| /* | 
 |  * raid10.c : Multiple Devices driver for Linux | 
 |  * | 
 |  * Copyright (C) 2000-2004 Neil Brown | 
 |  * | 
 |  * RAID-10 support for md. | 
 |  * | 
 |  * Base on code in raid1.c.  See raid1.c for futher copyright information. | 
 |  * | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2, or (at your option) | 
 |  * any later version. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * (for example /usr/src/linux/COPYING); if not, write to the Free | 
 |  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  */ | 
 |  | 
 | #include "dm-bio-list.h" | 
 | #include <linux/delay.h> | 
 | #include <linux/raid/raid10.h> | 
 | #include <linux/raid/bitmap.h> | 
 |  | 
 | /* | 
 |  * RAID10 provides a combination of RAID0 and RAID1 functionality. | 
 |  * The layout of data is defined by | 
 |  *    chunk_size | 
 |  *    raid_disks | 
 |  *    near_copies (stored in low byte of layout) | 
 |  *    far_copies (stored in second byte of layout) | 
 |  *    far_offset (stored in bit 16 of layout ) | 
 |  * | 
 |  * The data to be stored is divided into chunks using chunksize. | 
 |  * Each device is divided into far_copies sections. | 
 |  * In each section, chunks are laid out in a style similar to raid0, but | 
 |  * near_copies copies of each chunk is stored (each on a different drive). | 
 |  * The starting device for each section is offset near_copies from the starting | 
 |  * device of the previous section. | 
 |  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different | 
 |  * drive. | 
 |  * near_copies and far_copies must be at least one, and their product is at most | 
 |  * raid_disks. | 
 |  * | 
 |  * If far_offset is true, then the far_copies are handled a bit differently. | 
 |  * The copies are still in different stripes, but instead of be very far apart | 
 |  * on disk, there are adjacent stripes. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Number of guaranteed r10bios in case of extreme VM load: | 
 |  */ | 
 | #define	NR_RAID10_BIOS 256 | 
 |  | 
 | static void unplug_slaves(mddev_t *mddev); | 
 |  | 
 | static void allow_barrier(conf_t *conf); | 
 | static void lower_barrier(conf_t *conf); | 
 |  | 
 | static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) | 
 | { | 
 | 	conf_t *conf = data; | 
 | 	r10bio_t *r10_bio; | 
 | 	int size = offsetof(struct r10bio_s, devs[conf->copies]); | 
 |  | 
 | 	/* allocate a r10bio with room for raid_disks entries in the bios array */ | 
 | 	r10_bio = kzalloc(size, gfp_flags); | 
 | 	if (!r10_bio) | 
 | 		unplug_slaves(conf->mddev); | 
 |  | 
 | 	return r10_bio; | 
 | } | 
 |  | 
 | static void r10bio_pool_free(void *r10_bio, void *data) | 
 | { | 
 | 	kfree(r10_bio); | 
 | } | 
 |  | 
 | /* Maximum size of each resync request */ | 
 | #define RESYNC_BLOCK_SIZE (64*1024) | 
 | #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) | 
 | /* amount of memory to reserve for resync requests */ | 
 | #define RESYNC_WINDOW (1024*1024) | 
 | /* maximum number of concurrent requests, memory permitting */ | 
 | #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) | 
 |  | 
 | /* | 
 |  * When performing a resync, we need to read and compare, so | 
 |  * we need as many pages are there are copies. | 
 |  * When performing a recovery, we need 2 bios, one for read, | 
 |  * one for write (we recover only one drive per r10buf) | 
 |  * | 
 |  */ | 
 | static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) | 
 | { | 
 | 	conf_t *conf = data; | 
 | 	struct page *page; | 
 | 	r10bio_t *r10_bio; | 
 | 	struct bio *bio; | 
 | 	int i, j; | 
 | 	int nalloc; | 
 |  | 
 | 	r10_bio = r10bio_pool_alloc(gfp_flags, conf); | 
 | 	if (!r10_bio) { | 
 | 		unplug_slaves(conf->mddev); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) | 
 | 		nalloc = conf->copies; /* resync */ | 
 | 	else | 
 | 		nalloc = 2; /* recovery */ | 
 |  | 
 | 	/* | 
 | 	 * Allocate bios. | 
 | 	 */ | 
 | 	for (j = nalloc ; j-- ; ) { | 
 | 		bio = bio_alloc(gfp_flags, RESYNC_PAGES); | 
 | 		if (!bio) | 
 | 			goto out_free_bio; | 
 | 		r10_bio->devs[j].bio = bio; | 
 | 	} | 
 | 	/* | 
 | 	 * Allocate RESYNC_PAGES data pages and attach them | 
 | 	 * where needed. | 
 | 	 */ | 
 | 	for (j = 0 ; j < nalloc; j++) { | 
 | 		bio = r10_bio->devs[j].bio; | 
 | 		for (i = 0; i < RESYNC_PAGES; i++) { | 
 | 			page = alloc_page(gfp_flags); | 
 | 			if (unlikely(!page)) | 
 | 				goto out_free_pages; | 
 |  | 
 | 			bio->bi_io_vec[i].bv_page = page; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return r10_bio; | 
 |  | 
 | out_free_pages: | 
 | 	for ( ; i > 0 ; i--) | 
 | 		safe_put_page(bio->bi_io_vec[i-1].bv_page); | 
 | 	while (j--) | 
 | 		for (i = 0; i < RESYNC_PAGES ; i++) | 
 | 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); | 
 | 	j = -1; | 
 | out_free_bio: | 
 | 	while ( ++j < nalloc ) | 
 | 		bio_put(r10_bio->devs[j].bio); | 
 | 	r10bio_pool_free(r10_bio, conf); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void r10buf_pool_free(void *__r10_bio, void *data) | 
 | { | 
 | 	int i; | 
 | 	conf_t *conf = data; | 
 | 	r10bio_t *r10bio = __r10_bio; | 
 | 	int j; | 
 |  | 
 | 	for (j=0; j < conf->copies; j++) { | 
 | 		struct bio *bio = r10bio->devs[j].bio; | 
 | 		if (bio) { | 
 | 			for (i = 0; i < RESYNC_PAGES; i++) { | 
 | 				safe_put_page(bio->bi_io_vec[i].bv_page); | 
 | 				bio->bi_io_vec[i].bv_page = NULL; | 
 | 			} | 
 | 			bio_put(bio); | 
 | 		} | 
 | 	} | 
 | 	r10bio_pool_free(r10bio, conf); | 
 | } | 
 |  | 
 | static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < conf->copies; i++) { | 
 | 		struct bio **bio = & r10_bio->devs[i].bio; | 
 | 		if (*bio && *bio != IO_BLOCKED) | 
 | 			bio_put(*bio); | 
 | 		*bio = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void free_r10bio(r10bio_t *r10_bio) | 
 | { | 
 | 	conf_t *conf = mddev_to_conf(r10_bio->mddev); | 
 |  | 
 | 	/* | 
 | 	 * Wake up any possible resync thread that waits for the device | 
 | 	 * to go idle. | 
 | 	 */ | 
 | 	allow_barrier(conf); | 
 |  | 
 | 	put_all_bios(conf, r10_bio); | 
 | 	mempool_free(r10_bio, conf->r10bio_pool); | 
 | } | 
 |  | 
 | static void put_buf(r10bio_t *r10_bio) | 
 | { | 
 | 	conf_t *conf = mddev_to_conf(r10_bio->mddev); | 
 |  | 
 | 	mempool_free(r10_bio, conf->r10buf_pool); | 
 |  | 
 | 	lower_barrier(conf); | 
 | } | 
 |  | 
 | static void reschedule_retry(r10bio_t *r10_bio) | 
 | { | 
 | 	unsigned long flags; | 
 | 	mddev_t *mddev = r10_bio->mddev; | 
 | 	conf_t *conf = mddev_to_conf(mddev); | 
 |  | 
 | 	spin_lock_irqsave(&conf->device_lock, flags); | 
 | 	list_add(&r10_bio->retry_list, &conf->retry_list); | 
 | 	conf->nr_queued ++; | 
 | 	spin_unlock_irqrestore(&conf->device_lock, flags); | 
 |  | 
 | 	/* wake up frozen array... */ | 
 | 	wake_up(&conf->wait_barrier); | 
 |  | 
 | 	md_wakeup_thread(mddev->thread); | 
 | } | 
 |  | 
 | /* | 
 |  * raid_end_bio_io() is called when we have finished servicing a mirrored | 
 |  * operation and are ready to return a success/failure code to the buffer | 
 |  * cache layer. | 
 |  */ | 
 | static void raid_end_bio_io(r10bio_t *r10_bio) | 
 | { | 
 | 	struct bio *bio = r10_bio->master_bio; | 
 |  | 
 | 	bio_endio(bio, | 
 | 		test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); | 
 | 	free_r10bio(r10_bio); | 
 | } | 
 |  | 
 | /* | 
 |  * Update disk head position estimator based on IRQ completion info. | 
 |  */ | 
 | static inline void update_head_pos(int slot, r10bio_t *r10_bio) | 
 | { | 
 | 	conf_t *conf = mddev_to_conf(r10_bio->mddev); | 
 |  | 
 | 	conf->mirrors[r10_bio->devs[slot].devnum].head_position = | 
 | 		r10_bio->devs[slot].addr + (r10_bio->sectors); | 
 | } | 
 |  | 
 | static void raid10_end_read_request(struct bio *bio, int error) | 
 | { | 
 | 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | 
 | 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); | 
 | 	int slot, dev; | 
 | 	conf_t *conf = mddev_to_conf(r10_bio->mddev); | 
 |  | 
 |  | 
 | 	slot = r10_bio->read_slot; | 
 | 	dev = r10_bio->devs[slot].devnum; | 
 | 	/* | 
 | 	 * this branch is our 'one mirror IO has finished' event handler: | 
 | 	 */ | 
 | 	update_head_pos(slot, r10_bio); | 
 |  | 
 | 	if (uptodate) { | 
 | 		/* | 
 | 		 * Set R10BIO_Uptodate in our master bio, so that | 
 | 		 * we will return a good error code to the higher | 
 | 		 * levels even if IO on some other mirrored buffer fails. | 
 | 		 * | 
 | 		 * The 'master' represents the composite IO operation to | 
 | 		 * user-side. So if something waits for IO, then it will | 
 | 		 * wait for the 'master' bio. | 
 | 		 */ | 
 | 		set_bit(R10BIO_Uptodate, &r10_bio->state); | 
 | 		raid_end_bio_io(r10_bio); | 
 | 	} else { | 
 | 		/* | 
 | 		 * oops, read error: | 
 | 		 */ | 
 | 		char b[BDEVNAME_SIZE]; | 
 | 		if (printk_ratelimit()) | 
 | 			printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", | 
 | 			       bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); | 
 | 		reschedule_retry(r10_bio); | 
 | 	} | 
 |  | 
 | 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); | 
 | } | 
 |  | 
 | static void raid10_end_write_request(struct bio *bio, int error) | 
 | { | 
 | 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | 
 | 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); | 
 | 	int slot, dev; | 
 | 	conf_t *conf = mddev_to_conf(r10_bio->mddev); | 
 |  | 
 | 	for (slot = 0; slot < conf->copies; slot++) | 
