|  | /* | 
|  | *  linux/kernel/signal.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | * | 
|  | *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson | 
|  | * | 
|  | *  2003-06-02  Jim Houston - Concurrent Computer Corp. | 
|  | *		Changes to use preallocated sigqueue structures | 
|  | *		to allow signals to be sent reliably. | 
|  | */ | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/binfmts.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/posix-timers.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/audit.h> | 
|  | #include <asm/param.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/unistd.h> | 
|  | #include <asm/siginfo.h> | 
|  |  | 
|  | /* | 
|  | * SLAB caches for signal bits. | 
|  | */ | 
|  |  | 
|  | static kmem_cache_t *sigqueue_cachep; | 
|  |  | 
|  | /* | 
|  | * In POSIX a signal is sent either to a specific thread (Linux task) | 
|  | * or to the process as a whole (Linux thread group).  How the signal | 
|  | * is sent determines whether it's to one thread or the whole group, | 
|  | * which determines which signal mask(s) are involved in blocking it | 
|  | * from being delivered until later.  When the signal is delivered, | 
|  | * either it's caught or ignored by a user handler or it has a default | 
|  | * effect that applies to the whole thread group (POSIX process). | 
|  | * | 
|  | * The possible effects an unblocked signal set to SIG_DFL can have are: | 
|  | *   ignore	- Nothing Happens | 
|  | *   terminate	- kill the process, i.e. all threads in the group, | 
|  | * 		  similar to exit_group.  The group leader (only) reports | 
|  | *		  WIFSIGNALED status to its parent. | 
|  | *   coredump	- write a core dump file describing all threads using | 
|  | *		  the same mm and then kill all those threads | 
|  | *   stop 	- stop all the threads in the group, i.e. TASK_STOPPED state | 
|  | * | 
|  | * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored. | 
|  | * Other signals when not blocked and set to SIG_DFL behaves as follows. | 
|  | * The job control signals also have other special effects. | 
|  | * | 
|  | *	+--------------------+------------------+ | 
|  | *	|  POSIX signal      |  default action  | | 
|  | *	+--------------------+------------------+ | 
|  | *	|  SIGHUP            |  terminate	| | 
|  | *	|  SIGINT            |	terminate	| | 
|  | *	|  SIGQUIT           |	coredump 	| | 
|  | *	|  SIGILL            |	coredump 	| | 
|  | *	|  SIGTRAP           |	coredump 	| | 
|  | *	|  SIGABRT/SIGIOT    |	coredump 	| | 
|  | *	|  SIGBUS            |	coredump 	| | 
|  | *	|  SIGFPE            |	coredump 	| | 
|  | *	|  SIGKILL           |	terminate(+)	| | 
|  | *	|  SIGUSR1           |	terminate	| | 
|  | *	|  SIGSEGV           |	coredump 	| | 
|  | *	|  SIGUSR2           |	terminate	| | 
|  | *	|  SIGPIPE           |	terminate	| | 
|  | *	|  SIGALRM           |	terminate	| | 
|  | *	|  SIGTERM           |	terminate	| | 
|  | *	|  SIGCHLD           |	ignore   	| | 
|  | *	|  SIGCONT           |	ignore(*)	| | 
|  | *	|  SIGSTOP           |	stop(*)(+)  	| | 
|  | *	|  SIGTSTP           |	stop(*)  	| | 
|  | *	|  SIGTTIN           |	stop(*)  	| | 
|  | *	|  SIGTTOU           |	stop(*)  	| | 
|  | *	|  SIGURG            |	ignore   	| | 
|  | *	|  SIGXCPU           |	coredump 	| | 
|  | *	|  SIGXFSZ           |	coredump 	| | 
|  | *	|  SIGVTALRM         |	terminate	| | 
|  | *	|  SIGPROF           |	terminate	| | 
|  | *	|  SIGPOLL/SIGIO     |	terminate	| | 
|  | *	|  SIGSYS/SIGUNUSED  |	coredump 	| | 
|  | *	|  SIGSTKFLT         |	terminate	| | 
|  | *	|  SIGWINCH          |	ignore   	| | 
|  | *	|  SIGPWR            |	terminate	| | 
|  | *	|  SIGRTMIN-SIGRTMAX |	terminate       | | 
|  | *	+--------------------+------------------+ | 
|  | *	|  non-POSIX signal  |  default action  | | 
|  | *	+--------------------+------------------+ | 
|  | *	|  SIGEMT            |  coredump	| | 
|  | *	+--------------------+------------------+ | 
|  | * | 
|  | * (+) For SIGKILL and SIGSTOP the action is "always", not just "default". | 
|  | * (*) Special job control effects: | 
|  | * When SIGCONT is sent, it resumes the process (all threads in the group) | 
|  | * from TASK_STOPPED state and also clears any pending/queued stop signals | 
|  | * (any of those marked with "stop(*)").  This happens regardless of blocking, | 
|  | * catching, or ignoring SIGCONT.  When any stop signal is sent, it clears | 
|  | * any pending/queued SIGCONT signals; this happens regardless of blocking, | 
|  | * catching, or ignored the stop signal, though (except for SIGSTOP) the | 
|  | * default action of stopping the process may happen later or never. | 
|  | */ | 
|  |  | 
|  | #ifdef SIGEMT | 
|  | #define M_SIGEMT	M(SIGEMT) | 
|  | #else | 
|  | #define M_SIGEMT	0 | 
|  | #endif | 
|  |  | 
|  | #if SIGRTMIN > BITS_PER_LONG | 
|  | #define M(sig) (1ULL << ((sig)-1)) | 
|  | #else | 
|  | #define M(sig) (1UL << ((sig)-1)) | 
|  | #endif | 
|  | #define T(sig, mask) (M(sig) & (mask)) | 
|  |  | 
|  | #define SIG_KERNEL_ONLY_MASK (\ | 
|  | M(SIGKILL)   |  M(SIGSTOP)                                   ) | 
|  |  | 
|  | #define SIG_KERNEL_STOP_MASK (\ | 
|  | M(SIGSTOP)   |  M(SIGTSTP)   |  M(SIGTTIN)   |  M(SIGTTOU)   ) | 
|  |  | 
|  | #define SIG_KERNEL_COREDUMP_MASK (\ | 
|  | M(SIGQUIT)   |  M(SIGILL)    |  M(SIGTRAP)   |  M(SIGABRT)   | \ | 
|  | M(SIGFPE)    |  M(SIGSEGV)   |  M(SIGBUS)    |  M(SIGSYS)    | \ | 
|  | M(SIGXCPU)   |  M(SIGXFSZ)   |  M_SIGEMT                     ) | 
|  |  | 
|  | #define SIG_KERNEL_IGNORE_MASK (\ | 
|  | M(SIGCONT)   |  M(SIGCHLD)   |  M(SIGWINCH)  |  M(SIGURG)    ) | 
|  |  | 
|  | #define sig_kernel_only(sig) \ | 
|  | (((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_ONLY_MASK)) | 
|  | #define sig_kernel_coredump(sig) \ | 
|  | (((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_COREDUMP_MASK)) | 
|  | #define sig_kernel_ignore(sig) \ | 
|  | (((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_IGNORE_MASK)) | 
|  | #define sig_kernel_stop(sig) \ | 
|  | (((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_STOP_MASK)) | 
|  |  | 
|  | #define sig_user_defined(t, signr) \ | 
|  | (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) &&	\ | 
|  | ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN)) | 
|  |  | 
|  | #define sig_fatal(t, signr) \ | 
|  | (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \ | 
|  | (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL) | 
|  |  | 
|  | static int sig_ignored(struct task_struct *t, int sig) | 
|  | { | 
|  | void __user * handler; | 
|  |  | 
|  | /* | 
|  | * Tracers always want to know about signals.. | 
|  | */ | 
|  | if (t->ptrace & PT_PTRACED) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Blocked signals are never ignored, since the | 
|  | * signal handler may change by the time it is | 
|  | * unblocked. | 
|  | */ | 
|  | if (sigismember(&t->blocked, sig)) | 
|  | return 0; | 
|  |  | 
|  | /* Is it explicitly or implicitly ignored? */ | 
|  | handler = t->sighand->action[sig-1].sa.sa_handler; | 
|  | return   handler == SIG_IGN || | 
|  | (handler == SIG_DFL && sig_kernel_ignore(sig)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Re-calculate pending state from the set of locally pending | 
|  | * signals, globally pending signals, and blocked signals. | 
|  | */ | 
|  | static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) | 
|  | { | 
|  | unsigned long ready; | 
|  | long i; | 
|  |  | 
|  | switch (_NSIG_WORDS) { | 
|  | default: | 
|  | for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) | 
|  | ready |= signal->sig[i] &~ blocked->sig[i]; | 
|  | break; | 
|  |  | 
|  | case 4: ready  = signal->sig[3] &~ blocked->sig[3]; | 
|  | ready |= signal->sig[2] &~ blocked->sig[2]; | 
|  | ready |= signal->sig[1] &~ blocked->sig[1]; | 
|  | ready |= signal->sig[0] &~ blocked->sig[0]; | 
|  | break; | 
|  |  | 
|  | case 2: ready  = signal->sig[1] &~ blocked->sig[1]; | 
|  | ready |= signal->sig[0] &~ blocked->sig[0]; | 
|  | break; | 
|  |  | 
|  | case 1: ready  = signal->sig[0] &~ blocked->sig[0]; | 
|  | } | 
|  | return ready !=	0; | 
|  | } | 
|  |  | 
|  | #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) | 
|  |  | 
|  | fastcall void recalc_sigpending_tsk(struct task_struct *t) | 
|  | { | 
|  | if (t->signal->group_stop_count > 0 || | 
|  | (freezing(t)) || | 
|  | PENDING(&t->pending, &t->blocked) || | 
|  | PENDING(&t->signal->shared_pending, &t->blocked)) | 
|  | set_tsk_thread_flag(t, TIF_SIGPENDING); | 
|  | else | 
|  | clear_tsk_thread_flag(t, TIF_SIGPENDING); | 
|  | } | 
|  |  | 
|  | void recalc_sigpending(void) | 
|  | { | 
|  | recalc_sigpending_tsk(current); | 
|  | } | 
|  |  | 
|  | /* Given the mask, find the first available signal that should be serviced. */ | 
|  |  | 
|  | static int | 
|  | next_signal(struct sigpending *pending, sigset_t *mask) | 
|  | { | 
|  | unsigned long i, *s, *m, x; | 
|  | int sig = 0; | 
|  |  | 
|  | s = pending->signal.sig; | 
|  | m = mask->sig; | 
|  | switch (_NSIG_WORDS) { | 
|  | default: | 
|  | for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) | 
|  | if ((x = *s &~ *m) != 0) { | 
