|  | /* | 
|  | * Copyright 1996 The Board of Trustees of The Leland Stanford | 
|  | * Junior University. All Rights Reserved. | 
|  | * | 
|  | * Permission to use, copy, modify, and distribute this | 
|  | * software and its documentation for any purpose and without | 
|  | * fee is hereby granted, provided that the above copyright | 
|  | * notice appear in all copies.  Stanford University | 
|  | * makes no representations about the suitability of this | 
|  | * software for any purpose.  It is provided "as is" without | 
|  | * express or implied warranty. | 
|  | * | 
|  | * strip.c	This module implements Starmode Radio IP (STRIP) | 
|  | *		for kernel-based devices like TTY.  It interfaces between a | 
|  | *		raw TTY, and the kernel's INET protocol layers (via DDI). | 
|  | * | 
|  | * Version:	@(#)strip.c	1.3	July 1997 | 
|  | * | 
|  | * Author:	Stuart Cheshire <cheshire@cs.stanford.edu> | 
|  | * | 
|  | * Fixes:	v0.9 12th Feb 1996 (SC) | 
|  | *		New byte stuffing (2+6 run-length encoding) | 
|  | *		New watchdog timer task | 
|  | *		New Protocol key (SIP0) | 
|  | * | 
|  | *		v0.9.1 3rd March 1996 (SC) | 
|  | *		Changed to dynamic device allocation -- no more compile | 
|  | *		time (or boot time) limit on the number of STRIP devices. | 
|  | * | 
|  | *		v0.9.2 13th March 1996 (SC) | 
|  | *		Uses arp cache lookups (but doesn't send arp packets yet) | 
|  | * | 
|  | *		v0.9.3 17th April 1996 (SC) | 
|  | *		Fixed bug where STR_ERROR flag was getting set unneccessarily | 
|  | *		(causing otherwise good packets to be unneccessarily dropped) | 
|  | * | 
|  | *		v0.9.4 27th April 1996 (SC) | 
|  | *		First attempt at using "&COMMAND" Starmode AT commands | 
|  | * | 
|  | *		v0.9.5 29th May 1996 (SC) | 
|  | *		First attempt at sending (unicast) ARP packets | 
|  | * | 
|  | *		v0.9.6 5th June 1996 (Elliot) | 
|  | *		Put "message level" tags in every "printk" statement | 
|  | * | 
|  | *		v0.9.7 13th June 1996 (laik) | 
|  | *		Added support for the /proc fs | 
|  | * | 
|  | *              v0.9.8 July 1996 (Mema) | 
|  | *              Added packet logging | 
|  | * | 
|  | *              v1.0 November 1996 (SC) | 
|  | *              Fixed (severe) memory leaks in the /proc fs code | 
|  | *              Fixed race conditions in the logging code | 
|  | * | 
|  | *              v1.1 January 1997 (SC) | 
|  | *              Deleted packet logging (use tcpdump instead) | 
|  | *              Added support for Metricom Firmware v204 features | 
|  | *              (like message checksums) | 
|  | * | 
|  | *              v1.2 January 1997 (SC) | 
|  | *              Put portables list back in | 
|  | * | 
|  | *              v1.3 July 1997 (SC) | 
|  | *              Made STRIP driver set the radio's baud rate automatically. | 
|  | *              It is no longer necessarily to manually set the radio's | 
|  | *              rate permanently to 115200 -- the driver handles setting | 
|  | *              the rate automatically. | 
|  | */ | 
|  |  | 
|  | #ifdef MODULE | 
|  | static const char StripVersion[] = "1.3A-STUART.CHESHIRE-MODULAR"; | 
|  | #else | 
|  | static const char StripVersion[] = "1.3A-STUART.CHESHIRE"; | 
|  | #endif | 
|  |  | 
|  | #define TICKLE_TIMERS 0 | 
|  | #define EXT_COUNTERS 1 | 
|  |  | 
|  |  | 
|  | /************************************************************************/ | 
|  | /* Header files								*/ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | # include <linux/ctype.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/inetdevice.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/if_arp.h> | 
|  | #include <linux/if_strip.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/serial.h> | 
|  | #include <linux/serialP.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <net/arp.h> | 
|  | #include <net/net_namespace.h> | 
|  |  | 
|  | #include <linux/ip.h> | 
|  | #include <linux/tcp.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/jiffies.h> | 
|  |  | 
|  | /************************************************************************/ | 
|  | /* Useful structures and definitions					*/ | 
|  |  | 
|  | /* | 
|  | * A MetricomKey identifies the protocol being carried inside a Metricom | 
|  | * Starmode packet. | 
|  | */ | 
|  |  | 
|  | typedef union { | 
|  | __u8 c[4]; | 
|  | __u32 l; | 
|  | } MetricomKey; | 
|  |  | 
|  | /* | 
|  | * An IP address can be viewed as four bytes in memory (which is what it is) or as | 
|  | * a single 32-bit long (which is convenient for assignment, equality testing etc.) | 
|  | */ | 
|  |  | 
|  | typedef union { | 
|  | __u8 b[4]; | 
|  | __u32 l; | 
|  | } IPaddr; | 
|  |  | 
|  | /* | 
|  | * A MetricomAddressString is used to hold a printable representation of | 
|  | * a Metricom address. | 
|  | */ | 
|  |  | 
|  | typedef struct { | 
|  | __u8 c[24]; | 
|  | } MetricomAddressString; | 
|  |  | 
|  | /* Encapsulation can expand packet of size x to 65/64x + 1 | 
|  | * Sent packet looks like "<CR>*<address>*<key><encaps payload><CR>" | 
|  | *                           1 1   1-18  1  4         ?         1 | 
|  | * eg.                     <CR>*0000-1234*SIP0<encaps payload><CR> | 
|  | * We allow 31 bytes for the stars, the key, the address and the <CR>s | 
|  | */ | 
|  | #define STRIP_ENCAP_SIZE(X) (32 + (X)*65L/64L) | 
|  |  | 
|  | /* | 
|  | * A STRIP_Header is never really sent over the radio, but making a dummy | 
|  | * header for internal use within the kernel that looks like an Ethernet | 
|  | * header makes certain other software happier. For example, tcpdump | 
|  | * already understands Ethernet headers. | 
|  | */ | 
|  |  | 
|  | typedef struct { | 
|  | MetricomAddress dst_addr;	/* Destination address, e.g. "0000-1234"   */ | 
|  | MetricomAddress src_addr;	/* Source address, e.g. "0000-5678"        */ | 
|  | unsigned short protocol;	/* The protocol type, using Ethernet codes */ | 
|  | } STRIP_Header; | 
|  |  | 
|  | typedef struct { | 
|  | char c[60]; | 
|  | } MetricomNode; | 
|  |  | 
|  | #define NODE_TABLE_SIZE 32 | 
|  | typedef struct { | 
|  | struct timeval timestamp; | 
|  | int num_nodes; | 
|  | MetricomNode node[NODE_TABLE_SIZE]; | 
|  | } MetricomNodeTable; | 
|  |  | 
|  | enum { FALSE = 0, TRUE = 1 }; | 
|  |  | 
|  | /* | 
|  | * Holds the radio's firmware version. | 
|  | */ | 
|  | typedef struct { | 
|  | char c[50]; | 
|  | } FirmwareVersion; | 
|  |  | 
|  | /* | 
|  | * Holds the radio's serial number. | 
|  | */ | 
|  | typedef struct { | 
|  | char c[18]; | 
|  | } SerialNumber; | 
|  |  | 
|  | /* | 
|  | * Holds the radio's battery voltage. | 
|  | */ | 
|  | typedef struct { | 
|  | char c[11]; | 
|  | } BatteryVoltage; | 
|  |  | 
|  | typedef struct { | 
|  | char c[8]; | 
|  | } char8; | 
|  |  | 
|  | enum { | 
|  | NoStructure = 0,	/* Really old firmware */ | 
|  | StructuredMessages = 1,	/* Parsable AT response msgs */ | 
|  | ChecksummedMessages = 2	/* Parsable AT response msgs with checksums */ | 
|  | }; | 
|  |  | 
|  | struct strip { | 
|  | int magic; | 
|  | /* | 
|  | * These are pointers to the malloc()ed frame buffers. | 
|  | */ | 
|  |  | 
|  | unsigned char *rx_buff;	/* buffer for received IP packet */ | 
|  | unsigned char *sx_buff;	/* buffer for received serial data */ | 
|  | int sx_count;		/* received serial data counter */ | 
|  | int sx_size;		/* Serial buffer size           */ | 
|  | unsigned char *tx_buff;	/* transmitter buffer           */ | 
|  | unsigned char *tx_head;	/* pointer to next byte to XMIT */ | 
|  | int tx_left;		/* bytes left in XMIT queue     */ | 
|  | int tx_size;		/* Serial buffer size           */ | 
|  |  | 
|  | /* | 
|  | * STRIP interface statistics. | 
|  | */ | 
|  |  | 
|  | unsigned long rx_packets;	/* inbound frames counter       */ | 
|  | unsigned long tx_packets;	/* outbound frames counter      */ | 
|  | unsigned long rx_errors;	/* Parity, etc. errors          */ | 
|  | unsigned long tx_errors;	/* Planned stuff                */ | 
|  | unsigned long rx_dropped;	/* No memory for skb            */ | 
|  | unsigned long tx_dropped;	/* When MTU change              */ | 
|  | unsigned long rx_over_errors;	/* Frame bigger than STRIP buf. */ | 
|  |  | 
|  | unsigned long pps_timer;	/* Timer to determine pps       */ | 
|  | unsigned long rx_pps_count;	/* Counter to determine pps     */ | 
|  | unsigned long tx_pps_count;	/* Counter to determine pps     */ | 
|  | unsigned long sx_pps_count;	/* Counter to determine pps     */ | 
|  | unsigned long rx_average_pps;	/* rx packets per second * 8    */ | 
|  | unsigned long tx_average_pps;	/* tx packets per second * 8    */ | 
|  | unsigned long sx_average_pps;	/* sent packets per second * 8  */ | 
|  |  | 
|  | #ifdef EXT_COUNTERS | 
|  | unsigned long rx_bytes;		/* total received bytes */ | 
|  | unsigned long tx_bytes;		/* total received bytes */ | 
|  | unsigned long rx_rbytes;	/* bytes thru radio i/f */ | 
|  | unsigned long tx_rbytes;	/* bytes thru radio i/f */ | 
|  | unsigned long rx_sbytes;	/* tot bytes thru serial i/f */ | 
|  | unsigned long tx_sbytes;	/* tot bytes thru serial i/f */ | 
|  | unsigned long rx_ebytes;	/* tot stat/err bytes */ | 
|  | unsigned long tx_ebytes;	/* tot stat/err bytes */ | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Internal variables. | 
|  | */ | 
|  |  | 
|  | struct list_head  list;		/* Linked list of devices */ | 
|  |  | 
|  | int discard;			/* Set if serial error          */ | 
|  | int working;			/* Is radio working correctly?  */ | 
|  | int firmware_level;		/* Message structuring level    */ | 
|  | int next_command;		/* Next periodic command        */ | 
|  | unsigned int user_baud;		/* The user-selected baud rate  */ | 
|  | int mtu;			/* Our mtu (to spot changes!)   */ | 
|  | long watchdog_doprobe;		/* Next time to test the radio  */ | 
|  | long watchdog_doreset;		/* Time to do next reset        */ | 
|  | long gratuitous_arp;		/* Time to send next ARP refresh */ | 
|  | long arp_interval;		/* Next ARP interval            */ | 
|  | struct timer_list idle_timer;	/* For periodic wakeup calls    */ | 
|  | MetricomAddress true_dev_addr;	/* True address of radio        */ | 
|  | int manual_dev_addr;		/* Hack: See note below         */ | 
|  |  | 
|  | FirmwareVersion firmware_version;	/* The radio's firmware version */ | 
|  | SerialNumber serial_number;	/* The radio's serial number    */ | 
|  | BatteryVoltage battery_voltage;	/* The radio's battery voltage  */ | 
|  |  | 
|  | /* | 
|  | * Other useful structures. | 
|  | */ | 
|  |  | 
|  | struct tty_struct *tty;		/* ptr to TTY structure         */ | 
|  | struct net_device *dev;		/* Our device structure         */ | 
|  |  | 
|  | /* | 
|  | * Neighbour radio records | 
|  | */ | 
|  |  | 
|  | MetricomNodeTable portables; | 
|  | MetricomNodeTable poletops; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Note: manual_dev_addr hack | 
|  | * | 
|  | * It is not possible to change the hardware address of a Metricom radio, | 
|  | * or to send packets with a user-specified hardware source address, thus | 
|  | * trying to manually set a hardware source address is a questionable | 
|  | * thing to do.  However, if the user *does* manually set the hardware | 
|  | * source address of a STRIP interface, then the kernel will believe it, | 
|  | * and use it in certain places. For example, the hardware address listed | 
|  | * by ifconfig will be the manual address, not the true one. | 
|  | * (Both addresses are listed in /proc/net/strip.) | 
|  | * Also, ARP packets will be sent out giving the user-specified address as | 
|  | * the source address, not the real address. This is dangerous, because | 
|  | * it means you won't receive any replies -- the ARP replies will go to | 
|  | * the specified address, which will be some other radio. The case where | 
|  | * this is useful is when that other radio is also connected to the same | 
|  | * machine. This allows you to connect a pair of radios to one machine, | 
|  | * and to use one exclusively for inbound traffic, and the other | 
|  | * exclusively for outbound traffic. Pretty neat, huh? | 
|  | * | 
|  | * Here's the full procedure to set this up: | 
|  | * | 
|  | * 1. "slattach" two interfaces, e.g. st0 for outgoing packets, | 
|  | *    and st1 for incoming packets | 
|  | * | 
|  | * 2. "ifconfig" st0 (outbound radio) to have the hardware address | 
|  | *    which is the real hardware address of st1 (inbound radio). | 
|  | *    Now when it sends out packets, it will masquerade as st1, and | 
|  | *    replies will be sent to that radio, which is exactly what we want. | 
|  | * | 
|  | * 3. Set the route table entry ("route add default ..." or | 
|  | *    "route add -net ...", as appropriate) to send packets via the st0 | 