 | 		if (r10_bio->devs[slot].bio == bio) | 
 | 			break; | 
 | 	dev = r10_bio->devs[slot].devnum; | 
 |  | 
 | 	/* | 
 | 	 * this branch is our 'one mirror IO has finished' event handler: | 
 | 	 */ | 
 | 	if (!uptodate) { | 
 | 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev); | 
 | 		/* an I/O failed, we can't clear the bitmap */ | 
 | 		set_bit(R10BIO_Degraded, &r10_bio->state); | 
 | 	} else | 
 | 		/* | 
 | 		 * Set R10BIO_Uptodate in our master bio, so that | 
 | 		 * we will return a good error code for to the higher | 
 | 		 * levels even if IO on some other mirrored buffer fails. | 
 | 		 * | 
 | 		 * The 'master' represents the composite IO operation to | 
 | 		 * user-side. So if something waits for IO, then it will | 
 | 		 * wait for the 'master' bio. | 
 | 		 */ | 
 | 		set_bit(R10BIO_Uptodate, &r10_bio->state); | 
 |  | 
 | 	update_head_pos(slot, r10_bio); | 
 |  | 
 | 	/* | 
 | 	 * | 
 | 	 * Let's see if all mirrored write operations have finished | 
 | 	 * already. | 
 | 	 */ | 
 | 	if (atomic_dec_and_test(&r10_bio->remaining)) { | 
 | 		/* clear the bitmap if all writes complete successfully */ | 
 | 		bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, | 
 | 				r10_bio->sectors, | 
 | 				!test_bit(R10BIO_Degraded, &r10_bio->state), | 
 | 				0); | 
 | 		md_write_end(r10_bio->mddev); | 
 | 		raid_end_bio_io(r10_bio); | 
 | 	} | 
 |  | 
 | 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * RAID10 layout manager | 
 |  * Aswell as the chunksize and raid_disks count, there are two | 
 |  * parameters: near_copies and far_copies. | 
 |  * near_copies * far_copies must be <= raid_disks. | 
 |  * Normally one of these will be 1. | 
 |  * If both are 1, we get raid0. | 
 |  * If near_copies == raid_disks, we get raid1. | 
 |  * | 
 |  * Chunks are layed out in raid0 style with near_copies copies of the | 
 |  * first chunk, followed by near_copies copies of the next chunk and | 
 |  * so on. | 
 |  * If far_copies > 1, then after 1/far_copies of the array has been assigned | 
 |  * as described above, we start again with a device offset of near_copies. | 
 |  * So we effectively have another copy of the whole array further down all | 
 |  * the drives, but with blocks on different drives. | 
 |  * With this layout, and block is never stored twice on the one device. | 
 |  * | 
 |  * raid10_find_phys finds the sector offset of a given virtual sector | 
 |  * on each device that it is on. | 
 |  * | 
 |  * raid10_find_virt does the reverse mapping, from a device and a | 
 |  * sector offset to a virtual address | 
 |  */ | 
 |  | 
 | static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) | 
 | { | 
 | 	int n,f; | 
 | 	sector_t sector; | 
 | 	sector_t chunk; | 
 | 	sector_t stripe; | 
 | 	int dev; | 
 |  | 
 | 	int slot = 0; | 
 |  | 
 | 	/* now calculate first sector/dev */ | 
 | 	chunk = r10bio->sector >> conf->chunk_shift; | 
 | 	sector = r10bio->sector & conf->chunk_mask; | 
 |  | 
 | 	chunk *= conf->near_copies; | 
 | 	stripe = chunk; | 
 | 	dev = sector_div(stripe, conf->raid_disks); | 
 | 	if (conf->far_offset) | 
 | 		stripe *= conf->far_copies; | 
 |  | 
 | 	sector += stripe << conf->chunk_shift; | 
 |  | 
 | 	/* and calculate all the others */ | 
 | 	for (n=0; n < conf->near_copies; n++) { | 
 | 		int d = dev; | 
 | 		sector_t s = sector; | 
 | 		r10bio->devs[slot].addr = sector; | 
 | 		r10bio->devs[slot].devnum = d; | 
 | 		slot++; | 
 |  | 
 | 		for (f = 1; f < conf->far_copies; f++) { | 
 | 			d += conf->near_copies; | 
 | 			if (d >= conf->raid_disks) | 
 | 				d -= conf->raid_disks; | 
 | 			s += conf->stride; | 
 | 			r10bio->devs[slot].devnum = d; | 
 | 			r10bio->devs[slot].addr = s; | 
 | 			slot++; | 
 | 		} | 
 | 		dev++; | 
 | 		if (dev >= conf->raid_disks) { | 
 | 			dev = 0; | 
 | 			sector += (conf->chunk_mask + 1); | 
 | 		} | 
 | 	} | 
 | 	BUG_ON(slot != conf->copies); | 
 | } | 
 |  | 
 | static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) | 
 | { | 
 | 	sector_t offset, chunk, vchunk; | 
 |  | 
 | 	offset = sector & conf->chunk_mask; | 
 | 	if (conf->far_offset) { | 
 | 		int fc; | 
 | 		chunk = sector >> conf->chunk_shift; | 
 | 		fc = sector_div(chunk, conf->far_copies); | 
 | 		dev -= fc * conf->near_copies; | 
 | 		if (dev < 0) | 
 | 			dev += conf->raid_disks; | 
 | 	} else { | 
 | 		while (sector >= conf->stride) { | 
 | 			sector -= conf->stride; | 
 | 			if (dev < conf->near_copies) | 
 | 				dev += conf->raid_disks - conf->near_copies; | 
 | 			else | 
 | 				dev -= conf->near_copies; | 
 | 		} | 
 | 		chunk = sector >> conf->chunk_shift; | 
 | 	} | 
 | 	vchunk = chunk * conf->raid_disks + dev; | 
 | 	sector_div(vchunk, conf->near_copies); | 
 | 	return (vchunk << conf->chunk_shift) + offset; | 
 | } | 
 |  | 
 | /** | 
 |  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged | 
 |  *	@q: request queue | 
 |  *	@bvm: properties of new bio | 
 |  *	@biovec: the request that could be merged to it. | 
 |  * | 
 |  *	Return amount of bytes we can accept at this offset | 
 |  *      If near_copies == raid_disk, there are no striping issues, | 
 |  *      but in that case, the function isn't called at all. | 
 |  */ | 
 | static int raid10_mergeable_bvec(struct request_queue *q, | 
 | 				 struct bvec_merge_data *bvm, | 
 | 				 struct bio_vec *biovec) | 
 | { | 
 | 	mddev_t *mddev = q->queuedata; | 
 | 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); | 
 | 	int max; | 
 | 	unsigned int chunk_sectors = mddev->chunk_size >> 9; | 
 | 	unsigned int bio_sectors = bvm->bi_size >> 9; | 
 |  | 
 | 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; | 
 | 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */ | 
 | 	if (max <= biovec->bv_len && bio_sectors == 0) | 
 | 		return biovec->bv_len; | 
 | 	else | 
 | 		return max; | 
 | } | 
 |  | 
 | /* | 
 |  * This routine returns the disk from which the requested read should | 
 |  * be done. There is a per-array 'next expected sequential IO' sector | 
 |  * number - if this matches on the next IO then we use the last disk. | 
 |  * There is also a per-disk 'last know head position' sector that is | 
 |  * maintained from IRQ contexts, both the normal and the resync IO | 
 |  * completion handlers update this position correctly. If there is no | 
 |  * perfect sequential match then we pick the disk whose head is closest. | 
 |  * | 
 |  * If there are 2 mirrors in the same 2 devices, performance degrades | 
 |  * because position is mirror, not device based. | 
 |  * | 
 |  * The rdev for the device selected will have nr_pending incremented. | 
 |  */ | 
 |  | 
 | /* | 
 |  * FIXME: possibly should rethink readbalancing and do it differently | 
 |  * depending on near_copies / far_copies geometry. | 
 |  */ | 
 | static int read_balance(conf_t *conf, r10bio_t *r10_bio) | 
 | { | 
 | 	const unsigned long this_sector = r10_bio->sector; | 
 | 	int disk, slot, nslot; | 
 | 	const int sectors = r10_bio->sectors; | 
 | 	sector_t new_distance, current_distance; | 
 | 	mdk_rdev_t *rdev; | 
 |  | 
 | 	raid10_find_phys(conf, r10_bio); | 
 | 	rcu_read_lock(); | 
 | 	/* | 
 | 	 * Check if we can balance. We can balance on the whole | 
 | 	 * device if no resync is going on (recovery is ok), or below | 
 | 	 * the resync window. We take the first readable disk when | 
 | 	 * above the resync window. | 
 | 	 */ | 
 | 	if (conf->mddev->recovery_cp < MaxSector | 
 | 	    && (this_sector + sectors >= conf->next_resync)) { | 
 | 		/* make sure that disk is operational */ | 
 | 		slot = 0; | 
 | 		disk = r10_bio->devs[slot].devnum; | 
 |  | 
 | 		while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || | 
 | 		       r10_bio->devs[slot].bio == IO_BLOCKED || | 
 | 		       !test_bit(In_sync, &rdev->flags)) { | 
 | 			slot++; | 
 | 			if (slot == conf->copies) { | 
 | 				slot = 0; | 
 | 				disk = -1; | 
 | 				break; | 
 | 			} | 
 | 			disk = r10_bio->devs[slot].devnum; | 
 | 		} | 
 | 		goto rb_out; | 
 | 	} | 
 |  | 
 |  | 
 | 	/* make sure the disk is operational */ | 
 | 	slot = 0; | 
 | 	disk = r10_bio->devs[slot].devnum; | 
 | 	while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || | 
 | 	       r10_bio->devs[slot].bio == IO_BLOCKED || | 
 | 	       !test_bit(In_sync, &rdev->flags)) { | 
 | 		slot ++; | 
 | 		if (slot == conf->copies) { | 
 | 			disk = -1; | 
 | 			goto rb_out; | 
 | 		} | 
 | 		disk = r10_bio->devs[slot].devnum; | 
 | 	} | 
 |  | 
 |  | 
 | 	current_distance = abs(r10_bio->devs[slot].addr - | 
 | 			       conf->mirrors[disk].head_position); | 
 |  | 
 | 	/* Find the disk whose head is closest, | 
 | 	 * or - for far > 1 - find the closest to partition beginning */ | 
 |  | 
 | 	for (nslot = slot; nslot < conf->copies; nslot++) { | 
 | 		int ndisk = r10_bio->devs[nslot].devnum; | 
 |  | 
 |  | 
 | 		if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || | 
 | 		    r10_bio->devs[nslot].bio == IO_BLOCKED || | 
 | 		    !test_bit(In_sync, &rdev->flags)) | 
 | 			continue; | 
 |  | 
 | 		/* This optimisation is debatable, and completely destroys | 
 | 		 * sequential read speed for 'far copies' arrays.  So only | 
 | 		 * keep it for 'near' arrays, and review those later. | 
 | 		 */ | 
 | 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { | 
 | 			disk = ndisk; | 
 | 			slot = nslot; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* for far > 1 always use the lowest address */ | 