|  | sig = ffz(~x) + i*_NSIG_BPW + 1; | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 2: if ((x = s[0] &~ m[0]) != 0) | 
|  | sig = 1; | 
|  | else if ((x = s[1] &~ m[1]) != 0) | 
|  | sig = _NSIG_BPW + 1; | 
|  | else | 
|  | break; | 
|  | sig += ffz(~x); | 
|  | break; | 
|  |  | 
|  | case 1: if ((x = *s &~ *m) != 0) | 
|  | sig = ffz(~x) + 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return sig; | 
|  | } | 
|  |  | 
|  | static struct sigqueue *__sigqueue_alloc(struct task_struct *t, unsigned int __nocast flags, | 
|  | int override_rlimit) | 
|  | { | 
|  | struct sigqueue *q = NULL; | 
|  |  | 
|  | atomic_inc(&t->user->sigpending); | 
|  | if (override_rlimit || | 
|  | atomic_read(&t->user->sigpending) <= | 
|  | t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) | 
|  | q = kmem_cache_alloc(sigqueue_cachep, flags); | 
|  | if (unlikely(q == NULL)) { | 
|  | atomic_dec(&t->user->sigpending); | 
|  | } else { | 
|  | INIT_LIST_HEAD(&q->list); | 
|  | q->flags = 0; | 
|  | q->lock = NULL; | 
|  | q->user = get_uid(t->user); | 
|  | } | 
|  | return(q); | 
|  | } | 
|  |  | 
|  | static inline void __sigqueue_free(struct sigqueue *q) | 
|  | { | 
|  | if (q->flags & SIGQUEUE_PREALLOC) | 
|  | return; | 
|  | atomic_dec(&q->user->sigpending); | 
|  | free_uid(q->user); | 
|  | kmem_cache_free(sigqueue_cachep, q); | 
|  | } | 
|  |  | 
|  | static void flush_sigqueue(struct sigpending *queue) | 
|  | { | 
|  | struct sigqueue *q; | 
|  |  | 
|  | sigemptyset(&queue->signal); | 
|  | while (!list_empty(&queue->list)) { | 
|  | q = list_entry(queue->list.next, struct sigqueue , list); | 
|  | list_del_init(&q->list); | 
|  | __sigqueue_free(q); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush all pending signals for a task. | 
|  | */ | 
|  |  | 
|  | void | 
|  | flush_signals(struct task_struct *t) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&t->sighand->siglock, flags); | 
|  | clear_tsk_thread_flag(t,TIF_SIGPENDING); | 
|  | flush_sigqueue(&t->pending); | 
|  | flush_sigqueue(&t->signal->shared_pending); | 
|  | spin_unlock_irqrestore(&t->sighand->siglock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function expects the tasklist_lock write-locked. | 
|  | */ | 
|  | void __exit_sighand(struct task_struct *tsk) | 
|  | { | 
|  | struct sighand_struct * sighand = tsk->sighand; | 
|  |  | 
|  | /* Ok, we're done with the signal handlers */ | 
|  | tsk->sighand = NULL; | 
|  | if (atomic_dec_and_test(&sighand->count)) | 
|  | kmem_cache_free(sighand_cachep, sighand); | 
|  | } | 
|  |  | 
|  | void exit_sighand(struct task_struct *tsk) | 
|  | { | 
|  | write_lock_irq(&tasklist_lock); | 
|  | __exit_sighand(tsk); | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function expects the tasklist_lock write-locked. | 
|  | */ | 
|  | void __exit_signal(struct task_struct *tsk) | 
|  | { | 
|  | struct signal_struct * sig = tsk->signal; | 
|  | struct sighand_struct * sighand = tsk->sighand; | 
|  |  | 
|  | if (!sig) | 
|  | BUG(); | 
|  | if (!atomic_read(&sig->count)) | 
|  | BUG(); | 
|  | spin_lock(&sighand->siglock); | 
|  | posix_cpu_timers_exit(tsk); | 
|  | if (atomic_dec_and_test(&sig->count)) { | 
|  | posix_cpu_timers_exit_group(tsk); | 
|  | if (tsk == sig->curr_target) | 
|  | sig->curr_target = next_thread(tsk); | 
|  | tsk->signal = NULL; | 
|  | spin_unlock(&sighand->siglock); | 
|  | flush_sigqueue(&sig->shared_pending); | 
|  | } else { | 
|  | /* | 
|  | * If there is any task waiting for the group exit | 
|  | * then notify it: | 
|  | */ | 
|  | if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) { | 
|  | wake_up_process(sig->group_exit_task); | 
|  | sig->group_exit_task = NULL; | 
|  | } | 
|  | if (tsk == sig->curr_target) | 
|  | sig->curr_target = next_thread(tsk); | 
|  | tsk->signal = NULL; | 
|  | /* | 
|  | * Accumulate here the counters for all threads but the | 
|  | * group leader as they die, so they can be added into | 
|  | * the process-wide totals when those are taken. | 
|  | * The group leader stays around as a zombie as long | 
|  | * as there are other threads.  When it gets reaped, | 
|  | * the exit.c code will add its counts into these totals. | 
|  | * We won't ever get here for the group leader, since it | 
|  | * will have been the last reference on the signal_struct. | 
|  | */ | 
|  | sig->utime = cputime_add(sig->utime, tsk->utime); | 
|  | sig->stime = cputime_add(sig->stime, tsk->stime); | 
|  | sig->min_flt += tsk->min_flt; | 
|  | sig->maj_flt += tsk->maj_flt; | 
|  | sig->nvcsw += tsk->nvcsw; | 
|  | sig->nivcsw += tsk->nivcsw; | 
|  | sig->sched_time += tsk->sched_time; | 
|  | spin_unlock(&sighand->siglock); | 
|  | sig = NULL;	/* Marker for below.  */ | 
|  | } | 
|  | clear_tsk_thread_flag(tsk,TIF_SIGPENDING); | 
|  | flush_sigqueue(&tsk->pending); | 
|  | if (sig) { | 
|  | /* | 
|  | * We are cleaning up the signal_struct here.  We delayed | 
|  | * calling exit_itimers until after flush_sigqueue, just in | 
|  | * case our thread-local pending queue contained a queued | 
|  | * timer signal that would have been cleared in | 
|  | * exit_itimers.  When that called sigqueue_free, it would | 
|  | * attempt to re-take the tasklist_lock and deadlock.  This | 
|  | * can never happen if we ensure that all queues the | 
|  | * timer's signal might be queued on have been flushed | 
|  | * first.  The shared_pending queue, and our own pending | 
|  | * queue are the only queues the timer could be on, since | 
|  | * there are no other threads left in the group and timer | 
|  | * signals are constrained to threads inside the group. | 
|  | */ | 
|  | exit_itimers(sig); | 
|  | exit_thread_group_keys(sig); | 
|  | kmem_cache_free(signal_cachep, sig); | 
|  | } | 
|  | } | 
|  |  | 
|  | void exit_signal(struct task_struct *tsk) | 
|  | { | 
|  | write_lock_irq(&tasklist_lock); | 
|  | __exit_signal(tsk); | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush all handlers for a task. | 
|  | */ | 
|  |  | 
|  | void | 
|  | flush_signal_handlers(struct task_struct *t, int force_default) | 
|  | { | 
|  | int i; | 
|  | struct k_sigaction *ka = &t->sighand->action[0]; | 
|  | for (i = _NSIG ; i != 0 ; i--) { | 
|  | if (force_default || ka->sa.sa_handler != SIG_IGN) | 
|  | ka->sa.sa_handler = SIG_DFL; | 
|  | ka->sa.sa_flags = 0; | 
|  | sigemptyset(&ka->sa.sa_mask); | 
|  | ka++; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Notify the system that a driver wants to block all signals for this | 
|  | * process, and wants to be notified if any signals at all were to be | 
|  | * sent/acted upon.  If the notifier routine returns non-zero, then the | 
|  | * signal will be acted upon after all.  If the notifier routine returns 0, | 
|  | * then then signal will be blocked.  Only one block per process is | 
|  | * allowed.  priv is a pointer to private data that the notifier routine | 
|  | * can use to determine if the signal should be blocked or not.  */ | 
|  |  | 
|  | void | 
|  | block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(¤t->sighand->siglock, flags); | 
|  | current->notifier_mask = mask; | 
|  | current->notifier_data = priv; | 
|  | current->notifier = notifier; | 
|  | spin_unlock_irqrestore(¤t->sighand->siglock, flags); | 
|  | } | 
|  |  | 
|  | /* Notify the system that blocking has ended. */ | 
|  |  | 
|  | void | 
|  | unblock_all_signals(void) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(¤t->sighand->siglock, flags); | 
|  | current->notifier = NULL; | 
|  | current->notifier_data = NULL; | 
|  | recalc_sigpending(); | 
|  | spin_unlock_irqrestore(¤t->sighand->siglock, flags); | 
|  | } | 
|  |  | 
|  | static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info) | 
|  | { | 
|  | struct sigqueue *q, *first = NULL; | 
|  | int still_pending = 0; | 
|  |  | 
|  | if (unlikely(!sigismember(&list->signal, sig))) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Collect the siginfo appropriate to this signal.  Check if | 
|  | * there is another siginfo for the same signal. | 
|  | */ | 
|  | list_for_each_entry(q, &list->list, list) { | 
|  | if (q->info.si_signo == sig) { | 
|  | if (first) { | 
|  | still_pending = 1; | 
|  | break; | 
|  | } | 
|  | first = q; | 
|  | } | 
|  | } | 
|  | if (first) { | 
|  | list_del_init(&first->list); | 
|  | copy_siginfo(info, &first->info); | 
|  | __sigqueue_free(first); | 
|  | if (!still_pending) | 
|  | sigdelset(&list->signal, sig); | 
|  | } else { | 
|  |  | 
|  | /* Ok, it wasn't in the queue.  This must be | 
|  | a fast-pathed signal or we must have been | 
|  | out of queue space.  So zero out the info. | 
|  | */ | 
|  | sigdelset(&list->signal, sig); | 
|  | info->si_signo = sig; | 
|  | info->si_errno = 0; | 
|  | info->si_code = 0; | 
|  | info->si_pid = 0; | 
|  | info->si_uid = 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, | 
|  | siginfo_t *info) | 
|  | { | 
|  | int sig = 0; | 
|  |  | 
|  | /* SIGKILL must have priority, otherwise it is quite easy | 
|  | * to create an unkillable process, sending sig < SIGKILL | 
|  | * to self */ | 
|  | if (unlikely(sigismember(&pending->signal, SIGKILL))) { | 
|  | if (!sigismember(mask, SIGKILL)) | 
|  | sig = SIGKILL; | 
|  | } | 
|  |  | 
|  | if (likely(!sig)) | 
|  | sig = next_signal(pending, mask); | 
