|  | /******************************************************************************* | 
|  |  | 
|  | Intel 10 Gigabit PCI Express Linux driver | 
|  | Copyright(c) 1999 - 2007 Intel Corporation. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify it | 
|  | under the terms and conditions of the GNU General Public License, | 
|  | version 2, as published by the Free Software Foundation. | 
|  |  | 
|  | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along with | 
|  | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  |  | 
|  | The full GNU General Public License is included in this distribution in | 
|  | the file called "COPYING". | 
|  |  | 
|  | Contact Information: | 
|  | Linux NICS <linux.nics@intel.com> | 
|  | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  |  | 
|  | *******************************************************************************/ | 
|  |  | 
|  | #include <linux/pci.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/sched.h> | 
|  |  | 
|  | #include "ixgbe_common.h" | 
|  | #include "ixgbe_phy.h" | 
|  |  | 
|  | static s32 ixgbe_clear_hw_cntrs(struct ixgbe_hw *hw); | 
|  |  | 
|  | static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw); | 
|  | static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw); | 
|  | static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw); | 
|  | static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw); | 
|  |  | 
|  | static s32 ixgbe_clear_vfta(struct ixgbe_hw *hw); | 
|  | static s32 ixgbe_init_rx_addrs(struct ixgbe_hw *hw); | 
|  | static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr); | 
|  | static void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr); | 
|  |  | 
|  | /** | 
|  | *  ixgbe_start_hw - Prepare hardware for TX/RX | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Starts the hardware by filling the bus info structure and media type, clears | 
|  | *  all on chip counters, initializes receive address registers, multicast | 
|  | *  table, VLAN filter table, calls routine to set up link and flow control | 
|  | *  settings, and leaves transmit and receive units disabled and uninitialized | 
|  | **/ | 
|  | s32 ixgbe_start_hw(struct ixgbe_hw *hw) | 
|  | { | 
|  | u32 ctrl_ext; | 
|  |  | 
|  | /* Set the media type */ | 
|  | hw->phy.media_type = hw->mac.ops.get_media_type(hw); | 
|  |  | 
|  | /* Identify the PHY */ | 
|  | ixgbe_identify_phy(hw); | 
|  |  | 
|  | /* | 
|  | * Store MAC address from RAR0, clear receive address registers, and | 
|  | * clear the multicast table | 
|  | */ | 
|  | ixgbe_init_rx_addrs(hw); | 
|  |  | 
|  | /* Clear the VLAN filter table */ | 
|  | ixgbe_clear_vfta(hw); | 
|  |  | 
|  | /* Set up link */ | 
|  | hw->mac.ops.setup_link(hw); | 
|  |  | 
|  | /* Clear statistics registers */ | 
|  | ixgbe_clear_hw_cntrs(hw); | 
|  |  | 
|  | /* Set No Snoop Disable */ | 
|  | ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT); | 
|  | ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  |  | 
|  | /* Clear adapter stopped flag */ | 
|  | hw->adapter_stopped = false; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_init_hw - Generic hardware initialization | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Initialize the hardware by reseting the hardware, filling the bus info | 
|  | *  structure and media type, clears all on chip counters, initializes receive | 
|  | *  address registers, multicast table, VLAN filter table, calls routine to set | 
|  | *  up link and flow control settings, and leaves transmit and receive units | 
|  | *  disabled and uninitialized | 
|  | **/ | 
|  | s32 ixgbe_init_hw(struct ixgbe_hw *hw) | 
|  | { | 
|  | /* Reset the hardware */ | 
|  | hw->mac.ops.reset(hw); | 
|  |  | 
|  | /* Start the HW */ | 
|  | ixgbe_start_hw(hw); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_clear_hw_cntrs - Generic clear hardware counters | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Clears all hardware statistics counters by reading them from the hardware | 
|  | *  Statistics counters are clear on read. | 
|  | **/ | 
|  | static s32 ixgbe_clear_hw_cntrs(struct ixgbe_hw *hw) | 
|  | { | 
|  | u16 i = 0; | 
|  |  | 
|  | IXGBE_READ_REG(hw, IXGBE_CRCERRS); | 
|  | IXGBE_READ_REG(hw, IXGBE_ILLERRC); | 
|  | IXGBE_READ_REG(hw, IXGBE_ERRBC); | 
|  | IXGBE_READ_REG(hw, IXGBE_MSPDC); | 
|  | for (i = 0; i < 8; i++) | 
|  | IXGBE_READ_REG(hw, IXGBE_MPC(i)); | 
|  |  | 
|  | IXGBE_READ_REG(hw, IXGBE_MLFC); | 
|  | IXGBE_READ_REG(hw, IXGBE_MRFC); | 
|  | IXGBE_READ_REG(hw, IXGBE_RLEC); | 
|  | IXGBE_READ_REG(hw, IXGBE_LXONTXC); | 
|  | IXGBE_READ_REG(hw, IXGBE_LXONRXC); | 
|  | IXGBE_READ_REG(hw, IXGBE_LXOFFTXC); | 
|  | IXGBE_READ_REG(hw, IXGBE_LXOFFRXC); | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | IXGBE_READ_REG(hw, IXGBE_PXONTXC(i)); | 
|  | IXGBE_READ_REG(hw, IXGBE_PXONRXC(i)); | 
