| /* | 
 |  * Copyright 2011 Tilera Corporation. All Rights Reserved. | 
 |  * | 
 |  *   This program is free software; you can redistribute it and/or | 
 |  *   modify it under the terms of the GNU General Public License | 
 |  *   as published by the Free Software Foundation, version 2. | 
 |  * | 
 |  *   This program is distributed in the hope that it will be useful, but | 
 |  *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
 |  *   NON INFRINGEMENT.  See the GNU General Public License for | 
 |  *   more details. | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/kernel.h>      /* printk() */ | 
 | #include <linux/slab.h>        /* kmalloc() */ | 
 | #include <linux/errno.h>       /* error codes */ | 
 | #include <linux/types.h>       /* size_t */ | 
 | #include <linux/interrupt.h> | 
 | #include <linux/in.h> | 
 | #include <linux/netdevice.h>   /* struct device, and other headers */ | 
 | #include <linux/etherdevice.h> /* eth_type_trans */ | 
 | #include <linux/skbuff.h> | 
 | #include <linux/ioctl.h> | 
 | #include <linux/cdev.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/in6.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/io.h> | 
 | #include <asm/checksum.h> | 
 | #include <asm/homecache.h> | 
 |  | 
 | #include <hv/drv_xgbe_intf.h> | 
 | #include <hv/drv_xgbe_impl.h> | 
 | #include <hv/hypervisor.h> | 
 | #include <hv/netio_intf.h> | 
 |  | 
 | /* For TSO */ | 
 | #include <linux/ip.h> | 
 | #include <linux/tcp.h> | 
 |  | 
 |  | 
 | /* | 
 |  * First, "tile_net_init_module()" initializes all four "devices" which | 
 |  * can be used by linux. | 
 |  * | 
 |  * Then, "ifconfig DEVICE up" calls "tile_net_open()", which analyzes | 
 |  * the network cpus, then uses "tile_net_open_aux()" to initialize | 
 |  * LIPP/LEPP, and then uses "tile_net_open_inner()" to register all | 
 |  * the tiles, provide buffers to LIPP, allow ingress to start, and | 
 |  * turn on hypervisor interrupt handling (and NAPI) on all tiles. | 
 |  * | 
 |  * If registration fails due to the link being down, then "retry_work" | 
 |  * is used to keep calling "tile_net_open_inner()" until it succeeds. | 
 |  * | 
 |  * If "ifconfig DEVICE down" is called, it uses "tile_net_stop()" to | 
 |  * stop egress, drain the LIPP buffers, unregister all the tiles, stop | 
 |  * LIPP/LEPP, and wipe the LEPP queue. | 
 |  * | 
 |  * We start out with the ingress interrupt enabled on each CPU.  When | 
 |  * this interrupt fires, we disable it, and call "napi_schedule()". | 
 |  * This will cause "tile_net_poll()" to be called, which will pull | 
 |  * packets from the netio queue, filtering them out, or passing them | 
 |  * to "netif_receive_skb()".  If our budget is exhausted, we will | 
 |  * return, knowing we will be called again later.  Otherwise, we | 
 |  * reenable the ingress interrupt, and call "napi_complete()". | 
 |  * | 
 |  * HACK: Since disabling the ingress interrupt is not reliable, we | 
 |  * ignore the interrupt if the global "active" flag is false. | 
 |  * | 
 |  * | 
 |  * NOTE: The use of "native_driver" ensures that EPP exists, and that | 
 |  * we are using "LIPP" and "LEPP". | 
 |  * | 
 |  * NOTE: Failing to free completions for an arbitrarily long time | 
 |  * (which is defined to be illegal) does in fact cause bizarre | 
 |  * problems.  The "egress_timer" helps prevent this from happening. | 
 |  */ | 
 |  | 
 |  | 
 | /* HACK: Allow use of "jumbo" packets. */ | 
 | /* This should be 1500 if "jumbo" is not set in LIPP. */ | 
 | /* This should be at most 10226 (10240 - 14) if "jumbo" is set in LIPP. */ | 
 | /* ISSUE: This has not been thoroughly tested (except at 1500). */ | 
 | #define TILE_NET_MTU 1500 | 
 |  | 
 | /* HACK: Define to support GSO. */ | 
 | /* ISSUE: This may actually hurt performance of the TCP blaster. */ | 
 | /* #define TILE_NET_GSO */ | 
 |  | 
 | /* Define this to collapse "duplicate" acks. */ | 
 | /* #define IGNORE_DUP_ACKS */ | 
 |  | 
 | /* HACK: Define this to verify incoming packets. */ | 
 | /* #define TILE_NET_VERIFY_INGRESS */ | 
 |  | 
 | /* Use 3000 to enable the Linux Traffic Control (QoS) layer, else 0. */ | 
 | #define TILE_NET_TX_QUEUE_LEN 0 | 
 |  | 
 | /* Define to dump packets (prints out the whole packet on tx and rx). */ | 
 | /* #define TILE_NET_DUMP_PACKETS */ | 
 |  | 
 | /* Define to enable debug spew (all PDEBUG's are enabled). */ | 
 | /* #define TILE_NET_DEBUG */ | 
 |  | 
 |  | 
 | /* Define to activate paranoia checks. */ | 
 | /* #define TILE_NET_PARANOIA */ | 
 |  | 
 | /* Default transmit lockup timeout period, in jiffies. */ | 
 | #define TILE_NET_TIMEOUT (5 * HZ) | 
 |  | 
 | /* Default retry interval for bringing up the NetIO interface, in jiffies. */ | 
 | #define TILE_NET_RETRY_INTERVAL (5 * HZ) | 
 |  | 
 | /* Number of ports (xgbe0, xgbe1, gbe0, gbe1). */ | 
 | #define TILE_NET_DEVS 4 | 
 |  | 
 |  | 
 |  | 
 | /* Paranoia. */ | 
 | #if NET_IP_ALIGN != LIPP_PACKET_PADDING | 
 | #error "NET_IP_ALIGN must match LIPP_PACKET_PADDING." | 
 | #endif | 
 |  | 
 |  | 
 | /* Debug print. */ | 
 | #ifdef TILE_NET_DEBUG | 
 | #define PDEBUG(fmt, args...) net_printk(fmt, ## args) | 
 | #else | 
 | #define PDEBUG(fmt, args...) | 
 | #endif | 
 |  | 
 |  | 
 | MODULE_AUTHOR("Tilera"); | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 |  | 
 | /* | 
 |  * Queue of incoming packets for a specific cpu and device. | 
 |  * | 
 |  * Includes a pointer to the "system" data, and the actual "user" data. | 
 |  */ | 
 | struct tile_netio_queue { | 
 | 	netio_queue_impl_t *__system_part; | 
 | 	netio_queue_user_impl_t __user_part; | 
 |  | 
 | }; | 
 |  | 
 |  | 
 | /* | 
 |  * Statistics counters for a specific cpu and device. | 
 |  */ | 
 | struct tile_net_stats_t { | 
 | 	u32 rx_packets; | 
 | 	u32 rx_bytes; | 
 | 	u32 tx_packets; | 
 | 	u32 tx_bytes; | 
 | }; | 
 |  | 
 |  | 
 | /* | 
 |  * Info for a specific cpu and device. | 
 |  * | 
 |  * ISSUE: There is a "dev" pointer in "napi" as well. | 
 |  */ | 
 | struct tile_net_cpu { | 
 | 	/* The NAPI struct. */ | 
 | 	struct napi_struct napi; | 
 | 	/* Packet queue. */ | 
 | 	struct tile_netio_queue queue; | 
 | 	/* Statistics. */ | 
 | 	struct tile_net_stats_t stats; | 
 | 	/* True iff NAPI is enabled. */ | 
 | 	bool napi_enabled; | 
 | 	/* True if this tile has succcessfully registered with the IPP. */ | 
 | 	bool registered; | 
 | 	/* True if the link was down last time we tried to register. */ | 
 | 	bool link_down; | 
 | 	/* True if "egress_timer" is scheduled. */ | 
 | 	bool egress_timer_scheduled; | 
 | 	/* Number of small sk_buffs which must still be provided. */ | 
 | 	unsigned int num_needed_small_buffers; | 
 | 	/* Number of large sk_buffs which must still be provided. */ | 
 | 	unsigned int num_needed_large_buffers; | 
 | 	/* A timer for handling egress completions. */ | 
 | 	struct timer_list egress_timer; | 
 | }; | 
 |  | 
 |  | 
 | /* | 
 |  * Info for a specific device. | 
 |  */ | 
 | struct tile_net_priv { | 
 | 	/* Our network device. */ | 
 | 	struct net_device *dev; | 
 | 	/* Pages making up the egress queue. */ | 
 | 	struct page *eq_pages; | 
 | 	/* Address of the actual egress queue. */ | 
 | 	lepp_queue_t *eq; | 
 | 	/* Protects "eq". */ | 
 | 	spinlock_t eq_lock; | 
 | 	/* The hypervisor handle for this interface. */ | 
 | 	int hv_devhdl; | 
 | 	/* The intr bit mask that IDs this device. */ | 
 | 	u32 intr_id; | 
 | 	/* True iff "tile_net_open_aux()" has succeeded. */ | 
 | 	bool partly_opened; | 
 | 	/* True iff the device is "active". */ | 
 | 	bool active; | 
 | 	/* Effective network cpus. */ | 
 | 	struct cpumask network_cpus_map; | 
 | 	/* Number of network cpus. */ | 
 | 	int network_cpus_count; | 
 | 	/* Credits per network cpu. */ | 
 | 	int network_cpus_credits; | 
 | 	/* Network stats. */ | 
 | 	struct net_device_stats stats; | 
 | 	/* For NetIO bringup retries. */ | 
 | 	struct delayed_work retry_work; | 
 | 	/* Quick access to per cpu data. */ | 
 | 	struct tile_net_cpu *cpu[NR_CPUS]; | 
 | }; | 
 |  | 
 | /* Log2 of the number of small pages needed for the egress queue. */ | 
 | #define EQ_ORDER  get_order(sizeof(lepp_queue_t)) | 
 | /* Size of the egress queue's pages. */ | 
 | #define EQ_SIZE   (1 << (PAGE_SHIFT + EQ_ORDER)) | 
 |  | 
 | /* | 
 |  * The actual devices (xgbe0, xgbe1, gbe0, gbe1). | 
 |  */ | 
 | static struct net_device *tile_net_devs[TILE_NET_DEVS]; | 
 |  | 
 | /* | 
 |  * The "tile_net_cpu" structures for each device. | 
 |  */ | 
 | static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe0); | 
 | static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe1); | 
 | static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe0); | 
 | static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe1); | 
 |  | 
 |  | 
 | /* | 
 |  * True if "network_cpus" was specified. | 
 |  */ | 
 | static bool network_cpus_used; | 
 |  | 
 | /* | 
 |  * The actual cpus in "network_cpus". | 
 |  */ | 
 | static struct cpumask network_cpus_map; | 
 |  | 
 |  | 
 |  | 
 | #ifdef TILE_NET_DEBUG | 
 | /* | 
 |  * printk with extra stuff. | 
 |  * | 
 |  * We print the CPU we're running in brackets. | 
 |  */ | 
 | static void net_printk(char *fmt, ...) | 
 | { | 
 | 	int i; | 
 | 	int len; | 
 | 	va_list args; | 
 | 	static char buf[256]; | 
 |  | 
 | 	len = sprintf(buf, "tile_net[%2.2d]: ", smp_processor_id()); | 
 | 	va_start(args, fmt); | 
 | 	i = vscnprintf(buf + len, sizeof(buf) - len - 1, fmt, args); | 
 | 	va_end(args); | 
 | 	buf[255] = '\0'; | 
 | 	pr_notice(buf); | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | #ifdef TILE_NET_DUMP_PACKETS | 
 | /* | 
 |  * Dump a packet. | 
 |  */ | 
 | static void dump_packet(unsigned char *data, unsigned long length, char *s) | 
 | { | 
 | 	int my_cpu = smp_processor_id(); | 
 |  | 
 | 	unsigned long i; | 
 | 	char buf[128]; | 
 |  | 
 | 	static unsigned int count; | 
 |  | 
 | 	pr_info("dump_packet(data %p, length 0x%lx s %s count 0x%x)\n", | 
 | 	       data, length, s, count++); | 
 |  | 