|  | if (sig) { | 
|  | if (current->notifier) { | 
|  | if (sigismember(current->notifier_mask, sig)) { | 
|  | if (!(current->notifier)(current->notifier_data)) { | 
|  | clear_thread_flag(TIF_SIGPENDING); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!collect_signal(sig, pending, info)) | 
|  | sig = 0; | 
|  |  | 
|  | } | 
|  | recalc_sigpending(); | 
|  |  | 
|  | return sig; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dequeue a signal and return the element to the caller, which is | 
|  | * expected to free it. | 
|  | * | 
|  | * All callers have to hold the siglock. | 
|  | */ | 
|  | int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) | 
|  | { | 
|  | int signr = __dequeue_signal(&tsk->pending, mask, info); | 
|  | if (!signr) | 
|  | signr = __dequeue_signal(&tsk->signal->shared_pending, | 
|  | mask, info); | 
|  | if (signr && unlikely(sig_kernel_stop(signr))) { | 
|  | /* | 
|  | * Set a marker that we have dequeued a stop signal.  Our | 
|  | * caller might release the siglock and then the pending | 
|  | * stop signal it is about to process is no longer in the | 
|  | * pending bitmasks, but must still be cleared by a SIGCONT | 
|  | * (and overruled by a SIGKILL).  So those cases clear this | 
|  | * shared flag after we've set it.  Note that this flag may | 
|  | * remain set after the signal we return is ignored or | 
|  | * handled.  That doesn't matter because its only purpose | 
|  | * is to alert stop-signal processing code when another | 
|  | * processor has come along and cleared the flag. | 
|  | */ | 
|  | tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; | 
|  | } | 
|  | if ( signr && | 
|  | ((info->si_code & __SI_MASK) == __SI_TIMER) && | 
|  | info->si_sys_private){ | 
|  | /* | 
|  | * Release the siglock to ensure proper locking order | 
|  | * of timer locks outside of siglocks.  Note, we leave | 
|  | * irqs disabled here, since the posix-timers code is | 
|  | * about to disable them again anyway. | 
|  | */ | 
|  | spin_unlock(&tsk->sighand->siglock); | 
|  | do_schedule_next_timer(info); | 
|  | spin_lock(&tsk->sighand->siglock); | 
|  | } | 
|  | return signr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tell a process that it has a new active signal.. | 
|  | * | 
|  | * NOTE! we rely on the previous spin_lock to | 
|  | * lock interrupts for us! We can only be called with | 
|  | * "siglock" held, and the local interrupt must | 
|  | * have been disabled when that got acquired! | 
|  | * | 
|  | * No need to set need_resched since signal event passing | 
|  | * goes through ->blocked | 
|  | */ | 
|  | void signal_wake_up(struct task_struct *t, int resume) | 
|  | { | 
|  | unsigned int mask; | 
|  |  | 
|  | set_tsk_thread_flag(t, TIF_SIGPENDING); | 
|  |  | 
|  | /* | 
|  | * For SIGKILL, we want to wake it up in the stopped/traced case. | 
|  | * We don't check t->state here because there is a race with it | 
|  | * executing another processor and just now entering stopped state. | 
|  | * By using wake_up_state, we ensure the process will wake up and | 
|  | * handle its death signal. | 
|  | */ | 
|  | mask = TASK_INTERRUPTIBLE; | 
|  | if (resume) | 
|  | mask |= TASK_STOPPED | TASK_TRACED; | 
|  | if (!wake_up_state(t, mask)) | 
|  | kick_process(t); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove signals in mask from the pending set and queue. | 
|  | * Returns 1 if any signals were found. | 
|  | * | 
|  | * All callers must be holding the siglock. | 
|  | */ | 
|  | static int rm_from_queue(unsigned long mask, struct sigpending *s) | 
|  | { | 
|  | struct sigqueue *q, *n; | 
|  |  | 
|  | if (!sigtestsetmask(&s->signal, mask)) | 
|  | return 0; | 
|  |  | 
|  | sigdelsetmask(&s->signal, mask); | 
|  | list_for_each_entry_safe(q, n, &s->list, list) { | 
|  | if (q->info.si_signo < SIGRTMIN && | 
|  | (mask & sigmask(q->info.si_signo))) { | 
|  | list_del_init(&q->list); | 
|  | __sigqueue_free(q); | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bad permissions for sending the signal | 
|  | */ | 
|  | static int check_kill_permission(int sig, struct siginfo *info, | 
|  | struct task_struct *t) | 
|  | { | 
|  | int error = -EINVAL; | 
|  | if (!valid_signal(sig)) | 
|  | return error; | 
|  | error = -EPERM; | 
|  | if ((!info || ((unsigned long)info != 1 && | 
|  | (unsigned long)info != 2 && SI_FROMUSER(info))) | 
|  | && ((sig != SIGCONT) || | 
|  | (current->signal->session != t->signal->session)) | 
|  | && (current->euid ^ t->suid) && (current->euid ^ t->uid) | 
|  | && (current->uid ^ t->suid) && (current->uid ^ t->uid) | 
|  | && !capable(CAP_KILL)) | 
|  | return error; | 
|  |  | 
|  | error = security_task_kill(t, info, sig); | 
|  | if (!error) | 
|  | audit_signal_info(sig, t); /* Let audit system see the signal */ | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* forward decl */ | 
|  | static void do_notify_parent_cldstop(struct task_struct *tsk, | 
|  | struct task_struct *parent, | 
|  | int why); | 
|  |  | 
|  | /* | 
|  | * Handle magic process-wide effects of stop/continue signals. | 
|  | * Unlike the signal actions, these happen immediately at signal-generation | 
|  | * time regardless of blocking, ignoring, or handling.  This does the | 
|  | * actual continuing for SIGCONT, but not the actual stopping for stop | 
|  | * signals.  The process stop is done as a signal action for SIG_DFL. | 
|  | */ | 
|  | static void handle_stop_signal(int sig, struct task_struct *p) | 
|  | { | 
|  | struct task_struct *t; | 
|  |  | 
|  | if (p->flags & SIGNAL_GROUP_EXIT) | 
|  | /* | 
|  | * The process is in the middle of dying already. | 
|  | */ | 
|  | return; | 
|  |  | 
|  | if (sig_kernel_stop(sig)) { | 
|  | /* | 
|  | * This is a stop signal.  Remove SIGCONT from all queues. | 
|  | */ | 
|  | rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending); | 
|  | t = p; | 
|  | do { | 
|  | rm_from_queue(sigmask(SIGCONT), &t->pending); | 
|  | t = next_thread(t); | 
|  | } while (t != p); | 
|  | } else if (sig == SIGCONT) { | 
|  | /* | 
|  | * Remove all stop signals from all queues, | 
|  | * and wake all threads. | 
|  | */ | 
|  | if (unlikely(p->signal->group_stop_count > 0)) { | 
|  | /* | 
|  | * There was a group stop in progress.  We'll | 
|  | * pretend it finished before we got here.  We are | 
|  | * obliged to report it to the parent: if the | 
|  | * SIGSTOP happened "after" this SIGCONT, then it | 
|  | * would have cleared this pending SIGCONT.  If it | 
|  | * happened "before" this SIGCONT, then the parent | 
|  | * got the SIGCHLD about the stop finishing before | 
|  | * the continue happened.  We do the notification | 
|  | * now, and it's as if the stop had finished and | 
|  | * the SIGCHLD was pending on entry to this kill. | 
|  | */ | 
|  | p->signal->group_stop_count = 0; | 
|  | p->signal->flags = SIGNAL_STOP_CONTINUED; | 
|  | spin_unlock(&p->sighand->siglock); | 
|  | if (p->ptrace & PT_PTRACED) | 
|  | do_notify_parent_cldstop(p, p->parent, | 
|  | CLD_STOPPED); | 
|  | else | 
|  | do_notify_parent_cldstop( | 
|  | p->group_leader, | 
|  | p->group_leader->real_parent, | 
|  | CLD_STOPPED); | 
|  | spin_lock(&p->sighand->siglock); | 
|  | } | 
|  | rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); | 
|  | t = p; | 
|  | do { | 
|  | unsigned int state; | 
|  | rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); | 
|  |  | 
|  | /* | 
|  | * If there is a handler for SIGCONT, we must make | 
|  | * sure that no thread returns to user mode before | 
|  | * we post the signal, in case it was the only | 
|  | * thread eligible to run the signal handler--then | 
|  | * it must not do anything between resuming and | 
|  | * running the handler.  With the TIF_SIGPENDING | 
|  | * flag set, the thread will pause and acquire the | 
|  | * siglock that we hold now and until we've queued | 
|  | * the pending signal. | 
|  | * | 
|  | * Wake up the stopped thread _after_ setting | 
|  | * TIF_SIGPENDING | 
|  | */ | 
|  | state = TASK_STOPPED; | 
|  | if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { | 
|  | set_tsk_thread_flag(t, TIF_SIGPENDING); | 
|  | state |= TASK_INTERRUPTIBLE; | 
|  | } | 
|  | wake_up_state(t, state); | 
|  |  | 
|  | t = next_thread(t); | 
|  | } while (t != p); | 
|  |  | 
|  | if (p->signal->flags & SIGNAL_STOP_STOPPED) { | 
|  | /* | 
|  | * We were in fact stopped, and are now continued. | 
|  | * Notify the parent with CLD_CONTINUED. | 
|  | */ | 
|  | p->signal->flags = SIGNAL_STOP_CONTINUED; | 
|  | p->signal->group_exit_code = 0; | 
|  | spin_unlock(&p->sighand->siglock); | 
|  | if (p->ptrace & PT_PTRACED) | 
|  | do_notify_parent_cldstop(p, p->parent, | 
|  | CLD_CONTINUED); | 
|  | else | 
|  | do_notify_parent_cldstop( | 
|  | p->group_leader, | 
|  | p->group_leader->real_parent, | 
|  | CLD_CONTINUED); | 
|  | spin_lock(&p->sighand->siglock); | 
|  | } else { | 
|  | /* | 
|  | * We are not stopped, but there could be a stop | 
|  | * signal in the middle of being processed after | 
|  | * being removed from the queue.  Clear that too. | 
|  | */ | 
|  | p->signal->flags = 0; | 
|  | } | 
|  | } else if (sig == SIGKILL) { | 
|  | /* | 
|  | * Make sure that any pending stop signal already dequeued | 