|  | *    interface (outbound radio). Do not add any route which sends packets | 
|  | *    out via the st1 interface -- that radio is for inbound traffic only. | 
|  | * | 
|  | * 4. "ifconfig" st1 (inbound radio) to have hardware address zero. | 
|  | *    This tells the STRIP driver to "shut down" that interface and not | 
|  | *    send any packets through it. In particular, it stops sending the | 
|  | *    periodic gratuitous ARP packets that a STRIP interface normally sends. | 
|  | *    Also, when packets arrive on that interface, it will search the | 
|  | *    interface list to see if there is another interface who's manual | 
|  | *    hardware address matches its own real address (i.e. st0 in this | 
|  | *    example) and if so it will transfer ownership of the skbuff to | 
|  | *    that interface, so that it looks to the kernel as if the packet | 
|  | *    arrived on that interface. This is necessary because when the | 
|  | *    kernel sends an ARP packet on st0, it expects to get a reply on | 
|  | *    st0, and if it sees the reply come from st1 then it will ignore | 
|  | *    it (to be accurate, it puts the entry in the ARP table, but | 
|  | *    labelled in such a way that st0 can't use it). | 
|  | * | 
|  | * Thanks to Petros Maniatis for coming up with the idea of splitting | 
|  | * inbound and outbound traffic between two interfaces, which turned | 
|  | * out to be really easy to implement, even if it is a bit of a hack. | 
|  | * | 
|  | * Having set a manual address on an interface, you can restore it | 
|  | * to automatic operation (where the address is automatically kept | 
|  | * consistent with the real address of the radio) by setting a manual | 
|  | * address of all ones, e.g. "ifconfig st0 hw strip FFFFFFFFFFFF" | 
|  | * This 'turns off' manual override mode for the device address. | 
|  | * | 
|  | * Note: The IEEE 802 headers reported in tcpdump will show the *real* | 
|  | * radio addresses the packets were sent and received from, so that you | 
|  | * can see what is really going on with packets, and which interfaces | 
|  | * they are really going through. | 
|  | */ | 
|  |  | 
|  |  | 
|  | /************************************************************************/ | 
|  | /* Constants								*/ | 
|  |  | 
|  | /* | 
|  | * CommandString1 works on all radios | 
|  | * Other CommandStrings are only used with firmware that provides structured responses. | 
|  | * | 
|  | * ats319=1 Enables Info message for node additions and deletions | 
|  | * ats319=2 Enables Info message for a new best node | 
|  | * ats319=4 Enables checksums | 
|  | * ats319=8 Enables ACK messages | 
|  | */ | 
|  |  | 
|  | static const int MaxCommandStringLength = 32; | 
|  | static const int CompatibilityCommand = 1; | 
|  |  | 
|  | static const char CommandString0[] = "*&COMMAND*ATS319=7";	/* Turn on checksums & info messages */ | 
|  | static const char CommandString1[] = "*&COMMAND*ATS305?";	/* Query radio name */ | 
|  | static const char CommandString2[] = "*&COMMAND*ATS325?";	/* Query battery voltage */ | 
|  | static const char CommandString3[] = "*&COMMAND*ATS300?";	/* Query version information */ | 
|  | static const char CommandString4[] = "*&COMMAND*ATS311?";	/* Query poletop list */ | 
|  | static const char CommandString5[] = "*&COMMAND*AT~LA";		/* Query portables list */ | 
|  | typedef struct { | 
|  | const char *string; | 
|  | long length; | 
|  | } StringDescriptor; | 
|  |  | 
|  | static const StringDescriptor CommandString[] = { | 
|  | {CommandString0, sizeof(CommandString0) - 1}, | 
|  | {CommandString1, sizeof(CommandString1) - 1}, | 
|  | {CommandString2, sizeof(CommandString2) - 1}, | 
|  | {CommandString3, sizeof(CommandString3) - 1}, | 
|  | {CommandString4, sizeof(CommandString4) - 1}, | 
|  | {CommandString5, sizeof(CommandString5) - 1} | 
|  | }; | 
|  |  | 
|  | #define GOT_ALL_RADIO_INFO(S)      \ | 
|  | ((S)->firmware_version.c[0] && \ | 
|  | (S)->battery_voltage.c[0]  && \ | 
|  | memcmp(&(S)->true_dev_addr, zero_address.c, sizeof(zero_address))) | 
|  |  | 
|  | static const char hextable[16] = "0123456789ABCDEF"; | 
|  |  | 
|  | static const MetricomAddress zero_address; | 
|  | static const MetricomAddress broadcast_address = | 
|  | { {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF} }; | 
|  |  | 
|  | static const MetricomKey SIP0Key = { "SIP0" }; | 
|  | static const MetricomKey ARP0Key = { "ARP0" }; | 
|  | static const MetricomKey ATR_Key = { "ATR " }; | 
|  | static const MetricomKey ACK_Key = { "ACK_" }; | 
|  | static const MetricomKey INF_Key = { "INF_" }; | 
|  | static const MetricomKey ERR_Key = { "ERR_" }; | 
|  |  | 
|  | static const long MaxARPInterval = 60 * HZ;	/* One minute */ | 
|  |  | 
|  | /* | 
|  | * Maximum Starmode packet length is 1183 bytes. Allowing 4 bytes for | 
|  | * protocol key, 4 bytes for checksum, one byte for CR, and 65/64 expansion | 
|  | * for STRIP encoding, that translates to a maximum payload MTU of 1155. | 
|  | * Note: A standard NFS 1K data packet is a total of 0x480 (1152) bytes | 
|  | * long, including IP header, UDP header, and NFS header. Setting the STRIP | 
|  | * MTU to 1152 allows us to send default sized NFS packets without fragmentation. | 
|  | */ | 
|  | static const unsigned short MAX_SEND_MTU = 1152; | 
|  | static const unsigned short MAX_RECV_MTU = 1500;	/* Hoping for Ethernet sized packets in the future! */ | 
|  | static const unsigned short DEFAULT_STRIP_MTU = 1152; | 
|  | static const int STRIP_MAGIC = 0x5303; | 
|  | static const long LongTime = 0x7FFFFFFF; | 
|  |  | 
|  | /************************************************************************/ | 
|  | /* Global variables							*/ | 
|  |  | 
|  | static LIST_HEAD(strip_list); | 
|  | static DEFINE_SPINLOCK(strip_lock); | 
|  |  | 
|  | /************************************************************************/ | 
|  | /* Macros								*/ | 
|  |  | 
|  | /* Returns TRUE if text T begins with prefix P */ | 
|  | #define has_prefix(T,L,P) (((L) >= sizeof(P)-1) && !strncmp((T), (P), sizeof(P)-1)) | 
|  |  | 
|  | /* Returns TRUE if text T of length L is equal to string S */ | 
|  | #define text_equal(T,L,S) (((L) == sizeof(S)-1) && !strncmp((T), (S), sizeof(S)-1)) | 
|  |  | 
|  | #define READHEX(X) ((X)>='0' && (X)<='9' ? (X)-'0' :      \ | 
|  | (X)>='a' && (X)<='f' ? (X)-'a'+10 :   \ | 
|  | (X)>='A' && (X)<='F' ? (X)-'A'+10 : 0 ) | 
|  |  | 
|  | #define READHEX16(X) ((__u16)(READHEX(X))) | 
|  |  | 
|  | #define READDEC(X) ((X)>='0' && (X)<='9' ? (X)-'0' : 0) | 
|  |  | 
|  | #define ARRAY_END(X) (&((X)[ARRAY_SIZE(X)])) | 
|  |  | 
|  | #define JIFFIE_TO_SEC(X) ((X) / HZ) | 
|  |  | 
|  |  | 
|  | /************************************************************************/ | 
|  | /* Utility routines							*/ | 
|  |  | 
|  | static int arp_query(unsigned char *haddr, u32 paddr, | 
|  | struct net_device *dev) | 
|  | { | 
|  | struct neighbour *neighbor_entry; | 
|  | int ret = 0; | 
|  |  | 
|  | neighbor_entry = neigh_lookup(&arp_tbl, &paddr, dev); | 
|  |  | 
|  | if (neighbor_entry != NULL) { | 
|  | neighbor_entry->used = jiffies; | 
|  | if (neighbor_entry->nud_state & NUD_VALID) { | 
|  | memcpy(haddr, neighbor_entry->ha, dev->addr_len); | 
|  | ret = 1; | 
|  | } | 
|  | neigh_release(neighbor_entry); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void DumpData(char *msg, struct strip *strip_info, __u8 * ptr, | 
|  | __u8 * end) | 
|  | { | 
|  | static const int MAX_DumpData = 80; | 
|  | __u8 pkt_text[MAX_DumpData], *p = pkt_text; | 
|  |  | 
|  | *p++ = '\"'; | 
|  |  | 
|  | while (ptr < end && p < &pkt_text[MAX_DumpData - 4]) { | 
|  | if (*ptr == '\\') { | 
|  | *p++ = '\\'; | 
|  | *p++ = '\\'; | 
|  | } else { | 
|  | if (*ptr >= 32 && *ptr <= 126) { | 
|  | *p++ = *ptr; | 
|  | } else { | 
|  | sprintf(p, "\\%02X", *ptr); | 
|  | p += 3; | 
|  | } | 
|  | } | 
|  | ptr++; | 
|  | } | 
|  |  | 
|  | if (ptr == end) | 
|  | *p++ = '\"'; | 
|  | *p++ = 0; | 
|  |  | 
|  | printk(KERN_INFO "%s: %-13s%s\n", strip_info->dev->name, msg, pkt_text); | 
|  | } | 
|  |  | 
|  |  | 
|  | /************************************************************************/ | 
|  | /* Byte stuffing/unstuffing routines					*/ | 
|  |  | 
|  | /* Stuffing scheme: | 
|  | * 00    Unused (reserved character) | 
|  | * 01-3F Run of 2-64 different characters | 
|  | * 40-7F Run of 1-64 different characters plus a single zero at the end | 
|  | * 80-BF Run of 1-64 of the same character | 
|  | * C0-FF Run of 1-64 zeroes (ASCII 0) | 
|  | */ | 
|  |  | 
|  | typedef enum { | 
|  | Stuff_Diff = 0x00, | 
|  | Stuff_DiffZero = 0x40, | 
|  | Stuff_Same = 0x80, | 
|  | Stuff_Zero = 0xC0, | 
|  | Stuff_NoCode = 0xFF,	/* Special code, meaning no code selected */ | 
|  |  | 
|  | Stuff_CodeMask = 0xC0, | 
|  | Stuff_CountMask = 0x3F, | 
|  | Stuff_MaxCount = 0x3F, | 
|  | Stuff_Magic = 0x0D	/* The value we are eliminating */ | 
|  | } StuffingCode; | 
|  |  | 
|  | /* StuffData encodes the data starting at "src" for "length" bytes. | 
|  | * It writes it to the buffer pointed to by "dst" (which must be at least | 
|  | * as long as 1 + 65/64 of the input length). The output may be up to 1.6% | 
|  | * larger than the input for pathological input, but will usually be smaller. | 
|  | * StuffData returns the new value of the dst pointer as its result. | 
|  | * "code_ptr_ptr" points to a "__u8 *" which is used to hold encoding state | 
|  | * between calls, allowing an encoded packet to be incrementally built up | 
|  | * from small parts. On the first call, the "__u8 *" pointed to should be | 
|  | * initialized to NULL; between subsequent calls the calling routine should | 
|  | * leave the value alone and simply pass it back unchanged so that the | 
|  | * encoder can recover its current state. | 
|  | */ | 
|  |  | 
|  | #define StuffData_FinishBlock(X) \ | 
|  | (*code_ptr = (X) ^ Stuff_Magic, code = Stuff_NoCode) | 
|  |  | 
|  | static __u8 *StuffData(__u8 * src, __u32 length, __u8 * dst, | 
|  | __u8 ** code_ptr_ptr) | 
|  | { | 
|  | __u8 *end = src + length; | 
|  | __u8 *code_ptr = *code_ptr_ptr; | 
|  | __u8 code = Stuff_NoCode, count = 0; | 
|  |  | 
|  | if (!length) | 
|  | return (dst); | 
|  |  | 
|  | if (code_ptr) { | 
|  | /* | 
|  | * Recover state from last call, if applicable | 
|  | */ | 
|  | code = (*code_ptr ^ Stuff_Magic) & Stuff_CodeMask; | 
|  | count = (*code_ptr ^ Stuff_Magic) & Stuff_CountMask; | 
|  | } | 
|  |  | 
|  | while (src < end) { | 
|  | switch (code) { | 
|  | /* Stuff_NoCode: If no current code, select one */ | 
|  | case Stuff_NoCode: | 
|  | /* Record where we're going to put this code */ | 
|  | code_ptr = dst++; | 
|  | count = 0;	/* Reset the count (zero means one instance) */ | 
|  | /* Tentatively start a new block */ | 
|  | if (*src == 0) { | 
|  | code = Stuff_Zero; | 
|  | src++; | 
|  | } else { | 
|  | code = Stuff_Same; | 
|  | *dst++ = *src++ ^ Stuff_Magic; | 
|  | } | 
|  | /* Note: We optimistically assume run of same -- */ | 
|  | /* which will be fixed later in Stuff_Same */ | 
|  | /* if it turns out not to be true. */ | 
|  | break; | 
|  |  | 
|  | /* Stuff_Zero: We already have at least one zero encoded */ | 
|  | case Stuff_Zero: | 
|  | /* If another zero, count it, else finish this code block */ | 
|  | if (*src == 0) { | 
|  | count++; | 
|  | src++; | 
|  | } else { | 
|  | StuffData_FinishBlock(Stuff_Zero + count); | 
|  | } | 
|  | break; | 
|  |  | 
|  | /* Stuff_Same: We already have at least one byte encoded */ | 
|  | case Stuff_Same: | 
|  | /* If another one the same, count it */ | 
|  | if ((*src ^ Stuff_Magic) == code_ptr[1]) { | 
|  | count++; | 
|  | src++; | 
|  | break; | 
|  | } | 
|  | /* else, this byte does not match this block. */ | 
|  | /* If we already have two or more bytes encoded, finish this code block */ | 
|  | if (count) { | 
|  | StuffData_FinishBlock(Stuff_Same + count); | 
|  | break; | 
|  | } | 
|  | /* else, we only have one so far, so switch to Stuff_Diff code */ | 
|  | code = Stuff_Diff; | 
|  | /* and fall through to Stuff_Diff case below | 
|  | * Note cunning cleverness here: case Stuff_Diff compares | 
|  | * the current character with the previous two to see if it | 
|  | * has a run of three the same. Won't this be an error if | 
|  | * there aren't two previous characters stored to compare with? | 
|  | * No. Because we know the current character is *not* the same | 
|  | * as the previous one, the first test below will necessarily | 
|  | * fail and the send half of the "if" won't be executed. | 
|  | */ | 
|  |  | 
|  | /* Stuff_Diff: We have at least two *different* bytes encoded */ | 