 | 		if (conf->far_copies > 1) | 
 | 			new_distance = r10_bio->devs[nslot].addr; | 
 | 		else | 
 | 			new_distance = abs(r10_bio->devs[nslot].addr - | 
 | 					   conf->mirrors[ndisk].head_position); | 
 | 		if (new_distance < current_distance) { | 
 | 			current_distance = new_distance; | 
 | 			disk = ndisk; | 
 | 			slot = nslot; | 
 | 		} | 
 | 	} | 
 |  | 
 | rb_out: | 
 | 	r10_bio->read_slot = slot; | 
 | /*	conf->next_seq_sect = this_sector + sectors;*/ | 
 |  | 
 | 	if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) | 
 | 		atomic_inc(&conf->mirrors[disk].rdev->nr_pending); | 
 | 	else | 
 | 		disk = -1; | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return disk; | 
 | } | 
 |  | 
 | static void unplug_slaves(mddev_t *mddev) | 
 | { | 
 | 	conf_t *conf = mddev_to_conf(mddev); | 
 | 	int i; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for (i=0; i<mddev->raid_disks; i++) { | 
 | 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); | 
 | 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { | 
 | 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev); | 
 |  | 
 | 			atomic_inc(&rdev->nr_pending); | 
 | 			rcu_read_unlock(); | 
 |  | 
 | 			blk_unplug(r_queue); | 
 |  | 
 | 			rdev_dec_pending(rdev, mddev); | 
 | 			rcu_read_lock(); | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void raid10_unplug(struct request_queue *q) | 
 | { | 
 | 	mddev_t *mddev = q->queuedata; | 
 |  | 
 | 	unplug_slaves(q->queuedata); | 
 | 	md_wakeup_thread(mddev->thread); | 
 | } | 
 |  | 
 | static int raid10_congested(void *data, int bits) | 
 | { | 
 | 	mddev_t *mddev = data; | 
 | 	conf_t *conf = mddev_to_conf(mddev); | 
 | 	int i, ret = 0; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for (i = 0; i < mddev->raid_disks && ret == 0; i++) { | 
 | 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); | 
 | 		if (rdev && !test_bit(Faulty, &rdev->flags)) { | 
 | 			struct request_queue *q = bdev_get_queue(rdev->bdev); | 
 |  | 
 | 			ret |= bdi_congested(&q->backing_dev_info, bits); | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int flush_pending_writes(conf_t *conf) | 
 | { | 
 | 	/* Any writes that have been queued but are awaiting | 
 | 	 * bitmap updates get flushed here. | 
 | 	 * We return 1 if any requests were actually submitted. | 
 | 	 */ | 
 | 	int rv = 0; | 
 |  | 
 | 	spin_lock_irq(&conf->device_lock); | 
 |  | 
 | 	if (conf->pending_bio_list.head) { | 
 | 		struct bio *bio; | 
 | 		bio = bio_list_get(&conf->pending_bio_list); | 
 | 		blk_remove_plug(conf->mddev->queue); | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 | 		/* flush any pending bitmap writes to disk | 
 | 		 * before proceeding w/ I/O */ | 
 | 		bitmap_unplug(conf->mddev->bitmap); | 
 |  | 
 | 		while (bio) { /* submit pending writes */ | 
 | 			struct bio *next = bio->bi_next; | 
 | 			bio->bi_next = NULL; | 
 | 			generic_make_request(bio); | 
 | 			bio = next; | 
 | 		} | 
 | 		rv = 1; | 
 | 	} else | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 | 	return rv; | 
 | } | 
 | /* Barriers.... | 
 |  * Sometimes we need to suspend IO while we do something else, | 
 |  * either some resync/recovery, or reconfigure the array. | 
 |  * To do this we raise a 'barrier'. | 
 |  * The 'barrier' is a counter that can be raised multiple times | 
 |  * to count how many activities are happening which preclude | 
 |  * normal IO. | 
 |  * We can only raise the barrier if there is no pending IO. | 
 |  * i.e. if nr_pending == 0. | 
 |  * We choose only to raise the barrier if no-one is waiting for the | 
 |  * barrier to go down.  This means that as soon as an IO request | 
 |  * is ready, no other operations which require a barrier will start | 
 |  * until the IO request has had a chance. | 
 |  * | 
 |  * So: regular IO calls 'wait_barrier'.  When that returns there | 
 |  *    is no backgroup IO happening,  It must arrange to call | 
 |  *    allow_barrier when it has finished its IO. | 
 |  * backgroup IO calls must call raise_barrier.  Once that returns | 
 |  *    there is no normal IO happeing.  It must arrange to call | 
 |  *    lower_barrier when the particular background IO completes. | 
 |  */ | 
 |  | 
 | static void raise_barrier(conf_t *conf, int force) | 
 | { | 
 | 	BUG_ON(force && !conf->barrier); | 
 | 	spin_lock_irq(&conf->resync_lock); | 
 |  | 
 | 	/* Wait until no block IO is waiting (unless 'force') */ | 
 | 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, | 
 | 			    conf->resync_lock, | 
 | 			    raid10_unplug(conf->mddev->queue)); | 
 |  | 
 | 	/* block any new IO from starting */ | 
 | 	conf->barrier++; | 
 |  | 
 | 	/* No wait for all pending IO to complete */ | 
 | 	wait_event_lock_irq(conf->wait_barrier, | 
 | 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH, | 
 | 			    conf->resync_lock, | 
 | 			    raid10_unplug(conf->mddev->queue)); | 
 |  | 
 | 	spin_unlock_irq(&conf->resync_lock); | 
 | } | 
 |  | 
 | static void lower_barrier(conf_t *conf) | 
 | { | 
 | 	unsigned long flags; | 
 | 	spin_lock_irqsave(&conf->resync_lock, flags); | 
 | 	conf->barrier--; | 
 | 	spin_unlock_irqrestore(&conf->resync_lock, flags); | 
 | 	wake_up(&conf->wait_barrier); | 
 | } | 
 |  | 
 | static void wait_barrier(conf_t *conf) | 
 | { | 
 | 	spin_lock_irq(&conf->resync_lock); | 
 | 	if (conf->barrier) { | 
 | 		conf->nr_waiting++; | 
 | 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier, | 
 | 				    conf->resync_lock, | 
 | 				    raid10_unplug(conf->mddev->queue)); | 
 | 		conf->nr_waiting--; | 
 | 	} | 
 | 	conf->nr_pending++; | 
 | 	spin_unlock_irq(&conf->resync_lock); | 
 | } | 
 |  | 
 | static void allow_barrier(conf_t *conf) | 
 | { | 
 | 	unsigned long flags; | 
 | 	spin_lock_irqsave(&conf->resync_lock, flags); | 
 | 	conf->nr_pending--; | 
 | 	spin_unlock_irqrestore(&conf->resync_lock, flags); | 
 | 	wake_up(&conf->wait_barrier); | 
 | } | 
 |  | 
 | static void freeze_array(conf_t *conf) | 
 | { | 
 | 	/* stop syncio and normal IO and wait for everything to | 
 | 	 * go quiet. | 
 | 	 * We increment barrier and nr_waiting, and then | 
 | 	 * wait until nr_pending match nr_queued+1 | 
 | 	 * This is called in the context of one normal IO request | 
 | 	 * that has failed. Thus any sync request that might be pending | 
 | 	 * will be blocked by nr_pending, and we need to wait for | 
 | 	 * pending IO requests to complete or be queued for re-try. | 
 | 	 * Thus the number queued (nr_queued) plus this request (1) | 
 | 	 * must match the number of pending IOs (nr_pending) before | 
 | 	 * we continue. | 
 | 	 */ | 
 | 	spin_lock_irq(&conf->resync_lock); | 
 | 	conf->barrier++; | 
 | 	conf->nr_waiting++; | 
 | 	wait_event_lock_irq(conf->wait_barrier, | 
 | 			    conf->nr_pending == conf->nr_queued+1, | 
 | 			    conf->resync_lock, | 
 | 			    ({ flush_pending_writes(conf); | 
 | 			       raid10_unplug(conf->mddev->queue); })); | 
 | 	spin_unlock_irq(&conf->resync_lock); | 
 | } | 
 |  | 
 | static void unfreeze_array(conf_t *conf) | 
 | { | 
 | 	/* reverse the effect of the freeze */ | 
 | 	spin_lock_irq(&conf->resync_lock); | 
 | 	conf->barrier--; | 
 | 	conf->nr_waiting--; | 
 | 	wake_up(&conf->wait_barrier); | 
 | 	spin_unlock_irq(&conf->resync_lock); | 
 | } | 
 |  | 
 | static int make_request(struct request_queue *q, struct bio * bio) | 
 | { | 
 | 	mddev_t *mddev = q->queuedata; | 
 | 	conf_t *conf = mddev_to_conf(mddev); | 
 | 	mirror_info_t *mirror; | 
 | 	r10bio_t *r10_bio; | 
 | 	struct bio *read_bio; | 
 | 	int cpu; | 
 | 	int i; | 
 | 	int chunk_sects = conf->chunk_mask + 1; | 
 | 	const int rw = bio_data_dir(bio); | 
 | 	const int do_sync = bio_sync(bio); | 
 | 	struct bio_list bl; | 
 | 	unsigned long flags; | 
 | 	mdk_rdev_t *blocked_rdev; | 
 |  | 
 | 	if (unlikely(bio_barrier(bio))) { | 
 | 		bio_endio(bio, -EOPNOTSUPP); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* If this request crosses a chunk boundary, we need to | 
 | 	 * split it.  This will only happen for 1 PAGE (or less) requests. | 
 | 	 */ | 
 | 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) | 
 | 		      > chunk_sects && | 
 | 		    conf->near_copies < conf->raid_disks)) { | 
 | 		struct bio_pair *bp; | 
 | 		/* Sanity check -- queue functions should prevent this happening */ | 
 | 		if (bio->bi_vcnt != 1 || | 
 | 		    bio->bi_idx != 0) | 
 | 			goto bad_map; | 
 | 		/* This is a one page bio that upper layers | 
 | 		 * refuse to split for us, so we need to split it. | 
 | 		 */ | 
 | 		bp = bio_split(bio, | 
 | 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); | 
 | 		if (make_request(q, &bp->bio1)) | 
 | 			generic_make_request(&bp->bio1); | 
 | 		if (make_request(q, &bp->bio2)) | 
 | 			generic_make_request(&bp->bio2); | 
 |  | 
 | 		bio_pair_release(bp); | 
 | 		return 0; | 
 | 	bad_map: | 
 | 		printk("raid10_make_request bug: can't convert block across chunks" | 
 | 		       " or bigger than %dk %llu %d\n", chunk_sects/2, | 
 | 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10); | 
 |  | 
 | 		bio_io_error(bio); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	md_write_start(mddev, bio); | 
 |  | 
 | 	/* | 
 | 	 * Register the new request and wait if the reconstruction | 
 | 	 * thread has put up a bar for new requests. | 
 | 	 * Continue immediately if no resync is active currently. | 
 | 	 */ | 
 | 	wait_barrier(conf); | 