 | 	pr_info("\n"); | 
 |  | 
 | 	for (i = 0; i < length; i++) { | 
 | 		if ((i & 0xf) == 0) | 
 | 			sprintf(buf, "[%02d] %8.8lx:", my_cpu, i); | 
 | 		sprintf(buf + strlen(buf), " %2.2x", data[i]); | 
 | 		if ((i & 0xf) == 0xf || i == length - 1) { | 
 | 			strcat(buf, "\n"); | 
 | 			pr_info("%s", buf); | 
 | 		} | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | /* | 
 |  * Provide support for the __netio_fastio1() swint | 
 |  * (see <hv/drv_xgbe_intf.h> for how it is used). | 
 |  * | 
 |  * The fastio swint2 call may clobber all the caller-saved registers. | 
 |  * It rarely clobbers memory, but we allow for the possibility in | 
 |  * the signature just to be on the safe side. | 
 |  * | 
 |  * Also, gcc doesn't seem to allow an input operand to be | 
 |  * clobbered, so we fake it with dummy outputs. | 
 |  * | 
 |  * This function can't be static because of the way it is declared | 
 |  * in the netio header. | 
 |  */ | 
 | inline int __netio_fastio1(u32 fastio_index, u32 arg0) | 
 | { | 
 | 	long result, clobber_r1, clobber_r10; | 
 | 	asm volatile("swint2" | 
 | 		     : "=R00" (result), | 
 | 		       "=R01" (clobber_r1), "=R10" (clobber_r10) | 
 | 		     : "R10" (fastio_index), "R01" (arg0) | 
 | 		     : "memory", "r2", "r3", "r4", | 
 | 		       "r5", "r6", "r7", "r8", "r9", | 
 | 		       "r11", "r12", "r13", "r14", | 
 | 		       "r15", "r16", "r17", "r18", "r19", | 
 | 		       "r20", "r21", "r22", "r23", "r24", | 
 | 		       "r25", "r26", "r27", "r28", "r29"); | 
 | 	return result; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Provide a linux buffer to LIPP. | 
 |  */ | 
 | static void tile_net_provide_linux_buffer(struct tile_net_cpu *info, | 
 | 					  void *va, bool small) | 
 | { | 
 | 	struct tile_netio_queue *queue = &info->queue; | 
 |  | 
 | 	/* Convert "va" and "small" to "linux_buffer_t". */ | 
 | 	unsigned int buffer = ((unsigned int)(__pa(va) >> 7) << 1) + small; | 
 |  | 
 | 	__netio_fastio_free_buffer(queue->__user_part.__fastio_index, buffer); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Provide a linux buffer for LIPP. | 
 |  * | 
 |  * Note that the ACTUAL allocation for each buffer is a "struct sk_buff", | 
 |  * plus a chunk of memory that includes not only the requested bytes, but | 
 |  * also NET_SKB_PAD bytes of initial padding, and a "struct skb_shared_info". | 
 |  * | 
 |  * Note that "struct skb_shared_info" is 88 bytes with 64K pages and | 
 |  * 268 bytes with 4K pages (since the frags[] array needs 18 entries). | 
 |  * | 
 |  * Without jumbo packets, the maximum packet size will be 1536 bytes, | 
 |  * and we use 2 bytes (NET_IP_ALIGN) of padding.  ISSUE: If we told | 
 |  * the hardware to clip at 1518 bytes instead of 1536 bytes, then we | 
 |  * could save an entire cache line, but in practice, we don't need it. | 
 |  * | 
 |  * Since CPAs are 38 bits, and we can only encode the high 31 bits in | 
 |  * a "linux_buffer_t", the low 7 bits must be zero, and thus, we must | 
 |  * align the actual "va" mod 128. | 
 |  * | 
 |  * We assume that the underlying "head" will be aligned mod 64.  Note | 
 |  * that in practice, we have seen "head" NOT aligned mod 128 even when | 
 |  * using 2048 byte allocations, which is surprising. | 
 |  * | 
 |  * If "head" WAS always aligned mod 128, we could change LIPP to | 
 |  * assume that the low SIX bits are zero, and the 7th bit is one, that | 
 |  * is, align the actual "va" mod 128 plus 64, which would be "free". | 
 |  * | 
 |  * For now, the actual "head" pointer points at NET_SKB_PAD bytes of | 
 |  * padding, plus 28 or 92 bytes of extra padding, plus the sk_buff | 
 |  * pointer, plus the NET_IP_ALIGN padding, plus 126 or 1536 bytes for | 
 |  * the actual packet, plus 62 bytes of empty padding, plus some | 
 |  * padding and the "struct skb_shared_info". | 
 |  * | 
 |  * With 64K pages, a large buffer thus needs 32+92+4+2+1536+62+88 | 
 |  * bytes, or 1816 bytes, which fits comfortably into 2048 bytes. | 
 |  * | 
 |  * With 64K pages, a small buffer thus needs 32+92+4+2+126+88 | 
 |  * bytes, or 344 bytes, which means we are wasting 64+ bytes, and | 
 |  * could presumably increase the size of small buffers. | 
 |  * | 
 |  * With 4K pages, a large buffer thus needs 32+92+4+2+1536+62+268 | 
 |  * bytes, or 1996 bytes, which fits comfortably into 2048 bytes. | 
 |  * | 
 |  * With 4K pages, a small buffer thus needs 32+92+4+2+126+268 | 
 |  * bytes, or 524 bytes, which is annoyingly wasteful. | 
 |  * | 
 |  * Maybe we should increase LIPP_SMALL_PACKET_SIZE to 192? | 
 |  * | 
 |  * ISSUE: Maybe we should increase "NET_SKB_PAD" to 64? | 
 |  */ | 
 | static bool tile_net_provide_needed_buffer(struct tile_net_cpu *info, | 
 | 					   bool small) | 
 | { | 
 | #if TILE_NET_MTU <= 1536 | 
 | 	/* Without "jumbo", 2 + 1536 should be sufficient. */ | 
 | 	unsigned int large_size = NET_IP_ALIGN + 1536; | 
 | #else | 
 | 	/* ISSUE: This has not been tested. */ | 
 | 	unsigned int large_size = NET_IP_ALIGN + TILE_NET_MTU + 100; | 
 | #endif | 
 |  | 
 | 	/* Avoid "false sharing" with last cache line. */ | 
 | 	/* ISSUE: This is already done by "dev_alloc_skb()". */ | 
 | 	unsigned int len = | 
 | 		 (((small ? LIPP_SMALL_PACKET_SIZE : large_size) + | 
 | 		   CHIP_L2_LINE_SIZE() - 1) & -CHIP_L2_LINE_SIZE()); | 
 |  | 
 | 	unsigned int padding = 128 - NET_SKB_PAD; | 
 | 	unsigned int align; | 
 |  | 
 | 	struct sk_buff *skb; | 
 | 	void *va; | 
 |  | 
 | 	struct sk_buff **skb_ptr; | 
 |  | 
 | 	/* Request 96 extra bytes for alignment purposes. */ | 
 | 	skb = dev_alloc_skb(len + padding); | 
 | 	if (skb == NULL) | 
 | 		return false; | 
 |  | 
 | 	/* Skip 32 or 96 bytes to align "data" mod 128. */ | 
 | 	align = -(long)skb->data & (128 - 1); | 
 | 	BUG_ON(align > padding); | 
 | 	skb_reserve(skb, align); | 
 |  | 
 | 	/* This address is given to IPP. */ | 
 | 	va = skb->data; | 
 |  | 
 | 	/* Buffers must not span a huge page. */ | 
 | 	BUG_ON(((((long)va & ~HPAGE_MASK) + len) & HPAGE_MASK) != 0); | 
 |  | 
 | #ifdef TILE_NET_PARANOIA | 
 | #if CHIP_HAS_CBOX_HOME_MAP() | 
 | 	if (hash_default) { | 
 | 		HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)va); | 
 | 		if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3) | 
 | 			panic("Non-HFH ingress buffer! VA=%p Mode=%d PTE=%llx", | 
 | 			      va, hv_pte_get_mode(pte), hv_pte_val(pte)); | 
 | 	} | 
 | #endif | 
 | #endif | 
 |  | 
 | 	/* Invalidate the packet buffer. */ | 
 | 	if (!hash_default) | 
 | 		__inv_buffer(va, len); | 
 |  | 
 | 	/* Skip two bytes to satisfy LIPP assumptions. */ | 
 | 	/* Note that this aligns IP on a 16 byte boundary. */ | 
 | 	/* ISSUE: Do this when the packet arrives? */ | 
 | 	skb_reserve(skb, NET_IP_ALIGN); | 
 |  | 
 | 	/* Save a back-pointer to 'skb'. */ | 
 | 	skb_ptr = va - sizeof(*skb_ptr); | 
 | 	*skb_ptr = skb; | 
 |  | 
 | 	/* Make sure "skb_ptr" has been flushed. */ | 
 | 	__insn_mf(); | 
 |  | 
 | 	/* Provide the new buffer. */ | 
 | 	tile_net_provide_linux_buffer(info, va, small); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Provide linux buffers for LIPP. | 
 |  */ | 
 | static void tile_net_provide_needed_buffers(struct tile_net_cpu *info) | 
 | { | 
 | 	while (info->num_needed_small_buffers != 0) { | 
 | 		if (!tile_net_provide_needed_buffer(info, true)) | 
 | 			goto oops; | 
 | 		info->num_needed_small_buffers--; | 
 | 	} | 
 |  | 
 | 	while (info->num_needed_large_buffers != 0) { | 
 | 		if (!tile_net_provide_needed_buffer(info, false)) | 
 | 			goto oops; | 
 | 		info->num_needed_large_buffers--; | 
 | 	} | 
 |  | 
 | 	return; | 
 |  | 
 | oops: | 
 |  | 
 | 	/* Add a description to the page allocation failure dump. */ | 
 | 	pr_notice("Could not provide a linux buffer to LIPP.\n"); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Grab some LEPP completions, and store them in "comps", of size | 
 |  * "comps_size", and return the number of completions which were | 
 |  * stored, so the caller can free them. | 
 |  */ | 
 | static unsigned int tile_net_lepp_grab_comps(lepp_queue_t *eq, | 
 | 					     struct sk_buff *comps[], | 
 | 					     unsigned int comps_size, | 
 | 					     unsigned int min_size) | 
 | { | 
 | 	unsigned int n = 0; | 
 |  | 
 | 	unsigned int comp_head = eq->comp_head; | 
 | 	unsigned int comp_busy = eq->comp_busy; | 
 |  | 
 | 	while (comp_head != comp_busy && n < comps_size) { | 
 | 		comps[n++] = eq->comps[comp_head]; | 
 | 		LEPP_QINC(comp_head); | 
 | 	} | 
 |  | 
 | 	if (n < min_size) | 
 | 		return 0; | 
 |  | 
 | 	eq->comp_head = comp_head; | 
 |  | 
 | 	return n; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Free some comps, and return true iff there are still some pending. | 
 |  */ | 
 | static bool tile_net_lepp_free_comps(struct net_device *dev, bool all) | 
 | { | 
 | 	struct tile_net_priv *priv = netdev_priv(dev); | 
 |  | 
 | 	lepp_queue_t *eq = priv->eq; | 
 |  | 
 | 	struct sk_buff *olds[64]; | 
 | 	unsigned int wanted = 64; | 
 | 	unsigned int i, n; | 
 | 	bool pending; | 
 |  | 
 | 	spin_lock(&priv->eq_lock); | 
 |  | 
 | 	if (all) | 
 | 		eq->comp_busy = eq->comp_tail; | 
 |  | 
 | 	n = tile_net_lepp_grab_comps(eq, olds, wanted, 0); | 
 |  | 
 | 	pending = (eq->comp_head != eq->comp_tail); | 
 |  | 
 | 	spin_unlock(&priv->eq_lock); | 
 |  | 
 | 	for (i = 0; i < n; i++) | 
 | 		kfree_skb(olds[i]); | 
 |  | 
 | 	return pending; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Make sure the egress timer is scheduled. | 
 |  * | 
 |  * Note that we use "schedule if not scheduled" logic instead of the more | 
 |  * obvious "reschedule" logic, because "reschedule" is fairly expensive. | 
 |  */ | 
 | static void tile_net_schedule_egress_timer(struct tile_net_cpu *info) | 
 | { | 
 | 	if (!info->egress_timer_scheduled) { | 
 | 		mod_timer_pinned(&info->egress_timer, jiffies + 1); | 
 | 		info->egress_timer_scheduled = true; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * The "function" for "info->egress_timer". | 
 |  * | 