|  | case Stuff_Diff: | 
|  | /* If this is a zero, must encode a Stuff_DiffZero, and begin a new block */ | 
|  | if (*src == 0) { | 
|  | StuffData_FinishBlock(Stuff_DiffZero + | 
|  | count); | 
|  | } | 
|  | /* else, if we have three in a row, it is worth starting a Stuff_Same block */ | 
|  | else if ((*src ^ Stuff_Magic) == dst[-1] | 
|  | && dst[-1] == dst[-2]) { | 
|  | /* Back off the last two characters we encoded */ | 
|  | code += count - 2; | 
|  | /* Note: "Stuff_Diff + 0" is an illegal code */ | 
|  | if (code == Stuff_Diff + 0) { | 
|  | code = Stuff_Same + 0; | 
|  | } | 
|  | StuffData_FinishBlock(code); | 
|  | code_ptr = dst - 2; | 
|  | /* dst[-1] already holds the correct value */ | 
|  | count = 2;	/* 2 means three bytes encoded */ | 
|  | code = Stuff_Same; | 
|  | } | 
|  | /* else, another different byte, so add it to the block */ | 
|  | else { | 
|  | *dst++ = *src ^ Stuff_Magic; | 
|  | count++; | 
|  | } | 
|  | src++;	/* Consume the byte */ | 
|  | break; | 
|  | } | 
|  | if (count == Stuff_MaxCount) { | 
|  | StuffData_FinishBlock(code + count); | 
|  | } | 
|  | } | 
|  | if (code == Stuff_NoCode) { | 
|  | *code_ptr_ptr = NULL; | 
|  | } else { | 
|  | *code_ptr_ptr = code_ptr; | 
|  | StuffData_FinishBlock(code + count); | 
|  | } | 
|  | return (dst); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * UnStuffData decodes the data at "src", up to (but not including) "end". | 
|  | * It writes the decoded data into the buffer pointed to by "dst", up to a | 
|  | * maximum of "dst_length", and returns the new value of "src" so that a | 
|  | * follow-on call can read more data, continuing from where the first left off. | 
|  | * | 
|  | * There are three types of results: | 
|  | * 1. The source data runs out before extracting "dst_length" bytes: | 
|  | *    UnStuffData returns NULL to indicate failure. | 
|  | * 2. The source data produces exactly "dst_length" bytes: | 
|  | *    UnStuffData returns new_src = end to indicate that all bytes were consumed. | 
|  | * 3. "dst_length" bytes are extracted, with more remaining. | 
|  | *    UnStuffData returns new_src < end to indicate that there are more bytes | 
|  | *    to be read. | 
|  | * | 
|  | * Note: The decoding may be destructive, in that it may alter the source | 
|  | * data in the process of decoding it (this is necessary to allow a follow-on | 
|  | * call to resume correctly). | 
|  | */ | 
|  |  | 
|  | static __u8 *UnStuffData(__u8 * src, __u8 * end, __u8 * dst, | 
|  | __u32 dst_length) | 
|  | { | 
|  | __u8 *dst_end = dst + dst_length; | 
|  | /* Sanity check */ | 
|  | if (!src || !end || !dst || !dst_length) | 
|  | return (NULL); | 
|  | while (src < end && dst < dst_end) { | 
|  | int count = (*src ^ Stuff_Magic) & Stuff_CountMask; | 
|  | switch ((*src ^ Stuff_Magic) & Stuff_CodeMask) { | 
|  | case Stuff_Diff: | 
|  | if (src + 1 + count >= end) | 
|  | return (NULL); | 
|  | do { | 
|  | *dst++ = *++src ^ Stuff_Magic; | 
|  | } | 
|  | while (--count >= 0 && dst < dst_end); | 
|  | if (count < 0) | 
|  | src += 1; | 
|  | else { | 
|  | if (count == 0) | 
|  | *src = Stuff_Same ^ Stuff_Magic; | 
|  | else | 
|  | *src = | 
|  | (Stuff_Diff + | 
|  | count) ^ Stuff_Magic; | 
|  | } | 
|  | break; | 
|  | case Stuff_DiffZero: | 
|  | if (src + 1 + count >= end) | 
|  | return (NULL); | 
|  | do { | 
|  | *dst++ = *++src ^ Stuff_Magic; | 
|  | } | 
|  | while (--count >= 0 && dst < dst_end); | 
|  | if (count < 0) | 
|  | *src = Stuff_Zero ^ Stuff_Magic; | 
|  | else | 
|  | *src = | 
|  | (Stuff_DiffZero + count) ^ Stuff_Magic; | 
|  | break; | 
|  | case Stuff_Same: | 
|  | if (src + 1 >= end) | 
|  | return (NULL); | 
|  | do { | 
|  | *dst++ = src[1] ^ Stuff_Magic; | 
|  | } | 
|  | while (--count >= 0 && dst < dst_end); | 
|  | if (count < 0) | 
|  | src += 2; | 
|  | else | 
|  | *src = (Stuff_Same + count) ^ Stuff_Magic; | 
|  | break; | 
|  | case Stuff_Zero: | 
|  | do { | 
|  | *dst++ = 0; | 
|  | } | 
|  | while (--count >= 0 && dst < dst_end); | 
|  | if (count < 0) | 
|  | src += 1; | 
|  | else | 
|  | *src = (Stuff_Zero + count) ^ Stuff_Magic; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (dst < dst_end) | 
|  | return (NULL); | 
|  | else | 
|  | return (src); | 
|  | } | 
|  |  | 
|  |  | 
|  | /************************************************************************/ | 
|  | /* General routines for STRIP						*/ | 
|  |  | 
|  | /* | 
|  | * set_baud sets the baud rate to the rate defined by baudcode | 
|  | */ | 
|  | static void set_baud(struct tty_struct *tty, speed_t baudrate) | 
|  | { | 
|  | struct ktermios old_termios; | 
|  |  | 
|  | mutex_lock(&tty->termios_mutex); | 
|  | old_termios =*(tty->termios); | 
|  | tty_encode_baud_rate(tty, baudrate, baudrate); | 
|  | tty->ops->set_termios(tty, &old_termios); | 
|  | mutex_unlock(&tty->termios_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert a string to a Metricom Address. | 
|  | */ | 
|  |  | 
|  | #define IS_RADIO_ADDRESS(p) (                                                 \ | 
|  | isdigit((p)[0]) && isdigit((p)[1]) && isdigit((p)[2]) && isdigit((p)[3]) && \ | 
|  | (p)[4] == '-' &&                                                            \ | 
|  | isdigit((p)[5]) && isdigit((p)[6]) && isdigit((p)[7]) && isdigit((p)[8])    ) | 
|  |  | 
|  | static int string_to_radio_address(MetricomAddress * addr, __u8 * p) | 
|  | { | 
|  | if (!IS_RADIO_ADDRESS(p)) | 
|  | return (1); | 
|  | addr->c[0] = 0; | 
|  | addr->c[1] = 0; | 
|  | addr->c[2] = READHEX(p[0]) << 4 | READHEX(p[1]); | 
|  | addr->c[3] = READHEX(p[2]) << 4 | READHEX(p[3]); | 
|  | addr->c[4] = READHEX(p[5]) << 4 | READHEX(p[6]); | 
|  | addr->c[5] = READHEX(p[7]) << 4 | READHEX(p[8]); | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert a Metricom Address to a string. | 
|  | */ | 
|  |  | 
|  | static __u8 *radio_address_to_string(const MetricomAddress * addr, | 
|  | MetricomAddressString * p) | 
|  | { | 
|  | sprintf(p->c, "%02X%02X-%02X%02X", addr->c[2], addr->c[3], | 
|  | addr->c[4], addr->c[5]); | 
|  | return (p->c); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: Must make sure sx_size is big enough to receive a stuffed | 
|  | * MAX_RECV_MTU packet. Additionally, we also want to ensure that it's | 
|  | * big enough to receive a large radio neighbour list (currently 4K). | 
|  | */ | 
|  |  | 
|  | static int allocate_buffers(struct strip *strip_info, int mtu) | 
|  | { | 
|  | struct net_device *dev = strip_info->dev; | 
|  | int sx_size = max_t(int, STRIP_ENCAP_SIZE(MAX_RECV_MTU), 4096); | 
|  | int tx_size = STRIP_ENCAP_SIZE(mtu) + MaxCommandStringLength; | 
|  | __u8 *r = kmalloc(MAX_RECV_MTU, GFP_ATOMIC); | 
|  | __u8 *s = kmalloc(sx_size, GFP_ATOMIC); | 
|  | __u8 *t = kmalloc(tx_size, GFP_ATOMIC); | 
|  | if (r && s && t) { | 
|  | strip_info->rx_buff = r; | 
|  | strip_info->sx_buff = s; | 
|  | strip_info->tx_buff = t; | 
|  | strip_info->sx_size = sx_size; | 
|  | strip_info->tx_size = tx_size; | 
|  | strip_info->mtu = dev->mtu = mtu; | 
|  | return (1); | 
|  | } | 
|  | kfree(r); | 
|  | kfree(s); | 
|  | kfree(t); | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * MTU has been changed by the IP layer. | 
|  | * We could be in | 
|  | * an upcall from the tty driver, or in an ip packet queue. | 
|  | */ | 
|  | static int strip_change_mtu(struct net_device *dev, int new_mtu) | 
|  | { | 
|  | struct strip *strip_info = netdev_priv(dev); | 
|  | int old_mtu = strip_info->mtu; | 
|  | unsigned char *orbuff = strip_info->rx_buff; | 
|  | unsigned char *osbuff = strip_info->sx_buff; | 
|  | unsigned char *otbuff = strip_info->tx_buff; | 
|  |  | 
|  | if (new_mtu > MAX_SEND_MTU) { | 
|  | printk(KERN_ERR | 
|  | "%s: MTU exceeds maximum allowable (%d), MTU change cancelled.\n", | 
|  | strip_info->dev->name, MAX_SEND_MTU); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | spin_lock_bh(&strip_lock); | 
|  | if (!allocate_buffers(strip_info, new_mtu)) { | 
|  | printk(KERN_ERR "%s: unable to grow strip buffers, MTU change cancelled.\n", | 
|  | strip_info->dev->name); | 
|  | spin_unlock_bh(&strip_lock); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (strip_info->sx_count) { | 
|  | if (strip_info->sx_count <= strip_info->sx_size) | 
|  | memcpy(strip_info->sx_buff, osbuff, | 
|  | strip_info->sx_count); | 
|  | else { | 
|  | strip_info->discard = strip_info->sx_count; | 
|  | strip_info->rx_over_errors++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (strip_info->tx_left) { | 
|  | if (strip_info->tx_left <= strip_info->tx_size) | 
|  | memcpy(strip_info->tx_buff, strip_info->tx_head, | 
|  | strip_info->tx_left); | 
|  | else { | 
|  | strip_info->tx_left = 0; | 
|  | strip_info->tx_dropped++; | 
|  | } | 
|  | } | 
|  | strip_info->tx_head = strip_info->tx_buff; | 
|  | spin_unlock_bh(&strip_lock); | 
|  |  | 
|  | printk(KERN_NOTICE "%s: strip MTU changed fom %d to %d.\n", | 
|  | strip_info->dev->name, old_mtu, strip_info->mtu); | 
|  |  | 
|  | kfree(orbuff); | 
|  | kfree(osbuff); | 
|  | kfree(otbuff); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void strip_unlock(struct strip *strip_info) | 
|  | { | 
|  | /* | 
|  | * Set the timer to go off in one second. | 
|  | */ | 
|  | strip_info->idle_timer.expires = jiffies + 1 * HZ; | 
|  | add_timer(&strip_info->idle_timer); | 
|  | netif_wake_queue(strip_info->dev); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* | 
|  | * If the time is in the near future, time_delta prints the number of | 
|  | * seconds to go into the buffer and returns the address of the buffer. | 
|  | * If the time is not in the near future, it returns the address of the | 
|  | * string "Not scheduled" The buffer must be long enough to contain the | 
|  | * ascii representation of the number plus 9 charactes for the " seconds" | 
|  | * and the null character. | 
|  | */ | 
|  | #ifdef CONFIG_PROC_FS | 
|  | static char *time_delta(char buffer[], long time) | 
|  | { | 
|  | time -= jiffies; | 
|  | if (time > LongTime / 2) | 
|  | return ("Not scheduled"); | 
|  | if (time < 0) | 
|  | time = 0;	/* Don't print negative times */ | 
|  | sprintf(buffer, "%ld seconds", time / HZ); | 
|  | return (buffer); | 
|  | } | 
|  |  | 
|  | /* get Nth element of the linked list */ | 
|  | static struct strip *strip_get_idx(loff_t pos) | 
|  | { | 
|  | struct strip *str; | 
|  | int i = 0; | 
|  |  | 
|  | list_for_each_entry_rcu(str, &strip_list, list) { | 
|  | if (pos == i) | 
|  | return str; | 
|  | ++i; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void *strip_seq_start(struct seq_file *seq, loff_t *pos) | 
|  | __acquires(RCU) | 
|  | { | 
|  | rcu_read_lock(); | 
|  | return *pos ? strip_get_idx(*pos - 1) : SEQ_START_TOKEN; | 
|  | } | 
|  |  | 
|  | static void *strip_seq_next(struct seq_file *seq, void *v, loff_t *pos) | 
|  | { | 
|  | struct list_head *l; | 
|  | struct strip *s; | 
|  |  | 
|  | ++*pos; | 
|  | if (v == SEQ_START_TOKEN) | 
|  | return strip_get_idx(1); | 
|  |  | 
|  | s = v; | 
|  | l = &s->list; | 
|  | list_for_each_continue_rcu(l, &strip_list) { | 
|  | return list_entry(l, struct strip, list); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void strip_seq_stop(struct seq_file *seq, void *v) | 
|  | __releases(RCU) | 
|  | { | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void strip_seq_neighbours(struct seq_file *seq, | 
|  | const MetricomNodeTable * table, | 
|  | const char *title) | 
|  | { | 
|  | /* We wrap this in a do/while loop, so if the table changes */ | 
|  | /* while we're reading it, we just go around and try again. */ | 
|  | struct timeval t; | 
|  |  | 
|  | do { | 
|  | int i; | 
|  | t = table->timestamp; | 
|  | if (table->num_nodes) | 
|  | seq_printf(seq, "\n %s\n", title); | 
|  | for (i = 0; i < table->num_nodes; i++) { | 
|  | MetricomNode node; | 
|  |  | 
|  | spin_lock_bh(&strip_lock); | 
|  | node = table->node[i]; | 
|  | spin_unlock_bh(&strip_lock); | 
|  | seq_printf(seq, "  %s\n", node.c); | 
|  | } | 
|  | } while (table->timestamp.tv_sec != t.tv_sec | 
|  | || table->timestamp.tv_usec != t.tv_usec); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function prints radio status information via the seq_file | 
|  | * interface.  The interface takes care of buffer size and over | 
|  | * run issues. | 
|  | * | 
|  | * The buffer in seq_file is PAGESIZE (4K) | 
|  | * so this routine should never print more or it will get truncated. | 
|  | * With the maximum of 32 portables and 32 poletops | 
|  | * reported, the routine outputs 3107 bytes into the buffer. | 
|  | */ | 
|  | static void strip_seq_status_info(struct seq_file *seq, | 
|  | const struct strip *strip_info) | 
|  | { | 
|  | char temp[32]; | 