|  | IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i)); | 
|  | IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i)); | 
|  | } | 
|  |  | 
|  | IXGBE_READ_REG(hw, IXGBE_PRC64); | 
|  | IXGBE_READ_REG(hw, IXGBE_PRC127); | 
|  | IXGBE_READ_REG(hw, IXGBE_PRC255); | 
|  | IXGBE_READ_REG(hw, IXGBE_PRC511); | 
|  | IXGBE_READ_REG(hw, IXGBE_PRC1023); | 
|  | IXGBE_READ_REG(hw, IXGBE_PRC1522); | 
|  | IXGBE_READ_REG(hw, IXGBE_GPRC); | 
|  | IXGBE_READ_REG(hw, IXGBE_BPRC); | 
|  | IXGBE_READ_REG(hw, IXGBE_MPRC); | 
|  | IXGBE_READ_REG(hw, IXGBE_GPTC); | 
|  | IXGBE_READ_REG(hw, IXGBE_GORCL); | 
|  | IXGBE_READ_REG(hw, IXGBE_GORCH); | 
|  | IXGBE_READ_REG(hw, IXGBE_GOTCL); | 
|  | IXGBE_READ_REG(hw, IXGBE_GOTCH); | 
|  | for (i = 0; i < 8; i++) | 
|  | IXGBE_READ_REG(hw, IXGBE_RNBC(i)); | 
|  | IXGBE_READ_REG(hw, IXGBE_RUC); | 
|  | IXGBE_READ_REG(hw, IXGBE_RFC); | 
|  | IXGBE_READ_REG(hw, IXGBE_ROC); | 
|  | IXGBE_READ_REG(hw, IXGBE_RJC); | 
|  | IXGBE_READ_REG(hw, IXGBE_MNGPRC); | 
|  | IXGBE_READ_REG(hw, IXGBE_MNGPDC); | 
|  | IXGBE_READ_REG(hw, IXGBE_MNGPTC); | 
|  | IXGBE_READ_REG(hw, IXGBE_TORL); | 
|  | IXGBE_READ_REG(hw, IXGBE_TORH); | 
|  | IXGBE_READ_REG(hw, IXGBE_TPR); | 
|  | IXGBE_READ_REG(hw, IXGBE_TPT); | 
|  | IXGBE_READ_REG(hw, IXGBE_PTC64); | 
|  | IXGBE_READ_REG(hw, IXGBE_PTC127); | 
|  | IXGBE_READ_REG(hw, IXGBE_PTC255); | 
|  | IXGBE_READ_REG(hw, IXGBE_PTC511); | 
|  | IXGBE_READ_REG(hw, IXGBE_PTC1023); | 
|  | IXGBE_READ_REG(hw, IXGBE_PTC1522); | 
|  | IXGBE_READ_REG(hw, IXGBE_MPTC); | 
|  | IXGBE_READ_REG(hw, IXGBE_BPTC); | 
|  | for (i = 0; i < 16; i++) { | 
|  | IXGBE_READ_REG(hw, IXGBE_QPRC(i)); | 
|  | IXGBE_READ_REG(hw, IXGBE_QBRC(i)); | 
|  | IXGBE_READ_REG(hw, IXGBE_QPTC(i)); | 
|  | IXGBE_READ_REG(hw, IXGBE_QBTC(i)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_get_mac_addr - Generic get MAC address | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @mac_addr: Adapter MAC address | 
|  | * | 
|  | *  Reads the adapter's MAC address from first Receive Address Register (RAR0) | 
|  | *  A reset of the adapter must be performed prior to calling this function | 
|  | *  in order for the MAC address to have been loaded from the EEPROM into RAR0 | 
|  | **/ | 
|  | s32 ixgbe_get_mac_addr(struct ixgbe_hw *hw, u8 *mac_addr) | 
|  | { | 
|  | u32 rar_high; | 
|  | u32 rar_low; | 
|  | u16 i; | 
|  |  | 
|  | rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0)); | 
|  | rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0)); | 
|  |  | 
|  | for (i = 0; i < 4; i++) | 
|  | mac_addr[i] = (u8)(rar_low >> (i*8)); | 
|  |  | 
|  | for (i = 0; i < 2; i++) | 
|  | mac_addr[i+4] = (u8)(rar_high >> (i*8)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | s32 ixgbe_read_part_num(struct ixgbe_hw *hw, u32 *part_num) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 data; | 
|  |  | 
|  | ret_val = ixgbe_read_eeprom(hw, IXGBE_PBANUM0_PTR, &data); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "NVM Read Error\n"); | 
|  | return ret_val; | 
|  | } | 
|  | *part_num = (u32)(data << 16); | 
|  |  | 
|  | ret_val = ixgbe_read_eeprom(hw, IXGBE_PBANUM1_PTR, &data); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "NVM Read Error\n"); | 
|  | return ret_val; | 
|  | } | 
|  | *part_num |= data; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_stop_adapter - Generic stop TX/RX units | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts, | 
|  | *  disables transmit and receive units. The adapter_stopped flag is used by | 
|  | *  the shared code and drivers to determine if the adapter is in a stopped | 
|  | *  state and should not touch the hardware. | 
|  | **/ | 
|  | s32 ixgbe_stop_adapter(struct ixgbe_hw *hw) | 
|  | { | 
|  | u32 number_of_queues; | 
|  | u32 reg_val; | 
|  | u16 i; | 
|  |  | 
|  | /* | 
|  | * Set the adapter_stopped flag so other driver functions stop touching | 
|  | * the hardware | 
|  | */ | 
|  | hw->adapter_stopped = true; | 
|  |  | 
|  | /* Disable the receive unit */ | 
|  | reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL); | 
|  | reg_val &= ~(IXGBE_RXCTRL_RXEN); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val); | 
|  | msleep(2); | 
|  |  | 
|  | /* Clear interrupt mask to stop from interrupts being generated */ | 
|  | IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK); | 
|  |  | 
|  | /* Clear any pending interrupts */ | 
|  | IXGBE_READ_REG(hw, IXGBE_EICR); | 
|  |  | 
|  | /* Disable the transmit unit.  Each queue must be disabled. */ | 
|  | number_of_queues = hw->mac.num_tx_queues; | 
|  | for (i = 0; i < number_of_queues; i++) { | 
|  | reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i)); | 
|  | if (reg_val & IXGBE_TXDCTL_ENABLE) { | 
|  | reg_val &= ~IXGBE_TXDCTL_ENABLE; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_led_on - Turns on the software controllable LEDs. | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @index: led number to turn on | 
