 
|  | /* Always disable XON for LFC when in DCB mode */ | 
|  | reg = (rx_pba_size >> 5) & 0xFFE0; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), reg); | 
|  |  | 
|  | reg = (rx_pba_size >> 2) & 0xFFE0; | 
|  | if (hw->fc.current_mode & ixgbe_fc_tx_pause) | 
|  | reg |= IXGBE_FCRTH_FCEN; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), reg); | 
|  | } else { | 
|  | /* | 
|  | * Set up and enable Rx high/low water mark thresholds, | 
|  | * enable XON. | 
|  | */ | 
|  | if (hw->fc.current_mode & ixgbe_fc_tx_pause) { | 
|  | if (hw->fc.send_xon) { | 
|  | IXGBE_WRITE_REG(hw, | 
|  | IXGBE_FCRTL_82599(packetbuf_num), | 
|  | (hw->fc.low_water | | 
|  | IXGBE_FCRTL_XONE)); | 
|  | } else { | 
|  | IXGBE_WRITE_REG(hw, | 
|  | IXGBE_FCRTL_82599(packetbuf_num), | 
|  | hw->fc.low_water); | 
|  | } | 
|  |  | 
|  | IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), | 
|  | (hw->fc.high_water | IXGBE_FCRTH_FCEN)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Configure pause time (2 TCs per register) */ | 
|  | reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2)); | 
|  | if ((packetbuf_num & 1) == 0) | 
|  | reg = (reg & 0xFFFF0000) | hw->fc.pause_time; | 
|  | else | 
|  | reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg); | 
|  |  | 
|  | IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1)); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_fc_autoneg - Configure flow control | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Compares our advertised flow control capabilities to those advertised by | 
|  | *  our link partner, and determines the proper flow control mode to use. | 
|  | **/ | 
|  | s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | ixgbe_link_speed speed; | 
|  | u32 pcs_anadv_reg, pcs_lpab_reg, linkstat; | 
|  | bool link_up; | 
|  |  | 
|  | /* | 
|  | * AN should have completed when the cable was plugged in. | 
|  | * Look for reasons to bail out.  Bail out if: | 
|  | * - FC autoneg is disabled, or if | 
|  | * - we don't have multispeed fiber, or if | 
|  | * - we're not running at 1G, or if | 
|  | * - link is not up, or if | 
|  | * - link is up but AN did not complete, or if | 
|  | * - link is up and AN completed but timed out | 
|  | * | 
|  | * Since we're being called from an LSC, link is already know to be up. | 
|  | * So use link_up_wait_to_complete=false. | 
|  | */ | 
|  | hw->mac.ops.check_link(hw, &speed, &link_up, false); | 
|  | linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA); | 
|  |  | 
|  | if (hw->fc.disable_fc_autoneg || | 
|  | !hw->phy.multispeed_fiber || | 
|  | (speed != IXGBE_LINK_SPEED_1GB_FULL) || | 
|  | !link_up || | 
|  | ((linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) || | 
|  | ((linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) { | 
|  | hw->fc.fc_was_autonegged = false; | 
|  | hw->fc.current_mode = hw->fc.requested_mode; | 
|  | hw_dbg(hw, "Autoneg FC was skipped.\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the AN advertisement and LP ability registers and resolve | 
|  | * local flow control settings accordingly | 
|  | */ | 
|  | pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); | 
|  | pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP); | 
|  | if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) && | 
|  | (pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE)) { | 
|  | /* | 
|  | * Now we need to check if the user selected Rx ONLY | 
|  | * of pause frames.  In this case, we had to advertise | 
|  | * FULL flow control because we could not advertise RX | 
|  | * ONLY. Hence, we must now check to see if we need to | 
|  | * turn OFF the TRANSMISSION of PAUSE frames. | 
|  | */ | 
|  | if (hw->fc.requested_mode == ixgbe_fc_full) { | 
|  | hw->fc.current_mode = ixgbe_fc_full; | 
|  | hw_dbg(hw, "Flow Control = FULL.\n"); | 
|  | } else { | 
|  | hw->fc.current_mode = ixgbe_fc_rx_pause; | 
|  | hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n"); | 
|  | } | 
|  | } else if (!(pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) && | 
|  | (pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) && | 
|  | (pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) && | 
|  | (pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) { | 
|  | hw->fc.current_mode = ixgbe_fc_tx_pause; | 
|  | hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n"); | 
|  | } else if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) && | 
|  | (pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) && | 
|  | !(pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) && | 
|  | (pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) { | 
|  | hw->fc.current_mode = ixgbe_fc_rx_pause; | 
|  | hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n"); | 
|  | } else { | 
|  | hw->fc.current_mode = ixgbe_fc_none; | 
|  | hw_dbg(hw, "Flow Control = NONE.\n"); | 
|  | } | 
|  |  | 