|  | MetricomAddressString addr_string; | 
|  |  | 
|  | /* First, we must copy all of our data to a safe place, */ | 
|  | /* in case a serial interrupt comes in and changes it.  */ | 
|  | int tx_left = strip_info->tx_left; | 
|  | unsigned long rx_average_pps = strip_info->rx_average_pps; | 
|  | unsigned long tx_average_pps = strip_info->tx_average_pps; | 
|  | unsigned long sx_average_pps = strip_info->sx_average_pps; | 
|  | int working = strip_info->working; | 
|  | int firmware_level = strip_info->firmware_level; | 
|  | long watchdog_doprobe = strip_info->watchdog_doprobe; | 
|  | long watchdog_doreset = strip_info->watchdog_doreset; | 
|  | long gratuitous_arp = strip_info->gratuitous_arp; | 
|  | long arp_interval = strip_info->arp_interval; | 
|  | FirmwareVersion firmware_version = strip_info->firmware_version; | 
|  | SerialNumber serial_number = strip_info->serial_number; | 
|  | BatteryVoltage battery_voltage = strip_info->battery_voltage; | 
|  | char *if_name = strip_info->dev->name; | 
|  | MetricomAddress true_dev_addr = strip_info->true_dev_addr; | 
|  | MetricomAddress dev_dev_addr = | 
|  | *(MetricomAddress *) strip_info->dev->dev_addr; | 
|  | int manual_dev_addr = strip_info->manual_dev_addr; | 
|  | #ifdef EXT_COUNTERS | 
|  | unsigned long rx_bytes = strip_info->rx_bytes; | 
|  | unsigned long tx_bytes = strip_info->tx_bytes; | 
|  | unsigned long rx_rbytes = strip_info->rx_rbytes; | 
|  | unsigned long tx_rbytes = strip_info->tx_rbytes; | 
|  | unsigned long rx_sbytes = strip_info->rx_sbytes; | 
|  | unsigned long tx_sbytes = strip_info->tx_sbytes; | 
|  | unsigned long rx_ebytes = strip_info->rx_ebytes; | 
|  | unsigned long tx_ebytes = strip_info->tx_ebytes; | 
|  | #endif | 
|  |  | 
|  | seq_printf(seq, "\nInterface name\t\t%s\n", if_name); | 
|  | seq_printf(seq, " Radio working:\t\t%s\n", working ? "Yes" : "No"); | 
|  | radio_address_to_string(&true_dev_addr, &addr_string); | 
|  | seq_printf(seq, " Radio address:\t\t%s\n", addr_string.c); | 
|  | if (manual_dev_addr) { | 
|  | radio_address_to_string(&dev_dev_addr, &addr_string); | 
|  | seq_printf(seq, " Device address:\t%s\n", addr_string.c); | 
|  | } | 
|  | seq_printf(seq, " Firmware version:\t%s", !working ? "Unknown" : | 
|  | !firmware_level ? "Should be upgraded" : | 
|  | firmware_version.c); | 
|  | if (firmware_level >= ChecksummedMessages) | 
|  | seq_printf(seq, " (Checksums Enabled)"); | 
|  | seq_printf(seq, "\n"); | 
|  | seq_printf(seq, " Serial number:\t\t%s\n", serial_number.c); | 
|  | seq_printf(seq, " Battery voltage:\t%s\n", battery_voltage.c); | 
|  | seq_printf(seq, " Transmit queue (bytes):%d\n", tx_left); | 
|  | seq_printf(seq, " Receive packet rate:   %ld packets per second\n", | 
|  | rx_average_pps / 8); | 
|  | seq_printf(seq, " Transmit packet rate:  %ld packets per second\n", | 
|  | tx_average_pps / 8); | 
|  | seq_printf(seq, " Sent packet rate:      %ld packets per second\n", | 
|  | sx_average_pps / 8); | 
|  | seq_printf(seq, " Next watchdog probe:\t%s\n", | 
|  | time_delta(temp, watchdog_doprobe)); | 
|  | seq_printf(seq, " Next watchdog reset:\t%s\n", | 
|  | time_delta(temp, watchdog_doreset)); | 
|  | seq_printf(seq, " Next gratuitous ARP:\t"); | 
|  |  | 
|  | if (!memcmp | 
|  | (strip_info->dev->dev_addr, zero_address.c, | 
|  | sizeof(zero_address))) | 
|  | seq_printf(seq, "Disabled\n"); | 
|  | else { | 
|  | seq_printf(seq, "%s\n", time_delta(temp, gratuitous_arp)); | 
|  | seq_printf(seq, " Next ARP interval:\t%ld seconds\n", | 
|  | JIFFIE_TO_SEC(arp_interval)); | 
|  | } | 
|  |  | 
|  | if (working) { | 
|  | #ifdef EXT_COUNTERS | 
|  | seq_printf(seq, "\n"); | 
|  | seq_printf(seq, | 
|  | " Total bytes:         \trx:\t%lu\ttx:\t%lu\n", | 
|  | rx_bytes, tx_bytes); | 
|  | seq_printf(seq, | 
|  | "  thru radio:         \trx:\t%lu\ttx:\t%lu\n", | 
|  | rx_rbytes, tx_rbytes); | 
|  | seq_printf(seq, | 
|  | "  thru serial port:   \trx:\t%lu\ttx:\t%lu\n", | 
|  | rx_sbytes, tx_sbytes); | 
|  | seq_printf(seq, | 
|  | " Total stat/err bytes:\trx:\t%lu\ttx:\t%lu\n", | 
|  | rx_ebytes, tx_ebytes); | 
|  | #endif | 
|  | strip_seq_neighbours(seq, &strip_info->poletops, | 
|  | "Poletops:"); | 
|  | strip_seq_neighbours(seq, &strip_info->portables, | 
|  | "Portables:"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is exports status information from the STRIP driver through | 
|  | * the /proc file system. | 
|  | */ | 
|  | static int strip_seq_show(struct seq_file *seq, void *v) | 
|  | { | 
|  | if (v == SEQ_START_TOKEN) | 
|  | seq_printf(seq, "strip_version: %s\n", StripVersion); | 
|  | else | 
|  | strip_seq_status_info(seq, (const struct strip *)v); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static const struct seq_operations strip_seq_ops = { | 
|  | .start = strip_seq_start, | 
|  | .next  = strip_seq_next, | 
|  | .stop  = strip_seq_stop, | 
|  | .show  = strip_seq_show, | 
|  | }; | 
|  |  | 
|  | static int strip_seq_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return seq_open(file, &strip_seq_ops); | 
|  | } | 
|  |  | 
|  | static const struct file_operations strip_seq_fops = { | 
|  | .owner	 = THIS_MODULE, | 
|  | .open    = strip_seq_open, | 
|  | .read    = seq_read, | 
|  | .llseek  = seq_lseek, | 
|  | .release = seq_release, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  |  | 
|  |  | 
|  | /************************************************************************/ | 
|  | /* Sending routines							*/ | 
|  |  | 
|  | static void ResetRadio(struct strip *strip_info) | 
|  | { | 
|  | struct tty_struct *tty = strip_info->tty; | 
|  | static const char init[] = "ate0q1dt**starmode\r**"; | 
|  | StringDescriptor s = { init, sizeof(init) - 1 }; | 
|  |  | 
|  | /* | 
|  | * If the radio isn't working anymore, | 
|  | * we should clear the old status information. | 
|  | */ | 
|  | if (strip_info->working) { | 
|  | printk(KERN_INFO "%s: No response: Resetting radio.\n", | 
|  | strip_info->dev->name); | 
|  | strip_info->firmware_version.c[0] = '\0'; | 
|  | strip_info->serial_number.c[0] = '\0'; | 
|  | strip_info->battery_voltage.c[0] = '\0'; | 
|  | strip_info->portables.num_nodes = 0; | 
|  | do_gettimeofday(&strip_info->portables.timestamp); | 
|  | strip_info->poletops.num_nodes = 0; | 
|  | do_gettimeofday(&strip_info->poletops.timestamp); | 
|  | } | 
|  |  | 
|  | strip_info->pps_timer = jiffies; | 
|  | strip_info->rx_pps_count = 0; | 
|  | strip_info->tx_pps_count = 0; | 
|  | strip_info->sx_pps_count = 0; | 
|  | strip_info->rx_average_pps = 0; | 
|  | strip_info->tx_average_pps = 0; | 
|  | strip_info->sx_average_pps = 0; | 
|  |  | 
|  | /* Mark radio address as unknown */ | 
|  | *(MetricomAddress *) & strip_info->true_dev_addr = zero_address; | 
|  | if (!strip_info->manual_dev_addr) | 
|  | *(MetricomAddress *) strip_info->dev->dev_addr = | 
|  | zero_address; | 
|  | strip_info->working = FALSE; | 
|  | strip_info->firmware_level = NoStructure; | 
|  | strip_info->next_command = CompatibilityCommand; | 
|  | strip_info->watchdog_doprobe = jiffies + 10 * HZ; | 
|  | strip_info->watchdog_doreset = jiffies + 1 * HZ; | 
|  |  | 
|  | /* If the user has selected a baud rate above 38.4 see what magic we have to do */ | 
|  | if (strip_info->user_baud > 38400) { | 
|  | /* | 
|  | * Subtle stuff: Pay attention :-) | 
|  | * If the serial port is currently at the user's selected (>38.4) rate, | 
|  | * then we temporarily switch to 19.2 and issue the ATS304 command | 
|  | * to tell the radio to switch to the user's selected rate. | 
|  | * If the serial port is not currently at that rate, that means we just | 
|  | * issued the ATS304 command last time through, so this time we restore | 
|  | * the user's selected rate and issue the normal starmode reset string. | 
|  | */ | 
|  | if (strip_info->user_baud == tty_get_baud_rate(tty)) { | 
|  | static const char b0[] = "ate0q1s304=57600\r"; | 
|  | static const char b1[] = "ate0q1s304=115200\r"; | 
|  | static const StringDescriptor baudstring[2] = | 
|  | { {b0, sizeof(b0) - 1} | 
|  | , {b1, sizeof(b1) - 1} | 
|  | }; | 
|  | set_baud(tty, 19200); | 
|  | if (strip_info->user_baud == 57600) | 
|  | s = baudstring[0]; | 
|  | else if (strip_info->user_baud == 115200) | 
|  | s = baudstring[1]; | 
|  | else | 
|  | s = baudstring[1];	/* For now */ | 
|  | } else | 
|  | set_baud(tty, strip_info->user_baud); | 
|  | } | 
|  |  | 
|  | tty->ops->write(tty, s.string, s.length); | 
|  | #ifdef EXT_COUNTERS | 
|  | strip_info->tx_ebytes += s.length; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called by the driver when there's room for more data.  If we have | 
|  | * more packets to send, we send them here. | 
|  | */ | 
|  |  | 
|  | static void strip_write_some_more(struct tty_struct *tty) | 
|  | { | 
|  | struct strip *strip_info = tty->disc_data; | 
|  |  | 
|  | /* First make sure we're connected. */ | 
|  | if (!strip_info || strip_info->magic != STRIP_MAGIC || | 
|  | !netif_running(strip_info->dev)) | 
|  | return; | 
|  |  | 
|  | if (strip_info->tx_left > 0) { | 
|  | int num_written = | 
|  | tty->ops->write(tty, strip_info->tx_head, | 
|  | strip_info->tx_left); | 
|  | strip_info->tx_left -= num_written; | 
|  | strip_info->tx_head += num_written; | 
|  | #ifdef EXT_COUNTERS | 
|  | strip_info->tx_sbytes += num_written; | 
|  | #endif | 
|  | } else {		/* Else start transmission of another packet */ | 
|  |  | 
|  | clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); | 
|  | strip_unlock(strip_info); | 
|  | } | 
|  | } | 
|  |  | 
|  | static __u8 *add_checksum(__u8 * buffer, __u8 * end) | 
|  | { | 
|  | __u16 sum = 0; | 
|  | __u8 *p = buffer; | 
|  | while (p < end) | 
|  | sum += *p++; | 
|  | end[3] = hextable[sum & 0xF]; | 
|  | sum >>= 4; | 
|  | end[2] = hextable[sum & 0xF]; | 
|  | sum >>= 4; | 
|  | end[1] = hextable[sum & 0xF]; | 
|  | sum >>= 4; | 
|  | end[0] = hextable[sum & 0xF]; | 
|  | return (end + 4); | 
|  | } | 
|  |  | 
|  | static unsigned char *strip_make_packet(unsigned char *buffer, | 
|  | struct strip *strip_info, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | __u8 *ptr = buffer; | 
|  | __u8 *stuffstate = NULL; | 
|  | STRIP_Header *header = (STRIP_Header *) skb->data; | 
|  | MetricomAddress haddr = header->dst_addr; | 
|  | int len = skb->len - sizeof(STRIP_Header); | 
|  | MetricomKey key; | 
|  |  | 
|  | /*HexDump("strip_make_packet", strip_info, skb->data, skb->data + skb->len); */ | 
|  |  | 
|  | if (header->protocol == htons(ETH_P_IP)) | 
|  | key = SIP0Key; | 
|  | else if (header->protocol == htons(ETH_P_ARP)) | 
|  | key = ARP0Key; | 
|  | else { | 
|  | printk(KERN_ERR | 
|  | "%s: strip_make_packet: Unknown packet type 0x%04X\n", | 
|  | strip_info->dev->name, ntohs(header->protocol)); | 
|  | return (NULL); | 
|  | } | 
|  |  | 
|  | if (len > strip_info->mtu) { | 
|  | printk(KERN_ERR | 
|  | "%s: Dropping oversized transmit packet: %d bytes\n", | 
|  | strip_info->dev->name, len); | 
|  | return (NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we're sending to ourselves, discard the packet. | 
|  | * (Metricom radios choke if they try to send a packet to their own address.) | 
|  | */ | 
|  | if (!memcmp(haddr.c, strip_info->true_dev_addr.c, sizeof(haddr))) { | 
|  | printk(KERN_ERR "%s: Dropping packet addressed to self\n", | 
|  | strip_info->dev->name); | 
|  | return (NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this is a broadcast packet, send it to our designated Metricom | 
|  | * 'broadcast hub' radio (First byte of address being 0xFF means broadcast) | 
|  | */ | 
|  | if (haddr.c[0] == 0xFF) { | 
|  | __be32 brd = 0; | 
|  | struct in_device *in_dev; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | in_dev = __in_dev_get_rcu(strip_info->dev); | 
|  | if (in_dev == NULL) { | 
|  | rcu_read_unlock(); | 
|  | return NULL; | 
|  | } | 
|  | if (in_dev->ifa_list) | 
|  | brd = in_dev->ifa_list->ifa_broadcast; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* arp_query returns 1 if it succeeds in looking up the address, 0 if it fails */ | 
|  | if (!arp_query(haddr.c, brd, strip_info->dev)) { | 
|  | printk(KERN_ERR | 
|  | "%s: Unable to send packet (no broadcast hub configured)\n", | 
|  | strip_info->dev->name); | 
|  | return (NULL); | 
|  | } | 
|  | /* | 
|  | * If we are the broadcast hub, don't bother sending to ourselves. | 
|  | * (Metricom radios choke if they try to send a packet to their own address.) | 
|  | */ | 
|  | if (!memcmp | 
|  | (haddr.c, strip_info->true_dev_addr.c, sizeof(haddr))) | 
|  | return (NULL); | 
|  | } | 
|  |  | 
|  | *ptr++ = 0x0D; | 
|  | *ptr++ = '*'; | 
|  | *ptr++ = hextable[haddr.c[2] >> 4]; | 
|  | *ptr++ = hextable[haddr.c[2] & 0xF]; | 