 |  | 
 | 	cpu = part_stat_lock(); | 
 | 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); | 
 | 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], | 
 | 		      bio_sectors(bio)); | 
 | 	part_stat_unlock(); | 
 |  | 
 | 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); | 
 |  | 
 | 	r10_bio->master_bio = bio; | 
 | 	r10_bio->sectors = bio->bi_size >> 9; | 
 |  | 
 | 	r10_bio->mddev = mddev; | 
 | 	r10_bio->sector = bio->bi_sector; | 
 | 	r10_bio->state = 0; | 
 |  | 
 | 	if (rw == READ) { | 
 | 		/* | 
 | 		 * read balancing logic: | 
 | 		 */ | 
 | 		int disk = read_balance(conf, r10_bio); | 
 | 		int slot = r10_bio->read_slot; | 
 | 		if (disk < 0) { | 
 | 			raid_end_bio_io(r10_bio); | 
 | 			return 0; | 
 | 		} | 
 | 		mirror = conf->mirrors + disk; | 
 |  | 
 | 		read_bio = bio_clone(bio, GFP_NOIO); | 
 |  | 
 | 		r10_bio->devs[slot].bio = read_bio; | 
 |  | 
 | 		read_bio->bi_sector = r10_bio->devs[slot].addr + | 
 | 			mirror->rdev->data_offset; | 
 | 		read_bio->bi_bdev = mirror->rdev->bdev; | 
 | 		read_bio->bi_end_io = raid10_end_read_request; | 
 | 		read_bio->bi_rw = READ | do_sync; | 
 | 		read_bio->bi_private = r10_bio; | 
 |  | 
 | 		generic_make_request(read_bio); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * WRITE: | 
 | 	 */ | 
 | 	/* first select target devices under rcu_lock and | 
 | 	 * inc refcount on their rdev.  Record them by setting | 
 | 	 * bios[x] to bio | 
 | 	 */ | 
 | 	raid10_find_phys(conf, r10_bio); | 
 |  retry_write: | 
 | 	blocked_rdev = NULL; | 
 | 	rcu_read_lock(); | 
 | 	for (i = 0;  i < conf->copies; i++) { | 
 | 		int d = r10_bio->devs[i].devnum; | 
 | 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); | 
 | 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { | 
 | 			atomic_inc(&rdev->nr_pending); | 
 | 			blocked_rdev = rdev; | 
 | 			break; | 
 | 		} | 
 | 		if (rdev && !test_bit(Faulty, &rdev->flags)) { | 
 | 			atomic_inc(&rdev->nr_pending); | 
 | 			r10_bio->devs[i].bio = bio; | 
 | 		} else { | 
 | 			r10_bio->devs[i].bio = NULL; | 
 | 			set_bit(R10BIO_Degraded, &r10_bio->state); | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (unlikely(blocked_rdev)) { | 
 | 		/* Have to wait for this device to get unblocked, then retry */ | 
 | 		int j; | 
 | 		int d; | 
 |  | 
 | 		for (j = 0; j < i; j++) | 
 | 			if (r10_bio->devs[j].bio) { | 
 | 				d = r10_bio->devs[j].devnum; | 
 | 				rdev_dec_pending(conf->mirrors[d].rdev, mddev); | 
 | 			} | 
 | 		allow_barrier(conf); | 
 | 		md_wait_for_blocked_rdev(blocked_rdev, mddev); | 
 | 		wait_barrier(conf); | 
 | 		goto retry_write; | 
 | 	} | 
 |  | 
 | 	atomic_set(&r10_bio->remaining, 0); | 
 |  | 
 | 	bio_list_init(&bl); | 
 | 	for (i = 0; i < conf->copies; i++) { | 
 | 		struct bio *mbio; | 
 | 		int d = r10_bio->devs[i].devnum; | 
 | 		if (!r10_bio->devs[i].bio) | 
 | 			continue; | 
 |  | 
 | 		mbio = bio_clone(bio, GFP_NOIO); | 
 | 		r10_bio->devs[i].bio = mbio; | 
 |  | 
 | 		mbio->bi_sector	= r10_bio->devs[i].addr+ | 
 | 			conf->mirrors[d].rdev->data_offset; | 
 | 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev; | 
 | 		mbio->bi_end_io	= raid10_end_write_request; | 
 | 		mbio->bi_rw = WRITE | do_sync; | 
 | 		mbio->bi_private = r10_bio; | 
 |  | 
 | 		atomic_inc(&r10_bio->remaining); | 
 | 		bio_list_add(&bl, mbio); | 
 | 	} | 
 |  | 
 | 	if (unlikely(!atomic_read(&r10_bio->remaining))) { | 
 | 		/* the array is dead */ | 
 | 		md_write_end(mddev); | 
 | 		raid_end_bio_io(r10_bio); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); | 
 | 	spin_lock_irqsave(&conf->device_lock, flags); | 
 | 	bio_list_merge(&conf->pending_bio_list, &bl); | 
 | 	blk_plug_device(mddev->queue); | 
 | 	spin_unlock_irqrestore(&conf->device_lock, flags); | 
 |  | 
 | 	/* In case raid10d snuck in to freeze_array */ | 
 | 	wake_up(&conf->wait_barrier); | 
 |  | 
 | 	if (do_sync) | 
 | 		md_wakeup_thread(mddev->thread); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void status(struct seq_file *seq, mddev_t *mddev) | 
 | { | 
 | 	conf_t *conf = mddev_to_conf(mddev); | 
 | 	int i; | 
 |  | 
 | 	if (conf->near_copies < conf->raid_disks) | 
 | 		seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); | 
 | 	if (conf->near_copies > 1) | 
 | 		seq_printf(seq, " %d near-copies", conf->near_copies); | 
 | 	if (conf->far_copies > 1) { | 
 | 		if (conf->far_offset) | 
 | 			seq_printf(seq, " %d offset-copies", conf->far_copies); | 
 | 		else | 
 | 			seq_printf(seq, " %d far-copies", conf->far_copies); | 
 | 	} | 
 | 	seq_printf(seq, " [%d/%d] [", conf->raid_disks, | 
 | 					conf->raid_disks - mddev->degraded); | 
 | 	for (i = 0; i < conf->raid_disks; i++) | 
 | 		seq_printf(seq, "%s", | 
 | 			      conf->mirrors[i].rdev && | 
 | 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); | 
 | 	seq_printf(seq, "]"); | 
 | } | 
 |  | 
 | static void error(mddev_t *mddev, mdk_rdev_t *rdev) | 
 | { | 
 | 	char b[BDEVNAME_SIZE]; | 
 | 	conf_t *conf = mddev_to_conf(mddev); | 
 |  | 
 | 	/* | 
 | 	 * If it is not operational, then we have already marked it as dead | 
 | 	 * else if it is the last working disks, ignore the error, let the | 
 | 	 * next level up know. | 
 | 	 * else mark the drive as failed | 
 | 	 */ | 
 | 	if (test_bit(In_sync, &rdev->flags) | 
 | 	    && conf->raid_disks-mddev->degraded == 1) | 
 | 		/* | 
 | 		 * Don't fail the drive, just return an IO error. | 
 | 		 * The test should really be more sophisticated than | 
 | 		 * "working_disks == 1", but it isn't critical, and | 
 | 		 * can wait until we do more sophisticated "is the drive | 
 | 		 * really dead" tests... | 
 | 		 */ | 
 | 		return; | 
 | 	if (test_and_clear_bit(In_sync, &rdev->flags)) { | 
 | 		unsigned long flags; | 
 | 		spin_lock_irqsave(&conf->device_lock, flags); | 
 | 		mddev->degraded++; | 
 | 		spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 		/* | 
 | 		 * if recovery is running, make sure it aborts. | 
 | 		 */ | 
 | 		set_bit(MD_RECOVERY_INTR, &mddev->recovery); | 
 | 	} | 
 | 	set_bit(Faulty, &rdev->flags); | 
 | 	set_bit(MD_CHANGE_DEVS, &mddev->flags); | 
 | 	printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n" | 
 | 		"raid10: Operation continuing on %d devices.\n", | 
 | 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); | 
 | } | 
 |  | 
 | static void print_conf(conf_t *conf) | 
 | { | 
 | 	int i; | 
 | 	mirror_info_t *tmp; | 
 |  | 
 | 	printk("RAID10 conf printout:\n"); | 
 | 	if (!conf) { | 
 | 		printk("(!conf)\n"); | 
 | 		return; | 
 | 	} | 
 | 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, | 
 | 		conf->raid_disks); | 
 |  | 
 | 	for (i = 0; i < conf->raid_disks; i++) { | 
 | 		char b[BDEVNAME_SIZE]; | 
 | 		tmp = conf->mirrors + i; | 
 | 		if (tmp->rdev) | 
 | 			printk(" disk %d, wo:%d, o:%d, dev:%s\n", | 
 | 				i, !test_bit(In_sync, &tmp->rdev->flags), | 
 | 			        !test_bit(Faulty, &tmp->rdev->flags), | 
 | 				bdevname(tmp->rdev->bdev,b)); | 
 | 	} | 
 | } | 
 |  | 
 | static void close_sync(conf_t *conf) | 
 | { | 
 | 	wait_barrier(conf); | 
 | 	allow_barrier(conf); | 
 |  | 
 | 	mempool_destroy(conf->r10buf_pool); | 
 | 	conf->r10buf_pool = NULL; | 
 | } | 
 |  | 
 | /* check if there are enough drives for | 
 |  * every block to appear on atleast one | 
 |  */ | 
 | static int enough(conf_t *conf) | 
 | { | 
 | 	int first = 0; | 
 |  | 
 | 	do { | 
 | 		int n = conf->copies; | 
 | 		int cnt = 0; | 
 | 		while (n--) { | 
 | 			if (conf->mirrors[first].rdev) | 
 | 				cnt++; | 
 | 			first = (first+1) % conf->raid_disks; | 
 | 		} | 
 | 		if (cnt == 0) | 
 | 			return 0; | 
 | 	} while (first != 0); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int raid10_spare_active(mddev_t *mddev) | 
 | { | 
 | 	int i; | 
 | 	conf_t *conf = mddev->private; | 
 | 	mirror_info_t *tmp; | 
 |  | 
 | 	/* | 
 | 	 * Find all non-in_sync disks within the RAID10 configuration | 
 | 	 * and mark them in_sync | 
 | 	 */ | 
 | 	for (i = 0; i < conf->raid_disks; i++) { | 
 | 		tmp = conf->mirrors + i; | 
 | 		if (tmp->rdev | 
 | 		    && !test_bit(Faulty, &tmp->rdev->flags) | 
 | 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { | 
 | 			unsigned long flags; | 
 | 			spin_lock_irqsave(&conf->device_lock, flags); | 
 | 			mddev->degraded--; | 
 | 			spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	print_conf(conf); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) | 
 | { | 
 | 	conf_t *conf = mddev->private; | 
 | 	int err = -EEXIST; | 
 | 	int mirror; | 
 | 	mirror_info_t *p; | 
 | 	int first = 0; | 
 | 	int last = mddev->raid_disks - 1; | 
 |  | 
 | 	if (mddev->recovery_cp < MaxSector) | 
 | 		/* only hot-add to in-sync arrays, as recovery is | 
 | 		 * very different from resync | 
 | 		 */ | 
 | 		return -EBUSY; | 
 | 	if (!enough(conf)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (rdev->raid_disk >= 0) | 
 | 		first = last = rdev->raid_disk; | 
 |  | 
 | 	if (rdev->saved_raid_disk >= 0 && | 
 | 	    rdev->saved_raid_disk >= first && | 
 | 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL) | 
 | 		mirror = rdev->saved_raid_disk; | 
 | 	else | 
 | 		mirror = first; | 
 | 	for ( ; mirror <= last ; mirror++) | 
 | 		if ( !(p=conf->mirrors+mirror)->rdev) { | 
 |  | 
 | 			blk_queue_stack_limits(mddev->queue, | 
 | 					       rdev->bdev->bd_disk->queue); | 
 | 			/* as we don't honour merge_bvec_fn, we must never risk | 