 |  * This timer will reschedule itself as long as there are any pending | 
 |  * completions expected (on behalf of any tile). | 
 |  * | 
 |  * ISSUE: Realistically, will the timer ever stop scheduling itself? | 
 |  * | 
 |  * ISSUE: This timer is almost never actually needed, so just use a global | 
 |  * timer that can run on any tile. | 
 |  * | 
 |  * ISSUE: Maybe instead track number of expected completions, and free | 
 |  * only that many, resetting to zero if "pending" is ever false. | 
 |  */ | 
 | static void tile_net_handle_egress_timer(unsigned long arg) | 
 | { | 
 | 	struct tile_net_cpu *info = (struct tile_net_cpu *)arg; | 
 | 	struct net_device *dev = info->napi.dev; | 
 |  | 
 | 	/* The timer is no longer scheduled. */ | 
 | 	info->egress_timer_scheduled = false; | 
 |  | 
 | 	/* Free comps, and reschedule timer if more are pending. */ | 
 | 	if (tile_net_lepp_free_comps(dev, false)) | 
 | 		tile_net_schedule_egress_timer(info); | 
 | } | 
 |  | 
 |  | 
 | #ifdef IGNORE_DUP_ACKS | 
 |  | 
 | /* | 
 |  * Help detect "duplicate" ACKs.  These are sequential packets (for a | 
 |  * given flow) which are exactly 66 bytes long, sharing everything but | 
 |  * ID=2@0x12, Hsum=2@0x18, Ack=4@0x2a, WinSize=2@0x30, Csum=2@0x32, | 
 |  * Tstamps=10@0x38.  The ID's are +1, the Hsum's are -1, the Ack's are | 
 |  * +N, and the Tstamps are usually identical. | 
 |  * | 
 |  * NOTE: Apparently truly duplicate acks (with identical "ack" values), | 
 |  * should not be collapsed, as they are used for some kind of flow control. | 
 |  */ | 
 | static bool is_dup_ack(char *s1, char *s2, unsigned int len) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	unsigned long long ignorable = 0; | 
 |  | 
 | 	/* Identification. */ | 
 | 	ignorable |= (1ULL << 0x12); | 
 | 	ignorable |= (1ULL << 0x13); | 
 |  | 
 | 	/* Header checksum. */ | 
 | 	ignorable |= (1ULL << 0x18); | 
 | 	ignorable |= (1ULL << 0x19); | 
 |  | 
 | 	/* ACK. */ | 
 | 	ignorable |= (1ULL << 0x2a); | 
 | 	ignorable |= (1ULL << 0x2b); | 
 | 	ignorable |= (1ULL << 0x2c); | 
 | 	ignorable |= (1ULL << 0x2d); | 
 |  | 
 | 	/* WinSize. */ | 
 | 	ignorable |= (1ULL << 0x30); | 
 | 	ignorable |= (1ULL << 0x31); | 
 |  | 
 | 	/* Checksum. */ | 
 | 	ignorable |= (1ULL << 0x32); | 
 | 	ignorable |= (1ULL << 0x33); | 
 |  | 
 | 	for (i = 0; i < len; i++, ignorable >>= 1) { | 
 |  | 
 | 		if ((ignorable & 1) || (s1[i] == s2[i])) | 
 | 			continue; | 
 |  | 
 | #ifdef TILE_NET_DEBUG | 
 | 		/* HACK: Mention non-timestamp diffs. */ | 
 | 		if (i < 0x38 && i != 0x2f && | 
 | 		    net_ratelimit()) | 
 | 			pr_info("Diff at 0x%x\n", i); | 
 | #endif | 
 |  | 
 | 		return false; | 
 | 	} | 
 |  | 
 | #ifdef TILE_NET_NO_SUPPRESS_DUP_ACKS | 
 | 	/* HACK: Do not suppress truly duplicate ACKs. */ | 
 | 	/* ISSUE: Is this actually necessary or helpful? */ | 
 | 	if (s1[0x2a] == s2[0x2a] && | 
 | 	    s1[0x2b] == s2[0x2b] && | 
 | 	    s1[0x2c] == s2[0x2c] && | 
 | 	    s1[0x2d] == s2[0x2d]) { | 
 | 		return false; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 |  | 
 |  | 
 | static void tile_net_discard_aux(struct tile_net_cpu *info, int index) | 
 | { | 
 | 	struct tile_netio_queue *queue = &info->queue; | 
 | 	netio_queue_impl_t *qsp = queue->__system_part; | 
 | 	netio_queue_user_impl_t *qup = &queue->__user_part; | 
 |  | 
 | 	int index2_aux = index + sizeof(netio_pkt_t); | 
 | 	int index2 = | 
 | 		((index2_aux == | 
 | 		  qsp->__packet_receive_queue.__last_packet_plus_one) ? | 
 | 		 0 : index2_aux); | 
 |  | 
 | 	netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index); | 
 |  | 
 | 	/* Extract the "linux_buffer_t". */ | 
 | 	unsigned int buffer = pkt->__packet.word; | 
 |  | 
 | 	/* Convert "linux_buffer_t" to "va". */ | 
 | 	void *va = __va((phys_addr_t)(buffer >> 1) << 7); | 
 |  | 
 | 	/* Acquire the associated "skb". */ | 
 | 	struct sk_buff **skb_ptr = va - sizeof(*skb_ptr); | 
 | 	struct sk_buff *skb = *skb_ptr; | 
 |  | 
 | 	kfree_skb(skb); | 
 |  | 
 | 	/* Consume this packet. */ | 
 | 	qup->__packet_receive_read = index2; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Like "tile_net_poll()", but just discard packets. | 
 |  */ | 
 | static void tile_net_discard_packets(struct net_device *dev) | 
 | { | 
 | 	struct tile_net_priv *priv = netdev_priv(dev); | 
 | 	int my_cpu = smp_processor_id(); | 
 | 	struct tile_net_cpu *info = priv->cpu[my_cpu]; | 
 | 	struct tile_netio_queue *queue = &info->queue; | 
 | 	netio_queue_impl_t *qsp = queue->__system_part; | 
 | 	netio_queue_user_impl_t *qup = &queue->__user_part; | 
 |  | 
 | 	while (qup->__packet_receive_read != | 
 | 	       qsp->__packet_receive_queue.__packet_write) { | 
 | 		int index = qup->__packet_receive_read; | 
 | 		tile_net_discard_aux(info, index); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Handle the next packet.  Return true if "processed", false if "filtered". | 
 |  */ | 
 | static bool tile_net_poll_aux(struct tile_net_cpu *info, int index) | 
 | { | 
 | 	struct net_device *dev = info->napi.dev; | 
 |  | 
 | 	struct tile_netio_queue *queue = &info->queue; | 
 | 	netio_queue_impl_t *qsp = queue->__system_part; | 
 | 	netio_queue_user_impl_t *qup = &queue->__user_part; | 
 | 	struct tile_net_stats_t *stats = &info->stats; | 
 |  | 
 | 	int filter; | 
 |  | 
 | 	int index2_aux = index + sizeof(netio_pkt_t); | 
 | 	int index2 = | 
 | 		((index2_aux == | 
 | 		  qsp->__packet_receive_queue.__last_packet_plus_one) ? | 
 | 		 0 : index2_aux); | 
 |  | 
 | 	netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index); | 
 |  | 
 | 	netio_pkt_metadata_t *metadata = NETIO_PKT_METADATA(pkt); | 
 |  | 
 | 	/* Extract the packet size.  FIXME: Shouldn't the second line */ | 
 | 	/* get subtracted?  Mostly moot, since it should be "zero". */ | 
 | 	unsigned long len = | 
 | 		(NETIO_PKT_CUSTOM_LENGTH(pkt) + | 
 | 		 NET_IP_ALIGN - NETIO_PACKET_PADDING); | 
 |  | 
 | 	/* Extract the "linux_buffer_t". */ | 
 | 	unsigned int buffer = pkt->__packet.word; | 
 |  | 
 | 	/* Extract "small" (vs "large"). */ | 
 | 	bool small = ((buffer & 1) != 0); | 
 |  | 
 | 	/* Convert "linux_buffer_t" to "va". */ | 
 | 	void *va = __va((phys_addr_t)(buffer >> 1) << 7); | 
 |  | 
 | 	/* Extract the packet data pointer. */ | 
 | 	/* Compare to "NETIO_PKT_CUSTOM_DATA(pkt)". */ | 
 | 	unsigned char *buf = va + NET_IP_ALIGN; | 
 |  | 
 | 	/* Invalidate the packet buffer. */ | 
 | 	if (!hash_default) | 
 | 		__inv_buffer(buf, len); | 
 |  | 
 | 	/* ISSUE: Is this needed? */ | 
 | 	dev->last_rx = jiffies; | 
 |  | 
 | #ifdef TILE_NET_DUMP_PACKETS | 
 | 	dump_packet(buf, len, "rx"); | 
 | #endif /* TILE_NET_DUMP_PACKETS */ | 
 |  | 
 | #ifdef TILE_NET_VERIFY_INGRESS | 
 | 	if (!NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt) && | 
 | 	    NETIO_PKT_L4_CSUM_CALCULATED_M(metadata, pkt)) { | 
 | 		/* Bug 6624: Includes UDP packets with a "zero" checksum. */ | 
 | 		pr_warning("Bad L4 checksum on %d byte packet.\n", len); | 
 | 	} | 
 | 	if (!NETIO_PKT_L3_CSUM_CORRECT_M(metadata, pkt) && | 
 | 	    NETIO_PKT_L3_CSUM_CALCULATED_M(metadata, pkt)) { | 
 | 		dump_packet(buf, len, "rx"); | 
 | 		panic("Bad L3 checksum."); | 
 | 	} | 
 | 	switch (NETIO_PKT_STATUS_M(metadata, pkt)) { | 
 | 	case NETIO_PKT_STATUS_OVERSIZE: | 
 | 		if (len >= 64) { | 
 | 			dump_packet(buf, len, "rx"); | 
 | 			panic("Unexpected OVERSIZE."); | 
 | 		} | 
 | 		break; | 
 | 	case NETIO_PKT_STATUS_BAD: | 
 | 		pr_warning("Unexpected BAD %ld byte packet.\n", len); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	filter = 0; | 
 |  | 
 | 	/* ISSUE: Filter TCP packets with "bad" checksums? */ | 
 |  | 
 | 	if (!(dev->flags & IFF_UP)) { | 
 | 		/* Filter packets received before we're up. */ | 
 | 		filter = 1; | 
 | 	} else if (NETIO_PKT_STATUS_M(metadata, pkt) == NETIO_PKT_STATUS_BAD) { | 
 | 		/* Filter "truncated" packets. */ | 
 | 		filter = 1; | 
 | 	} else if (!(dev->flags & IFF_PROMISC)) { | 
 | 		/* FIXME: Implement HW multicast filter. */ | 
 | 		if (!is_multicast_ether_addr(buf)) { | 
 | 			/* Filter packets not for our address. */ | 
 | 			const u8 *mine = dev->dev_addr; | 
 | 			filter = compare_ether_addr(mine, buf); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (filter) { | 
 |  | 
 | 		/* ISSUE: Update "drop" statistics? */ | 
 |  | 
 | 		tile_net_provide_linux_buffer(info, va, small); | 
 |  | 
 | 	} else { | 
 |  | 
 | 		/* Acquire the associated "skb". */ | 
 | 		struct sk_buff **skb_ptr = va - sizeof(*skb_ptr); | 
 | 		struct sk_buff *skb = *skb_ptr; | 
 |  | 
 | 		/* Paranoia. */ | 
 | 		if (skb->data != buf) | 
 | 			panic("Corrupt linux buffer from LIPP! " | 
 | 			      "VA=%p, skb=%p, skb->data=%p\n", | 
 | 			      va, skb, skb->data); | 
 |  | 
 | 		/* Encode the actual packet length. */ | 
 | 		skb_put(skb, len); | 
 |  | 
 | 		/* NOTE: This call also sets "skb->dev = dev". */ | 
 | 		skb->protocol = eth_type_trans(skb, dev); | 
 |  | 
 | 		/* Avoid recomputing "good" TCP/UDP checksums. */ | 
 | 		if (NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt)) | 
 | 			skb->ip_summed = CHECKSUM_UNNECESSARY; | 
 |  | 
 | 		netif_receive_skb(skb); | 
 |  | 
 | 		stats->rx_packets++; | 
 | 		stats->rx_bytes += len; | 
 |  | 
 | 		if (small) | 
 | 			info->num_needed_small_buffers++; | 
 | 		else | 
 | 			info->num_needed_large_buffers++; | 
 | 	} | 
 |  | 
 | 	/* Return four credits after every fourth packet. */ | 
 | 	if (--qup->__receive_credit_remaining == 0) { | 
 | 		u32 interval = qup->__receive_credit_interval; | 
 | 		qup->__receive_credit_remaining = interval; | 
 | 		__netio_fastio_return_credits(qup->__fastio_index, interval); | 
 | 	} | 
 |  | 
 | 	/* Consume this packet. */ | 
 | 	qup->__packet_receive_read = index2; | 
 |  | 
 | 	return !filter; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Handle some packets for the given device on the current CPU. | 
 |  * | 
 |  * If "tile_net_stop()" is called on some other tile while this | 
 |  * function is running, we will return, hopefully before that | 