|  | * is undone by the wakeup for SIGKILL. | 
|  | */ | 
|  | p->signal->flags = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int send_signal(int sig, struct siginfo *info, struct task_struct *t, | 
|  | struct sigpending *signals) | 
|  | { | 
|  | struct sigqueue * q = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * fast-pathed signals for kernel-internal things like SIGSTOP | 
|  | * or SIGKILL. | 
|  | */ | 
|  | if ((unsigned long)info == 2) | 
|  | goto out_set; | 
|  |  | 
|  | /* Real-time signals must be queued if sent by sigqueue, or | 
|  | some other real-time mechanism.  It is implementation | 
|  | defined whether kill() does so.  We attempt to do so, on | 
|  | the principle of least surprise, but since kill is not | 
|  | allowed to fail with EAGAIN when low on memory we just | 
|  | make sure at least one signal gets delivered and don't | 
|  | pass on the info struct.  */ | 
|  |  | 
|  | q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && | 
|  | ((unsigned long) info < 2 || | 
|  | info->si_code >= 0))); | 
|  | if (q) { | 
|  | list_add_tail(&q->list, &signals->list); | 
|  | switch ((unsigned long) info) { | 
|  | case 0: | 
|  | q->info.si_signo = sig; | 
|  | q->info.si_errno = 0; | 
|  | q->info.si_code = SI_USER; | 
|  | q->info.si_pid = current->pid; | 
|  | q->info.si_uid = current->uid; | 
|  | break; | 
|  | case 1: | 
|  | q->info.si_signo = sig; | 
|  | q->info.si_errno = 0; | 
|  | q->info.si_code = SI_KERNEL; | 
|  | q->info.si_pid = 0; | 
|  | q->info.si_uid = 0; | 
|  | break; | 
|  | default: | 
|  | copy_siginfo(&q->info, info); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | if (sig >= SIGRTMIN && info && (unsigned long)info != 1 | 
|  | && info->si_code != SI_USER) | 
|  | /* | 
|  | * Queue overflow, abort.  We may abort if the signal was rt | 
|  | * and sent by user using something other than kill(). | 
|  | */ | 
|  | return -EAGAIN; | 
|  | if (((unsigned long)info > 1) && (info->si_code == SI_TIMER)) | 
|  | /* | 
|  | * Set up a return to indicate that we dropped | 
|  | * the signal. | 
|  | */ | 
|  | ret = info->si_sys_private; | 
|  | } | 
|  |  | 
|  | out_set: | 
|  | sigaddset(&signals->signal, sig); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define LEGACY_QUEUE(sigptr, sig) \ | 
|  | (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig))) | 
|  |  | 
|  |  | 
|  | static int | 
|  | specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (!irqs_disabled()) | 
|  | BUG(); | 
|  | assert_spin_locked(&t->sighand->siglock); | 
|  |  | 
|  | if (((unsigned long)info > 2) && (info->si_code == SI_TIMER)) | 
|  | /* | 
|  | * Set up a return to indicate that we dropped the signal. | 
|  | */ | 
|  | ret = info->si_sys_private; | 
|  |  | 
|  | /* Short-circuit ignored signals.  */ | 
|  | if (sig_ignored(t, sig)) | 
|  | goto out; | 
|  |  | 
|  | /* Support queueing exactly one non-rt signal, so that we | 
|  | can get more detailed information about the cause of | 
|  | the signal. */ | 
|  | if (LEGACY_QUEUE(&t->pending, sig)) | 
|  | goto out; | 
|  |  | 
|  | ret = send_signal(sig, info, t, &t->pending); | 
|  | if (!ret && !sigismember(&t->blocked, sig)) | 
|  | signal_wake_up(t, sig == SIGKILL); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Force a signal that the process can't ignore: if necessary | 
|  | * we unblock the signal and change any SIG_IGN to SIG_DFL. | 
|  | */ | 
|  |  | 
|  | int | 
|  | force_sig_info(int sig, struct siginfo *info, struct task_struct *t) | 
|  | { | 
|  | unsigned long int flags; | 
|  | int ret; | 
|  |  | 
|  | spin_lock_irqsave(&t->sighand->siglock, flags); | 
|  | if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) { | 
|  | t->sighand->action[sig-1].sa.sa_handler = SIG_DFL; | 
|  | sigdelset(&t->blocked, sig); | 
|  | recalc_sigpending_tsk(t); | 
|  | } | 
|  | ret = specific_send_sig_info(sig, info, t); | 
|  | spin_unlock_irqrestore(&t->sighand->siglock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void | 
|  | force_sig_specific(int sig, struct task_struct *t) | 
|  | { | 
|  | unsigned long int flags; | 
|  |  | 
|  | spin_lock_irqsave(&t->sighand->siglock, flags); | 
|  | if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) | 
|  | t->sighand->action[sig-1].sa.sa_handler = SIG_DFL; | 
|  | sigdelset(&t->blocked, sig); | 
|  | recalc_sigpending_tsk(t); | 
|  | specific_send_sig_info(sig, (void *)2, t); | 
|  | spin_unlock_irqrestore(&t->sighand->siglock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Test if P wants to take SIG.  After we've checked all threads with this, | 
|  | * it's equivalent to finding no threads not blocking SIG.  Any threads not | 
|  | * blocking SIG were ruled out because they are not running and already | 
|  | * have pending signals.  Such threads will dequeue from the shared queue | 
|  | * as soon as they're available, so putting the signal on the shared queue | 
|  | * will be equivalent to sending it to one such thread. | 
|  | */ | 
|  | #define wants_signal(sig, p, mask) 			\ | 
|  | (!sigismember(&(p)->blocked, sig)		\ | 
|  | && !((p)->state & mask)			\ | 
|  | && !((p)->flags & PF_EXITING)			\ | 
|  | && (task_curr(p) || !signal_pending(p))) | 
|  |  | 
|  |  | 
|  | static void | 
|  | __group_complete_signal(int sig, struct task_struct *p) | 
|  | { | 
|  | unsigned int mask; | 
|  | struct task_struct *t; | 
|  |  | 
|  | /* | 
|  | * Don't bother traced and stopped tasks (but | 
|  | * SIGKILL will punch through that). | 
|  | */ | 
|  | mask = TASK_STOPPED | TASK_TRACED; | 
|  | if (sig == SIGKILL) | 
|  | mask = 0; | 
|  |  | 
|  | /* | 
|  | * Now find a thread we can wake up to take the signal off the queue. | 
|  | * | 
|  | * If the main thread wants the signal, it gets first crack. | 
|  | * Probably the least surprising to the average bear. | 
|  | */ | 
|  | if (wants_signal(sig, p, mask)) | 
|  | t = p; | 
|  | else if (thread_group_empty(p)) | 
|  | /* | 
|  | * There is just one thread and it does not need to be woken. | 
|  | * It will dequeue unblocked signals before it runs again. | 
|  | */ | 
|  | return; | 
|  | else { | 
|  | /* | 
|  | * Otherwise try to find a suitable thread. | 
|  | */ | 
|  | t = p->signal->curr_target; | 
|  | if (t == NULL) | 
|  | /* restart balancing at this thread */ | 
|  | t = p->signal->curr_target = p; | 
|  | BUG_ON(t->tgid != p->tgid); | 
|  |  | 
|  | while (!wants_signal(sig, t, mask)) { | 
|  | t = next_thread(t); | 
|  | if (t == p->signal->curr_target) | 
|  | /* | 
|  | * No thread needs to be woken. | 
|  | * Any eligible threads will see | 
|  | * the signal in the queue soon. | 
|  | */ | 
|  | return; | 
|  | } | 
|  | p->signal->curr_target = t; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Found a killable thread.  If the signal will be fatal, | 
|  | * then start taking the whole group down immediately. | 
|  | */ | 
|  | if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) && | 
|  | !sigismember(&t->real_blocked, sig) && | 
|  | (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) { | 
|  | /* | 
|  | * This signal will be fatal to the whole group. | 
|  | */ | 
|  | if (!sig_kernel_coredump(sig)) { | 
|  | /* | 
|  | * Start a group exit and wake everybody up. | 
|  | * This way we don't have other threads | 
|  | * running and doing things after a slower | 
|  | * thread has the fatal signal pending. | 
|  | */ | 
|  | p->signal->flags = SIGNAL_GROUP_EXIT; | 
|  | p->signal->group_exit_code = sig; | 
|  | p->signal->group_stop_count = 0; | 
|  | t = p; | 
|  | do { | 
|  | sigaddset(&t->pending.signal, SIGKILL); | 
|  | signal_wake_up(t, 1); | 
|  | t = next_thread(t); | 
|  | } while (t != p); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There will be a core dump.  We make all threads other | 
|  | * than the chosen one go into a group stop so that nothing | 
|  | * happens until it gets scheduled, takes the signal off | 
|  | * the shared queue, and does the core dump.  This is a | 
|  | * little more complicated than strictly necessary, but it | 
|  | * keeps the signal state that winds up in the core dump | 
|  | * unchanged from the death state, e.g. which thread had | 
|  | * the core-dump signal unblocked. | 
|  | */ | 
|  | rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); | 
|  | rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); | 
|  | p->signal->group_stop_count = 0; | 
|  | p->signal->group_exit_task = t; | 
|  | t = p; | 
|  | do { | 
|  | p->signal->group_stop_count++; | 
|  | signal_wake_up(t, 0); | 
|  | t = next_thread(t); | 
|  | } while (t != p); | 
|  | wake_up_process(p->signal->group_exit_task); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The signal is already in the shared-pending queue. | 
|  | * Tell the chosen thread to wake up and dequeue it. | 
|  | */ | 
|  | signal_wake_up(t, sig == SIGKILL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | int | 
|  | __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | assert_spin_locked(&p->sighand->siglock); | 
|  | handle_stop_signal(sig, p); | 
|  |  | 
|  | if (((unsigned long)info > 2) && (info->si_code == SI_TIMER)) | 
|  | /* | 
|  | * Set up a return to indicate that we dropped the signal. | 
|  | */ | 