|  | *ptr++ = hextable[haddr.c[3] >> 4]; | 
|  | *ptr++ = hextable[haddr.c[3] & 0xF]; | 
|  | *ptr++ = '-'; | 
|  | *ptr++ = hextable[haddr.c[4] >> 4]; | 
|  | *ptr++ = hextable[haddr.c[4] & 0xF]; | 
|  | *ptr++ = hextable[haddr.c[5] >> 4]; | 
|  | *ptr++ = hextable[haddr.c[5] & 0xF]; | 
|  | *ptr++ = '*'; | 
|  | *ptr++ = key.c[0]; | 
|  | *ptr++ = key.c[1]; | 
|  | *ptr++ = key.c[2]; | 
|  | *ptr++ = key.c[3]; | 
|  |  | 
|  | ptr = | 
|  | StuffData(skb->data + sizeof(STRIP_Header), len, ptr, | 
|  | &stuffstate); | 
|  |  | 
|  | if (strip_info->firmware_level >= ChecksummedMessages) | 
|  | ptr = add_checksum(buffer + 1, ptr); | 
|  |  | 
|  | *ptr++ = 0x0D; | 
|  | return (ptr); | 
|  | } | 
|  |  | 
|  | static void strip_send(struct strip *strip_info, struct sk_buff *skb) | 
|  | { | 
|  | MetricomAddress haddr; | 
|  | unsigned char *ptr = strip_info->tx_buff; | 
|  | int doreset = (long) jiffies - strip_info->watchdog_doreset >= 0; | 
|  | int doprobe = (long) jiffies - strip_info->watchdog_doprobe >= 0 | 
|  | && !doreset; | 
|  | __be32 addr, brd; | 
|  |  | 
|  | /* | 
|  | * 1. If we have a packet, encapsulate it and put it in the buffer | 
|  | */ | 
|  | if (skb) { | 
|  | char *newptr = strip_make_packet(ptr, strip_info, skb); | 
|  | strip_info->tx_pps_count++; | 
|  | if (!newptr) | 
|  | strip_info->tx_dropped++; | 
|  | else { | 
|  | ptr = newptr; | 
|  | strip_info->sx_pps_count++; | 
|  | strip_info->tx_packets++;	/* Count another successful packet */ | 
|  | #ifdef EXT_COUNTERS | 
|  | strip_info->tx_bytes += skb->len; | 
|  | strip_info->tx_rbytes += ptr - strip_info->tx_buff; | 
|  | #endif | 
|  | /*DumpData("Sending:", strip_info, strip_info->tx_buff, ptr); */ | 
|  | /*HexDump("Sending", strip_info, strip_info->tx_buff, ptr); */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 2. If it is time for another tickle, tack it on, after the packet | 
|  | */ | 
|  | if (doprobe) { | 
|  | StringDescriptor ts = CommandString[strip_info->next_command]; | 
|  | #if TICKLE_TIMERS | 
|  | { | 
|  | struct timeval tv; | 
|  | do_gettimeofday(&tv); | 
|  | printk(KERN_INFO "**** Sending tickle string %d      at %02d.%06d\n", | 
|  | strip_info->next_command, tv.tv_sec % 100, | 
|  | tv.tv_usec); | 
|  | } | 
|  | #endif | 
|  | if (ptr == strip_info->tx_buff) | 
|  | *ptr++ = 0x0D; | 
|  |  | 
|  | *ptr++ = '*';	/* First send "**" to provoke an error message */ | 
|  | *ptr++ = '*'; | 
|  |  | 
|  | /* Then add the command */ | 
|  | memcpy(ptr, ts.string, ts.length); | 
|  |  | 
|  | /* Add a checksum ? */ | 
|  | if (strip_info->firmware_level < ChecksummedMessages) | 
|  | ptr += ts.length; | 
|  | else | 
|  | ptr = add_checksum(ptr, ptr + ts.length); | 
|  |  | 
|  | *ptr++ = 0x0D;	/* Terminate the command with a <CR> */ | 
|  |  | 
|  | /* Cycle to next periodic command? */ | 
|  | if (strip_info->firmware_level >= StructuredMessages) | 
|  | if (++strip_info->next_command >= | 
|  | ARRAY_SIZE(CommandString)) | 
|  | strip_info->next_command = 0; | 
|  | #ifdef EXT_COUNTERS | 
|  | strip_info->tx_ebytes += ts.length; | 
|  | #endif | 
|  | strip_info->watchdog_doprobe = jiffies + 10 * HZ; | 
|  | strip_info->watchdog_doreset = jiffies + 1 * HZ; | 
|  | /*printk(KERN_INFO "%s: Routine radio test.\n", strip_info->dev->name); */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 3. Set up the strip_info ready to send the data (if any). | 
|  | */ | 
|  | strip_info->tx_head = strip_info->tx_buff; | 
|  | strip_info->tx_left = ptr - strip_info->tx_buff; | 
|  | set_bit(TTY_DO_WRITE_WAKEUP, &strip_info->tty->flags); | 
|  | /* | 
|  | * 4. Debugging check to make sure we're not overflowing the buffer. | 
|  | */ | 
|  | if (strip_info->tx_size - strip_info->tx_left < 20) | 
|  | printk(KERN_ERR "%s: Sending%5d bytes;%5d bytes free.\n", | 
|  | strip_info->dev->name, strip_info->tx_left, | 
|  | strip_info->tx_size - strip_info->tx_left); | 
|  |  | 
|  | /* | 
|  | * 5. If watchdog has expired, reset the radio. Note: if there's data waiting in | 
|  | * the buffer, strip_write_some_more will send it after the reset has finished | 
|  | */ | 
|  | if (doreset) { | 
|  | ResetRadio(strip_info); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (1) { | 
|  | struct in_device *in_dev; | 
|  |  | 
|  | brd = addr = 0; | 
|  | rcu_read_lock(); | 
|  | in_dev = __in_dev_get_rcu(strip_info->dev); | 
|  | if (in_dev) { | 
|  | if (in_dev->ifa_list) { | 
|  | brd = in_dev->ifa_list->ifa_broadcast; | 
|  | addr = in_dev->ifa_list->ifa_local; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * 6. If it is time for a periodic ARP, queue one up to be sent. | 
|  | * We only do this if: | 
|  | *  1. The radio is working | 
|  | *  2. It's time to send another periodic ARP | 
|  | *  3. We really know what our address is (and it is not manually set to zero) | 
|  | *  4. We have a designated broadcast address configured | 
|  | * If we queue up an ARP packet when we don't have a designated broadcast | 
|  | * address configured, then the packet will just have to be discarded in | 
|  | * strip_make_packet. This is not fatal, but it causes misleading information | 
|  | * to be displayed in tcpdump. tcpdump will report that periodic APRs are | 
|  | * being sent, when in fact they are not, because they are all being dropped | 
|  | * in the strip_make_packet routine. | 
|  | */ | 
|  | if (strip_info->working | 
|  | && (long) jiffies - strip_info->gratuitous_arp >= 0 | 
|  | && memcmp(strip_info->dev->dev_addr, zero_address.c, | 
|  | sizeof(zero_address)) | 
|  | && arp_query(haddr.c, brd, strip_info->dev)) { | 
|  | /*printk(KERN_INFO "%s: Sending gratuitous ARP with interval %ld\n", | 
|  | strip_info->dev->name, strip_info->arp_interval / HZ); */ | 
|  | strip_info->gratuitous_arp = | 
|  | jiffies + strip_info->arp_interval; | 
|  | strip_info->arp_interval *= 2; | 
|  | if (strip_info->arp_interval > MaxARPInterval) | 
|  | strip_info->arp_interval = MaxARPInterval; | 
|  | if (addr) | 
|  | arp_send(ARPOP_REPLY, ETH_P_ARP, addr,	/* Target address of ARP packet is our address */ | 
|  | strip_info->dev,	/* Device to send packet on */ | 
|  | addr,	/* Source IP address this ARP packet comes from */ | 
|  | NULL,	/* Destination HW address is NULL (broadcast it) */ | 
|  | strip_info->dev->dev_addr,	/* Source HW address is our HW address */ | 
|  | strip_info->dev->dev_addr);	/* Target HW address is our HW address (redundant) */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 7. All ready. Start the transmission | 
|  | */ | 
|  | strip_write_some_more(strip_info->tty); | 
|  | } | 
|  |  | 
|  | /* Encapsulate a datagram and kick it into a TTY queue. */ | 
|  | static int strip_xmit(struct sk_buff *skb, struct net_device *dev) | 
|  | { | 
|  | struct strip *strip_info = netdev_priv(dev); | 
|  |  | 
|  | if (!netif_running(dev)) { | 
|  | printk(KERN_ERR "%s: xmit call when iface is down\n", | 
|  | dev->name); | 
|  | return NETDEV_TX_BUSY; | 
|  | } | 
|  |  | 
|  | netif_stop_queue(dev); | 
|  |  | 
|  | del_timer(&strip_info->idle_timer); | 
|  |  | 
|  |  | 
|  | if (time_after(jiffies, strip_info->pps_timer + HZ)) { | 
|  | unsigned long t = jiffies - strip_info->pps_timer; | 
|  | unsigned long rx_pps_count = (strip_info->rx_pps_count * HZ * 8 + t / 2) / t; | 
|  | unsigned long tx_pps_count = (strip_info->tx_pps_count * HZ * 8 + t / 2) / t; | 
|  | unsigned long sx_pps_count = (strip_info->sx_pps_count * HZ * 8 + t / 2) / t; | 
|  |  | 
|  | strip_info->pps_timer = jiffies; | 
|  | strip_info->rx_pps_count = 0; | 
|  | strip_info->tx_pps_count = 0; | 
|  | strip_info->sx_pps_count = 0; | 
|  |  | 
|  | strip_info->rx_average_pps = (strip_info->rx_average_pps + rx_pps_count + 1) / 2; | 
|  | strip_info->tx_average_pps = (strip_info->tx_average_pps + tx_pps_count + 1) / 2; | 
|  | strip_info->sx_average_pps = (strip_info->sx_average_pps + sx_pps_count + 1) / 2; | 
|  |  | 
|  | if (rx_pps_count / 8 >= 10) | 
|  | printk(KERN_INFO "%s: WARNING: Receiving %ld packets per second.\n", | 
|  | strip_info->dev->name, rx_pps_count / 8); | 
|  | if (tx_pps_count / 8 >= 10) | 
|  | printk(KERN_INFO "%s: WARNING: Tx        %ld packets per second.\n", | 
|  | strip_info->dev->name, tx_pps_count / 8); | 
|  | if (sx_pps_count / 8 >= 10) | 
|  | printk(KERN_INFO "%s: WARNING: Sending   %ld packets per second.\n", | 
|  | strip_info->dev->name, sx_pps_count / 8); | 
|  | } | 
|  |  | 
|  | spin_lock_bh(&strip_lock); | 
|  |  | 
|  | strip_send(strip_info, skb); | 
|  |  | 
|  | spin_unlock_bh(&strip_lock); | 
|  |  | 
|  | if (skb) | 
|  | dev_kfree_skb(skb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IdleTask periodically calls strip_xmit, so even when we have no IP packets | 
|  | * to send for an extended period of time, the watchdog processing still gets | 
|  | * done to ensure that the radio stays in Starmode | 
|  | */ | 
|  |  | 
|  | static void strip_IdleTask(unsigned long parameter) | 
|  | { | 
|  | strip_xmit(NULL, (struct net_device *) parameter); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create the MAC header for an arbitrary protocol layer | 
|  | * | 
|  | * saddr!=NULL        means use this specific address (n/a for Metricom) | 
|  | * saddr==NULL        means use default device source address | 
|  | * daddr!=NULL        means use this destination address | 
|  | * daddr==NULL        means leave destination address alone | 
|  | *                 (e.g. unresolved arp -- kernel will call | 
|  | *                 rebuild_header later to fill in the address) | 
|  | */ | 
|  |  | 
|  | static int strip_header(struct sk_buff *skb, struct net_device *dev, | 
|  | unsigned short type, const void *daddr, | 
|  | const void *saddr, unsigned len) | 
|  | { | 
|  | struct strip *strip_info = netdev_priv(dev); | 
|  | STRIP_Header *header = (STRIP_Header *) skb_push(skb, sizeof(STRIP_Header)); | 
|  |  | 
|  | /*printk(KERN_INFO "%s: strip_header 0x%04X %s\n", dev->name, type, | 
|  | type == ETH_P_IP ? "IP" : type == ETH_P_ARP ? "ARP" : ""); */ | 
|  |  | 
|  | header->src_addr = strip_info->true_dev_addr; | 
|  | header->protocol = htons(type); | 
|  |  | 
|  | /*HexDump("strip_header", netdev_priv(dev), skb->data, skb->data + skb->len); */ | 
|  |  | 
|  | if (!daddr) | 
|  | return (-dev->hard_header_len); | 
|  |  | 
|  | header->dst_addr = *(MetricomAddress *) daddr; | 
|  | return (dev->hard_header_len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Rebuild the MAC header. This is called after an ARP | 
|  | * (or in future other address resolution) has completed on this | 
|  | * sk_buff. We now let ARP fill in the other fields. | 
|  | * I think this should return zero if packet is ready to send, | 
|  | * or non-zero if it needs more time to do an address lookup | 
|  | */ | 
|  |  | 
|  | static int strip_rebuild_header(struct sk_buff *skb) | 
|  | { | 
|  | #ifdef CONFIG_INET | 
|  | STRIP_Header *header = (STRIP_Header *) skb->data; | 
|  |  | 
|  | /* Arp find returns zero if if knows the address, */ | 
|  | /* or if it doesn't know the address it sends an ARP packet and returns non-zero */ | 
|  | return arp_find(header->dst_addr.c, skb) ? 1 : 0; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | /************************************************************************/ | 
|  | /* Receiving routines							*/ | 
|  |  | 
|  | /* | 
|  | * This function parses the response to the ATS300? command, | 
|  | * extracting the radio version and serial number. | 
|  | */ | 
|  | static void get_radio_version(struct strip *strip_info, __u8 * ptr, __u8 * end) | 
|  | { | 
|  | __u8 *p, *value_begin, *value_end; | 
|  | int len; | 
|  |  | 
|  | /* Determine the beginning of the second line of the payload */ | 
|  | p = ptr; | 
|  | while (p < end && *p != 10) | 
|  | p++; | 
|  | if (p >= end) | 
|  | return; | 
|  | p++; | 
|  | value_begin = p; | 
|  |  | 
|  | /* Determine the end of line */ | 
|  | while (p < end && *p != 10) | 
|  | p++; | 
|  | if (p >= end) | 
|  | return; | 
|  | value_end = p; | 
|  | p++; | 
|  |  | 
|  | len = value_end - value_begin; | 
|  | len = min_t(int, len, sizeof(FirmwareVersion) - 1); | 
|  | if (strip_info->firmware_version.c[0] == 0) | 
|  | printk(KERN_INFO "%s: Radio Firmware: %.*s\n", | 
|  | strip_info->dev->name, len, value_begin); | 
|  | sprintf(strip_info->firmware_version.c, "%.*s", len, value_begin); | 
|  |  | 
|  | /* Look for the first colon */ | 
|  | while (p < end && *p != ':') | 
|  | p++; | 
|  | if (p >= end) | 
|  | return; | 
|  | /* Skip over the space */ | 
|  | p += 2; | 
|  | len = sizeof(SerialNumber) - 1; | 
|  | if (p + len <= end) { | 
|  | sprintf(strip_info->serial_number.c, "%.*s", len, p); | 