 |  * other tile asks us to call "napi_disable()". | 
 |  * | 
 |  * The "rotting packet" race condition occurs if a packet arrives | 
 |  * during the extremely narrow window between the queue appearing to | 
 |  * be empty, and the ingress interrupt being re-enabled.  This happens | 
 |  * a LOT under heavy network load. | 
 |  */ | 
 | static int tile_net_poll(struct napi_struct *napi, int budget) | 
 | { | 
 | 	struct net_device *dev = napi->dev; | 
 | 	struct tile_net_priv *priv = netdev_priv(dev); | 
 | 	int my_cpu = smp_processor_id(); | 
 | 	struct tile_net_cpu *info = priv->cpu[my_cpu]; | 
 | 	struct tile_netio_queue *queue = &info->queue; | 
 | 	netio_queue_impl_t *qsp = queue->__system_part; | 
 | 	netio_queue_user_impl_t *qup = &queue->__user_part; | 
 |  | 
 | 	unsigned int work = 0; | 
 |  | 
 | 	while (priv->active) { | 
 | 		int index = qup->__packet_receive_read; | 
 | 		if (index == qsp->__packet_receive_queue.__packet_write) | 
 | 			break; | 
 |  | 
 | 		if (tile_net_poll_aux(info, index)) { | 
 | 			if (++work >= budget) | 
 | 				goto done; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	napi_complete(&info->napi); | 
 |  | 
 | 	if (!priv->active) | 
 | 		goto done; | 
 |  | 
 | 	/* Re-enable the ingress interrupt. */ | 
 | 	enable_percpu_irq(priv->intr_id); | 
 |  | 
 | 	/* HACK: Avoid the "rotting packet" problem (see above). */ | 
 | 	if (qup->__packet_receive_read != | 
 | 	    qsp->__packet_receive_queue.__packet_write) { | 
 | 		/* ISSUE: Sometimes this returns zero, presumably */ | 
 | 		/* because an interrupt was handled for this tile. */ | 
 | 		(void)napi_reschedule(&info->napi); | 
 | 	} | 
 |  | 
 | done: | 
 |  | 
 | 	if (priv->active) | 
 | 		tile_net_provide_needed_buffers(info); | 
 |  | 
 | 	return work; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Handle an ingress interrupt for the given device on the current cpu. | 
 |  * | 
 |  * ISSUE: Sometimes this gets called after "disable_percpu_irq()" has | 
 |  * been called!  This is probably due to "pending hypervisor downcalls". | 
 |  * | 
 |  * ISSUE: Is there any race condition between the "napi_schedule()" here | 
 |  * and the "napi_complete()" call above? | 
 |  */ | 
 | static irqreturn_t tile_net_handle_ingress_interrupt(int irq, void *dev_ptr) | 
 | { | 
 | 	struct net_device *dev = (struct net_device *)dev_ptr; | 
 | 	struct tile_net_priv *priv = netdev_priv(dev); | 
 | 	int my_cpu = smp_processor_id(); | 
 | 	struct tile_net_cpu *info = priv->cpu[my_cpu]; | 
 |  | 
 | 	/* Disable the ingress interrupt. */ | 
 | 	disable_percpu_irq(priv->intr_id); | 
 |  | 
 | 	/* Ignore unwanted interrupts. */ | 
 | 	if (!priv->active) | 
 | 		return IRQ_HANDLED; | 
 |  | 
 | 	/* ISSUE: Sometimes "info->napi_enabled" is false here. */ | 
 |  | 
 | 	napi_schedule(&info->napi); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * One time initialization per interface. | 
 |  */ | 
 | static int tile_net_open_aux(struct net_device *dev) | 
 | { | 
 | 	struct tile_net_priv *priv = netdev_priv(dev); | 
 |  | 
 | 	int ret; | 
 | 	int dummy; | 
 | 	unsigned int epp_lotar; | 
 |  | 
 | 	/* | 
 | 	 * Find out where EPP memory should be homed. | 
 | 	 */ | 
 | 	ret = hv_dev_pread(priv->hv_devhdl, 0, | 
 | 			   (HV_VirtAddr)&epp_lotar, sizeof(epp_lotar), | 
 | 			   NETIO_EPP_SHM_OFF); | 
 | 	if (ret < 0) { | 
 | 		pr_err("could not read epp_shm_queue lotar.\n"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Home the page on the EPP. | 
 | 	 */ | 
 | 	{ | 
 | 		int epp_home = hv_lotar_to_cpu(epp_lotar); | 
 | 		homecache_change_page_home(priv->eq_pages, EQ_ORDER, epp_home); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Register the EPP shared memory queue. | 
 | 	 */ | 
 | 	{ | 
 | 		netio_ipp_address_t ea = { | 
 | 			.va = 0, | 
 | 			.pa = __pa(priv->eq), | 
 | 			.pte = hv_pte(0), | 
 | 			.size = EQ_SIZE, | 
 | 		}; | 
 | 		ea.pte = hv_pte_set_lotar(ea.pte, epp_lotar); | 
 | 		ea.pte = hv_pte_set_mode(ea.pte, HV_PTE_MODE_CACHE_TILE_L3); | 
 | 		ret = hv_dev_pwrite(priv->hv_devhdl, 0, | 
 | 				    (HV_VirtAddr)&ea, | 
 | 				    sizeof(ea), | 
 | 				    NETIO_EPP_SHM_OFF); | 
 | 		if (ret < 0) | 
 | 			return -EIO; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Start LIPP/LEPP. | 
 | 	 */ | 
 | 	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy, | 
 | 			  sizeof(dummy), NETIO_IPP_START_SHIM_OFF) < 0) { | 
 | 		pr_warning("Failed to start LIPP/LEPP.\n"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Register with hypervisor on the current CPU. | 
 |  * | 
 |  * Strangely, this function does important things even if it "fails", | 
 |  * which is especially common if the link is not up yet.  Hopefully | 
 |  * these things are all "harmless" if done twice! | 
 |  */ | 
 | static void tile_net_register(void *dev_ptr) | 
 | { | 
 | 	struct net_device *dev = (struct net_device *)dev_ptr; | 
 | 	struct tile_net_priv *priv = netdev_priv(dev); | 
 | 	int my_cpu = smp_processor_id(); | 
 | 	struct tile_net_cpu *info; | 
 |  | 
 | 	struct tile_netio_queue *queue; | 
 |  | 
 | 	/* Only network cpus can receive packets. */ | 
 | 	int queue_id = | 
 | 		cpumask_test_cpu(my_cpu, &priv->network_cpus_map) ? 0 : 255; | 
 |  | 
 | 	netio_input_config_t config = { | 
 | 		.flags = 0, | 
 | 		.num_receive_packets = priv->network_cpus_credits, | 
 | 		.queue_id = queue_id | 
 | 	}; | 
 |  | 
 | 	int ret = 0; | 
 | 	netio_queue_impl_t *queuep; | 
 |  | 
 | 	PDEBUG("tile_net_register(queue_id %d)\n", queue_id); | 
 |  | 
 | 	if (!strcmp(dev->name, "xgbe0")) | 
 | 		info = &__get_cpu_var(hv_xgbe0); | 
 | 	else if (!strcmp(dev->name, "xgbe1")) | 
 | 		info = &__get_cpu_var(hv_xgbe1); | 
 | 	else if (!strcmp(dev->name, "gbe0")) | 
 | 		info = &__get_cpu_var(hv_gbe0); | 
 | 	else if (!strcmp(dev->name, "gbe1")) | 
 | 		info = &__get_cpu_var(hv_gbe1); | 
 | 	else | 
 | 		BUG(); | 
 |  | 
 | 	/* Initialize the egress timer. */ | 
 | 	init_timer(&info->egress_timer); | 
 | 	info->egress_timer.data = (long)info; | 
 | 	info->egress_timer.function = tile_net_handle_egress_timer; | 
 |  | 
 | 	priv->cpu[my_cpu] = info; | 
 |  | 
 | 	/* | 
 | 	 * Register ourselves with LIPP.  This does a lot of stuff, | 
 | 	 * including invoking the LIPP registration code. | 
 | 	 */ | 
 | 	ret = hv_dev_pwrite(priv->hv_devhdl, 0, | 
 | 			    (HV_VirtAddr)&config, | 
 | 			    sizeof(netio_input_config_t), | 
 | 			    NETIO_IPP_INPUT_REGISTER_OFF); | 
 | 	PDEBUG("hv_dev_pwrite(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n", | 
 | 	       ret); | 
 | 	if (ret < 0) { | 
 | 		if (ret != NETIO_LINK_DOWN) { | 
 | 			printk(KERN_DEBUG "hv_dev_pwrite " | 
 | 			       "NETIO_IPP_INPUT_REGISTER_OFF failure %d\n", | 
 | 			       ret); | 
 | 		} | 
 | 		info->link_down = (ret == NETIO_LINK_DOWN); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Get the pointer to our queue's system part. | 
 | 	 */ | 
 |  | 
 | 	ret = hv_dev_pread(priv->hv_devhdl, 0, | 
 | 			   (HV_VirtAddr)&queuep, | 
 | 			   sizeof(netio_queue_impl_t *), | 
 | 			   NETIO_IPP_INPUT_REGISTER_OFF); | 
 | 	PDEBUG("hv_dev_pread(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n", | 
 | 	       ret); | 
 | 	PDEBUG("queuep %p\n", queuep); | 
 | 	if (ret <= 0) { | 
 | 		/* ISSUE: Shouldn't this be a fatal error? */ | 
 | 		pr_err("hv_dev_pread NETIO_IPP_INPUT_REGISTER_OFF failure\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	queue = &info->queue; | 
 |  | 
 | 	queue->__system_part = queuep; | 
 |  | 
 | 	memset(&queue->__user_part, 0, sizeof(netio_queue_user_impl_t)); | 
 |  | 
 | 	/* This is traditionally "config.num_receive_packets / 2". */ | 
 | 	queue->__user_part.__receive_credit_interval = 4; | 
 | 	queue->__user_part.__receive_credit_remaining = | 
 | 		queue->__user_part.__receive_credit_interval; | 
 |  | 
 | 	/* | 
 | 	 * Get a fastio index from the hypervisor. | 
 | 	 * ISSUE: Shouldn't this check the result? | 
 | 	 */ | 
 | 	ret = hv_dev_pread(priv->hv_devhdl, 0, | 
 | 			   (HV_VirtAddr)&queue->__user_part.__fastio_index, | 
 | 			   sizeof(queue->__user_part.__fastio_index), | 
 | 			   NETIO_IPP_GET_FASTIO_OFF); | 
 | 	PDEBUG("hv_dev_pread(NETIO_IPP_GET_FASTIO_OFF) returned %d\n", ret); | 
 |  | 
 | 	/* Now we are registered. */ | 
 | 	info->registered = true; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Deregister with hypervisor on the current CPU. | 
 |  * | 
 |  * This simply discards all our credits, so no more packets will be | 
 |  * delivered to this tile.  There may still be packets in our queue. | 
 |  * | 
 |  * Also, disable the ingress interrupt. | 
 |  */ | 
 | static void tile_net_deregister(void *dev_ptr) | 
 | { | 
 | 	struct net_device *dev = (struct net_device *)dev_ptr; | 
 | 	struct tile_net_priv *priv = netdev_priv(dev); | 
 | 	int my_cpu = smp_processor_id(); | 
 | 	struct tile_net_cpu *info = priv->cpu[my_cpu]; | 
 |  | 
 | 	/* Disable the ingress interrupt. */ | 
 | 	disable_percpu_irq(priv->intr_id); | 
 |  | 
 | 	/* Do nothing else if not registered. */ | 
 | 	if (info == NULL || !info->registered) | 
 | 		return; | 
 |  | 
 | 	{ | 
 | 		struct tile_netio_queue *queue = &info->queue; | 
 | 		netio_queue_user_impl_t *qup = &queue->__user_part; | 
 |  | 
 | 		/* Discard all our credits. */ | 
 | 		__netio_fastio_return_credits(qup->__fastio_index, -1); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Unregister with hypervisor on the current CPU. | 
 |  * | 
 |  * Also, disable the ingress interrupt. | 
 |  */ | 
 | static void tile_net_unregister(void *dev_ptr) | 
 | { | 
 | 	struct net_device *dev = (struct net_device *)dev_ptr; | 
 | 	struct tile_net_priv *priv = netdev_priv(dev); | 
 | 	int my_cpu = smp_processor_id(); | 
 | 	struct tile_net_cpu *info = priv->cpu[my_cpu]; | 
 |  | 
 | 	int ret; | 
 | 	int dummy = 0; | 
 |  | 
 | 	/* Disable the ingress interrupt. */ | 
 | 	disable_percpu_irq(priv->intr_id); | 
 |  | 
 | 	/* Do nothing else if not registered. */ | 
 | 	if (info == NULL || !info->registered) | 