|  | ret = info->si_sys_private; | 
|  |  | 
|  | /* Short-circuit ignored signals.  */ | 
|  | if (sig_ignored(p, sig)) | 
|  | return ret; | 
|  |  | 
|  | if (LEGACY_QUEUE(&p->signal->shared_pending, sig)) | 
|  | /* This is a non-RT signal and we already have one queued.  */ | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Put this signal on the shared-pending queue, or fail with EAGAIN. | 
|  | * We always use the shared queue for process-wide signals, | 
|  | * to avoid several races. | 
|  | */ | 
|  | ret = send_signal(sig, info, p, &p->signal->shared_pending); | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  |  | 
|  | __group_complete_signal(sig, p); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Nuke all other threads in the group. | 
|  | */ | 
|  | void zap_other_threads(struct task_struct *p) | 
|  | { | 
|  | struct task_struct *t; | 
|  |  | 
|  | p->signal->flags = SIGNAL_GROUP_EXIT; | 
|  | p->signal->group_stop_count = 0; | 
|  |  | 
|  | if (thread_group_empty(p)) | 
|  | return; | 
|  |  | 
|  | for (t = next_thread(p); t != p; t = next_thread(t)) { | 
|  | /* | 
|  | * Don't bother with already dead threads | 
|  | */ | 
|  | if (t->exit_state) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * We don't want to notify the parent, since we are | 
|  | * killed as part of a thread group due to another | 
|  | * thread doing an execve() or similar. So set the | 
|  | * exit signal to -1 to allow immediate reaping of | 
|  | * the process.  But don't detach the thread group | 
|  | * leader. | 
|  | */ | 
|  | if (t != p->group_leader) | 
|  | t->exit_signal = -1; | 
|  |  | 
|  | sigaddset(&t->pending.signal, SIGKILL); | 
|  | rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); | 
|  | signal_wake_up(t, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must be called with the tasklist_lock held for reading! | 
|  | */ | 
|  | int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | ret = check_kill_permission(sig, info, p); | 
|  | if (!ret && sig && p->sighand) { | 
|  | spin_lock_irqsave(&p->sighand->siglock, flags); | 
|  | ret = __group_send_sig_info(sig, info, p); | 
|  | spin_unlock_irqrestore(&p->sighand->siglock, flags); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kill_pg_info() sends a signal to a process group: this is what the tty | 
|  | * control characters do (^C, ^Z etc) | 
|  | */ | 
|  |  | 
|  | int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) | 
|  | { | 
|  | struct task_struct *p = NULL; | 
|  | int retval, success; | 
|  |  | 
|  | if (pgrp <= 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | success = 0; | 
|  | retval = -ESRCH; | 
|  | do_each_task_pid(pgrp, PIDTYPE_PGID, p) { | 
|  | int err = group_send_sig_info(sig, info, p); | 
|  | success |= !err; | 
|  | retval = err; | 
|  | } while_each_task_pid(pgrp, PIDTYPE_PGID, p); | 
|  | return success ? 0 : retval; | 
|  | } | 
|  |  | 
|  | int | 
|  | kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | retval = __kill_pg_info(sig, info, pgrp); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | int | 
|  | kill_proc_info(int sig, struct siginfo *info, pid_t pid) | 
|  | { | 
|  | int error; | 
|  | struct task_struct *p; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | p = find_task_by_pid(pid); | 
|  | error = -ESRCH; | 
|  | if (p) | 
|  | error = group_send_sig_info(sig, info, p); | 
|  | read_unlock(&tasklist_lock); | 
|  | return error; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * kill_something_info() interprets pid in interesting ways just like kill(2). | 
|  | * | 
|  | * POSIX specifies that kill(-1,sig) is unspecified, but what we have | 
|  | * is probably wrong.  Should make it like BSD or SYSV. | 
|  | */ | 
|  |  | 
|  | static int kill_something_info(int sig, struct siginfo *info, int pid) | 
|  | { | 
|  | if (!pid) { | 
|  | return kill_pg_info(sig, info, process_group(current)); | 
|  | } else if (pid == -1) { | 
|  | int retval = 0, count = 0; | 
|  | struct task_struct * p; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | for_each_process(p) { | 
|  | if (p->pid > 1 && p->tgid != current->tgid) { | 
|  | int err = group_send_sig_info(sig, info, p); | 
|  | ++count; | 
|  | if (err != -EPERM) | 
|  | retval = err; | 
|  | } | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  | return count ? retval : -ESRCH; | 
|  | } else if (pid < 0) { | 
|  | return kill_pg_info(sig, info, -pid); | 
|  | } else { | 
|  | return kill_proc_info(sig, info, pid); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These are for backward compatibility with the rest of the kernel source. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * These two are the most common entry points.  They send a signal | 
|  | * just to the specific thread. | 
|  | */ | 
|  | int | 
|  | send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 
|  | { | 
|  | int ret; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * Make sure legacy kernel users don't send in bad values | 
|  | * (normal paths check this in check_kill_permission). | 
|  | */ | 
|  | if (!valid_signal(sig)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * We need the tasklist lock even for the specific | 
|  | * thread case (when we don't need to follow the group | 
|  | * lists) in order to avoid races with "p->sighand" | 
|  | * going away or changing from under us. | 
|  | */ | 
|  | read_lock(&tasklist_lock); | 
|  | spin_lock_irqsave(&p->sighand->siglock, flags); | 
|  | ret = specific_send_sig_info(sig, info, p); | 
|  | spin_unlock_irqrestore(&p->sighand->siglock, flags); | 
|  | read_unlock(&tasklist_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int | 
|  | send_sig(int sig, struct task_struct *p, int priv) | 
|  | { | 
|  | return send_sig_info(sig, (void*)(long)(priv != 0), p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the entry point for "process-wide" signals. | 
|  | * They will go to an appropriate thread in the thread group. | 
|  | */ | 
|  | int | 
|  | send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 
|  | { | 
|  | int ret; | 
|  | read_lock(&tasklist_lock); | 
|  | ret = group_send_sig_info(sig, info, p); | 
|  | read_unlock(&tasklist_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void | 
|  | force_sig(int sig, struct task_struct *p) | 
|  | { | 
|  | force_sig_info(sig, (void*)1L, p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When things go south during signal handling, we | 
|  | * will force a SIGSEGV. And if the signal that caused | 
|  | * the problem was already a SIGSEGV, we'll want to | 
|  | * make sure we don't even try to deliver the signal.. | 
|  | */ | 
|  | int | 
|  | force_sigsegv(int sig, struct task_struct *p) | 
|  | { | 
|  | if (sig == SIGSEGV) { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&p->sighand->siglock, flags); | 
|  | p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; | 
|  | spin_unlock_irqrestore(&p->sighand->siglock, flags); | 
|  | } | 
|  | force_sig(SIGSEGV, p); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | kill_pg(pid_t pgrp, int sig, int priv) | 
|  | { | 
|  | return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp); | 
|  | } | 
|  |  | 
|  | int | 
|  | kill_proc(pid_t pid, int sig, int priv) | 
|  | { | 
|  | return kill_proc_info(sig, (void *)(long)(priv != 0), pid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These functions support sending signals using preallocated sigqueue | 
|  | * structures.  This is needed "because realtime applications cannot | 
|  | * afford to lose notifications of asynchronous events, like timer | 
|  | * expirations or I/O completions".  In the case of Posix Timers | 
|  | * we allocate the sigqueue structure from the timer_create.  If this | 
|  | * allocation fails we are able to report the failure to the application | 
|  | * with an EAGAIN error. | 
|  | */ | 
|  |  | 
|  | struct sigqueue *sigqueue_alloc(void) | 
|  | { | 
|  | struct sigqueue *q; | 
|  |  | 
|  | if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) | 
|  | q->flags |= SIGQUEUE_PREALLOC; | 
|  | return(q); | 
|  | } | 
|  |  | 
|  | void sigqueue_free(struct sigqueue *q) | 
|  | { | 
|  | unsigned long flags; | 
|  | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); | 
|  | /* | 
|  | * If the signal is still pending remove it from the | 
|  | * pending queue. | 
|  | */ | 
|  | if (unlikely(!list_empty(&q->list))) { | 
|  | read_lock(&tasklist_lock); | 
|  | spin_lock_irqsave(q->lock, flags); | 
|  | if (!list_empty(&q->list)) | 
|  | list_del_init(&q->list); | 
|  | spin_unlock_irqrestore(q->lock, flags); | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  | q->flags &= ~SIGQUEUE_PREALLOC; | 
|  | __sigqueue_free(q); | 
|  | } | 
|  |  | 
|  | int | 
|  | send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * We need the tasklist lock even for the specific | 
|  | * thread case (when we don't need to follow the group | 
|  | * lists) in order to avoid races with "p->sighand" | 
|  | * going away or changing from under us. | 
|  | */ | 
|  | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); | 
|  | read_lock(&tasklist_lock); | 
|  | spin_lock_irqsave(&p->sighand->siglock, flags); | 
|  |  | 
|  | if (unlikely(!list_empty(&q->list))) { | 