|  | **/ | 
|  | s32 ixgbe_led_on(struct ixgbe_hw *hw, u32 index) | 
|  | { | 
|  | u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); | 
|  |  | 
|  | /* To turn on the LED, set mode to ON. */ | 
|  | led_reg &= ~IXGBE_LED_MODE_MASK(index); | 
|  | led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_led_off - Turns off the software controllable LEDs. | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @index: led number to turn off | 
|  | **/ | 
|  | s32 ixgbe_led_off(struct ixgbe_hw *hw, u32 index) | 
|  | { | 
|  | u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); | 
|  |  | 
|  | /* To turn off the LED, set mode to OFF. */ | 
|  | led_reg &= ~IXGBE_LED_MODE_MASK(index); | 
|  | led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | *  ixgbe_init_eeprom - Initialize EEPROM params | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Initializes the EEPROM parameters ixgbe_eeprom_info within the | 
|  | *  ixgbe_hw struct in order to set up EEPROM access. | 
|  | **/ | 
|  | s32 ixgbe_init_eeprom(struct ixgbe_hw *hw) | 
|  | { | 
|  | struct ixgbe_eeprom_info *eeprom = &hw->eeprom; | 
|  | u32 eec; | 
|  | u16 eeprom_size; | 
|  |  | 
|  | if (eeprom->type == ixgbe_eeprom_uninitialized) { | 
|  | eeprom->type = ixgbe_eeprom_none; | 
|  |  | 
|  | /* | 
|  | * Check for EEPROM present first. | 
|  | * If not present leave as none | 
|  | */ | 
|  | eec = IXGBE_READ_REG(hw, IXGBE_EEC); | 
|  | if (eec & IXGBE_EEC_PRES) { | 
|  | eeprom->type = ixgbe_eeprom_spi; | 
|  |  | 
|  | /* | 
|  | * SPI EEPROM is assumed here.  This code would need to | 
|  | * change if a future EEPROM is not SPI. | 
|  | */ | 
|  | eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >> | 
|  | IXGBE_EEC_SIZE_SHIFT); | 
|  | eeprom->word_size = 1 << (eeprom_size + | 
|  | IXGBE_EEPROM_WORD_SIZE_SHIFT); | 
|  | } | 
|  |  | 
|  | if (eec & IXGBE_EEC_ADDR_SIZE) | 
|  | eeprom->address_bits = 16; | 
|  | else | 
|  | eeprom->address_bits = 8; | 
|  | hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: " | 
|  | "%d\n", eeprom->type, eeprom->word_size, | 
|  | eeprom->address_bits); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_read_eeprom - Read EEPROM word using EERD | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @offset: offset of  word in the EEPROM to read | 
|  | *  @data: word read from the EEPROM | 
|  | * | 
|  | *  Reads a 16 bit word from the EEPROM using the EERD register. | 
|  | **/ | 
|  | s32 ixgbe_read_eeprom(struct ixgbe_hw *hw, u16 offset, u16 *data) | 
|  | { | 
|  | u32 eerd; | 
|  | s32 status; | 
|  |  | 
|  | eerd = (offset << IXGBE_EEPROM_READ_ADDR_SHIFT) + | 
|  | IXGBE_EEPROM_READ_REG_START; | 
|  |  | 
|  | IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd); | 
|  | status = ixgbe_poll_eeprom_eerd_done(hw); | 
|  |  | 
|  | if (status == 0) | 
|  | *data = (IXGBE_READ_REG(hw, IXGBE_EERD) >> | 
|  | IXGBE_EEPROM_READ_REG_DATA); | 
|  | else | 
|  | hw_dbg(hw, "Eeprom read timed out\n"); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_poll_eeprom_eerd_done - Poll EERD status | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Polls the status bit (bit 1) of the EERD to determine when the read is done. | 
|  | **/ | 
|  | static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw) | 
|  | { | 
|  | u32 i; | 
|  | u32 reg; | 
|  | s32 status = IXGBE_ERR_EEPROM; | 
|  |  | 
|  | for (i = 0; i < IXGBE_EERD_ATTEMPTS; i++) { | 
|  | reg = IXGBE_READ_REG(hw, IXGBE_EERD); | 
|  | if (reg & IXGBE_EEPROM_READ_REG_DONE) { | 
|  | status = 0; | 
|  | break; | 
|  | } | 
|  | udelay(5); | 
|  | } | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_get_eeprom_semaphore - Get hardware semaphore | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method | 
|  | **/ | 
|  | static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw) | 
|  | { | 
|  | s32 status = IXGBE_ERR_EEPROM; | 
|  | u32 timeout; | 
|  | u32 i; | 
|  | u32 swsm; | 
|  |  | 
|  | /* Set timeout value based on size of EEPROM */ | 
|  | timeout = hw->eeprom.word_size + 1; | 
|  |  | 
|  | /* Get SMBI software semaphore between device drivers first */ | 
|  | for (i = 0; i < timeout; i++) { | 
|  | /* | 
|  | * If the SMBI bit is 0 when we read it, then the bit will be | 
|  | * set and we have the semaphore | 
|  | */ | 
|  | swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); | 
|  | if (!(swsm & IXGBE_SWSM_SMBI)) { | 
|  | status = 0; | 
|  | break; | 
|  | } | 
|  | msleep(1); | 
|  | } | 
|  |  | 
|  | /* Now get the semaphore between SW/FW through the SWESMBI bit */ | 
|  | if (status == 0) { | 
|  | for (i = 0; i < timeout; i++) { | 
|  | swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); | 
|  |  | 
|  | /* Set the SW EEPROM semaphore bit to request access */ | 