 | 		return; | 
 |  | 
 | 	/* Unregister ourselves with LIPP/LEPP. */ | 
 | 	ret = hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy, | 
 | 			    sizeof(dummy), NETIO_IPP_INPUT_UNREGISTER_OFF); | 
 | 	if (ret < 0) | 
 | 		panic("Failed to unregister with LIPP/LEPP!\n"); | 
 |  | 
 | 	/* Discard all packets still in our NetIO queue. */ | 
 | 	tile_net_discard_packets(dev); | 
 |  | 
 | 	/* Reset state. */ | 
 | 	info->num_needed_small_buffers = 0; | 
 | 	info->num_needed_large_buffers = 0; | 
 |  | 
 | 	/* Cancel egress timer. */ | 
 | 	del_timer(&info->egress_timer); | 
 | 	info->egress_timer_scheduled = false; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Helper function for "tile_net_stop()". | 
 |  * | 
 |  * Also used to handle registration failure in "tile_net_open_inner()", | 
 |  * when the various extra steps in "tile_net_stop()" are not necessary. | 
 |  */ | 
 | static void tile_net_stop_aux(struct net_device *dev) | 
 | { | 
 | 	struct tile_net_priv *priv = netdev_priv(dev); | 
 | 	int i; | 
 |  | 
 | 	int dummy = 0; | 
 |  | 
 | 	/* | 
 | 	 * Unregister all tiles, so LIPP will stop delivering packets. | 
 | 	 * Also, delete all the "napi" objects (sequentially, to protect | 
 | 	 * "dev->napi_list"). | 
 | 	 */ | 
 | 	on_each_cpu(tile_net_unregister, (void *)dev, 1); | 
 | 	for_each_online_cpu(i) { | 
 | 		struct tile_net_cpu *info = priv->cpu[i]; | 
 | 		if (info != NULL && info->registered) { | 
 | 			netif_napi_del(&info->napi); | 
 | 			info->registered = false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Stop LIPP/LEPP. */ | 
 | 	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy, | 
 | 			  sizeof(dummy), NETIO_IPP_STOP_SHIM_OFF) < 0) | 
 | 		panic("Failed to stop LIPP/LEPP!\n"); | 
 |  | 
 | 	priv->partly_opened = 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Disable NAPI for the given device on the current cpu. | 
 |  */ | 
 | static void tile_net_stop_disable(void *dev_ptr) | 
 | { | 
 | 	struct net_device *dev = (struct net_device *)dev_ptr; | 
 | 	struct tile_net_priv *priv = netdev_priv(dev); | 
 | 	int my_cpu = smp_processor_id(); | 
 | 	struct tile_net_cpu *info = priv->cpu[my_cpu]; | 
 |  | 
 | 	/* Disable NAPI if needed. */ | 
 | 	if (info != NULL && info->napi_enabled) { | 
 | 		napi_disable(&info->napi); | 
 | 		info->napi_enabled = false; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Enable NAPI and the ingress interrupt for the given device | 
 |  * on the current cpu. | 
 |  * | 
 |  * ISSUE: Only do this for "network cpus"? | 
 |  */ | 
 | static void tile_net_open_enable(void *dev_ptr) | 
 | { | 
 | 	struct net_device *dev = (struct net_device *)dev_ptr; | 
 | 	struct tile_net_priv *priv = netdev_priv(dev); | 
 | 	int my_cpu = smp_processor_id(); | 
 | 	struct tile_net_cpu *info = priv->cpu[my_cpu]; | 
 |  | 
 | 	/* Enable NAPI. */ | 
 | 	napi_enable(&info->napi); | 
 | 	info->napi_enabled = true; | 
 |  | 
 | 	/* Enable the ingress interrupt. */ | 
 | 	enable_percpu_irq(priv->intr_id); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * tile_net_open_inner does most of the work of bringing up the interface. | 
 |  * It's called from tile_net_open(), and also from tile_net_retry_open(). | 
 |  * The return value is 0 if the interface was brought up, < 0 if | 
 |  * tile_net_open() should return the return value as an error, and > 0 if | 
 |  * tile_net_open() should return success and schedule a work item to | 
 |  * periodically retry the bringup. | 
 |  */ | 
 | static int tile_net_open_inner(struct net_device *dev) | 
 | { | 
 | 	struct tile_net_priv *priv = netdev_priv(dev); | 
 | 	int my_cpu = smp_processor_id(); | 
 | 	struct tile_net_cpu *info; | 
 | 	struct tile_netio_queue *queue; | 
 | 	int result = 0; | 
 | 	int i; | 
 | 	int dummy = 0; | 
 |  | 
 | 	/* | 
 | 	 * First try to register just on the local CPU, and handle any | 
 | 	 * semi-expected "link down" failure specially.  Note that we | 
 | 	 * do NOT call "tile_net_stop_aux()", unlike below. | 
 | 	 */ | 
 | 	tile_net_register(dev); | 
 | 	info = priv->cpu[my_cpu]; | 
 | 	if (!info->registered) { | 
 | 		if (info->link_down) | 
 | 			return 1; | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now register everywhere else.  If any registration fails, | 
 | 	 * even for "link down" (which might not be possible), we | 
 | 	 * clean up using "tile_net_stop_aux()".  Also, add all the | 
 | 	 * "napi" objects (sequentially, to protect "dev->napi_list"). | 
 | 	 * ISSUE: Only use "netif_napi_add()" for "network cpus"? | 
 | 	 */ | 
 | 	smp_call_function(tile_net_register, (void *)dev, 1); | 
 | 	for_each_online_cpu(i) { | 
 | 		struct tile_net_cpu *info = priv->cpu[i]; | 
 | 		if (info->registered) | 
 | 			netif_napi_add(dev, &info->napi, tile_net_poll, 64); | 
 | 		else | 
 | 			result = -EAGAIN; | 
 | 	} | 
 | 	if (result != 0) { | 
 | 		tile_net_stop_aux(dev); | 
 | 		return result; | 
 | 	} | 
 |  | 
 | 	queue = &info->queue; | 
 |  | 
 | 	if (priv->intr_id == 0) { | 
 | 		unsigned int irq; | 
 |  | 
 | 		/* | 
 | 		 * Acquire the irq allocated by the hypervisor.  Every | 
 | 		 * queue gets the same irq.  The "__intr_id" field is | 
 | 		 * "1 << irq", so we use "__ffs()" to extract "irq". | 
 | 		 */ | 
 | 		priv->intr_id = queue->__system_part->__intr_id; | 
 | 		BUG_ON(priv->intr_id == 0); | 
 | 		irq = __ffs(priv->intr_id); | 
 |  | 
 | 		/* | 
 | 		 * Register the ingress interrupt handler for this | 
 | 		 * device, permanently. | 
 | 		 * | 
 | 		 * We used to call "free_irq()" in "tile_net_stop()", | 
 | 		 * and then re-register the handler here every time, | 
 | 		 * but that caused DNP errors in "handle_IRQ_event()" | 
 | 		 * because "desc->action" was NULL.  See bug 9143. | 
 | 		 */ | 
 | 		tile_irq_activate(irq, TILE_IRQ_PERCPU); | 
 | 		BUG_ON(request_irq(irq, tile_net_handle_ingress_interrupt, | 
 | 				   0, dev->name, (void *)dev) != 0); | 
 | 	} | 
 |  | 
 | 	{ | 
 | 		/* Allocate initial buffers. */ | 
 |  | 
 | 		int max_buffers = | 
 | 			priv->network_cpus_count * priv->network_cpus_credits; | 
 |  | 
 | 		info->num_needed_small_buffers = | 
 | 			min(LIPP_SMALL_BUFFERS, max_buffers); | 
 |  | 
 | 		info->num_needed_large_buffers = | 
 | 			min(LIPP_LARGE_BUFFERS, max_buffers); | 
 |  | 
 | 		tile_net_provide_needed_buffers(info); | 
 |  | 
 | 		if (info->num_needed_small_buffers != 0 || | 
 | 		    info->num_needed_large_buffers != 0) | 
 | 			panic("Insufficient memory for buffer stack!"); | 
 | 	} | 
 |  | 
 | 	/* We are about to be active. */ | 
 | 	priv->active = true; | 
 |  | 
 | 	/* Make sure "active" is visible to all tiles. */ | 
 | 	mb(); | 
 |  | 
 | 	/* On each tile, enable NAPI and the ingress interrupt. */ | 
 | 	on_each_cpu(tile_net_open_enable, (void *)dev, 1); | 
 |  | 
 | 	/* Start LIPP/LEPP and activate "ingress" at the shim. */ | 
 | 	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy, | 
 | 			  sizeof(dummy), NETIO_IPP_INPUT_INIT_OFF) < 0) | 
 | 		panic("Failed to activate the LIPP Shim!\n"); | 
 |  | 
 | 	/* Start our transmit queue. */ | 
 | 	netif_start_queue(dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Called periodically to retry bringing up the NetIO interface, | 
 |  * if it doesn't come up cleanly during tile_net_open(). | 
 |  */ | 
 | static void tile_net_open_retry(struct work_struct *w) | 
 | { | 
 | 	struct delayed_work *dw = | 
 | 		container_of(w, struct delayed_work, work); | 
 |  | 
 | 	struct tile_net_priv *priv = | 
 | 		container_of(dw, struct tile_net_priv, retry_work); | 
 |  | 
 | 	/* | 
 | 	 * Try to bring the NetIO interface up.  If it fails, reschedule | 
 | 	 * ourselves to try again later; otherwise, tell Linux we now have | 
 | 	 * a working link.  ISSUE: What if the return value is negative? | 
 | 	 */ | 
 | 	if (tile_net_open_inner(priv->dev) != 0) | 
 | 		schedule_delayed_work(&priv->retry_work, | 
 | 				      TILE_NET_RETRY_INTERVAL); | 
 | 	else | 
 | 		netif_carrier_on(priv->dev); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Called when a network interface is made active. | 
 |  * | 
 |  * Returns 0 on success, negative value on failure. | 
 |  * | 
 |  * The open entry point is called when a network interface is made | 
 |  * active by the system (IFF_UP).  At this point all resources needed | 
 |  * for transmit and receive operations are allocated, the interrupt | 
 |  * handler is registered with the OS (if needed), the watchdog timer | 
 |  * is started, and the stack is notified that the interface is ready. | 
 |  * | 
 |  * If the actual link is not available yet, then we tell Linux that | 
 |  * we have no carrier, and we keep checking until the link comes up. | 
 |  */ | 
 | static int tile_net_open(struct net_device *dev) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct tile_net_priv *priv = netdev_priv(dev); | 
 |  | 
 | 	/* | 
 | 	 * We rely on priv->partly_opened to tell us if this is the | 
 | 	 * first time this interface is being brought up. If it is | 
 | 	 * set, the IPP was already initialized and should not be | 
 | 	 * initialized again. | 
 | 	 */ | 
 | 	if (!priv->partly_opened) { | 
 |  | 
 | 		int count; | 
 | 		int credits; | 
 |  | 
 | 		/* Initialize LIPP/LEPP, and start the Shim. */ | 
 | 		ret = tile_net_open_aux(dev); | 
 | 		if (ret < 0) { | 
 | 			pr_err("tile_net_open_aux failed: %d\n", ret); | 
 | 			return ret; | 
 | 		} | 
 |  | 
 | 		/* Analyze the network cpus. */ | 
 |  | 
 | 		if (network_cpus_used) | 
 | 			cpumask_copy(&priv->network_cpus_map, | 
 | 				     &network_cpus_map); | 
 | 		else | 
 | 			cpumask_copy(&priv->network_cpus_map, cpu_online_mask); | 
 |  | 
 |  | 
 | 		count = cpumask_weight(&priv->network_cpus_map); | 
 |  | 
 | 		/* Limit credits to available buffers, and apply min. */ | 
 | 		credits = max(16, (LIPP_LARGE_BUFFERS / count) & ~1); | 
 |  | 
 | 		/* Apply "GBE" max limit. */ | 
 | 		/* ISSUE: Use higher limit for XGBE? */ | 
 | 		credits = min(NETIO_MAX_RECEIVE_PKTS, credits); | 