|  | } else { | 
|  | printk(KERN_DEBUG | 
|  | "STRIP: radio serial number shorter (%zd) than expected (%d)\n", | 
|  | end - p, len); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function parses the response to the ATS325? command, | 
|  | * extracting the radio battery voltage. | 
|  | */ | 
|  | static void get_radio_voltage(struct strip *strip_info, __u8 * ptr, __u8 * end) | 
|  | { | 
|  | int len; | 
|  |  | 
|  | len = sizeof(BatteryVoltage) - 1; | 
|  | if (ptr + len <= end) { | 
|  | sprintf(strip_info->battery_voltage.c, "%.*s", len, ptr); | 
|  | } else { | 
|  | printk(KERN_DEBUG | 
|  | "STRIP: radio voltage string shorter (%zd) than expected (%d)\n", | 
|  | end - ptr, len); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function parses the responses to the AT~LA and ATS311 commands, | 
|  | * which list the radio's neighbours. | 
|  | */ | 
|  | static void get_radio_neighbours(MetricomNodeTable * table, __u8 * ptr, __u8 * end) | 
|  | { | 
|  | table->num_nodes = 0; | 
|  | while (ptr < end && table->num_nodes < NODE_TABLE_SIZE) { | 
|  | MetricomNode *node = &table->node[table->num_nodes++]; | 
|  | char *dst = node->c, *limit = dst + sizeof(*node) - 1; | 
|  | while (ptr < end && *ptr <= 32) | 
|  | ptr++; | 
|  | while (ptr < end && dst < limit && *ptr != 10) | 
|  | *dst++ = *ptr++; | 
|  | *dst++ = 0; | 
|  | while (ptr < end && ptr[-1] != 10) | 
|  | ptr++; | 
|  | } | 
|  | do_gettimeofday(&table->timestamp); | 
|  | } | 
|  |  | 
|  | static int get_radio_address(struct strip *strip_info, __u8 * p) | 
|  | { | 
|  | MetricomAddress addr; | 
|  |  | 
|  | if (string_to_radio_address(&addr, p)) | 
|  | return (1); | 
|  |  | 
|  | /* See if our radio address has changed */ | 
|  | if (memcmp(strip_info->true_dev_addr.c, addr.c, sizeof(addr))) { | 
|  | MetricomAddressString addr_string; | 
|  | radio_address_to_string(&addr, &addr_string); | 
|  | printk(KERN_INFO "%s: Radio address = %s\n", | 
|  | strip_info->dev->name, addr_string.c); | 
|  | strip_info->true_dev_addr = addr; | 
|  | if (!strip_info->manual_dev_addr) | 
|  | *(MetricomAddress *) strip_info->dev->dev_addr = | 
|  | addr; | 
|  | /* Give the radio a few seconds to get its head straight, then send an arp */ | 
|  | strip_info->gratuitous_arp = jiffies + 15 * HZ; | 
|  | strip_info->arp_interval = 1 * HZ; | 
|  | } | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | static int verify_checksum(struct strip *strip_info) | 
|  | { | 
|  | __u8 *p = strip_info->sx_buff; | 
|  | __u8 *end = strip_info->sx_buff + strip_info->sx_count - 4; | 
|  | u_short sum = | 
|  | (READHEX16(end[0]) << 12) | (READHEX16(end[1]) << 8) | | 
|  | (READHEX16(end[2]) << 4) | (READHEX16(end[3])); | 
|  | while (p < end) | 
|  | sum -= *p++; | 
|  | if (sum == 0 && strip_info->firmware_level == StructuredMessages) { | 
|  | strip_info->firmware_level = ChecksummedMessages; | 
|  | printk(KERN_INFO "%s: Radio provides message checksums\n", | 
|  | strip_info->dev->name); | 
|  | } | 
|  | return (sum == 0); | 
|  | } | 
|  |  | 
|  | static void RecvErr(char *msg, struct strip *strip_info) | 
|  | { | 
|  | __u8 *ptr = strip_info->sx_buff; | 
|  | __u8 *end = strip_info->sx_buff + strip_info->sx_count; | 
|  | DumpData(msg, strip_info, ptr, end); | 
|  | strip_info->rx_errors++; | 
|  | } | 
|  |  | 
|  | static void RecvErr_Message(struct strip *strip_info, __u8 * sendername, | 
|  | const __u8 * msg, u_long len) | 
|  | { | 
|  | if (has_prefix(msg, len, "001")) {	/* Not in StarMode! */ | 
|  | RecvErr("Error Msg:", strip_info); | 
|  | printk(KERN_INFO "%s: Radio %s is not in StarMode\n", | 
|  | strip_info->dev->name, sendername); | 
|  | } | 
|  |  | 
|  | else if (has_prefix(msg, len, "002")) {	/* Remap handle */ | 
|  | /* We ignore "Remap handle" messages for now */ | 
|  | } | 
|  |  | 
|  | else if (has_prefix(msg, len, "003")) {	/* Can't resolve name */ | 
|  | RecvErr("Error Msg:", strip_info); | 
|  | printk(KERN_INFO "%s: Destination radio name is unknown\n", | 
|  | strip_info->dev->name); | 
|  | } | 
|  |  | 
|  | else if (has_prefix(msg, len, "004")) {	/* Name too small or missing */ | 
|  | strip_info->watchdog_doreset = jiffies + LongTime; | 
|  | #if TICKLE_TIMERS | 
|  | { | 
|  | struct timeval tv; | 
|  | do_gettimeofday(&tv); | 
|  | printk(KERN_INFO | 
|  | "**** Got ERR_004 response         at %02d.%06d\n", | 
|  | tv.tv_sec % 100, tv.tv_usec); | 
|  | } | 
|  | #endif | 
|  | if (!strip_info->working) { | 
|  | strip_info->working = TRUE; | 
|  | printk(KERN_INFO "%s: Radio now in starmode\n", | 
|  | strip_info->dev->name); | 
|  | /* | 
|  | * If the radio has just entered a working state, we should do our first | 
|  | * probe ASAP, so that we find out our radio address etc. without delay. | 
|  | */ | 
|  | strip_info->watchdog_doprobe = jiffies; | 
|  | } | 
|  | if (strip_info->firmware_level == NoStructure && sendername) { | 
|  | strip_info->firmware_level = StructuredMessages; | 
|  | strip_info->next_command = 0;	/* Try to enable checksums ASAP */ | 
|  | printk(KERN_INFO | 
|  | "%s: Radio provides structured messages\n", | 
|  | strip_info->dev->name); | 
|  | } | 
|  | if (strip_info->firmware_level >= StructuredMessages) { | 
|  | /* | 
|  | * If this message has a valid checksum on the end, then the call to verify_checksum | 
|  | * will elevate the firmware_level to ChecksummedMessages for us. (The actual return | 
|  | * code from verify_checksum is ignored here.) | 
|  | */ | 
|  | verify_checksum(strip_info); | 
|  | /* | 
|  | * If the radio has structured messages but we don't yet have all our information about it, | 
|  | * we should do probes without delay, until we have gathered all the information | 
|  | */ | 
|  | if (!GOT_ALL_RADIO_INFO(strip_info)) | 
|  | strip_info->watchdog_doprobe = jiffies; | 
|  | } | 
|  | } | 
|  |  | 
|  | else if (has_prefix(msg, len, "005"))	/* Bad count specification */ | 
|  | RecvErr("Error Msg:", strip_info); | 
|  |  | 
|  | else if (has_prefix(msg, len, "006"))	/* Header too big */ | 
|  | RecvErr("Error Msg:", strip_info); | 
|  |  | 
|  | else if (has_prefix(msg, len, "007")) {	/* Body too big */ | 
|  | RecvErr("Error Msg:", strip_info); | 
|  | printk(KERN_ERR | 
|  | "%s: Error! Packet size too big for radio.\n", | 
|  | strip_info->dev->name); | 
|  | } | 
|  |  | 
|  | else if (has_prefix(msg, len, "008")) {	/* Bad character in name */ | 
|  | RecvErr("Error Msg:", strip_info); | 
|  | printk(KERN_ERR | 
|  | "%s: Radio name contains illegal character\n", | 
|  | strip_info->dev->name); | 
|  | } | 
|  |  | 
|  | else if (has_prefix(msg, len, "009"))	/* No count or line terminator */ | 
|  | RecvErr("Error Msg:", strip_info); | 
|  |  | 
|  | else if (has_prefix(msg, len, "010"))	/* Invalid checksum */ | 
|  | RecvErr("Error Msg:", strip_info); | 
|  |  | 
|  | else if (has_prefix(msg, len, "011"))	/* Checksum didn't match */ | 
|  | RecvErr("Error Msg:", strip_info); | 
|  |  | 
|  | else if (has_prefix(msg, len, "012"))	/* Failed to transmit packet */ | 
|  | RecvErr("Error Msg:", strip_info); | 
|  |  | 
|  | else | 
|  | RecvErr("Error Msg:", strip_info); | 
|  | } | 
|  |  | 
|  | static void process_AT_response(struct strip *strip_info, __u8 * ptr, | 
|  | __u8 * end) | 
|  | { | 
|  | u_long len; | 
|  | __u8 *p = ptr; | 
|  | while (p < end && p[-1] != 10) | 
|  | p++;		/* Skip past first newline character */ | 
|  | /* Now ptr points to the AT command, and p points to the text of the response. */ | 
|  | len = p - ptr; | 
|  |  | 
|  | #if TICKLE_TIMERS | 
|  | { | 
|  | struct timeval tv; | 
|  | do_gettimeofday(&tv); | 
|  | printk(KERN_INFO "**** Got AT response %.7s      at %02d.%06d\n", | 
|  | ptr, tv.tv_sec % 100, tv.tv_usec); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (has_prefix(ptr, len, "ATS300?")) | 
|  | get_radio_version(strip_info, p, end); | 
|  | else if (has_prefix(ptr, len, "ATS305?")) | 
|  | get_radio_address(strip_info, p); | 
|  | else if (has_prefix(ptr, len, "ATS311?")) | 
|  | get_radio_neighbours(&strip_info->poletops, p, end); | 
|  | else if (has_prefix(ptr, len, "ATS319=7")) | 
|  | verify_checksum(strip_info); | 
|  | else if (has_prefix(ptr, len, "ATS325?")) | 
|  | get_radio_voltage(strip_info, p, end); | 
|  | else if (has_prefix(ptr, len, "AT~LA")) | 
|  | get_radio_neighbours(&strip_info->portables, p, end); | 
|  | else | 
|  | RecvErr("Unknown AT Response:", strip_info); | 
|  | } | 
|  |  | 
|  | static void process_ACK(struct strip *strip_info, __u8 * ptr, __u8 * end) | 
|  | { | 
|  | /* Currently we don't do anything with ACKs from the radio */ | 
|  | } | 
|  |  | 
|  | static void process_Info(struct strip *strip_info, __u8 * ptr, __u8 * end) | 
|  | { | 
|  | if (ptr + 16 > end) | 
|  | RecvErr("Bad Info Msg:", strip_info); | 
|  | } | 
|  |  | 
|  | static struct net_device *get_strip_dev(struct strip *strip_info) | 
|  | { | 
|  | /* If our hardware address is *manually set* to zero, and we know our */ | 
|  | /* real radio hardware address, try to find another strip device that has been */ | 
|  | /* manually set to that address that we can 'transfer ownership' of this packet to  */ | 
|  | if (strip_info->manual_dev_addr && | 
|  | !memcmp(strip_info->dev->dev_addr, zero_address.c, | 
|  | sizeof(zero_address)) | 
|  | && memcmp(&strip_info->true_dev_addr, zero_address.c, | 
|  | sizeof(zero_address))) { | 
|  | struct net_device *dev; | 
|  | read_lock_bh(&dev_base_lock); | 
|  | for_each_netdev(&init_net, dev) { | 
|  | if (dev->type == strip_info->dev->type && | 
|  | !memcmp(dev->dev_addr, | 
|  | &strip_info->true_dev_addr, | 
|  | sizeof(MetricomAddress))) { | 
|  | printk(KERN_INFO | 
|  | "%s: Transferred packet ownership to %s.\n", | 
|  | strip_info->dev->name, dev->name); | 
|  | read_unlock_bh(&dev_base_lock); | 
|  | return (dev); | 
|  | } | 
|  | } | 
|  | read_unlock_bh(&dev_base_lock); | 
|  | } | 
|  | return (strip_info->dev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Send one completely decapsulated datagram to the next layer. | 
|  | */ | 
|  |  | 
|  | static void deliver_packet(struct strip *strip_info, STRIP_Header * header, | 
|  | __u16 packetlen) | 
|  | { | 
|  | struct sk_buff *skb = dev_alloc_skb(sizeof(STRIP_Header) + packetlen); | 
|  | if (!skb) { | 
|  | printk(KERN_ERR "%s: memory squeeze, dropping packet.\n", | 
|  | strip_info->dev->name); | 
|  | strip_info->rx_dropped++; | 
|  | } else { | 
|  | memcpy(skb_put(skb, sizeof(STRIP_Header)), header, | 
|  | sizeof(STRIP_Header)); | 
|  | memcpy(skb_put(skb, packetlen), strip_info->rx_buff, | 
|  | packetlen); | 
|  | skb->dev = get_strip_dev(strip_info); | 
|  | skb->protocol = header->protocol; | 
|  | skb_reset_mac_header(skb); | 
|  |  | 
|  | /* Having put a fake header on the front of the sk_buff for the */ | 
|  | /* benefit of tools like tcpdump, skb_pull now 'consumes' that  */ | 
|  | /* fake header before we hand the packet up to the next layer.  */ | 
|  | skb_pull(skb, sizeof(STRIP_Header)); | 
|  |  | 
|  | /* Finally, hand the packet up to the next layer (e.g. IP or ARP, etc.) */ | 
|  | strip_info->rx_packets++; | 
|  | strip_info->rx_pps_count++; | 
|  | #ifdef EXT_COUNTERS | 
|  | strip_info->rx_bytes += packetlen; | 
|  | #endif | 
|  | netif_rx(skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void process_IP_packet(struct strip *strip_info, | 
|  | STRIP_Header * header, __u8 * ptr, | 
|  | __u8 * end) | 
|  | { | 
|  | __u16 packetlen; | 
|  |  | 
|  | /* Decode start of the IP packet header */ | 
|  | ptr = UnStuffData(ptr, end, strip_info->rx_buff, 4); | 
|  | if (!ptr) { | 
|  | RecvErr("IP Packet too short", strip_info); | 
|  | return; | 
|  | } | 
|  |  | 
|  | packetlen = ((__u16) strip_info->rx_buff[2] << 8) | strip_info->rx_buff[3]; | 
|  |  | 
|  | if (packetlen > MAX_RECV_MTU) { | 
|  | printk(KERN_INFO "%s: Dropping oversized received IP packet: %d bytes\n", | 
|  | strip_info->dev->name, packetlen); | 
|  | strip_info->rx_dropped++; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /*printk(KERN_INFO "%s: Got %d byte IP packet\n", strip_info->dev->name, packetlen); */ | 
|  |  | 
|  | /* Decode remainder of the IP packet */ | 
|  | ptr = | 
|  | UnStuffData(ptr, end, strip_info->rx_buff + 4, packetlen - 4); | 
|  | if (!ptr) { | 
|  | RecvErr("IP Packet too short", strip_info); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ptr < end) { | 
|  | RecvErr("IP Packet too long", strip_info); | 
|  | return; | 
|  | } | 
|  |  | 
|  | header->protocol = htons(ETH_P_IP); | 
|  |  | 
|  | deliver_packet(strip_info, header, packetlen); | 
|  | } | 
|  |  | 
|  | static void process_ARP_packet(struct strip *strip_info, | 
|  | STRIP_Header * header, __u8 * ptr, | 