|  | swsm |= IXGBE_SWSM_SWESMBI; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm); | 
|  |  | 
|  | /* | 
|  | * If we set the bit successfully then we got the | 
|  | * semaphore. | 
|  | */ | 
|  | swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); | 
|  | if (swsm & IXGBE_SWSM_SWESMBI) | 
|  | break; | 
|  |  | 
|  | udelay(50); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release semaphores and return error if SW EEPROM semaphore | 
|  | * was not granted because we don't have access to the EEPROM | 
|  | */ | 
|  | if (i >= timeout) { | 
|  | hw_dbg(hw, "Driver can't access the Eeprom - Semaphore " | 
|  | "not granted.\n"); | 
|  | ixgbe_release_eeprom_semaphore(hw); | 
|  | status = IXGBE_ERR_EEPROM; | 
|  | } | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_release_eeprom_semaphore - Release hardware semaphore | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  This function clears hardware semaphore bits. | 
|  | **/ | 
|  | static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw) | 
|  | { | 
|  | u32 swsm; | 
|  |  | 
|  | swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); | 
|  |  | 
|  | /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */ | 
|  | swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_calc_eeprom_checksum - Calculates and returns the checksum | 
|  | *  @hw: pointer to hardware structure | 
|  | **/ | 
|  | static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw) | 
|  | { | 
|  | u16 i; | 
|  | u16 j; | 
|  | u16 checksum = 0; | 
|  | u16 length = 0; | 
|  | u16 pointer = 0; | 
|  | u16 word = 0; | 
|  |  | 
|  | /* Include 0x0-0x3F in the checksum */ | 
|  | for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) { | 
|  | if (ixgbe_read_eeprom(hw, i, &word) != 0) { | 
|  | hw_dbg(hw, "EEPROM read failed\n"); | 
|  | break; | 
|  | } | 
|  | checksum += word; | 
|  | } | 
|  |  | 
|  | /* Include all data from pointers except for the fw pointer */ | 
|  | for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) { | 
|  | ixgbe_read_eeprom(hw, i, &pointer); | 
|  |  | 
|  | /* Make sure the pointer seems valid */ | 
|  | if (pointer != 0xFFFF && pointer != 0) { | 
|  | ixgbe_read_eeprom(hw, pointer, &length); | 
|  |  | 
|  | if (length != 0xFFFF && length != 0) { | 
|  | for (j = pointer+1; j <= pointer+length; j++) { | 
|  | ixgbe_read_eeprom(hw, j, &word); | 
|  | checksum += word; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | checksum = (u16)IXGBE_EEPROM_SUM - checksum; | 
|  |  | 
|  | return checksum; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_validate_eeprom_checksum - Validate EEPROM checksum | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @checksum_val: calculated checksum | 
|  | * | 
|  | *  Performs checksum calculation and validates the EEPROM checksum.  If the | 
|  | *  caller does not need checksum_val, the value can be NULL. | 
|  | **/ | 
|  | s32 ixgbe_validate_eeprom_checksum(struct ixgbe_hw *hw, u16 *checksum_val) | 
|  | { | 
|  | s32 status; | 
|  | u16 checksum; | 
|  | u16 read_checksum = 0; | 
|  |  | 
|  | /* | 
|  | * Read the first word from the EEPROM. If this times out or fails, do | 
|  | * not continue or we could be in for a very long wait while every | 
|  | * EEPROM read fails | 
|  | */ | 
|  | status = ixgbe_read_eeprom(hw, 0, &checksum); | 
|  |  | 
|  | if (status == 0) { | 
|  | checksum = ixgbe_calc_eeprom_checksum(hw); | 
|  |  | 
|  | ixgbe_read_eeprom(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum); | 
|  |  | 
|  | /* | 
|  | * Verify read checksum from EEPROM is the same as | 
|  | * calculated checksum | 
|  | */ | 
|  | if (read_checksum != checksum) | 
|  | status = IXGBE_ERR_EEPROM_CHECKSUM; | 
|  |  | 
|  | /* If the user cares, return the calculated checksum */ | 
|  | if (checksum_val) | 
|  | *checksum_val = checksum; | 
|  | } else { | 
|  | hw_dbg(hw, "EEPROM read failed\n"); | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_validate_mac_addr - Validate MAC address | 
|  | *  @mac_addr: pointer to MAC address. | 
|  | * | 
|  | *  Tests a MAC address to ensure it is a valid Individual Address | 
|  | **/ | 
|  | s32 ixgbe_validate_mac_addr(u8 *mac_addr) | 
|  | { | 
|  | s32 status = 0; | 
|  |  | 
|  | /* Make sure it is not a multicast address */ | 
|  | if (IXGBE_IS_MULTICAST(mac_addr)) | 
|  | status = IXGBE_ERR_INVALID_MAC_ADDR; | 
|  | /* Not a broadcast address */ | 
|  | else if (IXGBE_IS_BROADCAST(mac_addr)) | 
|  | status = IXGBE_ERR_INVALID_MAC_ADDR; | 
|  | /* Reject the zero address */ | 
|  | else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 && | 
|  | mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) | 
|  | status = IXGBE_ERR_INVALID_MAC_ADDR; | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_set_rar - Set RX address register | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @addr: Address to put into receive address register | 