 |  | 
 | 		priv->network_cpus_count = count; | 
 | 		priv->network_cpus_credits = credits; | 
 |  | 
 | #ifdef TILE_NET_DEBUG | 
 | 		pr_info("Using %d network cpus, with %d credits each\n", | 
 | 		       priv->network_cpus_count, priv->network_cpus_credits); | 
 | #endif | 
 |  | 
 | 		priv->partly_opened = 1; | 
 |  | 
 | 	} else { | 
 | 		/* FIXME: Is this possible? */ | 
 | 		/* printk("Already partly opened.\n"); */ | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Attempt to bring up the link. | 
 | 	 */ | 
 | 	ret = tile_net_open_inner(dev); | 
 | 	if (ret <= 0) { | 
 | 		if (ret == 0) | 
 | 			netif_carrier_on(dev); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We were unable to bring up the NetIO interface, but we want to | 
 | 	 * try again in a little bit.  Tell Linux that we have no carrier | 
 | 	 * so it doesn't try to use the interface before the link comes up | 
 | 	 * and then remember to try again later. | 
 | 	 */ | 
 | 	netif_carrier_off(dev); | 
 | 	schedule_delayed_work(&priv->retry_work, TILE_NET_RETRY_INTERVAL); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static int tile_net_drain_lipp_buffers(struct tile_net_priv *priv) | 
 | { | 
 | 	int n = 0; | 
 |  | 
 | 	/* Drain all the LIPP buffers. */ | 
 | 	while (true) { | 
 | 		int buffer; | 
 |  | 
 | 		/* NOTE: This should never fail. */ | 
 | 		if (hv_dev_pread(priv->hv_devhdl, 0, (HV_VirtAddr)&buffer, | 
 | 				 sizeof(buffer), NETIO_IPP_DRAIN_OFF) < 0) | 
 | 			break; | 
 |  | 
 | 		/* Stop when done. */ | 
 | 		if (buffer == 0) | 
 | 			break; | 
 |  | 
 | 		{ | 
 | 			/* Convert "linux_buffer_t" to "va". */ | 
 | 			void *va = __va((phys_addr_t)(buffer >> 1) << 7); | 
 |  | 
 | 			/* Acquire the associated "skb". */ | 
 | 			struct sk_buff **skb_ptr = va - sizeof(*skb_ptr); | 
 | 			struct sk_buff *skb = *skb_ptr; | 
 |  | 
 | 			kfree_skb(skb); | 
 | 		} | 
 |  | 
 | 		n++; | 
 | 	} | 
 |  | 
 | 	return n; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Disables a network interface. | 
 |  * | 
 |  * Returns 0, this is not allowed to fail. | 
 |  * | 
 |  * The close entry point is called when an interface is de-activated | 
 |  * by the OS.  The hardware is still under the drivers control, but | 
 |  * needs to be disabled.  A global MAC reset is issued to stop the | 
 |  * hardware, and all transmit and receive resources are freed. | 
 |  * | 
 |  * ISSUE: How closely does "netif_running(dev)" mirror "priv->active"? | 
 |  * | 
 |  * Before we are called by "__dev_close()", "netif_running()" will | 
 |  * have been cleared, so no NEW calls to "tile_net_poll()" will be | 
 |  * made by "netpoll_poll_dev()". | 
 |  * | 
 |  * Often, this can cause some tiles to still have packets in their | 
 |  * queues, so we must call "tile_net_discard_packets()" later. | 
 |  * | 
 |  * Note that some other tile may still be INSIDE "tile_net_poll()", | 
 |  * and in fact, many will be, if there is heavy network load. | 
 |  * | 
 |  * Calling "on_each_cpu(tile_net_stop_disable, (void *)dev, 1)" when | 
 |  * any tile is still "napi_schedule()"'d will induce a horrible crash | 
 |  * when "msleep()" is called.  This includes tiles which are inside | 
 |  * "tile_net_poll()" which have not yet called "napi_complete()". | 
 |  * | 
 |  * So, we must first try to wait long enough for other tiles to finish | 
 |  * with any current "tile_net_poll()" call, and, hopefully, to clear | 
 |  * the "scheduled" flag.  ISSUE: It is unclear what happens to tiles | 
 |  * which have called "napi_schedule()" but which had not yet tried to | 
 |  * call "tile_net_poll()", or which exhausted their budget inside | 
 |  * "tile_net_poll()" just before this function was called. | 
 |  */ | 
 | static int tile_net_stop(struct net_device *dev) | 
 | { | 
 | 	struct tile_net_priv *priv = netdev_priv(dev); | 
 |  | 
 | 	PDEBUG("tile_net_stop()\n"); | 
 |  | 
 | 	/* Start discarding packets. */ | 
 | 	priv->active = false; | 
 |  | 
 | 	/* Make sure "active" is visible to all tiles. */ | 
 | 	mb(); | 
 |  | 
 | 	/* | 
 | 	 * On each tile, make sure no NEW packets get delivered, and | 
 | 	 * disable the ingress interrupt. | 
 | 	 * | 
 | 	 * Note that the ingress interrupt can fire AFTER this, | 
 | 	 * presumably due to packets which were recently delivered, | 
 | 	 * but it will have no effect. | 
 | 	 */ | 
 | 	on_each_cpu(tile_net_deregister, (void *)dev, 1); | 
 |  | 
 | 	/* Optimistically drain LIPP buffers. */ | 
 | 	(void)tile_net_drain_lipp_buffers(priv); | 
 |  | 
 | 	/* ISSUE: Only needed if not yet fully open. */ | 
 | 	cancel_delayed_work_sync(&priv->retry_work); | 
 |  | 
 | 	/* Can't transmit any more. */ | 
 | 	netif_stop_queue(dev); | 
 |  | 
 | 	/* Disable NAPI on each tile. */ | 
 | 	on_each_cpu(tile_net_stop_disable, (void *)dev, 1); | 
 |  | 
 | 	/* | 
 | 	 * Drain any remaining LIPP buffers.  NOTE: This "printk()" | 
 | 	 * has never been observed, but in theory it could happen. | 
 | 	 */ | 
 | 	if (tile_net_drain_lipp_buffers(priv) != 0) | 
 | 		printk("Had to drain some extra LIPP buffers!\n"); | 
 |  | 
 | 	/* Stop LIPP/LEPP. */ | 
 | 	tile_net_stop_aux(dev); | 
 |  | 
 | 	/* | 
 | 	 * ISSUE: It appears that, in practice anyway, by the time we | 
 | 	 * get here, there are no pending completions, but just in case, | 
 | 	 * we free (all of) them anyway. | 
 | 	 */ | 
 | 	while (tile_net_lepp_free_comps(dev, true)) | 
 | 		/* loop */; | 
 |  | 
 | 	/* Wipe the EPP queue. */ | 
 | 	memset(priv->eq, 0, sizeof(lepp_queue_t)); | 
 |  | 
 | 	/* Evict the EPP queue. */ | 
 | 	finv_buffer(priv->eq, EQ_SIZE); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Prepare the "frags" info for the resulting LEPP command. | 
 |  * | 
 |  * If needed, flush the memory used by the frags. | 
 |  */ | 
 | static unsigned int tile_net_tx_frags(lepp_frag_t *frags, | 
 | 				      struct sk_buff *skb, | 
 | 				      void *b_data, unsigned int b_len) | 
 | { | 
 | 	unsigned int i, n = 0; | 
 |  | 
 | 	struct skb_shared_info *sh = skb_shinfo(skb); | 
 |  | 
 | 	phys_addr_t cpa; | 
 |  | 
 | 	if (b_len != 0) { | 
 |  | 
 | 		if (!hash_default) | 
 | 			finv_buffer_remote(b_data, b_len, 0); | 
 |  | 
 | 		cpa = __pa(b_data); | 
 | 		frags[n].cpa_lo = cpa; | 
 | 		frags[n].cpa_hi = cpa >> 32; | 
 | 		frags[n].length = b_len; | 
 | 		frags[n].hash_for_home = hash_default; | 
 | 		n++; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < sh->nr_frags; i++) { | 
 |  | 
 | 		skb_frag_t *f = &sh->frags[i]; | 
 | 		unsigned long pfn = page_to_pfn(f->page); | 
 |  | 
 | 		/* FIXME: Compute "hash_for_home" properly. */ | 
 | 		/* ISSUE: The hypervisor checks CHIP_HAS_REV1_DMA_PACKETS(). */ | 
 | 		int hash_for_home = hash_default; | 
 |  | 
 | 		/* FIXME: Hmmm. */ | 
 | 		if (!hash_default) { | 
 | 			void *va = pfn_to_kaddr(pfn) + f->page_offset; | 
 | 			BUG_ON(PageHighMem(f->page)); | 
 | 			finv_buffer_remote(va, f->size, 0); | 
 | 		} | 
 |  | 
 | 		cpa = ((phys_addr_t)pfn << PAGE_SHIFT) + f->page_offset; | 
 | 		frags[n].cpa_lo = cpa; | 
 | 		frags[n].cpa_hi = cpa >> 32; | 
 | 		frags[n].length = f->size; | 
 | 		frags[n].hash_for_home = hash_for_home; | 
 | 		n++; | 
 | 	} | 
 |  | 
 | 	return n; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * This function takes "skb", consisting of a header template and a | 
 |  * payload, and hands it to LEPP, to emit as one or more segments, | 
 |  * each consisting of a possibly modified header, plus a piece of the | 
 |  * payload, via a process known as "tcp segmentation offload". | 
 |  * | 
 |  * Usually, "data" will contain the header template, of size "sh_len", | 
 |  * and "sh->frags" will contain "skb->data_len" bytes of payload, and | 
 |  * there will be "sh->gso_segs" segments. | 
 |  * | 
 |  * Sometimes, if "sendfile()" requires copying, we will be called with | 
 |  * "data" containing the header and payload, with "frags" being empty. | 
 |  * | 
 |  * In theory, "sh->nr_frags" could be 3, but in practice, it seems | 
 |  * that this will never actually happen. | 
 |  * | 
 |  * See "emulate_large_send_offload()" for some reference code, which | 
 |  * does not handle checksumming. | 
 |  * | 
 |  * ISSUE: How do we make sure that high memory DMA does not migrate? | 
 |  */ | 
 | static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev) | 
 | { | 
 | 	struct tile_net_priv *priv = netdev_priv(dev); | 
 | 	int my_cpu = smp_processor_id(); | 
 | 	struct tile_net_cpu *info = priv->cpu[my_cpu]; | 
 | 	struct tile_net_stats_t *stats = &info->stats; | 
 |  | 
 | 	struct skb_shared_info *sh = skb_shinfo(skb); | 
 |  | 
 | 	unsigned char *data = skb->data; | 
 |  | 
 | 	/* The ip header follows the ethernet header. */ | 
 | 	struct iphdr *ih = ip_hdr(skb); | 
 | 	unsigned int ih_len = ih->ihl * 4; | 
 |  | 
 | 	/* Note that "nh == ih", by definition. */ | 
 | 	unsigned char *nh = skb_network_header(skb); | 
 | 	unsigned int eh_len = nh - data; | 
 |  | 
 | 	/* The tcp header follows the ip header. */ | 
 | 	struct tcphdr *th = (struct tcphdr *)(nh + ih_len); | 
 | 	unsigned int th_len = th->doff * 4; | 
 |  | 
 | 	/* The total number of header bytes. */ | 
 | 	/* NOTE: This may be less than skb_headlen(skb). */ | 
 | 	unsigned int sh_len = eh_len + ih_len + th_len; | 
 |  | 
 | 	/* The number of payload bytes at "skb->data + sh_len". */ | 
 | 	/* This is non-zero for sendfile() without HIGHDMA. */ | 
 | 	unsigned int b_len = skb_headlen(skb) - sh_len; | 
 |  | 
 | 	/* The total number of payload bytes. */ | 
 | 	unsigned int d_len = b_len + skb->data_len; | 
 |  | 
 | 	/* The maximum payload size. */ | 
 | 	unsigned int p_len = sh->gso_size; | 
 |  | 
 | 	/* The total number of segments. */ | 
 | 	unsigned int num_segs = sh->gso_segs; | 
 |  | 
 | 	/* The temporary copy of the command. */ | 
 | 	u32 cmd_body[(LEPP_MAX_CMD_SIZE + 3) / 4]; | 
 | 	lepp_tso_cmd_t *cmd = (lepp_tso_cmd_t *)cmd_body; | 
 |  | 
 | 	/* Analyze the "frags". */ | 
 | 	unsigned int num_frags = | 