|  | /* Record that current_mode is the result of a successful autoneg */ | 
|  | hw->fc.fc_was_autonegged = true; | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_setup_fc - Set up flow control | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Called at init time to set up flow control. | 
|  | **/ | 
|  | s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u32 reg; | 
|  |  | 
|  | #ifdef CONFIG_DCB | 
|  | if (hw->fc.requested_mode == ixgbe_fc_pfc) { | 
|  | hw->fc.current_mode = hw->fc.requested_mode; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | #endif | 
|  | /* Validate the packetbuf configuration */ | 
|  | if (packetbuf_num < 0 || packetbuf_num > 7) { | 
|  | hw_dbg(hw, "Invalid packet buffer number [%d], expected range " | 
|  | "is 0-7\n", packetbuf_num); | 
|  | ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validate the water mark configuration.  Zero water marks are invalid | 
|  | * because it causes the controller to just blast out fc packets. | 
|  | */ | 
|  | if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) { | 
|  | hw_dbg(hw, "Invalid water mark configuration\n"); | 
|  | ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validate the requested mode.  Strict IEEE mode does not allow | 
|  | * ixgbe_fc_rx_pause because it will cause us to fail at UNH. | 
|  | */ | 
|  | if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) { | 
|  | hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict " | 
|  | "IEEE mode\n"); | 
|  | ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 10gig parts do not have a word in the EEPROM to determine the | 
|  | * default flow control setting, so we explicitly set it to full. | 
|  | */ | 
|  | if (hw->fc.requested_mode == ixgbe_fc_default) | 
|  | hw->fc.requested_mode = ixgbe_fc_full; | 
|  |  | 
|  | /* | 
|  | * Set up the 1G flow control advertisement registers so the HW will be | 
|  | * able to do fc autoneg once the cable is plugged in.  If we end up | 
|  | * using 10g instead, this is harmless. | 
|  | */ | 
|  | reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); | 
|  |  | 
|  | /* | 
|  | * The possible values of fc.requested_mode are: | 
|  | * 0: Flow control is completely disabled | 
|  | * 1: Rx flow control is enabled (we can receive pause frames, | 
|  | *    but not send pause frames). | 
|  | * 2: Tx flow control is enabled (we can send pause frames but | 
|  | *    we do not support receiving pause frames). | 
|  | * 3: Both Rx and Tx flow control (symmetric) are enabled. | 
|  | #ifdef CONFIG_DCB | 
|  | * 4: Priority Flow Control is enabled. | 
|  | #endif | 
|  | * other: Invalid. | 
|  | */ | 
|  | switch (hw->fc.requested_mode) { | 
|  | case ixgbe_fc_none: | 
|  | /* Flow control completely disabled by software override. */ | 
|  | reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE); | 
|  | break; | 
|  | case ixgbe_fc_rx_pause: | 
|  | /* | 
|  | * Rx Flow control is enabled and Tx Flow control is | 
|  | * disabled by software override. Since there really | 
|  | * isn't a way to advertise that we are capable of RX | 
|  | * Pause ONLY, we will advertise that we support both | 
|  | * symmetric and asymmetric Rx PAUSE.  Later, we will | 
|  | * disable the adapter's ability to send PAUSE frames. | 
|  | */ | 
|  | reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE); | 
|  | break; | 
|  | case ixgbe_fc_tx_pause: | 
|  | /* | 
|  | * Tx Flow control is enabled, and Rx Flow control is | 
|  | * disabled by software override. | 
|  | */ | 
|  | reg |= (IXGBE_PCS1GANA_ASM_PAUSE); | 
|  | reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE); | 
|  | break; | 
|  | case ixgbe_fc_full: | 
|  | /* Flow control (both Rx and Tx) is enabled by SW override. */ | 
|  | reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE); | 
|  | break; | 
|  | #ifdef CONFIG_DCB | 
|  | case ixgbe_fc_pfc: | 
|  | goto out; | 
|  | break; | 
|  | #endif /* CONFIG_DCB */ | 
|  | default: | 
|  | hw_dbg(hw, "Flow control param set incorrectly\n"); | 
|  | ret_val = -IXGBE_ERR_CONFIG; | 
|  | goto out; | 
|  | break; | 
|  | } | 
|  |  | 
|  | IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg); | 
|  | reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL); | 
|  |  | 
|  | /* Enable and restart autoneg to inform the link partner */ | 
|  | reg |= IXGBE_PCS1GLCTL_AN_ENABLE | IXGBE_PCS1GLCTL_AN_RESTART; | 
|  |  | 
|  | /* Disable AN timeout */ | 
|  | if (hw->fc.strict_ieee) | 
|  | reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN; | 
|  |  | 
|  | IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg); | 
|  | hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_disable_pcie_master - Disable PCI-express master access | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Disables PCI-Express master access and verifies there are no pending | 
|  | *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable | 
|  | *  bit hasn't caused the master requests to be disabled, else 0 | 