|  | *  @index: Receive address register to write | 
|  | *  @vind: Vind to set RAR to | 
|  | *  @enable_addr: set flag that address is active | 
|  | * | 
|  | *  Puts an ethernet address into a receive address register. | 
|  | **/ | 
|  | s32 ixgbe_set_rar(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vind, | 
|  | u32 enable_addr) | 
|  | { | 
|  | u32 rar_low, rar_high; | 
|  |  | 
|  | /* | 
|  | * HW expects these in little endian so we reverse the byte order from | 
|  | * network order (big endian) to little endian | 
|  | */ | 
|  | rar_low = ((u32)addr[0] | | 
|  | ((u32)addr[1] << 8) | | 
|  | ((u32)addr[2] << 16) | | 
|  | ((u32)addr[3] << 24)); | 
|  |  | 
|  | rar_high = ((u32)addr[4] | | 
|  | ((u32)addr[5] << 8) | | 
|  | ((vind << IXGBE_RAH_VIND_SHIFT) & IXGBE_RAH_VIND_MASK)); | 
|  |  | 
|  | if (enable_addr != 0) | 
|  | rar_high |= IXGBE_RAH_AV; | 
|  |  | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_init_rx_addrs - Initializes receive address filters. | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Places the MAC address in receive address register 0 and clears the rest | 
|  | *  of the receive addresss registers. Clears the multicast table. Assumes | 
|  | *  the receiver is in reset when the routine is called. | 
|  | **/ | 
|  | static s32 ixgbe_init_rx_addrs(struct ixgbe_hw *hw) | 
|  | { | 
|  | u32 i; | 
|  | u32 rar_entries = hw->mac.num_rx_addrs; | 
|  |  | 
|  | /* | 
|  | * If the current mac address is valid, assume it is a software override | 
|  | * to the permanent address. | 
|  | * Otherwise, use the permanent address from the eeprom. | 
|  | */ | 
|  | if (ixgbe_validate_mac_addr(hw->mac.addr) == | 
|  | IXGBE_ERR_INVALID_MAC_ADDR) { | 
|  | /* Get the MAC address from the RAR0 for later reference */ | 
|  | ixgbe_get_mac_addr(hw, hw->mac.addr); | 
|  |  | 
|  | hw_dbg(hw, " Keeping Current RAR0 Addr =%.2X %.2X %.2X ", | 
|  | hw->mac.addr[0], hw->mac.addr[1], | 
|  | hw->mac.addr[2]); | 
|  | hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3], | 
|  | hw->mac.addr[4], hw->mac.addr[5]); | 
|  | } else { | 
|  | /* Setup the receive address. */ | 
|  | hw_dbg(hw, "Overriding MAC Address in RAR[0]\n"); | 
|  | hw_dbg(hw, " New MAC Addr =%.2X %.2X %.2X ", | 
|  | hw->mac.addr[0], hw->mac.addr[1], | 
|  | hw->mac.addr[2]); | 
|  | hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3], | 
|  | hw->mac.addr[4], hw->mac.addr[5]); | 
|  |  | 
|  | ixgbe_set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV); | 
|  | } | 
|  |  | 
|  | hw->addr_ctrl.rar_used_count = 1; | 
|  |  | 
|  | /* Zero out the other receive addresses. */ | 
|  | hw_dbg(hw, "Clearing RAR[1-15]\n"); | 
|  | for (i = 1; i < rar_entries; i++) { | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0); | 
|  | } | 
|  |  | 
|  | /* Clear the MTA */ | 
|  | hw->addr_ctrl.mc_addr_in_rar_count = 0; | 
|  | hw->addr_ctrl.mta_in_use = 0; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); | 
|  |  | 
|  | hw_dbg(hw, " Clearing MTA\n"); | 
|  | for (i = 0; i < IXGBE_MC_TBL_SIZE; i++) | 
|  | IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_mta_vector - Determines bit-vector in multicast table to set | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @mc_addr: the multicast address | 
|  | * | 
|  | *  Extracts the 12 bits, from a multicast address, to determine which | 
|  | *  bit-vector to set in the multicast table. The hardware uses 12 bits, from | 
|  | *  incoming rx multicast addresses, to determine the bit-vector to check in | 
|  | *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set | 
|  | *  by the MO field of the MCSTCTRL. The MO field is set during initalization | 
|  | *  to mc_filter_type. | 
|  | **/ | 
|  | static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr) | 
|  | { | 
|  | u32 vector = 0; | 
|  |  | 
|  | switch (hw->mac.mc_filter_type) { | 
|  | case 0:	  /* use bits [47:36] of the address */ | 
|  | vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); | 
|  | break; | 
|  | case 1:	  /* use bits [46:35] of the address */ | 
|  | vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); | 
|  | break; | 
|  | case 2:	  /* use bits [45:34] of the address */ | 
|  | vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); | 
|  | break; | 
|  | case 3:	  /* use bits [43:32] of the address */ | 
|  | vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); | 
|  | break; | 
|  | default:	 /* Invalid mc_filter_type */ | 
|  | hw_dbg(hw, "MC filter type param set incorrectly\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* vector can only be 12-bits or boundary will be exceeded */ | 
|  | vector &= 0xFFF; | 
|  | return vector; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_set_mta - Set bit-vector in multicast table | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @hash_value: Multicast address hash value | 