 | 		tile_net_tx_frags(cmd->frags, skb, data + sh_len, b_len); | 
 |  | 
 | 	/* The size of the command, including frags and header. */ | 
 | 	size_t cmd_size = LEPP_TSO_CMD_SIZE(num_frags, sh_len); | 
 |  | 
 | 	/* The command header. */ | 
 | 	lepp_tso_cmd_t cmd_init = { | 
 | 		.tso = true, | 
 | 		.header_size = sh_len, | 
 | 		.ip_offset = eh_len, | 
 | 		.tcp_offset = eh_len + ih_len, | 
 | 		.payload_size = p_len, | 
 | 		.num_frags = num_frags, | 
 | 	}; | 
 |  | 
 | 	unsigned long irqflags; | 
 |  | 
 | 	lepp_queue_t *eq = priv->eq; | 
 |  | 
 | 	struct sk_buff *olds[8]; | 
 | 	unsigned int wanted = 8; | 
 | 	unsigned int i, nolds = 0; | 
 |  | 
 | 	unsigned int cmd_head, cmd_tail, cmd_next; | 
 | 	unsigned int comp_tail; | 
 |  | 
 |  | 
 | 	/* Paranoia. */ | 
 | 	BUG_ON(skb->protocol != htons(ETH_P_IP)); | 
 | 	BUG_ON(ih->protocol != IPPROTO_TCP); | 
 | 	BUG_ON(skb->ip_summed != CHECKSUM_PARTIAL); | 
 | 	BUG_ON(num_frags > LEPP_MAX_FRAGS); | 
 | 	/*--BUG_ON(num_segs != (d_len + (p_len - 1)) / p_len); */ | 
 | 	BUG_ON(num_segs <= 1); | 
 |  | 
 |  | 
 | 	/* Finish preparing the command. */ | 
 |  | 
 | 	/* Copy the command header. */ | 
 | 	*cmd = cmd_init; | 
 |  | 
 | 	/* Copy the "header". */ | 
 | 	memcpy(&cmd->frags[num_frags], data, sh_len); | 
 |  | 
 |  | 
 | 	/* Prefetch and wait, to minimize time spent holding the spinlock. */ | 
 | 	prefetch_L1(&eq->comp_tail); | 
 | 	prefetch_L1(&eq->cmd_tail); | 
 | 	mb(); | 
 |  | 
 |  | 
 | 	/* Enqueue the command. */ | 
 |  | 
 | 	spin_lock_irqsave(&priv->eq_lock, irqflags); | 
 |  | 
 | 	/* | 
 | 	 * Handle completions if needed to make room. | 
 | 	 * HACK: Spin until there is sufficient room. | 
 | 	 */ | 
 | 	if (lepp_num_free_comp_slots(eq) == 0) { | 
 | 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0); | 
 | 		if (nolds == 0) { | 
 | busy: | 
 | 			spin_unlock_irqrestore(&priv->eq_lock, irqflags); | 
 | 			return NETDEV_TX_BUSY; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cmd_head = eq->cmd_head; | 
 | 	cmd_tail = eq->cmd_tail; | 
 |  | 
 | 	/* Prepare to advance, detecting full queue. */ | 
 | 	cmd_next = cmd_tail + cmd_size; | 
 | 	if (cmd_tail < cmd_head && cmd_next >= cmd_head) | 
 | 		goto busy; | 
 | 	if (cmd_next > LEPP_CMD_LIMIT) { | 
 | 		cmd_next = 0; | 
 | 		if (cmd_next == cmd_head) | 
 | 			goto busy; | 
 | 	} | 
 |  | 
 | 	/* Copy the command. */ | 
 | 	memcpy(&eq->cmds[cmd_tail], cmd, cmd_size); | 
 |  | 
 | 	/* Advance. */ | 
 | 	cmd_tail = cmd_next; | 
 |  | 
 | 	/* Record "skb" for eventual freeing. */ | 
 | 	comp_tail = eq->comp_tail; | 
 | 	eq->comps[comp_tail] = skb; | 
 | 	LEPP_QINC(comp_tail); | 
 | 	eq->comp_tail = comp_tail; | 
 |  | 
 | 	/* Flush before allowing LEPP to handle the command. */ | 
 | 	/* ISSUE: Is this the optimal location for the flush? */ | 
 | 	__insn_mf(); | 
 |  | 
 | 	eq->cmd_tail = cmd_tail; | 
 |  | 
 | 	/* NOTE: Using "4" here is more efficient than "0" or "2", */ | 
 | 	/* and, strangely, more efficient than pre-checking the number */ | 
 | 	/* of available completions, and comparing it to 4. */ | 
 | 	if (nolds == 0) | 
 | 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4); | 
 |  | 
 | 	spin_unlock_irqrestore(&priv->eq_lock, irqflags); | 
 |  | 
 | 	/* Handle completions. */ | 
 | 	for (i = 0; i < nolds; i++) | 
 | 		kfree_skb(olds[i]); | 
 |  | 
 | 	/* Update stats. */ | 
 | 	stats->tx_packets += num_segs; | 
 | 	stats->tx_bytes += (num_segs * sh_len) + d_len; | 
 |  | 
 | 	/* Make sure the egress timer is scheduled. */ | 
 | 	tile_net_schedule_egress_timer(info); | 
 |  | 
 | 	return NETDEV_TX_OK; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Transmit a packet (called by the kernel via "hard_start_xmit" hook). | 
 |  */ | 
 | static int tile_net_tx(struct sk_buff *skb, struct net_device *dev) | 
 | { | 
 | 	struct tile_net_priv *priv = netdev_priv(dev); | 
 | 	int my_cpu = smp_processor_id(); | 
 | 	struct tile_net_cpu *info = priv->cpu[my_cpu]; | 
 | 	struct tile_net_stats_t *stats = &info->stats; | 
 |  | 
 | 	unsigned long irqflags; | 
 |  | 
 | 	struct skb_shared_info *sh = skb_shinfo(skb); | 
 |  | 
 | 	unsigned int len = skb->len; | 
 | 	unsigned char *data = skb->data; | 
 |  | 
 | 	unsigned int csum_start = skb->csum_start - skb_headroom(skb); | 
 |  | 
 | 	lepp_frag_t frags[LEPP_MAX_FRAGS]; | 
 |  | 
 | 	unsigned int num_frags; | 
 |  | 
 | 	lepp_queue_t *eq = priv->eq; | 
 |  | 
 | 	struct sk_buff *olds[8]; | 
 | 	unsigned int wanted = 8; | 
 | 	unsigned int i, nolds = 0; | 
 |  | 
 | 	unsigned int cmd_size = sizeof(lepp_cmd_t); | 
 |  | 
 | 	unsigned int cmd_head, cmd_tail, cmd_next; | 
 | 	unsigned int comp_tail; | 
 |  | 
 | 	lepp_cmd_t cmds[LEPP_MAX_FRAGS]; | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * This is paranoia, since we think that if the link doesn't come | 
 | 	 * up, telling Linux we have no carrier will keep it from trying | 
 | 	 * to transmit.  If it does, though, we can't execute this routine, | 
 | 	 * since data structures we depend on aren't set up yet. | 
 | 	 */ | 
 | 	if (!info->registered) | 
 | 		return NETDEV_TX_BUSY; | 
 |  | 
 |  | 
 | 	/* Save the timestamp. */ | 
 | 	dev->trans_start = jiffies; | 
 |  | 
 |  | 
 | #ifdef TILE_NET_PARANOIA | 
 | #if CHIP_HAS_CBOX_HOME_MAP() | 
 | 	if (hash_default) { | 
 | 		HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)data); | 
 | 		if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3) | 
 | 			panic("Non-HFH egress buffer! VA=%p Mode=%d PTE=%llx", | 
 | 			      data, hv_pte_get_mode(pte), hv_pte_val(pte)); | 
 | 	} | 
 | #endif | 
 | #endif | 
 |  | 
 |  | 
 | #ifdef TILE_NET_DUMP_PACKETS | 
 | 	/* ISSUE: Does not dump the "frags". */ | 
 | 	dump_packet(data, skb_headlen(skb), "tx"); | 
 | #endif /* TILE_NET_DUMP_PACKETS */ | 
 |  | 
 |  | 
 | 	if (sh->gso_size != 0) | 
 | 		return tile_net_tx_tso(skb, dev); | 
 |  | 
 |  | 
 | 	/* Prepare the commands. */ | 
 |  | 
 | 	num_frags = tile_net_tx_frags(frags, skb, data, skb_headlen(skb)); | 
 |  | 
 | 	for (i = 0; i < num_frags; i++) { | 
 |  | 
 | 		bool final = (i == num_frags - 1); | 
 |  | 
 | 		lepp_cmd_t cmd = { | 
 | 			.cpa_lo = frags[i].cpa_lo, | 
 | 			.cpa_hi = frags[i].cpa_hi, | 
 | 			.length = frags[i].length, | 
 | 			.hash_for_home = frags[i].hash_for_home, | 
 | 			.send_completion = final, | 
 | 			.end_of_packet = final | 
 | 		}; | 
 |  | 
 | 		if (i == 0 && skb->ip_summed == CHECKSUM_PARTIAL) { | 
 | 			cmd.compute_checksum = 1; | 
 | 			cmd.checksum_data.bits.start_byte = csum_start; | 
 | 			cmd.checksum_data.bits.count = len - csum_start; | 
 | 			cmd.checksum_data.bits.destination_byte = | 
 | 				csum_start + skb->csum_offset; | 
 | 		} | 
 |  | 
 | 		cmds[i] = cmd; | 
 | 	} | 
 |  | 
 |  | 
 | 	/* Prefetch and wait, to minimize time spent holding the spinlock. */ | 
 | 	prefetch_L1(&eq->comp_tail); | 
 | 	prefetch_L1(&eq->cmd_tail); | 
 | 	mb(); | 
 |  | 
 |  | 
 | 	/* Enqueue the commands. */ | 
 |  | 
 | 	spin_lock_irqsave(&priv->eq_lock, irqflags); | 
 |  | 
 | 	/* | 
 | 	 * Handle completions if needed to make room. | 
 | 	 * HACK: Spin until there is sufficient room. | 
 | 	 */ | 
 | 	if (lepp_num_free_comp_slots(eq) == 0) { | 
 | 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0); | 
 | 		if (nolds == 0) { | 
 | busy: | 
 | 			spin_unlock_irqrestore(&priv->eq_lock, irqflags); | 
 | 			return NETDEV_TX_BUSY; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cmd_head = eq->cmd_head; | 
 | 	cmd_tail = eq->cmd_tail; | 
 |  | 
 | 	/* Copy the commands, or fail. */ | 
 | 	for (i = 0; i < num_frags; i++) { | 
 |  | 
 | 		/* Prepare to advance, detecting full queue. */ | 
 | 		cmd_next = cmd_tail + cmd_size; | 
 | 		if (cmd_tail < cmd_head && cmd_next >= cmd_head) | 
 | 			goto busy; | 
 | 		if (cmd_next > LEPP_CMD_LIMIT) { | 
 | 			cmd_next = 0; | 
 | 			if (cmd_next == cmd_head) | 
 | 				goto busy; | 
 | 		} | 
 |  | 
 | 		/* Copy the command. */ | 
 | 		*(lepp_cmd_t *)&eq->cmds[cmd_tail] = cmds[i]; | 
 |  | 
 | 		/* Advance. */ | 
 | 		cmd_tail = cmd_next; | 
 | 	} | 
 |  | 
 | 	/* Record "skb" for eventual freeing. */ | 
 | 	comp_tail = eq->comp_tail; | 
 | 	eq->comps[comp_tail] = skb; | 
 | 	LEPP_QINC(comp_tail); | 
 | 	eq->comp_tail = comp_tail; | 
 |  | 
 | 	/* Flush before allowing LEPP to handle the command. */ | 
 | 	/* ISSUE: Is this the optimal location for the flush? */ | 
 | 	__insn_mf(); | 
 |  | 
 | 	eq->cmd_tail = cmd_tail; | 
 |  | 
 | 	/* NOTE: Using "4" here is more efficient than "0" or "2", */ | 
 | 	/* and, strangely, more efficient than pre-checking the number */ | 
 | 	/* of available completions, and comparing it to 4. */ | 
 | 	if (nolds == 0) | 
 | 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4); | 
 |  | 
 | 	spin_unlock_irqrestore(&priv->eq_lock, irqflags); | 
 |  | 
 | 	/* Handle completions. */ | 
 | 	for (i = 0; i < nolds; i++) | 
 | 		kfree_skb(olds[i]); | 
 |  | 
 | 	/* HACK: Track "expanded" size for short packets (e.g. 42 < 60). */ | 
 | 	stats->tx_packets++; | 
 | 	stats->tx_bytes += ((len >= ETH_ZLEN) ? len : ETH_ZLEN); | 
 |  | 
 | 	/* Make sure the egress timer is scheduled. */ | 
 | 	tile_net_schedule_egress_timer(info); | 
 |  | 
 | 	return NETDEV_TX_OK; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Deal with a transmit timeout. | 
 |  */ | 
 | static void tile_net_tx_timeout(struct net_device *dev) | 
 | { | 
 | 	PDEBUG("tile_net_tx_timeout()\n"); | 
 | 	PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies, | 
 | 	       jiffies - dev->trans_start); | 
 |  | 
 | 	/* XXX: ISSUE: This doesn't seem useful for us. */ | 
 | 	netif_wake_queue(dev); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Ioctl commands. | 
 |  */ | 
 | static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | 
 | { | 
 | 	return -EOPNOTSUPP; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Get System Network Statistics. | 
 |  * | 
 |  * Returns the address of the device statistics structure. | 
 |  */ | 
 | static struct net_device_stats *tile_net_get_stats(struct net_device *dev) | 