 | 			 * violating it, so limit ->max_sector to one PAGE, as | 
 | 			 * a one page request is never in violation. | 
 | 			 */ | 
 | 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn && | 
 | 			    mddev->queue->max_sectors > (PAGE_SIZE>>9)) | 
 | 				mddev->queue->max_sectors = (PAGE_SIZE>>9); | 
 |  | 
 | 			p->head_position = 0; | 
 | 			rdev->raid_disk = mirror; | 
 | 			err = 0; | 
 | 			if (rdev->saved_raid_disk != mirror) | 
 | 				conf->fullsync = 1; | 
 | 			rcu_assign_pointer(p->rdev, rdev); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 	print_conf(conf); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int raid10_remove_disk(mddev_t *mddev, int number) | 
 | { | 
 | 	conf_t *conf = mddev->private; | 
 | 	int err = 0; | 
 | 	mdk_rdev_t *rdev; | 
 | 	mirror_info_t *p = conf->mirrors+ number; | 
 |  | 
 | 	print_conf(conf); | 
 | 	rdev = p->rdev; | 
 | 	if (rdev) { | 
 | 		if (test_bit(In_sync, &rdev->flags) || | 
 | 		    atomic_read(&rdev->nr_pending)) { | 
 | 			err = -EBUSY; | 
 | 			goto abort; | 
 | 		} | 
 | 		/* Only remove faulty devices in recovery | 
 | 		 * is not possible. | 
 | 		 */ | 
 | 		if (!test_bit(Faulty, &rdev->flags) && | 
 | 		    enough(conf)) { | 
 | 			err = -EBUSY; | 
 | 			goto abort; | 
 | 		} | 
 | 		p->rdev = NULL; | 
 | 		synchronize_rcu(); | 
 | 		if (atomic_read(&rdev->nr_pending)) { | 
 | 			/* lost the race, try later */ | 
 | 			err = -EBUSY; | 
 | 			p->rdev = rdev; | 
 | 		} | 
 | 	} | 
 | abort: | 
 |  | 
 | 	print_conf(conf); | 
 | 	return err; | 
 | } | 
 |  | 
 |  | 
 | static void end_sync_read(struct bio *bio, int error) | 
 | { | 
 | 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); | 
 | 	conf_t *conf = mddev_to_conf(r10_bio->mddev); | 
 | 	int i,d; | 
 |  | 
 | 	for (i=0; i<conf->copies; i++) | 
 | 		if (r10_bio->devs[i].bio == bio) | 
 | 			break; | 
 | 	BUG_ON(i == conf->copies); | 
 | 	update_head_pos(i, r10_bio); | 
 | 	d = r10_bio->devs[i].devnum; | 
 |  | 
 | 	if (test_bit(BIO_UPTODATE, &bio->bi_flags)) | 
 | 		set_bit(R10BIO_Uptodate, &r10_bio->state); | 
 | 	else { | 
 | 		atomic_add(r10_bio->sectors, | 
 | 			   &conf->mirrors[d].rdev->corrected_errors); | 
 | 		if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) | 
 | 			md_error(r10_bio->mddev, | 
 | 				 conf->mirrors[d].rdev); | 
 | 	} | 
 |  | 
 | 	/* for reconstruct, we always reschedule after a read. | 
 | 	 * for resync, only after all reads | 
 | 	 */ | 
 | 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) || | 
 | 	    atomic_dec_and_test(&r10_bio->remaining)) { | 
 | 		/* we have read all the blocks, | 
 | 		 * do the comparison in process context in raid10d | 
 | 		 */ | 
 | 		reschedule_retry(r10_bio); | 
 | 	} | 
 | 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); | 
 | } | 
 |  | 
 | static void end_sync_write(struct bio *bio, int error) | 
 | { | 
 | 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | 
 | 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); | 
 | 	mddev_t *mddev = r10_bio->mddev; | 
 | 	conf_t *conf = mddev_to_conf(mddev); | 
 | 	int i,d; | 
 |  | 
 | 	for (i = 0; i < conf->copies; i++) | 
 | 		if (r10_bio->devs[i].bio == bio) | 
 | 			break; | 
 | 	d = r10_bio->devs[i].devnum; | 
 |  | 
 | 	if (!uptodate) | 
 | 		md_error(mddev, conf->mirrors[d].rdev); | 
 |  | 
 | 	update_head_pos(i, r10_bio); | 
 |  | 
 | 	while (atomic_dec_and_test(&r10_bio->remaining)) { | 
 | 		if (r10_bio->master_bio == NULL) { | 
 | 			/* the primary of several recovery bios */ | 
 | 			md_done_sync(mddev, r10_bio->sectors, 1); | 
 | 			put_buf(r10_bio); | 
 | 			break; | 
 | 		} else { | 
 | 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; | 
 | 			put_buf(r10_bio); | 
 | 			r10_bio = r10_bio2; | 
 | 		} | 
 | 	} | 
 | 	rdev_dec_pending(conf->mirrors[d].rdev, mddev); | 
 | } | 
 |  | 
 | /* | 
 |  * Note: sync and recover and handled very differently for raid10 | 
 |  * This code is for resync. | 
 |  * For resync, we read through virtual addresses and read all blocks. | 
 |  * If there is any error, we schedule a write.  The lowest numbered | 
 |  * drive is authoritative. | 
 |  * However requests come for physical address, so we need to map. | 
 |  * For every physical address there are raid_disks/copies virtual addresses, | 
 |  * which is always are least one, but is not necessarly an integer. | 
 |  * This means that a physical address can span multiple chunks, so we may | 
 |  * have to submit multiple io requests for a single sync request. | 
 |  */ | 
 | /* | 
 |  * We check if all blocks are in-sync and only write to blocks that | 
 |  * aren't in sync | 
 |  */ | 
 | static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) | 
 | { | 
 | 	conf_t *conf = mddev_to_conf(mddev); | 
 | 	int i, first; | 
 | 	struct bio *tbio, *fbio; | 
 |  | 
 | 	atomic_set(&r10_bio->remaining, 1); | 
 |  | 
 | 	/* find the first device with a block */ | 
 | 	for (i=0; i<conf->copies; i++) | 
 | 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) | 
 | 			break; | 
 |  | 
 | 	if (i == conf->copies) | 
 | 		goto done; | 
 |  | 
 | 	first = i; | 
 | 	fbio = r10_bio->devs[i].bio; | 
 |  | 
 | 	/* now find blocks with errors */ | 
 | 	for (i=0 ; i < conf->copies ; i++) { | 
 | 		int  j, d; | 
 | 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); | 
 |  | 
 | 		tbio = r10_bio->devs[i].bio; | 
 |  | 
 | 		if (tbio->bi_end_io != end_sync_read) | 
 | 			continue; | 
 | 		if (i == first) | 
 | 			continue; | 
 | 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { | 
 | 			/* We know that the bi_io_vec layout is the same for | 
 | 			 * both 'first' and 'i', so we just compare them. | 
 | 			 * All vec entries are PAGE_SIZE; | 
 | 			 */ | 
 | 			for (j = 0; j < vcnt; j++) | 
 | 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), | 
 | 					   page_address(tbio->bi_io_vec[j].bv_page), | 
 | 					   PAGE_SIZE)) | 
 | 					break; | 
 | 			if (j == vcnt) | 
 | 				continue; | 
 | 			mddev->resync_mismatches += r10_bio->sectors; | 
 | 		} | 
 | 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) | 
 | 			/* Don't fix anything. */ | 
 | 			continue; | 
 | 		/* Ok, we need to write this bio | 
 | 		 * First we need to fixup bv_offset, bv_len and | 
 | 		 * bi_vecs, as the read request might have corrupted these | 
 | 		 */ | 
 | 		tbio->bi_vcnt = vcnt; | 
 | 		tbio->bi_size = r10_bio->sectors << 9; | 
 | 		tbio->bi_idx = 0; | 
 | 		tbio->bi_phys_segments = 0; | 
 | 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1); | 
 | 		tbio->bi_flags |= 1 << BIO_UPTODATE; | 
 | 		tbio->bi_next = NULL; | 
 | 		tbio->bi_rw = WRITE; | 
 | 		tbio->bi_private = r10_bio; | 
 | 		tbio->bi_sector = r10_bio->devs[i].addr; | 
 |  | 
 | 		for (j=0; j < vcnt ; j++) { | 
 | 			tbio->bi_io_vec[j].bv_offset = 0; | 
 | 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE; | 
 |  | 
 | 			memcpy(page_address(tbio->bi_io_vec[j].bv_page), | 
 | 			       page_address(fbio->bi_io_vec[j].bv_page), | 
 | 			       PAGE_SIZE); | 
 | 		} | 
 | 		tbio->bi_end_io = end_sync_write; | 
 |  | 
 | 		d = r10_bio->devs[i].devnum; | 
 | 		atomic_inc(&conf->mirrors[d].rdev->nr_pending); | 
 | 		atomic_inc(&r10_bio->remaining); | 
 | 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); | 
 |  | 
 | 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset; | 
 | 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev; | 
 | 		generic_make_request(tbio); | 
 | 	} | 
 |  | 
 | done: | 
 | 	if (atomic_dec_and_test(&r10_bio->remaining)) { | 
 | 		md_done_sync(mddev, r10_bio->sectors, 1); | 
 | 		put_buf(r10_bio); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Now for the recovery code. | 
 |  * Recovery happens across physical sectors. | 
 |  * We recover all non-is_sync drives by finding the virtual address of | 
 |  * each, and then choose a working drive that also has that virt address. | 
 |  * There is a separate r10_bio for each non-in_sync drive. | 
 |  * Only the first two slots are in use. The first for reading, | 
 |  * The second for writing. | 
 |  * | 
 |  */ | 
 |  | 
 | static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) | 
 | { | 
 | 	conf_t *conf = mddev_to_conf(mddev); | 
 | 	int i, d; | 
 | 	struct bio *bio, *wbio; | 
 |  | 
 |  | 
 | 	/* move the pages across to the second bio | 
 | 	 * and submit the write request | 
 | 	 */ | 
 | 	bio = r10_bio->devs[0].bio; | 
 | 	wbio = r10_bio->devs[1].bio; | 
 | 	for (i=0; i < wbio->bi_vcnt; i++) { | 
 | 		struct page *p = bio->bi_io_vec[i].bv_page; | 
 | 		bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; | 
 | 		wbio->bi_io_vec[i].bv_page = p; | 
 | 	} | 
 | 	d = r10_bio->devs[1].devnum; | 
 |  | 
 | 	atomic_inc(&conf->mirrors[d].rdev->nr_pending); | 
 | 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); | 
 | 	if (test_bit(R10BIO_Uptodate, &r10_bio->state)) | 
 | 		generic_make_request(wbio); | 
 | 	else | 
 | 		bio_endio(wbio, -EIO); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * This is a kernel thread which: | 
 |  * | 
 |  *	1.	Retries failed read operations on working mirrors. | 
 |  *	2.	Updates the raid superblock when problems encounter. | 
 |  *	3.	Performs writes following reads for array synchronising. | 
 |  */ | 
 |  | 
 | static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) | 
 | { | 
 | 	int sect = 0; /* Offset from r10_bio->sector */ | 
 | 	int sectors = r10_bio->sectors; | 
 | 	mdk_rdev_t*rdev; | 