|  | /* | 
|  | * If an SI_TIMER entry is already queue just increment | 
|  | * the overrun count. | 
|  | */ | 
|  | if (q->info.si_code != SI_TIMER) | 
|  | BUG(); | 
|  | q->info.si_overrun++; | 
|  | goto out; | 
|  | } | 
|  | /* Short-circuit ignored signals.  */ | 
|  | if (sig_ignored(p, sig)) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | q->lock = &p->sighand->siglock; | 
|  | list_add_tail(&q->list, &p->pending.list); | 
|  | sigaddset(&p->pending.signal, sig); | 
|  | if (!sigismember(&p->blocked, sig)) | 
|  | signal_wake_up(p, sig == SIGKILL); | 
|  |  | 
|  | out: | 
|  | spin_unlock_irqrestore(&p->sighand->siglock, flags); | 
|  | read_unlock(&tasklist_lock); | 
|  | return(ret); | 
|  | } | 
|  |  | 
|  | int | 
|  | send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); | 
|  | read_lock(&tasklist_lock); | 
|  | spin_lock_irqsave(&p->sighand->siglock, flags); | 
|  | handle_stop_signal(sig, p); | 
|  |  | 
|  | /* Short-circuit ignored signals.  */ | 
|  | if (sig_ignored(p, sig)) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (unlikely(!list_empty(&q->list))) { | 
|  | /* | 
|  | * If an SI_TIMER entry is already queue just increment | 
|  | * the overrun count.  Other uses should not try to | 
|  | * send the signal multiple times. | 
|  | */ | 
|  | if (q->info.si_code != SI_TIMER) | 
|  | BUG(); | 
|  | q->info.si_overrun++; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put this signal on the shared-pending queue. | 
|  | * We always use the shared queue for process-wide signals, | 
|  | * to avoid several races. | 
|  | */ | 
|  | q->lock = &p->sighand->siglock; | 
|  | list_add_tail(&q->list, &p->signal->shared_pending.list); | 
|  | sigaddset(&p->signal->shared_pending.signal, sig); | 
|  |  | 
|  | __group_complete_signal(sig, p); | 
|  | out: | 
|  | spin_unlock_irqrestore(&p->sighand->siglock, flags); | 
|  | read_unlock(&tasklist_lock); | 
|  | return(ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wake up any threads in the parent blocked in wait* syscalls. | 
|  | */ | 
|  | static inline void __wake_up_parent(struct task_struct *p, | 
|  | struct task_struct *parent) | 
|  | { | 
|  | wake_up_interruptible_sync(&parent->signal->wait_chldexit); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Let a parent know about the death of a child. | 
|  | * For a stopped/continued status change, use do_notify_parent_cldstop instead. | 
|  | */ | 
|  |  | 
|  | void do_notify_parent(struct task_struct *tsk, int sig) | 
|  | { | 
|  | struct siginfo info; | 
|  | unsigned long flags; | 
|  | struct sighand_struct *psig; | 
|  |  | 
|  | BUG_ON(sig == -1); | 
|  |  | 
|  | /* do_notify_parent_cldstop should have been called instead.  */ | 
|  | BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED)); | 
|  |  | 
|  | BUG_ON(!tsk->ptrace && | 
|  | (tsk->group_leader != tsk || !thread_group_empty(tsk))); | 
|  |  | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | info.si_pid = tsk->pid; | 
|  | info.si_uid = tsk->uid; | 
|  |  | 
|  | /* FIXME: find out whether or not this is supposed to be c*time. */ | 
|  | info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime, | 
|  | tsk->signal->utime)); | 
|  | info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime, | 
|  | tsk->signal->stime)); | 
|  |  | 
|  | info.si_status = tsk->exit_code & 0x7f; | 
|  | if (tsk->exit_code & 0x80) | 
|  | info.si_code = CLD_DUMPED; | 
|  | else if (tsk->exit_code & 0x7f) | 
|  | info.si_code = CLD_KILLED; | 
|  | else { | 
|  | info.si_code = CLD_EXITED; | 
|  | info.si_status = tsk->exit_code >> 8; | 
|  | } | 
|  |  | 
|  | psig = tsk->parent->sighand; | 
|  | spin_lock_irqsave(&psig->siglock, flags); | 
|  | if (sig == SIGCHLD && | 
|  | (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || | 
|  | (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { | 
|  | /* | 
|  | * We are exiting and our parent doesn't care.  POSIX.1 | 
|  | * defines special semantics for setting SIGCHLD to SIG_IGN | 
|  | * or setting the SA_NOCLDWAIT flag: we should be reaped | 
|  | * automatically and not left for our parent's wait4 call. | 
|  | * Rather than having the parent do it as a magic kind of | 
|  | * signal handler, we just set this to tell do_exit that we | 
|  | * can be cleaned up without becoming a zombie.  Note that | 
|  | * we still call __wake_up_parent in this case, because a | 
|  | * blocked sys_wait4 might now return -ECHILD. | 
|  | * | 
|  | * Whether we send SIGCHLD or not for SA_NOCLDWAIT | 
|  | * is implementation-defined: we do (if you don't want | 
|  | * it, just use SIG_IGN instead). | 
|  | */ | 
|  | tsk->exit_signal = -1; | 
|  | if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) | 
|  | sig = 0; | 
|  | } | 
|  | if (valid_signal(sig) && sig > 0) | 
|  | __group_send_sig_info(sig, &info, tsk->parent); | 
|  | __wake_up_parent(tsk, tsk->parent); | 
|  | spin_unlock_irqrestore(&psig->siglock, flags); | 
|  | } | 
|  |  | 
|  | static void | 
|  | do_notify_parent_cldstop(struct task_struct *tsk, struct task_struct *parent, | 
|  | int why) | 
|  | { | 
|  | struct siginfo info; | 
|  | unsigned long flags; | 
|  | struct sighand_struct *sighand; | 
|  |  | 
|  | info.si_signo = SIGCHLD; | 
|  | info.si_errno = 0; | 
|  | info.si_pid = tsk->pid; | 
|  | info.si_uid = tsk->uid; | 
|  |  | 
|  | /* FIXME: find out whether or not this is supposed to be c*time. */ | 
|  | info.si_utime = cputime_to_jiffies(tsk->utime); | 
|  | info.si_stime = cputime_to_jiffies(tsk->stime); | 
|  |  | 
|  | info.si_code = why; | 
|  | switch (why) { | 
|  | case CLD_CONTINUED: | 
|  | info.si_status = SIGCONT; | 
|  | break; | 
|  | case CLD_STOPPED: | 
|  | info.si_status = tsk->signal->group_exit_code & 0x7f; | 
|  | break; | 
|  | case CLD_TRAPPED: | 
|  | info.si_status = tsk->exit_code & 0x7f; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | sighand = parent->sighand; | 
|  | spin_lock_irqsave(&sighand->siglock, flags); | 
|  | if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && | 
|  | !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) | 
|  | __group_send_sig_info(SIGCHLD, &info, parent); | 
|  | /* | 
|  | * Even if SIGCHLD is not generated, we must wake up wait4 calls. | 
|  | */ | 
|  | __wake_up_parent(tsk, parent); | 
|  | spin_unlock_irqrestore(&sighand->siglock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This must be called with current->sighand->siglock held. | 
|  | * | 
|  | * This should be the path for all ptrace stops. | 
|  | * We always set current->last_siginfo while stopped here. | 
|  | * That makes it a way to test a stopped process for | 
|  | * being ptrace-stopped vs being job-control-stopped. | 
|  | * | 
|  | * If we actually decide not to stop at all because the tracer is gone, | 
|  | * we leave nostop_code in current->exit_code. | 
|  | */ | 
|  | static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info) | 
|  | { | 
|  | /* | 
|  | * If there is a group stop in progress, | 
|  | * we must participate in the bookkeeping. | 
|  | */ | 
|  | if (current->signal->group_stop_count > 0) | 
|  | --current->signal->group_stop_count; | 
|  |  | 
|  | current->last_siginfo = info; | 
|  | current->exit_code = exit_code; | 
|  |  | 
|  | /* Let the debugger run.  */ | 
|  | set_current_state(TASK_TRACED); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | read_lock(&tasklist_lock); | 
|  | if (likely(current->ptrace & PT_PTRACED) && | 
|  | likely(current->parent != current->real_parent || | 
|  | !(current->ptrace & PT_ATTACHED)) && | 
|  | (likely(current->parent->signal != current->signal) || | 
|  | !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) { | 
|  | do_notify_parent_cldstop(current, current->parent, | 
|  | CLD_TRAPPED); | 
|  | read_unlock(&tasklist_lock); | 
|  | schedule(); | 
|  | } else { | 
|  | /* | 
|  | * By the time we got the lock, our tracer went away. | 
|  | * Don't stop here. | 
|  | */ | 
|  | read_unlock(&tasklist_lock); | 
|  | set_current_state(TASK_RUNNING); | 
|  | current->exit_code = nostop_code; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are back.  Now reacquire the siglock before touching | 
|  | * last_siginfo, so that we are sure to have synchronized with | 
|  | * any signal-sending on another CPU that wants to examine it. | 
|  | */ | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | current->last_siginfo = NULL; | 
|  |  | 
|  | /* | 
|  | * Queued signals ignored us while we were stopped for tracing. | 
|  | * So check for any that we should take before resuming user mode. | 
|  | */ | 
|  | recalc_sigpending(); | 
|  | } | 
|  |  | 
|  | void ptrace_notify(int exit_code) | 
|  | { | 
|  | siginfo_t info; | 
|  |  | 
|  | BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); | 
|  |  | 
|  | memset(&info, 0, sizeof info); | 
|  | info.si_signo = SIGTRAP; | 
|  | info.si_code = exit_code; | 
|  | info.si_pid = current->pid; | 
|  | info.si_uid = current->uid; | 
|  |  | 
|  | /* Let the debugger run.  */ | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | ptrace_stop(exit_code, 0, &info); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | } | 
|  |  | 
|  | static void | 
|  | finish_stop(int stop_count) | 
|  | { | 