|  | * | 
|  | *  Sets the bit-vector in the multicast table. | 
|  | **/ | 
|  | static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr) | 
|  | { | 
|  | u32 vector; | 
|  | u32 vector_bit; | 
|  | u32 vector_reg; | 
|  | u32 mta_reg; | 
|  |  | 
|  | hw->addr_ctrl.mta_in_use++; | 
|  |  | 
|  | vector = ixgbe_mta_vector(hw, mc_addr); | 
|  | hw_dbg(hw, " bit-vector = 0x%03X\n", vector); | 
|  |  | 
|  | /* | 
|  | * The MTA is a register array of 128 32-bit registers. It is treated | 
|  | * like an array of 4096 bits.  We want to set bit | 
|  | * BitArray[vector_value]. So we figure out what register the bit is | 
|  | * in, read it, OR in the new bit, then write back the new value.  The | 
|  | * register is determined by the upper 7 bits of the vector value and | 
|  | * the bit within that register are determined by the lower 5 bits of | 
|  | * the value. | 
|  | */ | 
|  | vector_reg = (vector >> 5) & 0x7F; | 
|  | vector_bit = vector & 0x1F; | 
|  | mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg)); | 
|  | mta_reg |= (1 << vector_bit); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_add_mc_addr - Adds a multicast address. | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @mc_addr: new multicast address | 
|  | * | 
|  | *  Adds it to unused receive address register or to the multicast table. | 
|  | **/ | 
|  | static void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr) | 
|  | { | 
|  | u32 rar_entries = hw->mac.num_rx_addrs; | 
|  |  | 
|  | hw_dbg(hw, " MC Addr =%.2X %.2X %.2X %.2X %.2X %.2X\n", | 
|  | mc_addr[0], mc_addr[1], mc_addr[2], | 
|  | mc_addr[3], mc_addr[4], mc_addr[5]); | 
|  |  | 
|  | /* | 
|  | * Place this multicast address in the RAR if there is room, | 
|  | * else put it in the MTA | 
|  | */ | 
|  | if (hw->addr_ctrl.rar_used_count < rar_entries) { | 
|  | ixgbe_set_rar(hw, hw->addr_ctrl.rar_used_count, | 
|  | mc_addr, 0, IXGBE_RAH_AV); | 
|  | hw_dbg(hw, "Added a multicast address to RAR[%d]\n", | 
|  | hw->addr_ctrl.rar_used_count); | 
|  | hw->addr_ctrl.rar_used_count++; | 
|  | hw->addr_ctrl.mc_addr_in_rar_count++; | 
|  | } else { | 
|  | ixgbe_set_mta(hw, mc_addr); | 
|  | } | 
|  |  | 
|  | hw_dbg(hw, "ixgbe_add_mc_addr Complete\n"); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_update_mc_addr_list - Updates MAC list of multicast addresses | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @mc_addr_list: the list of new multicast addresses | 
|  | *  @mc_addr_count: number of addresses | 
|  | *  @pad: number of bytes between addresses in the list | 
|  | * | 
|  | *  The given list replaces any existing list. Clears the MC addrs from receive | 
|  | *  address registers and the multicast table. Uses unsed receive address | 
|  | *  registers for the first multicast addresses, and hashes the rest into the | 
|  | *  multicast table. | 
|  | **/ | 
|  | s32 ixgbe_update_mc_addr_list(struct ixgbe_hw *hw, u8 *mc_addr_list, | 
|  | u32 mc_addr_count, u32 pad) | 
|  | { | 
|  | u32 i; | 
|  | u32 rar_entries = hw->mac.num_rx_addrs; | 
|  |  | 
|  | /* | 
|  | * Set the new number of MC addresses that we are being requested to | 
|  | * use. | 
|  | */ | 
|  | hw->addr_ctrl.num_mc_addrs = mc_addr_count; | 
|  | hw->addr_ctrl.rar_used_count -= hw->addr_ctrl.mc_addr_in_rar_count; | 
|  | hw->addr_ctrl.mc_addr_in_rar_count = 0; | 
|  | hw->addr_ctrl.mta_in_use = 0; | 
|  |  | 
|  | /* Zero out the other receive addresses. */ | 
|  | hw_dbg(hw, "Clearing RAR[1-15]\n"); | 
|  | for (i = hw->addr_ctrl.rar_used_count; i < rar_entries; i++) { | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0); | 
|  | } | 
|  |  | 
|  | /* Clear the MTA */ | 
|  | hw_dbg(hw, " Clearing MTA\n"); | 
|  | for (i = 0; i < IXGBE_MC_TBL_SIZE; i++) | 
|  | IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0); | 
|  |  | 
|  | /* Add the new addresses */ | 
|  | for (i = 0; i < mc_addr_count; i++) { | 
|  | hw_dbg(hw, " Adding the multicast addresses:\n"); | 
|  | ixgbe_add_mc_addr(hw, mc_addr_list + | 
|  | (i * (IXGBE_ETH_LENGTH_OF_ADDRESS + pad))); | 
|  | } | 
|  |  | 
|  | /* Enable mta */ | 
|  | if (hw->addr_ctrl.mta_in_use > 0) | 
|  | IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, | 
|  | IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type); | 
|  |  | 
|  | hw_dbg(hw, "ixgbe_update_mc_addr_list Complete\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_clear_vfta - Clear VLAN filter table | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Clears the VLAN filer table, and the VMDq index associated with the filter | 
|  | **/ | 
|  | static s32 ixgbe_clear_vfta(struct ixgbe_hw *hw) | 
|  | { | 
|  | u32 offset; | 
|  | u32 vlanbyte; | 
|  |  | 
|  | for (offset = 0; offset < IXGBE_VLAN_FILTER_TBL_SIZE; offset++) | 