 | 	while(sectors) { | 
 | 		int s = sectors; | 
 | 		int sl = r10_bio->read_slot; | 
 | 		int success = 0; | 
 | 		int start; | 
 |  | 
 | 		if (s > (PAGE_SIZE>>9)) | 
 | 			s = PAGE_SIZE >> 9; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		do { | 
 | 			int d = r10_bio->devs[sl].devnum; | 
 | 			rdev = rcu_dereference(conf->mirrors[d].rdev); | 
 | 			if (rdev && | 
 | 			    test_bit(In_sync, &rdev->flags)) { | 
 | 				atomic_inc(&rdev->nr_pending); | 
 | 				rcu_read_unlock(); | 
 | 				success = sync_page_io(rdev->bdev, | 
 | 						       r10_bio->devs[sl].addr + | 
 | 						       sect + rdev->data_offset, | 
 | 						       s<<9, | 
 | 						       conf->tmppage, READ); | 
 | 				rdev_dec_pending(rdev, mddev); | 
 | 				rcu_read_lock(); | 
 | 				if (success) | 
 | 					break; | 
 | 			} | 
 | 			sl++; | 
 | 			if (sl == conf->copies) | 
 | 				sl = 0; | 
 | 		} while (!success && sl != r10_bio->read_slot); | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		if (!success) { | 
 | 			/* Cannot read from anywhere -- bye bye array */ | 
 | 			int dn = r10_bio->devs[r10_bio->read_slot].devnum; | 
 | 			md_error(mddev, conf->mirrors[dn].rdev); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		start = sl; | 
 | 		/* write it back and re-read */ | 
 | 		rcu_read_lock(); | 
 | 		while (sl != r10_bio->read_slot) { | 
 | 			int d; | 
 | 			if (sl==0) | 
 | 				sl = conf->copies; | 
 | 			sl--; | 
 | 			d = r10_bio->devs[sl].devnum; | 
 | 			rdev = rcu_dereference(conf->mirrors[d].rdev); | 
 | 			if (rdev && | 
 | 			    test_bit(In_sync, &rdev->flags)) { | 
 | 				atomic_inc(&rdev->nr_pending); | 
 | 				rcu_read_unlock(); | 
 | 				atomic_add(s, &rdev->corrected_errors); | 
 | 				if (sync_page_io(rdev->bdev, | 
 | 						 r10_bio->devs[sl].addr + | 
 | 						 sect + rdev->data_offset, | 
 | 						 s<<9, conf->tmppage, WRITE) | 
 | 				    == 0) | 
 | 					/* Well, this device is dead */ | 
 | 					md_error(mddev, rdev); | 
 | 				rdev_dec_pending(rdev, mddev); | 
 | 				rcu_read_lock(); | 
 | 			} | 
 | 		} | 
 | 		sl = start; | 
 | 		while (sl != r10_bio->read_slot) { | 
 | 			int d; | 
 | 			if (sl==0) | 
 | 				sl = conf->copies; | 
 | 			sl--; | 
 | 			d = r10_bio->devs[sl].devnum; | 
 | 			rdev = rcu_dereference(conf->mirrors[d].rdev); | 
 | 			if (rdev && | 
 | 			    test_bit(In_sync, &rdev->flags)) { | 
 | 				char b[BDEVNAME_SIZE]; | 
 | 				atomic_inc(&rdev->nr_pending); | 
 | 				rcu_read_unlock(); | 
 | 				if (sync_page_io(rdev->bdev, | 
 | 						 r10_bio->devs[sl].addr + | 
 | 						 sect + rdev->data_offset, | 
 | 						 s<<9, conf->tmppage, READ) == 0) | 
 | 					/* Well, this device is dead */ | 
 | 					md_error(mddev, rdev); | 
 | 				else | 
 | 					printk(KERN_INFO | 
 | 					       "raid10:%s: read error corrected" | 
 | 					       " (%d sectors at %llu on %s)\n", | 
 | 					       mdname(mddev), s, | 
 | 					       (unsigned long long)(sect+ | 
 | 					            rdev->data_offset), | 
 | 					       bdevname(rdev->bdev, b)); | 
 |  | 
 | 				rdev_dec_pending(rdev, mddev); | 
 | 				rcu_read_lock(); | 
 | 			} | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		sectors -= s; | 
 | 		sect += s; | 
 | 	} | 
 | } | 
 |  | 
 | static void raid10d(mddev_t *mddev) | 
 | { | 
 | 	r10bio_t *r10_bio; | 
 | 	struct bio *bio; | 
 | 	unsigned long flags; | 
 | 	conf_t *conf = mddev_to_conf(mddev); | 
 | 	struct list_head *head = &conf->retry_list; | 
 | 	int unplug=0; | 
 | 	mdk_rdev_t *rdev; | 
 |  | 
 | 	md_check_recovery(mddev); | 
 |  | 
 | 	for (;;) { | 
 | 		char b[BDEVNAME_SIZE]; | 
 |  | 
 | 		unplug += flush_pending_writes(conf); | 
 |  | 
 | 		spin_lock_irqsave(&conf->device_lock, flags); | 
 | 		if (list_empty(head)) { | 
 | 			spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 			break; | 
 | 		} | 
 | 		r10_bio = list_entry(head->prev, r10bio_t, retry_list); | 
 | 		list_del(head->prev); | 
 | 		conf->nr_queued--; | 
 | 		spin_unlock_irqrestore(&conf->device_lock, flags); | 
 |  | 
 | 		mddev = r10_bio->mddev; | 
 | 		conf = mddev_to_conf(mddev); | 
 | 		if (test_bit(R10BIO_IsSync, &r10_bio->state)) { | 
 | 			sync_request_write(mddev, r10_bio); | 
 | 			unplug = 1; | 
 | 		} else 	if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { | 
 | 			recovery_request_write(mddev, r10_bio); | 
 | 			unplug = 1; | 
 | 		} else { | 
 | 			int mirror; | 
 | 			/* we got a read error. Maybe the drive is bad.  Maybe just | 
 | 			 * the block and we can fix it. | 
 | 			 * We freeze all other IO, and try reading the block from | 
 | 			 * other devices.  When we find one, we re-write | 
 | 			 * and check it that fixes the read error. | 
 | 			 * This is all done synchronously while the array is | 
 | 			 * frozen. | 
 | 			 */ | 
 | 			if (mddev->ro == 0) { | 
 | 				freeze_array(conf); | 
 | 				fix_read_error(conf, mddev, r10_bio); | 
 | 				unfreeze_array(conf); | 
 | 			} | 
 |  | 
 | 			bio = r10_bio->devs[r10_bio->read_slot].bio; | 
 | 			r10_bio->devs[r10_bio->read_slot].bio = | 
 | 				mddev->ro ? IO_BLOCKED : NULL; | 
 | 			mirror = read_balance(conf, r10_bio); | 
 | 			if (mirror == -1) { | 
 | 				printk(KERN_ALERT "raid10: %s: unrecoverable I/O" | 
 | 				       " read error for block %llu\n", | 
 | 				       bdevname(bio->bi_bdev,b), | 
 | 				       (unsigned long long)r10_bio->sector); | 
 | 				raid_end_bio_io(r10_bio); | 
 | 				bio_put(bio); | 
 | 			} else { | 
 | 				const int do_sync = bio_sync(r10_bio->master_bio); | 
 | 				bio_put(bio); | 
 | 				rdev = conf->mirrors[mirror].rdev; | 
 | 				if (printk_ratelimit()) | 
 | 					printk(KERN_ERR "raid10: %s: redirecting sector %llu to" | 
 | 					       " another mirror\n", | 
 | 					       bdevname(rdev->bdev,b), | 
 | 					       (unsigned long long)r10_bio->sector); | 
 | 				bio = bio_clone(r10_bio->master_bio, GFP_NOIO); | 
 | 				r10_bio->devs[r10_bio->read_slot].bio = bio; | 
 | 				bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr | 
 | 					+ rdev->data_offset; | 
 | 				bio->bi_bdev = rdev->bdev; | 
 | 				bio->bi_rw = READ | do_sync; | 
 | 				bio->bi_private = r10_bio; | 
 | 				bio->bi_end_io = raid10_end_read_request; | 
 | 				unplug = 1; | 
 | 				generic_make_request(bio); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	if (unplug) | 
 | 		unplug_slaves(mddev); | 
 | } | 
 |  | 
 |  | 
 | static int init_resync(conf_t *conf) | 
 | { | 
 | 	int buffs; | 
 |  | 
 | 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; | 
 | 	BUG_ON(conf->r10buf_pool); | 
 | 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); | 
 | 	if (!conf->r10buf_pool) | 
 | 		return -ENOMEM; | 
 | 	conf->next_resync = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * perform a "sync" on one "block" | 
 |  * | 
 |  * We need to make sure that no normal I/O request - particularly write | 
 |  * requests - conflict with active sync requests. | 
 |  * | 
 |  * This is achieved by tracking pending requests and a 'barrier' concept | 
 |  * that can be installed to exclude normal IO requests. | 
 |  * | 
 |  * Resync and recovery are handled very differently. | 
 |  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. | 
 |  * | 
 |  * For resync, we iterate over virtual addresses, read all copies, | 
 |  * and update if there are differences.  If only one copy is live, | 
 |  * skip it. | 
 |  * For recovery, we iterate over physical addresses, read a good | 
 |  * value for each non-in_sync drive, and over-write. | 
 |  * | 
 |  * So, for recovery we may have several outstanding complex requests for a | 
 |  * given address, one for each out-of-sync device.  We model this by allocating | 
 |  * a number of r10_bio structures, one for each out-of-sync device. | 
 |  * As we setup these structures, we collect all bio's together into a list | 
 |  * which we then process collectively to add pages, and then process again | 
 |  * to pass to generic_make_request. | 
 |  * | 
 |  * The r10_bio structures are linked using a borrowed master_bio pointer. | 
 |  * This link is counted in ->remaining.  When the r10_bio that points to NULL | 
 |  * has its remaining count decremented to 0, the whole complex operation | 
 |  * is complete. | 
 |  * | 
 |  */ | 
 |  | 
 | static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) | 
 | { | 
 | 	conf_t *conf = mddev_to_conf(mddev); | 
 | 	r10bio_t *r10_bio; | 
 | 	struct bio *biolist = NULL, *bio; | 
 | 	sector_t max_sector, nr_sectors; | 
 | 	int disk; | 
 | 	int i; | 
 | 	int max_sync; | 
 | 	int sync_blocks; | 
 |  | 
 | 	sector_t sectors_skipped = 0; | 
 | 	int chunks_skipped = 0; | 
 |  | 
 | 	if (!conf->r10buf_pool) | 
 | 		if (init_resync(conf)) | 
 | 			return 0; | 
 |  | 
 |  skipped: | 
 | 	max_sector = mddev->size << 1; | 
 | 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) | 
 | 		max_sector = mddev->resync_max_sectors; | 
 | 	if (sector_nr >= max_sector) { | 
 | 		/* If we aborted, we need to abort the | 
 | 		 * sync on the 'current' bitmap chucks (there can | 
 | 		 * be several when recovering multiple devices). | 
 | 		 * as we may have started syncing it but not finished. | 
 | 		 * We can find the current address in | 
 | 		 * mddev->curr_resync, but for recovery, | 
 | 		 * we need to convert that to several | 
 | 		 * virtual addresses. | 
 | 		 */ | 
 | 		if (mddev->curr_resync < max_sector) { /* aborted */ | 