|  | /* | 
|  | * If there are no other threads in the group, or if there is | 
|  | * a group stop in progress and we are the last to stop, | 
|  | * report to the parent.  When ptraced, every thread reports itself. | 
|  | */ | 
|  | if (stop_count < 0 || (current->ptrace & PT_PTRACED)) { | 
|  | read_lock(&tasklist_lock); | 
|  | do_notify_parent_cldstop(current, current->parent, | 
|  | CLD_STOPPED); | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  | else if (stop_count == 0) { | 
|  | read_lock(&tasklist_lock); | 
|  | do_notify_parent_cldstop(current->group_leader, | 
|  | current->group_leader->real_parent, | 
|  | CLD_STOPPED); | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | schedule(); | 
|  | /* | 
|  | * Now we don't run again until continued. | 
|  | */ | 
|  | current->exit_code = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This performs the stopping for SIGSTOP and other stop signals. | 
|  | * We have to stop all threads in the thread group. | 
|  | * Returns nonzero if we've actually stopped and released the siglock. | 
|  | * Returns zero if we didn't stop and still hold the siglock. | 
|  | */ | 
|  | static int | 
|  | do_signal_stop(int signr) | 
|  | { | 
|  | struct signal_struct *sig = current->signal; | 
|  | struct sighand_struct *sighand = current->sighand; | 
|  | int stop_count = -1; | 
|  |  | 
|  | if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) | 
|  | return 0; | 
|  |  | 
|  | if (sig->group_stop_count > 0) { | 
|  | /* | 
|  | * There is a group stop in progress.  We don't need to | 
|  | * start another one. | 
|  | */ | 
|  | signr = sig->group_exit_code; | 
|  | stop_count = --sig->group_stop_count; | 
|  | current->exit_code = signr; | 
|  | set_current_state(TASK_STOPPED); | 
|  | if (stop_count == 0) | 
|  | sig->flags = SIGNAL_STOP_STOPPED; | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  | } | 
|  | else if (thread_group_empty(current)) { | 
|  | /* | 
|  | * Lock must be held through transition to stopped state. | 
|  | */ | 
|  | current->exit_code = current->signal->group_exit_code = signr; | 
|  | set_current_state(TASK_STOPPED); | 
|  | sig->flags = SIGNAL_STOP_STOPPED; | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  | } | 
|  | else { | 
|  | /* | 
|  | * There is no group stop already in progress. | 
|  | * We must initiate one now, but that requires | 
|  | * dropping siglock to get both the tasklist lock | 
|  | * and siglock again in the proper order.  Note that | 
|  | * this allows an intervening SIGCONT to be posted. | 
|  | * We need to check for that and bail out if necessary. | 
|  | */ | 
|  | struct task_struct *t; | 
|  |  | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  |  | 
|  | /* signals can be posted during this window */ | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | spin_lock_irq(&sighand->siglock); | 
|  |  | 
|  | if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) { | 
|  | /* | 
|  | * Another stop or continue happened while we | 
|  | * didn't have the lock.  We can just swallow this | 
|  | * signal now.  If we raced with a SIGCONT, that | 
|  | * should have just cleared it now.  If we raced | 
|  | * with another processor delivering a stop signal, | 
|  | * then the SIGCONT that wakes us up should clear it. | 
|  | */ | 
|  | read_unlock(&tasklist_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (sig->group_stop_count == 0) { | 
|  | sig->group_exit_code = signr; | 
|  | stop_count = 0; | 
|  | for (t = next_thread(current); t != current; | 
|  | t = next_thread(t)) | 
|  | /* | 
|  | * Setting state to TASK_STOPPED for a group | 
|  | * stop is always done with the siglock held, | 
|  | * so this check has no races. | 
|  | */ | 
|  | if (t->state < TASK_STOPPED) { | 
|  | stop_count++; | 
|  | signal_wake_up(t, 0); | 
|  | } | 
|  | sig->group_stop_count = stop_count; | 
|  | } | 
|  | else { | 
|  | /* A race with another thread while unlocked.  */ | 
|  | signr = sig->group_exit_code; | 
|  | stop_count = --sig->group_stop_count; | 
|  | } | 
|  |  | 
|  | current->exit_code = signr; | 
|  | set_current_state(TASK_STOPPED); | 
|  | if (stop_count == 0) | 
|  | sig->flags = SIGNAL_STOP_STOPPED; | 
|  |  | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | finish_stop(stop_count); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do appropriate magic when group_stop_count > 0. | 
|  | * We return nonzero if we stopped, after releasing the siglock. | 
|  | * We return zero if we still hold the siglock and should look | 
|  | * for another signal without checking group_stop_count again. | 
|  | */ | 
|  | static inline int handle_group_stop(void) | 
|  | { | 
|  | int stop_count; | 
|  |  | 
|  | if (current->signal->group_exit_task == current) { | 
|  | /* | 
|  | * Group stop is so we can do a core dump, | 
|  | * We are the initiating thread, so get on with it. | 
|  | */ | 
|  | current->signal->group_exit_task = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (current->signal->flags & SIGNAL_GROUP_EXIT) | 
|  | /* | 
|  | * Group stop is so another thread can do a core dump, | 
|  | * or else we are racing against a death signal. | 
|  | * Just punt the stop so we can get the next signal. | 
|  | */ | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * There is a group stop in progress.  We stop | 
|  | * without any associated signal being in our queue. | 
|  | */ | 
|  | stop_count = --current->signal->group_stop_count; | 
|  | if (stop_count == 0) | 
|  | current->signal->flags = SIGNAL_STOP_STOPPED; | 
|  | current->exit_code = current->signal->group_exit_code; | 
|  | set_current_state(TASK_STOPPED); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | finish_stop(stop_count); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, | 
|  | struct pt_regs *regs, void *cookie) | 
|  | { | 
|  | sigset_t *mask = ¤t->blocked; | 
|  | int signr = 0; | 
|  |  | 
|  | relock: | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | for (;;) { | 
|  | struct k_sigaction *ka; | 
|  |  | 
|  | if (unlikely(current->signal->group_stop_count > 0) && | 
|  | handle_group_stop()) | 
|  | goto relock; | 
|  |  | 
|  | signr = dequeue_signal(current, mask, info); | 
|  |  | 
|  | if (!signr) | 
|  | break; /* will return 0 */ | 
|  |  | 
|  | if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) { | 
|  | ptrace_signal_deliver(regs, cookie); | 
|  |  | 
|  | /* Let the debugger run.  */ | 
|  | ptrace_stop(signr, signr, info); | 
|  |  | 
|  | /* We're back.  Did the debugger cancel the sig?  */ | 
|  | signr = current->exit_code; | 
|  | if (signr == 0) | 
|  | continue; | 
|  |  | 
|  | current->exit_code = 0; | 
|  |  | 
|  | /* Update the siginfo structure if the signal has | 
|  | changed.  If the debugger wanted something | 
|  | specific in the siginfo structure then it should | 
|  | have updated *info via PTRACE_SETSIGINFO.  */ | 
|  | if (signr != info->si_signo) { | 
|  | info->si_signo = signr; | 
|  | info->si_errno = 0; | 
|  | info->si_code = SI_USER; | 
|  | info->si_pid = current->parent->pid; | 
|  | info->si_uid = current->parent->uid; | 
|  | } | 
|  |  | 
|  | /* If the (new) signal is now blocked, requeue it.  */ | 
|  | if (sigismember(¤t->blocked, signr)) { | 
|  | specific_send_sig_info(signr, info, current); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | ka = ¤t->sighand->action[signr-1]; | 
|  | if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */ | 
|  | continue; | 
|  | if (ka->sa.sa_handler != SIG_DFL) { | 
|  | /* Run the handler.  */ | 
|  | *return_ka = *ka; | 
|  |  | 
|  | if (ka->sa.sa_flags & SA_ONESHOT) | 
|  | ka->sa.sa_handler = SIG_DFL; | 
|  |  | 
|  | break; /* will return non-zero "signr" value */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we are doing the default action for this signal. | 
|  | */ | 
|  | if (sig_kernel_ignore(signr)) /* Default is nothing. */ | 
|  | continue; | 
|  |  | 
|  | /* Init gets no signals it doesn't want.  */ | 
|  | if (current->pid == 1) | 
|  | continue; | 
|  |  | 
|  | if (sig_kernel_stop(signr)) { | 
|  | /* | 
|  | * The default action is to stop all threads in | 
|  | * the thread group.  The job control signals | 
|  | * do nothing in an orphaned pgrp, but SIGSTOP | 
|  | * always works.  Note that siglock needs to be | 
|  | * dropped during the call to is_orphaned_pgrp() | 
|  | * because of lock ordering with tasklist_lock. | 
|  | * This allows an intervening SIGCONT to be posted. | 
|  | * We need to check for that and bail out if necessary. | 
|  | */ | 
|  | if (signr != SIGSTOP) { | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | /* signals can be posted during this window */ | 
|  |  | 
|  | if (is_orphaned_pgrp(process_group(current))) | 
|  | goto relock; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | } | 
|  |  | 
|  | if (likely(do_signal_stop(signr))) { | 
|  | /* It released the siglock.  */ | 
|  | goto relock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We didn't actually stop, due to a race | 
|  | * with SIGCONT or something like that. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | /* | 
|  | * Anything else is fatal, maybe with a core dump. | 
|  | */ | 
|  | current->flags |= PF_SIGNALED; | 