|  | __u8 * end) | 
|  | { | 
|  | __u16 packetlen; | 
|  | struct arphdr *arphdr = (struct arphdr *) strip_info->rx_buff; | 
|  |  | 
|  | /* Decode start of the ARP packet */ | 
|  | ptr = UnStuffData(ptr, end, strip_info->rx_buff, 8); | 
|  | if (!ptr) { | 
|  | RecvErr("ARP Packet too short", strip_info); | 
|  | return; | 
|  | } | 
|  |  | 
|  | packetlen = 8 + (arphdr->ar_hln + arphdr->ar_pln) * 2; | 
|  |  | 
|  | if (packetlen > MAX_RECV_MTU) { | 
|  | printk(KERN_INFO | 
|  | "%s: Dropping oversized received ARP packet: %d bytes\n", | 
|  | strip_info->dev->name, packetlen); | 
|  | strip_info->rx_dropped++; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /*printk(KERN_INFO "%s: Got %d byte ARP %s\n", | 
|  | strip_info->dev->name, packetlen, | 
|  | ntohs(arphdr->ar_op) == ARPOP_REQUEST ? "request" : "reply"); */ | 
|  |  | 
|  | /* Decode remainder of the ARP packet */ | 
|  | ptr = | 
|  | UnStuffData(ptr, end, strip_info->rx_buff + 8, packetlen - 8); | 
|  | if (!ptr) { | 
|  | RecvErr("ARP Packet too short", strip_info); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ptr < end) { | 
|  | RecvErr("ARP Packet too long", strip_info); | 
|  | return; | 
|  | } | 
|  |  | 
|  | header->protocol = htons(ETH_P_ARP); | 
|  |  | 
|  | deliver_packet(strip_info, header, packetlen); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * process_text_message processes a <CR>-terminated block of data received | 
|  | * from the radio that doesn't begin with a '*' character. All normal | 
|  | * Starmode communication messages with the radio begin with a '*', | 
|  | * so any text that does not indicates a serial port error, a radio that | 
|  | * is in Hayes command mode instead of Starmode, or a radio with really | 
|  | * old firmware that doesn't frame its Starmode responses properly. | 
|  | */ | 
|  | static void process_text_message(struct strip *strip_info) | 
|  | { | 
|  | __u8 *msg = strip_info->sx_buff; | 
|  | int len = strip_info->sx_count; | 
|  |  | 
|  | /* Check for anything that looks like it might be our radio name */ | 
|  | /* (This is here for backwards compatibility with old firmware)  */ | 
|  | if (len == 9 && get_radio_address(strip_info, msg) == 0) | 
|  | return; | 
|  |  | 
|  | if (text_equal(msg, len, "OK")) | 
|  | return;		/* Ignore 'OK' responses from prior commands */ | 
|  | if (text_equal(msg, len, "ERROR")) | 
|  | return;		/* Ignore 'ERROR' messages */ | 
|  | if (has_prefix(msg, len, "ate0q1")) | 
|  | return;		/* Ignore character echo back from the radio */ | 
|  |  | 
|  | /* Catch other error messages */ | 
|  | /* (This is here for backwards compatibility with old firmware) */ | 
|  | if (has_prefix(msg, len, "ERR_")) { | 
|  | RecvErr_Message(strip_info, NULL, &msg[4], len - 4); | 
|  | return; | 
|  | } | 
|  |  | 
|  | RecvErr("No initial *", strip_info); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * process_message processes a <CR>-terminated block of data received | 
|  | * from the radio. If the radio is not in Starmode or has old firmware, | 
|  | * it may be a line of text in response to an AT command. Ideally, with | 
|  | * a current radio that's properly in Starmode, all data received should | 
|  | * be properly framed and checksummed radio message blocks, containing | 
|  | * either a starmode packet, or a other communication from the radio | 
|  | * firmware, like "INF_" Info messages and &COMMAND responses. | 
|  | */ | 
|  | static void process_message(struct strip *strip_info) | 
|  | { | 
|  | STRIP_Header header = { zero_address, zero_address, 0 }; | 
|  | __u8 *ptr = strip_info->sx_buff; | 
|  | __u8 *end = strip_info->sx_buff + strip_info->sx_count; | 
|  | __u8 sendername[32], *sptr = sendername; | 
|  | MetricomKey key; | 
|  |  | 
|  | /*HexDump("Receiving", strip_info, ptr, end); */ | 
|  |  | 
|  | /* Check for start of address marker, and then skip over it */ | 
|  | if (*ptr == '*') | 
|  | ptr++; | 
|  | else { | 
|  | process_text_message(strip_info); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Copy out the return address */ | 
|  | while (ptr < end && *ptr != '*' | 
|  | && sptr < ARRAY_END(sendername) - 1) | 
|  | *sptr++ = *ptr++; | 
|  | *sptr = 0;		/* Null terminate the sender name */ | 
|  |  | 
|  | /* Check for end of address marker, and skip over it */ | 
|  | if (ptr >= end || *ptr != '*') { | 
|  | RecvErr("No second *", strip_info); | 
|  | return; | 
|  | } | 
|  | ptr++;			/* Skip the second '*' */ | 
|  |  | 
|  | /* If the sender name is "&COMMAND", ignore this 'packet'       */ | 
|  | /* (This is here for backwards compatibility with old firmware) */ | 
|  | if (!strcmp(sendername, "&COMMAND")) { | 
|  | strip_info->firmware_level = NoStructure; | 
|  | strip_info->next_command = CompatibilityCommand; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ptr + 4 > end) { | 
|  | RecvErr("No proto key", strip_info); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Get the protocol key out of the buffer */ | 
|  | key.c[0] = *ptr++; | 
|  | key.c[1] = *ptr++; | 
|  | key.c[2] = *ptr++; | 
|  | key.c[3] = *ptr++; | 
|  |  | 
|  | /* If we're using checksums, verify the checksum at the end of the packet */ | 
|  | if (strip_info->firmware_level >= ChecksummedMessages) { | 
|  | end -= 4;	/* Chop the last four bytes off the packet (they're the checksum) */ | 
|  | if (ptr > end) { | 
|  | RecvErr("Missing Checksum", strip_info); | 
|  | return; | 
|  | } | 
|  | if (!verify_checksum(strip_info)) { | 
|  | RecvErr("Bad Checksum", strip_info); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /*printk(KERN_INFO "%s: Got packet from \"%s\".\n", strip_info->dev->name, sendername); */ | 
|  |  | 
|  | /* | 
|  | * Fill in (pseudo) source and destination addresses in the packet. | 
|  | * We assume that the destination address was our address (the radio does not | 
|  | * tell us this). If the radio supplies a source address, then we use it. | 
|  | */ | 
|  | header.dst_addr = strip_info->true_dev_addr; | 
|  | string_to_radio_address(&header.src_addr, sendername); | 
|  |  | 
|  | #ifdef EXT_COUNTERS | 
|  | if (key.l == SIP0Key.l) { | 
|  | strip_info->rx_rbytes += (end - ptr); | 
|  | process_IP_packet(strip_info, &header, ptr, end); | 
|  | } else if (key.l == ARP0Key.l) { | 
|  | strip_info->rx_rbytes += (end - ptr); | 
|  | process_ARP_packet(strip_info, &header, ptr, end); | 
|  | } else if (key.l == ATR_Key.l) { | 
|  | strip_info->rx_ebytes += (end - ptr); | 
|  | process_AT_response(strip_info, ptr, end); | 
|  | } else if (key.l == ACK_Key.l) { | 
|  | strip_info->rx_ebytes += (end - ptr); | 
|  | process_ACK(strip_info, ptr, end); | 
|  | } else if (key.l == INF_Key.l) { | 
|  | strip_info->rx_ebytes += (end - ptr); | 
|  | process_Info(strip_info, ptr, end); | 
|  | } else if (key.l == ERR_Key.l) { | 
|  | strip_info->rx_ebytes += (end - ptr); | 
|  | RecvErr_Message(strip_info, sendername, ptr, end - ptr); | 
|  | } else | 
|  | RecvErr("Unrecognized protocol key", strip_info); | 
|  | #else | 
|  | if (key.l == SIP0Key.l) | 
|  | process_IP_packet(strip_info, &header, ptr, end); | 
|  | else if (key.l == ARP0Key.l) | 
|  | process_ARP_packet(strip_info, &header, ptr, end); | 
|  | else if (key.l == ATR_Key.l) | 
|  | process_AT_response(strip_info, ptr, end); | 
|  | else if (key.l == ACK_Key.l) | 
|  | process_ACK(strip_info, ptr, end); | 
|  | else if (key.l == INF_Key.l) | 
|  | process_Info(strip_info, ptr, end); | 
|  | else if (key.l == ERR_Key.l) | 
|  | RecvErr_Message(strip_info, sendername, ptr, end - ptr); | 
|  | else | 
|  | RecvErr("Unrecognized protocol key", strip_info); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #define TTYERROR(X) ((X) == TTY_BREAK   ? "Break"            : \ | 
|  | (X) == TTY_FRAME   ? "Framing Error"    : \ | 
|  | (X) == TTY_PARITY  ? "Parity Error"     : \ | 
|  | (X) == TTY_OVERRUN ? "Hardware Overrun" : "Unknown Error") | 
|  |  | 
|  | /* | 
|  | * Handle the 'receiver data ready' interrupt. | 
|  | * This function is called by the 'tty_io' module in the kernel when | 
|  | * a block of STRIP data has been received, which can now be decapsulated | 
|  | * and sent on to some IP layer for further processing. | 
|  | */ | 
|  |  | 
|  | static void strip_receive_buf(struct tty_struct *tty, const unsigned char *cp, | 
|  | char *fp, int count) | 
|  | { | 
|  | struct strip *strip_info = tty->disc_data; | 
|  | const unsigned char *end = cp + count; | 
|  |  | 
|  | if (!strip_info || strip_info->magic != STRIP_MAGIC | 
|  | || !netif_running(strip_info->dev)) | 
|  | return; | 
|  |  | 
|  | spin_lock_bh(&strip_lock); | 
|  | #if 0 | 
|  | { | 
|  | struct timeval tv; | 
|  | do_gettimeofday(&tv); | 
|  | printk(KERN_INFO | 
|  | "**** strip_receive_buf: %3d bytes at %02d.%06d\n", | 
|  | count, tv.tv_sec % 100, tv.tv_usec); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef EXT_COUNTERS | 
|  | strip_info->rx_sbytes += count; | 
|  | #endif | 
|  |  | 
|  | /* Read the characters out of the buffer */ | 
|  | while (cp < end) { | 
|  | if (fp && *fp) | 
|  | printk(KERN_INFO "%s: %s on serial port\n", | 
|  | strip_info->dev->name, TTYERROR(*fp)); | 
|  | if (fp && *fp++ && !strip_info->discard) {	/* If there's a serial error, record it */ | 
|  | /* If we have some characters in the buffer, discard them */ | 
|  | strip_info->discard = strip_info->sx_count; | 
|  | strip_info->rx_errors++; | 
|  | } | 
|  |  | 
|  | /* Leading control characters (CR, NL, Tab, etc.) are ignored */ | 
|  | if (strip_info->sx_count > 0 || *cp >= ' ') { | 
|  | if (*cp == 0x0D) {	/* If end of packet, decide what to do with it */ | 
|  | if (strip_info->sx_count > 3000) | 
|  | printk(KERN_INFO | 
|  | "%s: Cut a %d byte packet (%zd bytes remaining)%s\n", | 
|  | strip_info->dev->name, | 
|  | strip_info->sx_count, | 
|  | end - cp - 1, | 
|  | strip_info-> | 
|  | discard ? " (discarded)" : | 
|  | ""); | 
|  | if (strip_info->sx_count > | 
|  | strip_info->sx_size) { | 
|  | strip_info->rx_over_errors++; | 
|  | printk(KERN_INFO | 
|  | "%s: sx_buff overflow (%d bytes total)\n", | 
|  | strip_info->dev->name, | 
|  | strip_info->sx_count); | 
|  | } else if (strip_info->discard) | 
|  | printk(KERN_INFO | 
|  | "%s: Discarding bad packet (%d/%d)\n", | 
|  | strip_info->dev->name, | 
|  | strip_info->discard, | 
|  | strip_info->sx_count); | 
|  | else | 
|  | process_message(strip_info); | 
|  | strip_info->discard = 0; | 
|  | strip_info->sx_count = 0; | 
|  | } else { | 
|  | /* Make sure we have space in the buffer */ | 
|  | if (strip_info->sx_count < | 
|  | strip_info->sx_size) | 
|  | strip_info->sx_buff[strip_info-> | 
|  | sx_count] = | 
|  | *cp; | 
|  | strip_info->sx_count++; | 
|  | } | 
|  | } | 
|  | cp++; | 
|  | } | 
|  | spin_unlock_bh(&strip_lock); | 
|  | } | 
|  |  | 
|  |  | 
|  | /************************************************************************/ | 
|  | /* General control routines						*/ | 
|  |  | 
|  | static int set_mac_address(struct strip *strip_info, | 
|  | MetricomAddress * addr) | 
|  | { | 
|  | /* | 
|  | * We're using a manually specified address if the address is set | 
|  | * to anything other than all ones. Setting the address to all ones | 
|  | * disables manual mode and goes back to automatic address determination | 
|  | * (tracking the true address that the radio has). | 
|  | */ | 
|  | strip_info->manual_dev_addr = | 
|  | memcmp(addr->c, broadcast_address.c, | 
|  | sizeof(broadcast_address)); | 
|  | if (strip_info->manual_dev_addr) | 
|  | *(MetricomAddress *) strip_info->dev->dev_addr = *addr; | 
|  | else | 
|  | *(MetricomAddress *) strip_info->dev->dev_addr = | 
|  | strip_info->true_dev_addr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int strip_set_mac_address(struct net_device *dev, void *addr) | 
|  | { | 
|  | struct strip *strip_info = netdev_priv(dev); | 
|  | struct sockaddr *sa = addr; | 
|  | printk(KERN_INFO "%s: strip_set_dev_mac_address called\n", dev->name); | 
|  | set_mac_address(strip_info, (MetricomAddress *) sa->sa_data); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct net_device_stats *strip_get_stats(struct net_device *dev) | 
|  | { | 
|  | struct strip *strip_info = netdev_priv(dev); | 
|  | static struct net_device_stats stats; | 
|  |  | 
|  | memset(&stats, 0, sizeof(struct net_device_stats)); | 
|  |  | 
|  | stats.rx_packets = strip_info->rx_packets; | 
|  | stats.tx_packets = strip_info->tx_packets; | 
|  | stats.rx_dropped = strip_info->rx_dropped; | 
|  | stats.tx_dropped = strip_info->tx_dropped; | 
|  | stats.tx_errors = strip_info->tx_errors; | 
|  | stats.rx_errors = strip_info->rx_errors; | 
|  | stats.rx_over_errors = strip_info->rx_over_errors; | 