 | 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) | 
 | 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync, | 
 | 						&sync_blocks, 1); | 
 | 			else for (i=0; i<conf->raid_disks; i++) { | 
 | 				sector_t sect = | 
 | 					raid10_find_virt(conf, mddev->curr_resync, i); | 
 | 				bitmap_end_sync(mddev->bitmap, sect, | 
 | 						&sync_blocks, 1); | 
 | 			} | 
 | 		} else /* completed sync */ | 
 | 			conf->fullsync = 0; | 
 |  | 
 | 		bitmap_close_sync(mddev->bitmap); | 
 | 		close_sync(conf); | 
 | 		*skipped = 1; | 
 | 		return sectors_skipped; | 
 | 	} | 
 | 	if (chunks_skipped >= conf->raid_disks) { | 
 | 		/* if there has been nothing to do on any drive, | 
 | 		 * then there is nothing to do at all.. | 
 | 		 */ | 
 | 		*skipped = 1; | 
 | 		return (max_sector - sector_nr) + sectors_skipped; | 
 | 	} | 
 |  | 
 | 	if (max_sector > mddev->resync_max) | 
 | 		max_sector = mddev->resync_max; /* Don't do IO beyond here */ | 
 |  | 
 | 	/* make sure whole request will fit in a chunk - if chunks | 
 | 	 * are meaningful | 
 | 	 */ | 
 | 	if (conf->near_copies < conf->raid_disks && | 
 | 	    max_sector > (sector_nr | conf->chunk_mask)) | 
 | 		max_sector = (sector_nr | conf->chunk_mask) + 1; | 
 | 	/* | 
 | 	 * If there is non-resync activity waiting for us then | 
 | 	 * put in a delay to throttle resync. | 
 | 	 */ | 
 | 	if (!go_faster && conf->nr_waiting) | 
 | 		msleep_interruptible(1000); | 
 |  | 
 | 	bitmap_cond_end_sync(mddev->bitmap, sector_nr); | 
 |  | 
 | 	/* Again, very different code for resync and recovery. | 
 | 	 * Both must result in an r10bio with a list of bios that | 
 | 	 * have bi_end_io, bi_sector, bi_bdev set, | 
 | 	 * and bi_private set to the r10bio. | 
 | 	 * For recovery, we may actually create several r10bios | 
 | 	 * with 2 bios in each, that correspond to the bios in the main one. | 
 | 	 * In this case, the subordinate r10bios link back through a | 
 | 	 * borrowed master_bio pointer, and the counter in the master | 
 | 	 * includes a ref from each subordinate. | 
 | 	 */ | 
 | 	/* First, we decide what to do and set ->bi_end_io | 
 | 	 * To end_sync_read if we want to read, and | 
 | 	 * end_sync_write if we will want to write. | 
 | 	 */ | 
 |  | 
 | 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); | 
 | 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { | 
 | 		/* recovery... the complicated one */ | 
 | 		int i, j, k; | 
 | 		r10_bio = NULL; | 
 |  | 
 | 		for (i=0 ; i<conf->raid_disks; i++) | 
 | 			if (conf->mirrors[i].rdev && | 
 | 			    !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { | 
 | 				int still_degraded = 0; | 
 | 				/* want to reconstruct this device */ | 
 | 				r10bio_t *rb2 = r10_bio; | 
 | 				sector_t sect = raid10_find_virt(conf, sector_nr, i); | 
 | 				int must_sync; | 
 | 				/* Unless we are doing a full sync, we only need | 
 | 				 * to recover the block if it is set in the bitmap | 
 | 				 */ | 
 | 				must_sync = bitmap_start_sync(mddev->bitmap, sect, | 
 | 							      &sync_blocks, 1); | 
 | 				if (sync_blocks < max_sync) | 
 | 					max_sync = sync_blocks; | 
 | 				if (!must_sync && | 
 | 				    !conf->fullsync) { | 
 | 					/* yep, skip the sync_blocks here, but don't assume | 
 | 					 * that there will never be anything to do here | 
 | 					 */ | 
 | 					chunks_skipped = -1; | 
 | 					continue; | 
 | 				} | 
 |  | 
 | 				r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); | 
 | 				raise_barrier(conf, rb2 != NULL); | 
 | 				atomic_set(&r10_bio->remaining, 0); | 
 |  | 
 | 				r10_bio->master_bio = (struct bio*)rb2; | 
 | 				if (rb2) | 
 | 					atomic_inc(&rb2->remaining); | 
 | 				r10_bio->mddev = mddev; | 
 | 				set_bit(R10BIO_IsRecover, &r10_bio->state); | 
 | 				r10_bio->sector = sect; | 
 |  | 
 | 				raid10_find_phys(conf, r10_bio); | 
 | 				/* Need to check if this section will still be | 
 | 				 * degraded | 
 | 				 */ | 
 | 				for (j=0; j<conf->copies;j++) { | 
 | 					int d = r10_bio->devs[j].devnum; | 
 | 					if (conf->mirrors[d].rdev == NULL || | 
 | 					    test_bit(Faulty, &conf->mirrors[d].rdev->flags)) { | 
 | 						still_degraded = 1; | 
 | 						break; | 
 | 					} | 
 | 				} | 
 | 				must_sync = bitmap_start_sync(mddev->bitmap, sect, | 
 | 							      &sync_blocks, still_degraded); | 
 |  | 
 | 				for (j=0; j<conf->copies;j++) { | 
 | 					int d = r10_bio->devs[j].devnum; | 
 | 					if (conf->mirrors[d].rdev && | 
 | 					    test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { | 
 | 						/* This is where we read from */ | 
 | 						bio = r10_bio->devs[0].bio; | 
 | 						bio->bi_next = biolist; | 
 | 						biolist = bio; | 
 | 						bio->bi_private = r10_bio; | 
 | 						bio->bi_end_io = end_sync_read; | 
 | 						bio->bi_rw = READ; | 
 | 						bio->bi_sector = r10_bio->devs[j].addr + | 
 | 							conf->mirrors[d].rdev->data_offset; | 
 | 						bio->bi_bdev = conf->mirrors[d].rdev->bdev; | 
 | 						atomic_inc(&conf->mirrors[d].rdev->nr_pending); | 
 | 						atomic_inc(&r10_bio->remaining); | 
 | 						/* and we write to 'i' */ | 
 |  | 
 | 						for (k=0; k<conf->copies; k++) | 
 | 							if (r10_bio->devs[k].devnum == i) | 
 | 								break; | 
 | 						BUG_ON(k == conf->copies); | 
 | 						bio = r10_bio->devs[1].bio; | 
 | 						bio->bi_next = biolist; | 
 | 						biolist = bio; | 
 | 						bio->bi_private = r10_bio; | 
 | 						bio->bi_end_io = end_sync_write; | 
 | 						bio->bi_rw = WRITE; | 
 | 						bio->bi_sector = r10_bio->devs[k].addr + | 
 | 							conf->mirrors[i].rdev->data_offset; | 
 | 						bio->bi_bdev = conf->mirrors[i].rdev->bdev; | 
 |  | 
 | 						r10_bio->devs[0].devnum = d; | 
 | 						r10_bio->devs[1].devnum = i; | 
 |  | 
 | 						break; | 
 | 					} | 
 | 				} | 
 | 				if (j == conf->copies) { | 
 | 					/* Cannot recover, so abort the recovery */ | 
 | 					put_buf(r10_bio); | 
 | 					if (rb2) | 
 | 						atomic_dec(&rb2->remaining); | 
 | 					r10_bio = rb2; | 
 | 					if (!test_and_set_bit(MD_RECOVERY_INTR, | 
 | 							      &mddev->recovery)) | 
 | 						printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", | 
 | 						       mdname(mddev)); | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 		if (biolist == NULL) { | 
 | 			while (r10_bio) { | 
 | 				r10bio_t *rb2 = r10_bio; | 
 | 				r10_bio = (r10bio_t*) rb2->master_bio; | 
 | 				rb2->master_bio = NULL; | 
 | 				put_buf(rb2); | 
 | 			} | 
 | 			goto giveup; | 
 | 		} | 
 | 	} else { | 
 | 		/* resync. Schedule a read for every block at this virt offset */ | 
 | 		int count = 0; | 
 |  | 
 | 		if (!bitmap_start_sync(mddev->bitmap, sector_nr, | 
 | 				       &sync_blocks, mddev->degraded) && | 
 | 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { | 
 | 			/* We can skip this block */ | 
 | 			*skipped = 1; | 
 | 			return sync_blocks + sectors_skipped; | 
 | 		} | 
 | 		if (sync_blocks < max_sync) | 
 | 			max_sync = sync_blocks; | 
 | 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); | 
 |  | 
 | 		r10_bio->mddev = mddev; | 
 | 		atomic_set(&r10_bio->remaining, 0); | 
 | 		raise_barrier(conf, 0); | 
 | 		conf->next_resync = sector_nr; | 
 |  | 
 | 		r10_bio->master_bio = NULL; | 
 | 		r10_bio->sector = sector_nr; | 
 | 		set_bit(R10BIO_IsSync, &r10_bio->state); | 
 | 		raid10_find_phys(conf, r10_bio); | 
 | 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; | 
 |  | 
 | 		for (i=0; i<conf->copies; i++) { | 
 | 			int d = r10_bio->devs[i].devnum; | 
 | 			bio = r10_bio->devs[i].bio; | 
 | 			bio->bi_end_io = NULL; | 
 | 			clear_bit(BIO_UPTODATE, &bio->bi_flags); | 
 | 			if (conf->mirrors[d].rdev == NULL || | 
 | 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags)) | 
 | 				continue; | 
 | 			atomic_inc(&conf->mirrors[d].rdev->nr_pending); | 
 | 			atomic_inc(&r10_bio->remaining); | 
 | 			bio->bi_next = biolist; | 
 | 			biolist = bio; | 
 | 			bio->bi_private = r10_bio; | 
 | 			bio->bi_end_io = end_sync_read; | 
 | 			bio->bi_rw = READ; | 
 | 			bio->bi_sector = r10_bio->devs[i].addr + | 
 | 				conf->mirrors[d].rdev->data_offset; | 
 | 			bio->bi_bdev = conf->mirrors[d].rdev->bdev; | 
 | 			count++; | 
 | 		} | 
 |  | 
 | 		if (count < 2) { | 
 | 			for (i=0; i<conf->copies; i++) { | 
 | 				int d = r10_bio->devs[i].devnum; | 
 | 				if (r10_bio->devs[i].bio->bi_end_io) | 
 | 					rdev_dec_pending(conf->mirrors[d].rdev, mddev); | 
 | 			} | 
 | 			put_buf(r10_bio); | 
 | 			biolist = NULL; | 
 | 			goto giveup; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (bio = biolist; bio ; bio=bio->bi_next) { | 
 |  | 
 | 		bio->bi_flags &= ~(BIO_POOL_MASK - 1); | 
 | 		if (bio->bi_end_io) | 
 | 			bio->bi_flags |= 1 << BIO_UPTODATE; | 
 | 		bio->bi_vcnt = 0; | 
 | 		bio->bi_idx = 0; | 
 | 		bio->bi_phys_segments = 0; | 
 | 		bio->bi_size = 0; | 
 | 	} | 
 |  | 
 | 	nr_sectors = 0; | 
 | 	if (sector_nr + max_sync < max_sector) | 
 | 		max_sector = sector_nr + max_sync; | 
 | 	do { | 
 | 		struct page *page; | 
 | 		int len = PAGE_SIZE; | 
 | 		disk = 0; | 
 | 		if (sector_nr + (len>>9) > max_sector) | 
 | 			len = (max_sector - sector_nr) << 9; | 
 | 		if (len == 0) | 
 | 			break; | 
 | 		for (bio= biolist ; bio ; bio=bio->bi_next) { | 
 | 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page; | 
 | 			if (bio_add_page(bio, page, len, 0) == 0) { | 
 | 				/* stop here */ | 
 | 				struct bio *bio2; | 
 | 				bio->bi_io_vec[bio->bi_vcnt].bv_page = page; | 