|  | IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0); | 
|  |  | 
|  | for (vlanbyte = 0; vlanbyte < 4; vlanbyte++) | 
|  | for (offset = 0; offset < IXGBE_VLAN_FILTER_TBL_SIZE; offset++) | 
|  | IXGBE_WRITE_REG(hw, IXGBE_VFTAVIND(vlanbyte, offset), | 
|  | 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_set_vfta - Set VLAN filter table | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @vlan: VLAN id to write to VLAN filter | 
|  | *  @vind: VMDq output index that maps queue to VLAN id in VFTA | 
|  | *  @vlan_on: boolean flag to turn on/off VLAN in VFTA | 
|  | * | 
|  | *  Turn on/off specified VLAN in the VLAN filter table. | 
|  | **/ | 
|  | s32 ixgbe_set_vfta(struct ixgbe_hw *hw, u32 vlan, u32 vind, | 
|  | bool vlan_on) | 
|  | { | 
|  | u32 VftaIndex; | 
|  | u32 BitOffset; | 
|  | u32 VftaReg; | 
|  | u32 VftaByte; | 
|  |  | 
|  | /* Determine 32-bit word position in array */ | 
|  | VftaIndex = (vlan >> 5) & 0x7F;   /* upper seven bits */ | 
|  |  | 
|  | /* Determine the location of the (VMD) queue index */ | 
|  | VftaByte =  ((vlan >> 3) & 0x03); /* bits (4:3) indicating byte array */ | 
|  | BitOffset = (vlan & 0x7) << 2;    /* lower 3 bits indicate nibble */ | 
|  |  | 
|  | /* Set the nibble for VMD queue index */ | 
|  | VftaReg = IXGBE_READ_REG(hw, IXGBE_VFTAVIND(VftaByte, VftaIndex)); | 
|  | VftaReg &= (~(0x0F << BitOffset)); | 
|  | VftaReg |= (vind << BitOffset); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_VFTAVIND(VftaByte, VftaIndex), VftaReg); | 
|  |  | 
|  | /* Determine the location of the bit for this VLAN id */ | 
|  | BitOffset = vlan & 0x1F;	   /* lower five bits */ | 
|  |  | 
|  | VftaReg = IXGBE_READ_REG(hw, IXGBE_VFTA(VftaIndex)); | 
|  | if (vlan_on) | 
|  | /* Turn on this VLAN id */ | 
|  | VftaReg |= (1 << BitOffset); | 
|  | else | 
|  | /* Turn off this VLAN id */ | 
|  | VftaReg &= ~(1 << BitOffset); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_VFTA(VftaIndex), VftaReg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_setup_fc - Configure flow control settings | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @packetbuf_num: packet buffer number (0-7) | 
|  | * | 
|  | *  Configures the flow control settings based on SW configuration. | 
|  | *  This function is used for 802.3x flow control configuration only. | 
|  | **/ | 
|  | s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num) | 
|  | { | 
|  | u32 frctl_reg; | 
|  | u32 rmcs_reg; | 
|  |  | 
|  | if (packetbuf_num < 0 || packetbuf_num > 7) | 
|  | hw_dbg(hw, "Invalid packet buffer number [%d], expected range " | 
|  | "is 0-7\n", packetbuf_num); | 
|  |  | 
|  | frctl_reg = IXGBE_READ_REG(hw, IXGBE_FCTRL); | 
|  | frctl_reg &= ~(IXGBE_FCTRL_RFCE | IXGBE_FCTRL_RPFCE); | 
|  |  | 
|  | rmcs_reg = IXGBE_READ_REG(hw, IXGBE_RMCS); | 
|  | rmcs_reg &= ~(IXGBE_RMCS_TFCE_PRIORITY | IXGBE_RMCS_TFCE_802_3X); | 
|  |  | 
|  | /* | 
|  | * We want to save off the original Flow Control configuration just in | 
|  | * case we get disconnected and then reconnected into a different hub | 
|  | * or switch with different Flow Control capabilities. | 
|  | */ | 
|  | hw->fc.type = hw->fc.original_type; | 
|  |  | 
|  | /* | 
|  | * The possible values of the "flow_control" parameter are: | 
|  | * 0: Flow control is completely disabled | 
|  | * 1: Rx flow control is enabled (we can receive pause frames but not | 
|  | *    send pause frames). | 
|  | * 2: Tx flow control is enabled (we can send pause frames but we do not | 
|  | *    support receiving pause frames) | 
|  | * 3: Both Rx and TX flow control (symmetric) are enabled. | 
|  | * other: Invalid. | 
|  | */ | 
|  | switch (hw->fc.type) { | 
|  | case ixgbe_fc_none: | 
|  | break; | 
|  | case ixgbe_fc_rx_pause: | 
|  | /* | 
|  | * RX Flow control is enabled, | 
|  | * and TX Flow control is disabled. | 
|  | */ | 
|  | frctl_reg |= IXGBE_FCTRL_RFCE; | 
|  | break; | 
|  | case ixgbe_fc_tx_pause: | 
|  | /* | 
|  | * TX Flow control is enabled, and RX Flow control is disabled, | 
|  | * by a software over-ride. | 
|  | */ | 
|  | rmcs_reg |= IXGBE_RMCS_TFCE_802_3X; | 
|  | break; | 
|  | case ixgbe_fc_full: | 
|  | /* | 
|  | * Flow control (both RX and TX) is enabled by a software | 
|  | * over-ride. | 
|  | */ | 
|  | frctl_reg |= IXGBE_FCTRL_RFCE; | 
|  | rmcs_reg |= IXGBE_RMCS_TFCE_802_3X; | 
|  | break; | 
|  | default: | 
|  | /* We should never get here.  The value should be 0-3. */ | 
|  | hw_dbg(hw, "Flow control param set incorrectly\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Enable 802.3x based flow control settings. */ | 
|  | IXGBE_WRITE_REG(hw, IXGBE_FCTRL, frctl_reg); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_RMCS, rmcs_reg); | 
|  |  | 
|  | /* | 
|  | * We need to set up the Receive Threshold high and low water | 
|  | * marks as well as (optionally) enabling the transmission of | 