|  | *  is returned signifying master requests disabled. | 
|  | **/ | 
|  | s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw) | 
|  | { | 
|  | u32 i; | 
|  | u32 reg_val; | 
|  | u32 number_of_queues; | 
|  | s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING; | 
|  |  | 
|  | /* Disable the receive unit by stopping each queue */ | 
|  | number_of_queues = hw->mac.max_rx_queues; | 
|  | for (i = 0; i < number_of_queues; i++) { | 
|  | reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i)); | 
|  | if (reg_val & IXGBE_RXDCTL_ENABLE) { | 
|  | reg_val &= ~IXGBE_RXDCTL_ENABLE; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val); | 
|  | } | 
|  | } | 
|  |  | 
|  | reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL); | 
|  | reg_val |= IXGBE_CTRL_GIO_DIS; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val); | 
|  |  | 
|  | for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) { | 
|  | if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) { | 
|  | status = 0; | 
|  | break; | 
|  | } | 
|  | udelay(100); | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @mask: Mask to specify which semaphore to acquire | 
|  | * | 
|  | *  Acquires the SWFW semaphore thought the GSSR register for the specified | 
|  | *  function (CSR, PHY0, PHY1, EEPROM, Flash) | 
|  | **/ | 
|  | s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask) | 
|  | { | 
|  | u32 gssr; | 
|  | u32 swmask = mask; | 
|  | u32 fwmask = mask << 5; | 
|  | s32 timeout = 200; | 
|  |  | 
|  | while (timeout) { | 
|  | if (ixgbe_get_eeprom_semaphore(hw)) | 
|  | return -IXGBE_ERR_SWFW_SYNC; | 
|  |  | 
|  | gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); | 
|  | if (!(gssr & (fwmask | swmask))) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Firmware currently using resource (fwmask) or other software | 
|  | * thread currently using resource (swmask) | 
|  | */ | 
|  | ixgbe_release_eeprom_semaphore(hw); | 
|  | msleep(5); | 
|  | timeout--; | 
|  | } | 
|  |  | 
|  | if (!timeout) { | 
|  | hw_dbg(hw, "Driver can't access resource, GSSR timeout.\n"); | 
|  | return -IXGBE_ERR_SWFW_SYNC; | 
|  | } | 
|  |  | 
|  | gssr |= swmask; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); | 
|  |  | 
|  | ixgbe_release_eeprom_semaphore(hw); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_release_swfw_sync - Release SWFW semaphore | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @mask: Mask to specify which semaphore to release | 
|  | * | 
|  | *  Releases the SWFW semaphore thought the GSSR register for the specified | 
|  | *  function (CSR, PHY0, PHY1, EEPROM, Flash) | 
|  | **/ | 
|  | void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask) | 
|  | { | 
|  | u32 gssr; | 
|  | u32 swmask = mask; | 
|  |  | 
|  | ixgbe_get_eeprom_semaphore(hw); | 
|  |  | 
|  | gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); | 
|  | gssr &= ~swmask; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); | 
|  |  | 
|  | ixgbe_release_eeprom_semaphore(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @regval: register value to write to RXCTRL | 
|  | * | 
|  | *  Enables the Rx DMA unit | 
|  | **/ | 
|  | s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval) | 
|  | { | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_blink_led_start_generic - Blink LED based on index. | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @index: led number to blink | 
|  | **/ | 
|  | s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index) | 
|  | { | 
|  | ixgbe_link_speed speed = 0; | 
|  | bool link_up = 0; | 
|  | u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); | 
|  | u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); | 
|  |  | 
|  | /* | 
|  | * Link must be up to auto-blink the LEDs; | 
|  | * Force it if link is down. | 
|  | */ | 
|  | hw->mac.ops.check_link(hw, &speed, &link_up, false); | 
|  |  | 
|  | if (!link_up) { | 
|  | autoc_reg |= IXGBE_AUTOC_AN_RESTART; | 
|  | autoc_reg |= IXGBE_AUTOC_FLU; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg); | 
|  | msleep(10); | 
|  | } | 
|  |  | 
|  | led_reg &= ~IXGBE_LED_MODE_MASK(index); | 
|  | led_reg |= IXGBE_LED_BLINK(index); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index. | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @index: led number to stop blinking | 
|  | **/ | 
|  | s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index) | 
|  | { | 
|  | u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); | 
|  | u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); | 
|  |  | 
|  | autoc_reg &= ~IXGBE_AUTOC_FLU; | 
|  | autoc_reg |= IXGBE_AUTOC_AN_RESTART; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg); | 
|  |  | 
|  | led_reg &= ~IXGBE_LED_MODE_MASK(index); | 
|  | led_reg &= ~IXGBE_LED_BLINK(index); | 
|  | led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  |  | 
|  | return 0; | 
|  | } |