 | 				for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { | 
 | 					/* remove last page from this bio */ | 
 | 					bio2->bi_vcnt--; | 
 | 					bio2->bi_size -= len; | 
 | 					bio2->bi_flags &= ~(1<< BIO_SEG_VALID); | 
 | 				} | 
 | 				goto bio_full; | 
 | 			} | 
 | 			disk = i; | 
 | 		} | 
 | 		nr_sectors += len>>9; | 
 | 		sector_nr += len>>9; | 
 | 	} while (biolist->bi_vcnt < RESYNC_PAGES); | 
 |  bio_full: | 
 | 	r10_bio->sectors = nr_sectors; | 
 |  | 
 | 	while (biolist) { | 
 | 		bio = biolist; | 
 | 		biolist = biolist->bi_next; | 
 |  | 
 | 		bio->bi_next = NULL; | 
 | 		r10_bio = bio->bi_private; | 
 | 		r10_bio->sectors = nr_sectors; | 
 |  | 
 | 		if (bio->bi_end_io == end_sync_read) { | 
 | 			md_sync_acct(bio->bi_bdev, nr_sectors); | 
 | 			generic_make_request(bio); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (sectors_skipped) | 
 | 		/* pretend they weren't skipped, it makes | 
 | 		 * no important difference in this case | 
 | 		 */ | 
 | 		md_done_sync(mddev, sectors_skipped, 1); | 
 |  | 
 | 	return sectors_skipped + nr_sectors; | 
 |  giveup: | 
 | 	/* There is nowhere to write, so all non-sync | 
 | 	 * drives must be failed, so try the next chunk... | 
 | 	 */ | 
 | 	{ | 
 | 	sector_t sec = max_sector - sector_nr; | 
 | 	sectors_skipped += sec; | 
 | 	chunks_skipped ++; | 
 | 	sector_nr = max_sector; | 
 | 	goto skipped; | 
 | 	} | 
 | } | 
 |  | 
 | static int run(mddev_t *mddev) | 
 | { | 
 | 	conf_t *conf; | 
 | 	int i, disk_idx; | 
 | 	mirror_info_t *disk; | 
 | 	mdk_rdev_t *rdev; | 
 | 	int nc, fc, fo; | 
 | 	sector_t stride, size; | 
 |  | 
 | 	if (mddev->chunk_size < PAGE_SIZE) { | 
 | 		printk(KERN_ERR "md/raid10: chunk size must be " | 
 | 		       "at least PAGE_SIZE(%ld).\n", PAGE_SIZE); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	nc = mddev->layout & 255; | 
 | 	fc = (mddev->layout >> 8) & 255; | 
 | 	fo = mddev->layout & (1<<16); | 
 | 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || | 
 | 	    (mddev->layout >> 17)) { | 
 | 		printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", | 
 | 		       mdname(mddev), mddev->layout); | 
 | 		goto out; | 
 | 	} | 
 | 	/* | 
 | 	 * copy the already verified devices into our private RAID10 | 
 | 	 * bookkeeping area. [whatever we allocate in run(), | 
 | 	 * should be freed in stop()] | 
 | 	 */ | 
 | 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL); | 
 | 	mddev->private = conf; | 
 | 	if (!conf) { | 
 | 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", | 
 | 			mdname(mddev)); | 
 | 		goto out; | 
 | 	} | 
 | 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, | 
 | 				 GFP_KERNEL); | 
 | 	if (!conf->mirrors) { | 
 | 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", | 
 | 		       mdname(mddev)); | 
 | 		goto out_free_conf; | 
 | 	} | 
 |  | 
 | 	conf->tmppage = alloc_page(GFP_KERNEL); | 
 | 	if (!conf->tmppage) | 
 | 		goto out_free_conf; | 
 |  | 
 | 	conf->mddev = mddev; | 
 | 	conf->raid_disks = mddev->raid_disks; | 
 | 	conf->near_copies = nc; | 
 | 	conf->far_copies = fc; | 
 | 	conf->copies = nc*fc; | 
 | 	conf->far_offset = fo; | 
 | 	conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; | 
 | 	conf->chunk_shift = ffz(~mddev->chunk_size) - 9; | 
 | 	size = mddev->size >> (conf->chunk_shift-1); | 
 | 	sector_div(size, fc); | 
 | 	size = size * conf->raid_disks; | 
 | 	sector_div(size, nc); | 
 | 	/* 'size' is now the number of chunks in the array */ | 
 | 	/* calculate "used chunks per device" in 'stride' */ | 
 | 	stride = size * conf->copies; | 
 |  | 
 | 	/* We need to round up when dividing by raid_disks to | 
 | 	 * get the stride size. | 
 | 	 */ | 
 | 	stride += conf->raid_disks - 1; | 
 | 	sector_div(stride, conf->raid_disks); | 
 | 	mddev->size = stride  << (conf->chunk_shift-1); | 
 |  | 
 | 	if (fo) | 
 | 		stride = 1; | 
 | 	else | 
 | 		sector_div(stride, fc); | 
 | 	conf->stride = stride << conf->chunk_shift; | 
 |  | 
 | 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, | 
 | 						r10bio_pool_free, conf); | 
 | 	if (!conf->r10bio_pool) { | 
 | 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", | 
 | 			mdname(mddev)); | 
 | 		goto out_free_conf; | 
 | 	} | 
 |  | 
 | 	spin_lock_init(&conf->device_lock); | 
 | 	mddev->queue->queue_lock = &conf->device_lock; | 
 |  | 
 | 	list_for_each_entry(rdev, &mddev->disks, same_set) { | 
 | 		disk_idx = rdev->raid_disk; | 
 | 		if (disk_idx >= mddev->raid_disks | 
 | 		    || disk_idx < 0) | 
 | 			continue; | 
 | 		disk = conf->mirrors + disk_idx; | 
 |  | 
 | 		disk->rdev = rdev; | 
 |  | 
 | 		blk_queue_stack_limits(mddev->queue, | 
 | 				       rdev->bdev->bd_disk->queue); | 
 | 		/* as we don't honour merge_bvec_fn, we must never risk | 
 | 		 * violating it, so limit ->max_sector to one PAGE, as | 
 | 		 * a one page request is never in violation. | 
 | 		 */ | 
 | 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn && | 
 | 		    mddev->queue->max_sectors > (PAGE_SIZE>>9)) | 
 | 			mddev->queue->max_sectors = (PAGE_SIZE>>9); | 
 |  | 
 | 		disk->head_position = 0; | 
 | 	} | 
 | 	INIT_LIST_HEAD(&conf->retry_list); | 
 |  | 
 | 	spin_lock_init(&conf->resync_lock); | 
 | 	init_waitqueue_head(&conf->wait_barrier); | 
 |  | 
 | 	/* need to check that every block has at least one working mirror */ | 
 | 	if (!enough(conf)) { | 
 | 		printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", | 
 | 		       mdname(mddev)); | 
 | 		goto out_free_conf; | 
 | 	} | 
 |  | 
 | 	mddev->degraded = 0; | 
 | 	for (i = 0; i < conf->raid_disks; i++) { | 
 |  | 
 | 		disk = conf->mirrors + i; | 
 |  | 
 | 		if (!disk->rdev || | 
 | 		    !test_bit(In_sync, &disk->rdev->flags)) { | 
 | 			disk->head_position = 0; | 
 | 			mddev->degraded++; | 
 | 			if (disk->rdev) | 
 | 				conf->fullsync = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 |  | 
 | 	mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); | 
 | 	if (!mddev->thread) { | 
 | 		printk(KERN_ERR | 
 | 		       "raid10: couldn't allocate thread for %s\n", | 
 | 		       mdname(mddev)); | 
 | 		goto out_free_conf; | 
 | 	} | 
 |  | 
 | 	printk(KERN_INFO | 
 | 		"raid10: raid set %s active with %d out of %d devices\n", | 
 | 		mdname(mddev), mddev->raid_disks - mddev->degraded, | 
 | 		mddev->raid_disks); | 
 | 	/* | 
 | 	 * Ok, everything is just fine now | 
 | 	 */ | 
 | 	mddev->array_sectors = size << conf->chunk_shift; | 
 | 	mddev->resync_max_sectors = size << conf->chunk_shift; | 
 |  | 
 | 	mddev->queue->unplug_fn = raid10_unplug; | 
 | 	mddev->queue->backing_dev_info.congested_fn = raid10_congested; | 
 | 	mddev->queue->backing_dev_info.congested_data = mddev; | 
 |  | 
 | 	/* Calculate max read-ahead size. | 
 | 	 * We need to readahead at least twice a whole stripe.... | 
 | 	 * maybe... | 
 | 	 */ | 
 | 	{ | 
 | 		int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE); | 
 | 		stripe /= conf->near_copies; | 
 | 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) | 
 | 			mddev->queue->backing_dev_info.ra_pages = 2* stripe; | 
 | 	} | 
 |  | 
 | 	if (conf->near_copies < mddev->raid_disks) | 
 | 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); | 
 | 	return 0; | 
 |  | 
 | out_free_conf: | 
 | 	if (conf->r10bio_pool) | 
 | 		mempool_destroy(conf->r10bio_pool); | 
 | 	safe_put_page(conf->tmppage); | 
 | 	kfree(conf->mirrors); | 
 | 	kfree(conf); | 
 | 	mddev->private = NULL; | 
 | out: | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | static int stop(mddev_t *mddev) | 
 | { | 
 | 	conf_t *conf = mddev_to_conf(mddev); | 
 |  | 
 | 	md_unregister_thread(mddev->thread); | 
 | 	mddev->thread = NULL; | 
 | 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ | 
 | 	if (conf->r10bio_pool) | 
 | 		mempool_destroy(conf->r10bio_pool); | 
 | 	kfree(conf->mirrors); | 
 | 	kfree(conf); | 
 | 	mddev->private = NULL; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void raid10_quiesce(mddev_t *mddev, int state) | 
 | { | 
 | 	conf_t *conf = mddev_to_conf(mddev); | 
 |  | 
 | 	switch(state) { | 
 | 	case 1: | 
 | 		raise_barrier(conf, 0); | 
 | 		break; | 
 | 	case 0: | 
 | 		lower_barrier(conf); | 
 | 		break; | 
 | 	} | 
 | 	if (mddev->thread) { | 
 | 		if (mddev->bitmap) | 
 | 			mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; | 
 | 		else | 
 | 			mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; | 
 | 		md_wakeup_thread(mddev->thread); | 
 | 	} | 
 | } | 
 |  | 
 | static struct mdk_personality raid10_personality = | 
 | { | 
 | 	.name		= "raid10", | 
 | 	.level		= 10, | 
 | 	.owner		= THIS_MODULE, | 
 | 	.make_request	= make_request, | 
 | 	.run		= run, | 
 | 	.stop		= stop, | 
 | 	.status		= status, | 
 | 	.error_handler	= error, | 
 | 	.hot_add_disk	= raid10_add_disk, | 
 | 	.hot_remove_disk= raid10_remove_disk, | 
 | 	.spare_active	= raid10_spare_active, | 
 | 	.sync_request	= sync_request, | 
 | 	.quiesce	= raid10_quiesce, | 
 | }; | 
 |  | 
 | static int __init raid_init(void) | 
 | { | 
 | 	return register_md_personality(&raid10_personality); | 
 | } | 
 |  | 
 | static void raid_exit(void) | 
 | { | 
 | 	unregister_md_personality(&raid10_personality); | 
 | } | 
 |  | 
 | module_init(raid_init); | 
 | module_exit(raid_exit); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_ALIAS("md-personality-9"); /* RAID10 */ | 
 | MODULE_ALIAS("md-raid10"); | 
 | MODULE_ALIAS("md-level-10"); |