|  | * XON frames. | 
|  | */ | 
|  | if (hw->fc.type & ixgbe_fc_tx_pause) { | 
|  | if (hw->fc.send_xon) { | 
|  | IXGBE_WRITE_REG(hw, IXGBE_FCRTL(packetbuf_num), | 
|  | (hw->fc.low_water | IXGBE_FCRTL_XONE)); | 
|  | } else { | 
|  | IXGBE_WRITE_REG(hw, IXGBE_FCRTL(packetbuf_num), | 
|  | hw->fc.low_water); | 
|  | } | 
|  | IXGBE_WRITE_REG(hw, IXGBE_FCRTH(packetbuf_num), | 
|  | (hw->fc.high_water)|IXGBE_FCRTH_FCEN); | 
|  | } | 
|  |  | 
|  | IXGBE_WRITE_REG(hw, IXGBE_FCTTV(0), hw->fc.pause_time); | 
|  | IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_disable_pcie_master - Disable PCI-express master access | 
|  | *  @hw: pointer to hardware structure | 
|  | * | 
|  | *  Disables PCI-Express master access and verifies there are no pending | 
|  | *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable | 
|  | *  bit hasn't caused the master requests to be disabled, else 0 | 
|  | *  is returned signifying master requests disabled. | 
|  | **/ | 
|  | s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | s32 i; | 
|  | s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING; | 
|  |  | 
|  | ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL); | 
|  | ctrl |= IXGBE_CTRL_GIO_DIS; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_CTRL, ctrl); | 
|  |  | 
|  | for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) { | 
|  | if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) { | 
|  | status = 0; | 
|  | break; | 
|  | } | 
|  | udelay(100); | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | *  ixgbe_acquire_swfw_sync - Aquire SWFW semaphore | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @mask: Mask to specify wich semaphore to acquire | 
|  | * | 
|  | *  Aquires the SWFW semaphore throught the GSSR register for the specified | 
|  | *  function (CSR, PHY0, PHY1, EEPROM, Flash) | 
|  | **/ | 
|  | s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask) | 
|  | { | 
|  | u32 gssr; | 
|  | u32 swmask = mask; | 
|  | u32 fwmask = mask << 5; | 
|  | s32 timeout = 200; | 
|  |  | 
|  | while (timeout) { | 
|  | if (ixgbe_get_eeprom_semaphore(hw)) | 
|  | return -IXGBE_ERR_SWFW_SYNC; | 
|  |  | 
|  | gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); | 
|  | if (!(gssr & (fwmask | swmask))) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Firmware currently using resource (fwmask) or other software | 
|  | * thread currently using resource (swmask) | 
|  | */ | 
|  | ixgbe_release_eeprom_semaphore(hw); | 
|  | msleep(5); | 
|  | timeout--; | 
|  | } | 
|  |  | 
|  | if (!timeout) { | 
|  | hw_dbg(hw, "Driver can't access resource, GSSR timeout.\n"); | 
|  | return -IXGBE_ERR_SWFW_SYNC; | 
|  | } | 
|  |  | 
|  | gssr |= swmask; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); | 
|  |  | 
|  | ixgbe_release_eeprom_semaphore(hw); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_release_swfw_sync - Release SWFW semaphore | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @mask: Mask to specify wich semaphore to release | 
|  | * | 
|  | *  Releases the SWFW semaphore throught the GSSR register for the specified | 
|  | *  function (CSR, PHY0, PHY1, EEPROM, Flash) | 
|  | **/ | 
|  | void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask) | 
|  | { | 
|  | u32 gssr; | 
|  | u32 swmask = mask; | 
|  |  | 
|  | ixgbe_get_eeprom_semaphore(hw); | 
|  |  | 
|  | gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); | 
|  | gssr &= ~swmask; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); | 
|  |  | 
|  | ixgbe_release_eeprom_semaphore(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_read_analog_reg8 - Reads 8 bit Atlas analog register | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @reg: analog register to read | 
|  | *  @val: read value | 
|  | * | 
|  | *  Performs write operation to analog register specified. | 
|  | **/ | 
|  | s32 ixgbe_read_analog_reg8(struct ixgbe_hw *hw, u32 reg, u8 *val) | 
|  | { | 
|  | u32  atlas_ctl; | 
|  |  | 
|  | IXGBE_WRITE_REG(hw, IXGBE_ATLASCTL, | 
|  | IXGBE_ATLASCTL_WRITE_CMD | (reg << 8)); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  | udelay(10); | 
|  | atlas_ctl = IXGBE_READ_REG(hw, IXGBE_ATLASCTL); | 
|  | *val = (u8)atlas_ctl; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  ixgbe_write_analog_reg8 - Writes 8 bit Atlas analog register | 
|  | *  @hw: pointer to hardware structure | 
|  | *  @reg: atlas register to write | 
|  | *  @val: value to write | 
|  | * | 
|  | *  Performs write operation to Atlas analog register specified. | 
|  | **/ | 
|  | s32 ixgbe_write_analog_reg8(struct ixgbe_hw *hw, u32 reg, u8 val) | 
|  | { | 
|  | u32  atlas_ctl; | 
|  |  | 
|  | atlas_ctl = (reg << 8) | val; | 
|  | IXGBE_WRITE_REG(hw, IXGBE_ATLASCTL, atlas_ctl); | 
|  | IXGBE_WRITE_FLUSH(hw); | 
|  | udelay(10); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  |