 | { | 
 | 	struct tile_net_priv *priv = netdev_priv(dev); | 
 | 	u32 rx_packets = 0; | 
 | 	u32 tx_packets = 0; | 
 | 	u32 rx_bytes = 0; | 
 | 	u32 tx_bytes = 0; | 
 | 	int i; | 
 |  | 
 | 	for_each_online_cpu(i) { | 
 | 		if (priv->cpu[i]) { | 
 | 			rx_packets += priv->cpu[i]->stats.rx_packets; | 
 | 			rx_bytes += priv->cpu[i]->stats.rx_bytes; | 
 | 			tx_packets += priv->cpu[i]->stats.tx_packets; | 
 | 			tx_bytes += priv->cpu[i]->stats.tx_bytes; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	priv->stats.rx_packets = rx_packets; | 
 | 	priv->stats.rx_bytes = rx_bytes; | 
 | 	priv->stats.tx_packets = tx_packets; | 
 | 	priv->stats.tx_bytes = tx_bytes; | 
 |  | 
 | 	return &priv->stats; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Change the "mtu". | 
 |  * | 
 |  * The "change_mtu" method is usually not needed. | 
 |  * If you need it, it must be like this. | 
 |  */ | 
 | static int tile_net_change_mtu(struct net_device *dev, int new_mtu) | 
 | { | 
 | 	PDEBUG("tile_net_change_mtu()\n"); | 
 |  | 
 | 	/* Check ranges. */ | 
 | 	if ((new_mtu < 68) || (new_mtu > 1500)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Accept the value. */ | 
 | 	dev->mtu = new_mtu; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Change the Ethernet Address of the NIC. | 
 |  * | 
 |  * The hypervisor driver does not support changing MAC address.  However, | 
 |  * the IPP does not do anything with the MAC address, so the address which | 
 |  * gets used on outgoing packets, and which is accepted on incoming packets, | 
 |  * is completely up to the NetIO program or kernel driver which is actually | 
 |  * handling them. | 
 |  * | 
 |  * Returns 0 on success, negative on failure. | 
 |  */ | 
 | static int tile_net_set_mac_address(struct net_device *dev, void *p) | 
 | { | 
 | 	struct sockaddr *addr = p; | 
 |  | 
 | 	if (!is_valid_ether_addr(addr->sa_data)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* ISSUE: Note that "dev_addr" is now a pointer. */ | 
 | 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Obtain the MAC address from the hypervisor. | 
 |  * This must be done before opening the device. | 
 |  */ | 
 | static int tile_net_get_mac(struct net_device *dev) | 
 | { | 
 | 	struct tile_net_priv *priv = netdev_priv(dev); | 
 |  | 
 | 	char hv_dev_name[32]; | 
 | 	int len; | 
 |  | 
 | 	__netio_getset_offset_t offset = { .word = NETIO_IPP_PARAM_OFF }; | 
 |  | 
 | 	int ret; | 
 |  | 
 | 	/* For example, "xgbe0". */ | 
 | 	strcpy(hv_dev_name, dev->name); | 
 | 	len = strlen(hv_dev_name); | 
 |  | 
 | 	/* For example, "xgbe/0". */ | 
 | 	hv_dev_name[len] = hv_dev_name[len - 1]; | 
 | 	hv_dev_name[len - 1] = '/'; | 
 | 	len++; | 
 |  | 
 | 	/* For example, "xgbe/0/native_hash". */ | 
 | 	strcpy(hv_dev_name + len, hash_default ? "/native_hash" : "/native"); | 
 |  | 
 | 	/* Get the hypervisor handle for this device. */ | 
 | 	priv->hv_devhdl = hv_dev_open((HV_VirtAddr)hv_dev_name, 0); | 
 | 	PDEBUG("hv_dev_open(%s) returned %d %p\n", | 
 | 	       hv_dev_name, priv->hv_devhdl, &priv->hv_devhdl); | 
 | 	if (priv->hv_devhdl < 0) { | 
 | 		if (priv->hv_devhdl == HV_ENODEV) | 
 | 			printk(KERN_DEBUG "Ignoring unconfigured device %s\n", | 
 | 				 hv_dev_name); | 
 | 		else | 
 | 			printk(KERN_DEBUG "hv_dev_open(%s) returned %d\n", | 
 | 				 hv_dev_name, priv->hv_devhdl); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Read the hardware address from the hypervisor. | 
 | 	 * ISSUE: Note that "dev_addr" is now a pointer. | 
 | 	 */ | 
 | 	offset.bits.class = NETIO_PARAM; | 
 | 	offset.bits.addr = NETIO_PARAM_MAC; | 
 | 	ret = hv_dev_pread(priv->hv_devhdl, 0, | 
 | 			   (HV_VirtAddr)dev->dev_addr, dev->addr_len, | 
 | 			   offset.word); | 
 | 	PDEBUG("hv_dev_pread(NETIO_PARAM_MAC) returned %d\n", ret); | 
 | 	if (ret <= 0) { | 
 | 		printk(KERN_DEBUG "hv_dev_pread(NETIO_PARAM_MAC) %s failed\n", | 
 | 		       dev->name); | 
 | 		/* | 
 | 		 * Since the device is configured by the hypervisor but we | 
 | 		 * can't get its MAC address, we are most likely running | 
 | 		 * the simulator, so let's generate a random MAC address. | 
 | 		 */ | 
 | 		random_ether_addr(dev->dev_addr); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static struct net_device_ops tile_net_ops = { | 
 | 	.ndo_open = tile_net_open, | 
 | 	.ndo_stop = tile_net_stop, | 
 | 	.ndo_start_xmit = tile_net_tx, | 
 | 	.ndo_do_ioctl = tile_net_ioctl, | 
 | 	.ndo_get_stats = tile_net_get_stats, | 
 | 	.ndo_change_mtu = tile_net_change_mtu, | 
 | 	.ndo_tx_timeout = tile_net_tx_timeout, | 
 | 	.ndo_set_mac_address = tile_net_set_mac_address | 
 | }; | 
 |  | 
 |  | 
 | /* | 
 |  * The setup function. | 
 |  * | 
 |  * This uses ether_setup() to assign various fields in dev, including | 
 |  * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields. | 
 |  */ | 
 | static void tile_net_setup(struct net_device *dev) | 
 | { | 
 | 	PDEBUG("tile_net_setup()\n"); | 
 |  | 
 | 	ether_setup(dev); | 
 |  | 
 | 	dev->netdev_ops = &tile_net_ops; | 
 |  | 
 | 	dev->watchdog_timeo = TILE_NET_TIMEOUT; | 
 |  | 
 | 	/* We want lockless xmit. */ | 
 | 	dev->features |= NETIF_F_LLTX; | 
 |  | 
 | 	/* We support hardware tx checksums. */ | 
 | 	dev->features |= NETIF_F_HW_CSUM; | 
 |  | 
 | 	/* We support scatter/gather. */ | 
 | 	dev->features |= NETIF_F_SG; | 
 |  | 
 | 	/* We support TSO. */ | 
 | 	dev->features |= NETIF_F_TSO; | 
 |  | 
 | #ifdef TILE_NET_GSO | 
 | 	/* We support GSO. */ | 
 | 	dev->features |= NETIF_F_GSO; | 
 | #endif | 
 |  | 
 | 	if (hash_default) | 
 | 		dev->features |= NETIF_F_HIGHDMA; | 
 |  | 
 | 	/* ISSUE: We should support NETIF_F_UFO. */ | 
 |  | 
 | 	dev->tx_queue_len = TILE_NET_TX_QUEUE_LEN; | 
 |  | 
 | 	dev->mtu = TILE_NET_MTU; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Allocate the device structure, register the device, and obtain the | 
 |  * MAC address from the hypervisor. | 
 |  */ | 
 | static struct net_device *tile_net_dev_init(const char *name) | 
 | { | 
 | 	int ret; | 
 | 	struct net_device *dev; | 
 | 	struct tile_net_priv *priv; | 
 |  | 
 | 	/* | 
 | 	 * Allocate the device structure.  This allocates "priv", calls | 
 | 	 * tile_net_setup(), and saves "name".  Normally, "name" is a | 
 | 	 * template, instantiated by register_netdev(), but not for us. | 
 | 	 */ | 
 | 	dev = alloc_netdev(sizeof(*priv), name, tile_net_setup); | 
 | 	if (!dev) { | 
 | 		pr_err("alloc_netdev(%s) failed\n", name); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	priv = netdev_priv(dev); | 
 |  | 
 | 	/* Initialize "priv". */ | 
 |  | 
 | 	memset(priv, 0, sizeof(*priv)); | 
 |  | 
 | 	/* Save "dev" for "tile_net_open_retry()". */ | 
 | 	priv->dev = dev; | 
 |  | 
 | 	INIT_DELAYED_WORK(&priv->retry_work, tile_net_open_retry); | 
 |  | 
 | 	spin_lock_init(&priv->eq_lock); | 
 |  | 
 | 	/* Allocate "eq". */ | 
 | 	priv->eq_pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, EQ_ORDER); | 
 | 	if (!priv->eq_pages) { | 
 | 		free_netdev(dev); | 
 | 		return NULL; | 
 | 	} | 
 | 	priv->eq = page_address(priv->eq_pages); | 
 |  | 
 | 	/* Register the network device. */ | 
 | 	ret = register_netdev(dev); | 
 | 	if (ret) { | 
 | 		pr_err("register_netdev %s failed %d\n", dev->name, ret); | 
 | 		__free_pages(priv->eq_pages, EQ_ORDER); | 
 | 		free_netdev(dev); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* Get the MAC address. */ | 
 | 	ret = tile_net_get_mac(dev); | 
 | 	if (ret < 0) { | 
 | 		unregister_netdev(dev); | 
 | 		__free_pages(priv->eq_pages, EQ_ORDER); | 
 | 		free_netdev(dev); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return dev; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Module cleanup. | 
 |  * | 
 |  * FIXME: If compiled as a module, this module cannot be "unloaded", | 
 |  * because the "ingress interrupt handler" is registered permanently. | 
 |  */ | 
 | static void tile_net_cleanup(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < TILE_NET_DEVS; i++) { | 
 | 		if (tile_net_devs[i]) { | 
 | 			struct net_device *dev = tile_net_devs[i]; | 
 | 			struct tile_net_priv *priv = netdev_priv(dev); | 
 | 			unregister_netdev(dev); | 
 | 			finv_buffer(priv->eq, EQ_SIZE); | 
 | 			__free_pages(priv->eq_pages, EQ_ORDER); | 
 | 			free_netdev(dev); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Module initialization. | 
 |  */ | 
 | static int tile_net_init_module(void) | 
 | { | 
 | 	pr_info("Tilera IPP Net Driver\n"); | 
 |  | 
 | 	tile_net_devs[0] = tile_net_dev_init("xgbe0"); | 
 | 	tile_net_devs[1] = tile_net_dev_init("xgbe1"); | 
 | 	tile_net_devs[2] = tile_net_dev_init("gbe0"); | 
 | 	tile_net_devs[3] = tile_net_dev_init("gbe1"); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | module_init(tile_net_init_module); | 
 | module_exit(tile_net_cleanup); | 
 |  | 
 |  | 
 | #ifndef MODULE | 
 |  | 
 | /* | 
 |  * The "network_cpus" boot argument specifies the cpus that are dedicated | 
 |  * to handle ingress packets. | 
 |  * | 
 |  * The parameter should be in the form "network_cpus=m-n[,x-y]", where | 
 |  * m, n, x, y are integer numbers that represent the cpus that can be | 
 |  * neither a dedicated cpu nor a dataplane cpu. | 
 |  */ | 
 | static int __init network_cpus_setup(char *str) | 
 | { | 
 | 	int rc = cpulist_parse_crop(str, &network_cpus_map); | 
 | 	if (rc != 0) { | 
 | 		pr_warning("network_cpus=%s: malformed cpu list\n", | 
 | 		       str); | 
 | 	} else { | 
 |  | 
 | 		/* Remove dedicated cpus. */ | 
 | 		cpumask_and(&network_cpus_map, &network_cpus_map, | 
 | 			    cpu_possible_mask); | 
 |  | 
 |  | 
 | 		if (cpumask_empty(&network_cpus_map)) { | 
 | 			pr_warning("Ignoring network_cpus='%s'.\n", | 
 | 			       str); | 
 | 		} else { | 
 | 			char buf[1024]; | 
 | 			cpulist_scnprintf(buf, sizeof(buf), &network_cpus_map); | 
 | 			pr_info("Linux network CPUs: %s\n", buf); | 
 | 			network_cpus_used = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | __setup("network_cpus=", network_cpus_setup); | 
 |  | 
 | #endif |