|  | return (&stats); | 
|  | } | 
|  |  | 
|  |  | 
|  | /************************************************************************/ | 
|  | /* Opening and closing							*/ | 
|  |  | 
|  | /* | 
|  | * Here's the order things happen: | 
|  | * When the user runs "slattach -p strip ..." | 
|  | *  1. The TTY module calls strip_open;; | 
|  | *  2. strip_open calls strip_alloc | 
|  | *  3.                  strip_alloc calls register_netdev | 
|  | *  4.                  register_netdev calls strip_dev_init | 
|  | *  5. then strip_open finishes setting up the strip_info | 
|  | * | 
|  | * When the user runs "ifconfig st<x> up address netmask ..." | 
|  | *  6. strip_open_low gets called | 
|  | * | 
|  | * When the user runs "ifconfig st<x> down" | 
|  | *  7. strip_close_low gets called | 
|  | * | 
|  | * When the user kills the slattach process | 
|  | *  8. strip_close gets called | 
|  | *  9. strip_close calls dev_close | 
|  | * 10. if the device is still up, then dev_close calls strip_close_low | 
|  | * 11. strip_close calls strip_free | 
|  | */ | 
|  |  | 
|  | /* Open the low-level part of the STRIP channel. Easy! */ | 
|  |  | 
|  | static int strip_open_low(struct net_device *dev) | 
|  | { | 
|  | struct strip *strip_info = netdev_priv(dev); | 
|  |  | 
|  | if (strip_info->tty == NULL) | 
|  | return (-ENODEV); | 
|  |  | 
|  | if (!allocate_buffers(strip_info, dev->mtu)) | 
|  | return (-ENOMEM); | 
|  |  | 
|  | strip_info->sx_count = 0; | 
|  | strip_info->tx_left = 0; | 
|  |  | 
|  | strip_info->discard = 0; | 
|  | strip_info->working = FALSE; | 
|  | strip_info->firmware_level = NoStructure; | 
|  | strip_info->next_command = CompatibilityCommand; | 
|  | strip_info->user_baud = tty_get_baud_rate(strip_info->tty); | 
|  |  | 
|  | printk(KERN_INFO "%s: Initializing Radio.\n", | 
|  | strip_info->dev->name); | 
|  | ResetRadio(strip_info); | 
|  | strip_info->idle_timer.expires = jiffies + 1 * HZ; | 
|  | add_timer(&strip_info->idle_timer); | 
|  | netif_wake_queue(dev); | 
|  | return (0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Close the low-level part of the STRIP channel. Easy! | 
|  | */ | 
|  |  | 
|  | static int strip_close_low(struct net_device *dev) | 
|  | { | 
|  | struct strip *strip_info = netdev_priv(dev); | 
|  |  | 
|  | if (strip_info->tty == NULL) | 
|  | return -EBUSY; | 
|  | clear_bit(TTY_DO_WRITE_WAKEUP, &strip_info->tty->flags); | 
|  | netif_stop_queue(dev); | 
|  |  | 
|  | /* | 
|  | * Free all STRIP frame buffers. | 
|  | */ | 
|  | kfree(strip_info->rx_buff); | 
|  | strip_info->rx_buff = NULL; | 
|  | kfree(strip_info->sx_buff); | 
|  | strip_info->sx_buff = NULL; | 
|  | kfree(strip_info->tx_buff); | 
|  | strip_info->tx_buff = NULL; | 
|  |  | 
|  | del_timer(&strip_info->idle_timer); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct header_ops strip_header_ops = { | 
|  | .create = strip_header, | 
|  | .rebuild = strip_rebuild_header, | 
|  | }; | 
|  |  | 
|  |  | 
|  | static const struct net_device_ops strip_netdev_ops = { | 
|  | .ndo_open 	= strip_open_low, | 
|  | .ndo_stop 	= strip_close_low, | 
|  | .ndo_start_xmit = strip_xmit, | 
|  | .ndo_set_mac_address = strip_set_mac_address, | 
|  | .ndo_get_stats	= strip_get_stats, | 
|  | .ndo_change_mtu = strip_change_mtu, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This routine is called by DDI when the | 
|  | * (dynamically assigned) device is registered | 
|  | */ | 
|  |  | 
|  | static void strip_dev_setup(struct net_device *dev) | 
|  | { | 
|  | /* | 
|  | * Finish setting up the DEVICE info. | 
|  | */ | 
|  |  | 
|  | dev->trans_start = 0; | 
|  | dev->tx_queue_len = 30;	/* Drop after 30 frames queued */ | 
|  |  | 
|  | dev->flags = 0; | 
|  | dev->mtu = DEFAULT_STRIP_MTU; | 
|  | dev->type = ARPHRD_METRICOM;	/* dtang */ | 
|  | dev->hard_header_len = sizeof(STRIP_Header); | 
|  | /* | 
|  | *  netdev_priv(dev) Already holds a pointer to our struct strip | 
|  | */ | 
|  |  | 
|  | *(MetricomAddress *)dev->broadcast = broadcast_address; | 
|  | dev->dev_addr[0] = 0; | 
|  | dev->addr_len = sizeof(MetricomAddress); | 
|  |  | 
|  | dev->header_ops = &strip_header_ops, | 
|  | dev->netdev_ops = &strip_netdev_ops; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free a STRIP channel. | 
|  | */ | 
|  |  | 
|  | static void strip_free(struct strip *strip_info) | 
|  | { | 
|  | spin_lock_bh(&strip_lock); | 
|  | list_del_rcu(&strip_info->list); | 
|  | spin_unlock_bh(&strip_lock); | 
|  |  | 
|  | strip_info->magic = 0; | 
|  |  | 
|  | free_netdev(strip_info->dev); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Allocate a new free STRIP channel | 
|  | */ | 
|  | static struct strip *strip_alloc(void) | 
|  | { | 
|  | struct list_head *n; | 
|  | struct net_device *dev; | 
|  | struct strip *strip_info; | 
|  |  | 
|  | dev = alloc_netdev(sizeof(struct strip), "st%d", | 
|  | strip_dev_setup); | 
|  |  | 
|  | if (!dev) | 
|  | return NULL;	/* If no more memory, return */ | 
|  |  | 
|  |  | 
|  | strip_info = netdev_priv(dev); | 
|  | strip_info->dev = dev; | 
|  |  | 
|  | strip_info->magic = STRIP_MAGIC; | 
|  | strip_info->tty = NULL; | 
|  |  | 
|  | strip_info->gratuitous_arp = jiffies + LongTime; | 
|  | strip_info->arp_interval = 0; | 
|  | init_timer(&strip_info->idle_timer); | 
|  | strip_info->idle_timer.data = (long) dev; | 
|  | strip_info->idle_timer.function = strip_IdleTask; | 
|  |  | 
|  |  | 
|  | spin_lock_bh(&strip_lock); | 
|  | rescan: | 
|  | /* | 
|  | * Search the list to find where to put our new entry | 
|  | * (and in the process decide what channel number it is | 
|  | * going to be) | 
|  | */ | 
|  | list_for_each(n, &strip_list) { | 
|  | struct strip *s = hlist_entry(n, struct strip, list); | 
|  |  | 
|  | if (s->dev->base_addr == dev->base_addr) { | 
|  | ++dev->base_addr; | 
|  | goto rescan; | 
|  | } | 
|  | } | 
|  |  | 
|  | sprintf(dev->name, "st%ld", dev->base_addr); | 
|  |  | 
|  | list_add_tail_rcu(&strip_info->list, &strip_list); | 
|  | spin_unlock_bh(&strip_lock); | 
|  |  | 
|  | return strip_info; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Open the high-level part of the STRIP channel. | 
|  | * This function is called by the TTY module when the | 
|  | * STRIP line discipline is called for.  Because we are | 
|  | * sure the tty line exists, we only have to link it to | 
|  | * a free STRIP channel... | 
|  | */ | 
|  |  | 
|  | static int strip_open(struct tty_struct *tty) | 
|  | { | 
|  | struct strip *strip_info = tty->disc_data; | 
|  |  | 
|  | /* | 
|  | * First make sure we're not already connected. | 
|  | */ | 
|  |  | 
|  | if (strip_info && strip_info->magic == STRIP_MAGIC) | 
|  | return -EEXIST; | 
|  |  | 
|  | /* | 
|  | * We need a write method. | 
|  | */ | 
|  |  | 
|  | if (tty->ops->write == NULL || tty->ops->set_termios == NULL) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | /* | 
|  | * OK.  Find a free STRIP channel to use. | 
|  | */ | 
|  | if ((strip_info = strip_alloc()) == NULL) | 
|  | return -ENFILE; | 
|  |  | 
|  | /* | 
|  | * Register our newly created device so it can be ifconfig'd | 
|  | * strip_dev_init() will be called as a side-effect | 
|  | */ | 
|  |  | 
|  | if (register_netdev(strip_info->dev) != 0) { | 
|  | printk(KERN_ERR "strip: register_netdev() failed.\n"); | 
|  | strip_free(strip_info); | 
|  | return -ENFILE; | 
|  | } | 
|  |  | 
|  | strip_info->tty = tty; | 
|  | tty->disc_data = strip_info; | 
|  | tty->receive_room = 65536; | 
|  |  | 
|  | tty_driver_flush_buffer(tty); | 
|  |  | 
|  | /* | 
|  | * Restore default settings | 
|  | */ | 
|  |  | 
|  | strip_info->dev->type = ARPHRD_METRICOM;	/* dtang */ | 
|  |  | 
|  | /* | 
|  | * Set tty options | 
|  | */ | 
|  |  | 
|  | tty->termios->c_iflag |= IGNBRK | IGNPAR;	/* Ignore breaks and parity errors. */ | 
|  | tty->termios->c_cflag |= CLOCAL;	/* Ignore modem control signals. */ | 
|  | tty->termios->c_cflag &= ~HUPCL;	/* Don't close on hup */ | 
|  |  | 
|  | printk(KERN_INFO "STRIP: device \"%s\" activated\n", | 
|  | strip_info->dev->name); | 
|  |  | 
|  | /* | 
|  | * Done.  We have linked the TTY line to a channel. | 
|  | */ | 
|  | return (strip_info->dev->base_addr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Close down a STRIP channel. | 
|  | * This means flushing out any pending queues, and then restoring the | 
|  | * TTY line discipline to what it was before it got hooked to STRIP | 
|  | * (which usually is TTY again). | 
|  | */ | 
|  |  | 
|  | static void strip_close(struct tty_struct *tty) | 
|  | { | 
|  | struct strip *strip_info = tty->disc_data; | 
|  |  | 
|  | /* | 
|  | * First make sure we're connected. | 
|  | */ | 
|  |  | 
|  | if (!strip_info || strip_info->magic != STRIP_MAGIC) | 
|  | return; | 
|  |  | 
|  | unregister_netdev(strip_info->dev); | 
|  |  | 
|  | tty->disc_data = NULL; | 
|  | strip_info->tty = NULL; | 
|  | printk(KERN_INFO "STRIP: device \"%s\" closed down\n", | 
|  | strip_info->dev->name); | 
|  | strip_free(strip_info); | 
|  | tty->disc_data = NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | /************************************************************************/ | 
|  | /* Perform I/O control calls on an active STRIP channel.		*/ | 
|  |  | 
|  | static int strip_ioctl(struct tty_struct *tty, struct file *file, | 
|  | unsigned int cmd, unsigned long arg) | 
|  | { | 
|  | struct strip *strip_info = tty->disc_data; | 
|  |  | 
|  | /* | 
|  | * First make sure we're connected. | 
|  | */ | 
|  |  | 
|  | if (!strip_info || strip_info->magic != STRIP_MAGIC) | 
|  | return -EINVAL; | 
|  |  | 
|  | switch (cmd) { | 
|  | case SIOCGIFNAME: | 
|  | if(copy_to_user((void __user *) arg, strip_info->dev->name, strlen(strip_info->dev->name) + 1)) | 
|  | return -EFAULT; | 
|  | break; | 
|  | case SIOCSIFHWADDR: | 
|  | { | 
|  | MetricomAddress addr; | 
|  | //printk(KERN_INFO "%s: SIOCSIFHWADDR\n", strip_info->dev->name); | 
|  | if(copy_from_user(&addr, (void __user *) arg, sizeof(MetricomAddress))) | 
|  | return -EFAULT; | 
|  | return set_mac_address(strip_info, &addr); | 
|  | } | 
|  | default: | 
|  | return tty_mode_ioctl(tty, file, cmd, arg); | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /************************************************************************/ | 
|  | /* Initialization							*/ | 
|  |  | 
|  | static struct tty_ldisc_ops strip_ldisc = { | 
|  | .magic = TTY_LDISC_MAGIC, | 
|  | .name = "strip", | 
|  | .owner = THIS_MODULE, | 
|  | .open = strip_open, | 
|  | .close = strip_close, | 
|  | .ioctl = strip_ioctl, | 
|  | .receive_buf = strip_receive_buf, | 
|  | .write_wakeup = strip_write_some_more, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Initialize the STRIP driver. | 
|  | * This routine is called at boot time, to bootstrap the multi-channel | 
|  | * STRIP driver | 
|  | */ | 
|  |  | 
|  | static char signon[] __initdata = | 
|  | KERN_INFO "STRIP: Version %s (unlimited channels)\n"; | 
|  |  | 
|  | static int __init strip_init_driver(void) | 
|  | { | 
|  | int status; | 
|  |  | 
|  | printk(signon, StripVersion); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Fill in our line protocol discipline, and register it | 
|  | */ | 
|  | if ((status = tty_register_ldisc(N_STRIP, &strip_ldisc))) | 
|  | printk(KERN_ERR "STRIP: can't register line discipline (err = %d)\n", | 
|  | status); | 
|  |  | 
|  | /* | 
|  | * Register the status file with /proc | 
|  | */ | 
|  | proc_net_fops_create(&init_net, "strip", S_IFREG | S_IRUGO, &strip_seq_fops); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | module_init(strip_init_driver); | 
|  |  | 
|  | static const char signoff[] __exitdata = | 
|  | KERN_INFO "STRIP: Module Unloaded\n"; | 
|  |  | 
|  | static void __exit strip_exit_driver(void) | 
|  | { | 
|  | int i; | 
|  | struct list_head *p,*n; | 
|  |  | 
|  | /* module ref count rules assure that all entries are unregistered */ | 
|  | list_for_each_safe(p, n, &strip_list) { | 
|  | struct strip *s = list_entry(p, struct strip, list); | 
|  | strip_free(s); | 
|  | } | 
|  |  | 
|  | /* Unregister with the /proc/net file here. */ | 
|  | proc_net_remove(&init_net, "strip"); | 
|  |  | 
|  | if ((i = tty_unregister_ldisc(N_STRIP))) | 
|  | printk(KERN_ERR "STRIP: can't unregister line discipline (err = %d)\n", i); | 
|  |  | 
|  | printk(signoff); | 
|  | } | 
|  |  | 
|  | module_exit(strip_exit_driver); | 
|  |  | 
|  | MODULE_AUTHOR("Stuart Cheshire <cheshire@cs.stanford.edu>"); | 
|  | MODULE_DESCRIPTION("Starmode Radio IP (STRIP) Device Driver"); | 
|  | MODULE_LICENSE("Dual BSD/GPL"); | 
|  |  | 
|  | MODULE_SUPPORTED_DEVICE("Starmode Radio IP (STRIP) modem"); |