|  | if (sig_kernel_coredump(signr)) { | 
|  | /* | 
|  | * If it was able to dump core, this kills all | 
|  | * other threads in the group and synchronizes with | 
|  | * their demise.  If we lost the race with another | 
|  | * thread getting here, it set group_exit_code | 
|  | * first and our do_group_exit call below will use | 
|  | * that value and ignore the one we pass it. | 
|  | */ | 
|  | do_coredump((long)signr, signr, regs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Death signals, no core dump. | 
|  | */ | 
|  | do_group_exit(signr); | 
|  | /* NOTREACHED */ | 
|  | } | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | return signr; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(recalc_sigpending); | 
|  | EXPORT_SYMBOL_GPL(dequeue_signal); | 
|  | EXPORT_SYMBOL(flush_signals); | 
|  | EXPORT_SYMBOL(force_sig); | 
|  | EXPORT_SYMBOL(kill_pg); | 
|  | EXPORT_SYMBOL(kill_proc); | 
|  | EXPORT_SYMBOL(ptrace_notify); | 
|  | EXPORT_SYMBOL(send_sig); | 
|  | EXPORT_SYMBOL(send_sig_info); | 
|  | EXPORT_SYMBOL(sigprocmask); | 
|  | EXPORT_SYMBOL(block_all_signals); | 
|  | EXPORT_SYMBOL(unblock_all_signals); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * System call entry points. | 
|  | */ | 
|  |  | 
|  | asmlinkage long sys_restart_syscall(void) | 
|  | { | 
|  | struct restart_block *restart = ¤t_thread_info()->restart_block; | 
|  | return restart->fn(restart); | 
|  | } | 
|  |  | 
|  | long do_no_restart_syscall(struct restart_block *param) | 
|  | { | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't need to get the kernel lock - this is all local to this | 
|  | * particular thread.. (and that's good, because this is _heavily_ | 
|  | * used by various programs) | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This is also useful for kernel threads that want to temporarily | 
|  | * (or permanently) block certain signals. | 
|  | * | 
|  | * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel | 
|  | * interface happily blocks "unblockable" signals like SIGKILL | 
|  | * and friends. | 
|  | */ | 
|  | int sigprocmask(int how, sigset_t *set, sigset_t *oldset) | 
|  | { | 
|  | int error; | 
|  | sigset_t old_block; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | old_block = current->blocked; | 
|  | error = 0; | 
|  | switch (how) { | 
|  | case SIG_BLOCK: | 
|  | sigorsets(¤t->blocked, ¤t->blocked, set); | 
|  | break; | 
|  | case SIG_UNBLOCK: | 
|  | signandsets(¤t->blocked, ¤t->blocked, set); | 
|  | break; | 
|  | case SIG_SETMASK: | 
|  | current->blocked = *set; | 
|  | break; | 
|  | default: | 
|  | error = -EINVAL; | 
|  | } | 
|  | recalc_sigpending(); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | if (oldset) | 
|  | *oldset = old_block; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | asmlinkage long | 
|  | sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) | 
|  | { | 
|  | int error = -EINVAL; | 
|  | sigset_t old_set, new_set; | 
|  |  | 
|  | /* XXX: Don't preclude handling different sized sigset_t's.  */ | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | goto out; | 
|  |  | 
|  | if (set) { | 
|  | error = -EFAULT; | 
|  | if (copy_from_user(&new_set, set, sizeof(*set))) | 
|  | goto out; | 
|  | sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); | 
|  |  | 
|  | error = sigprocmask(how, &new_set, &old_set); | 
|  | if (error) | 
|  | goto out; | 
|  | if (oset) | 
|  | goto set_old; | 
|  | } else if (oset) { | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | old_set = current->blocked; | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | set_old: | 
|  | error = -EFAULT; | 
|  | if (copy_to_user(oset, &old_set, sizeof(*oset))) | 
|  | goto out; | 
|  | } | 
|  | error = 0; | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | long do_sigpending(void __user *set, unsigned long sigsetsize) | 
|  | { | 
|  | long error = -EINVAL; | 
|  | sigset_t pending; | 
|  |  | 
|  | if (sigsetsize > sizeof(sigset_t)) | 
|  | goto out; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | sigorsets(&pending, ¤t->pending.signal, | 
|  | ¤t->signal->shared_pending.signal); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | /* Outside the lock because only this thread touches it.  */ | 
|  | sigandsets(&pending, ¤t->blocked, &pending); | 
|  |  | 
|  | error = -EFAULT; | 
|  | if (!copy_to_user(set, &pending, sigsetsize)) | 
|  | error = 0; | 
|  |  | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | asmlinkage long | 
|  | sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) | 
|  | { | 
|  | return do_sigpending(set, sigsetsize); | 
|  | } | 
|  |  | 
|  | #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER | 
|  |  | 
|  | int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) | 
|  | return -EFAULT; | 
|  | if (from->si_code < 0) | 
|  | return __copy_to_user(to, from, sizeof(siginfo_t)) | 
|  | ? -EFAULT : 0; | 
|  | /* | 
|  | * If you change siginfo_t structure, please be sure | 
|  | * this code is fixed accordingly. | 
|  | * It should never copy any pad contained in the structure | 
|  | * to avoid security leaks, but must copy the generic | 
|  | * 3 ints plus the relevant union member. | 
|  | */ | 
|  | err = __put_user(from->si_signo, &to->si_signo); | 
|  | err |= __put_user(from->si_errno, &to->si_errno); | 
|  | err |= __put_user((short)from->si_code, &to->si_code); | 
|  | switch (from->si_code & __SI_MASK) { | 
|  | case __SI_KILL: | 
|  | err |= __put_user(from->si_pid, &to->si_pid); | 
|  | err |= __put_user(from->si_uid, &to->si_uid); | 
|  | break; | 
|  | case __SI_TIMER: | 
|  | err |= __put_user(from->si_tid, &to->si_tid); | 
|  | err |= __put_user(from->si_overrun, &to->si_overrun); | 
|  | err |= __put_user(from->si_ptr, &to->si_ptr); | 
|  | break; | 
|  | case __SI_POLL: | 
|  | err |= __put_user(from->si_band, &to->si_band); | 
|  | err |= __put_user(from->si_fd, &to->si_fd); | 
|  | break; | 
|  | case __SI_FAULT: | 
|  | err |= __put_user(from->si_addr, &to->si_addr); | 
|  | #ifdef __ARCH_SI_TRAPNO | 
|  | err |= __put_user(from->si_trapno, &to->si_trapno); | 
|  | #endif | 
|  | break; | 
|  | case __SI_CHLD: | 
|  | err |= __put_user(from->si_pid, &to->si_pid); | 
|  | err |= __put_user(from->si_uid, &to->si_uid); | 
|  | err |= __put_user(from->si_status, &to->si_status); | 
|  | err |= __put_user(from->si_utime, &to->si_utime); | 
|  | err |= __put_user(from->si_stime, &to->si_stime); | 
|  | break; | 
|  | case __SI_RT: /* This is not generated by the kernel as of now. */ | 
|  | case __SI_MESGQ: /* But this is */ | 
|  | err |= __put_user(from->si_pid, &to->si_pid); | 
|  | err |= __put_user(from->si_uid, &to->si_uid); | 
|  | err |= __put_user(from->si_ptr, &to->si_ptr); | 
|  | break; | 
|  | default: /* this is just in case for now ... */ | 
|  | err |= __put_user(from->si_pid, &to->si_pid); | 
|  | err |= __put_user(from->si_uid, &to->si_uid); | 
|  | break; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | asmlinkage long | 
|  | sys_rt_sigtimedwait(const sigset_t __user *uthese, | 
|  | siginfo_t __user *uinfo, | 
|  | const struct timespec __user *uts, | 
|  | size_t sigsetsize) | 
|  | { | 
|  | int ret, sig; | 
|  | sigset_t these; | 
|  | struct timespec ts; | 
|  | siginfo_t info; | 
|  | long timeout = 0; | 
|  |  | 
|  | /* XXX: Don't preclude handling different sized sigset_t's.  */ | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_user(&these, uthese, sizeof(these))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * Invert the set of allowed signals to get those we | 
|  | * want to block. | 
|  | */ | 
|  | sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); | 
|  | signotset(&these); | 
|  |  | 
|  | if (uts) { | 
|  | if (copy_from_user(&ts, uts, sizeof(ts))) | 
|  | return -EFAULT; | 
|  | if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 | 
|  | || ts.tv_sec < 0) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | sig = dequeue_signal(current, &these, &info); | 
|  | if (!sig) { | 
|  | timeout = MAX_SCHEDULE_TIMEOUT; | 
|  | if (uts) | 
|  | timeout = (timespec_to_jiffies(&ts) | 
|  | + (ts.tv_sec || ts.tv_nsec)); | 
|  |  | 
|  | if (timeout) { | 
|  | /* None ready -- temporarily unblock those we're | 
|  | * interested while we are sleeping in so that we'll | 
|  | * be awakened when they arrive.  */ | 
|  | current->real_blocked = current->blocked; | 
|  | sigandsets(¤t->blocked, ¤t->blocked, &these); | 
|  | recalc_sigpending(); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | current->state = TASK_INTERRUPTIBLE; | 
|  | timeout = schedule_timeout(timeout); | 
|  |  | 
|  | try_to_freeze(); | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | sig = dequeue_signal(current, &these, &info); | 
|  | current->blocked = current->real_blocked; | 
|  | siginitset(¤t->real_blocked, 0); | 
|  | recalc_sigpending(); | 
|  | } | 
|  | } | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | if (sig) { | 
|  | ret = sig; | 
|  | if (uinfo) { | 
|  | if (copy_siginfo_to_user(uinfo, &info)) | 
|  | ret = -EFAULT; | 
|  | } | 
|  | } else { | 
|  | ret = -EAGAIN; | 
|  | if (timeout) | 
|  | ret = -EINTR; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | asmlinkage long | 
|  | sys_kill(int pid, int sig) | 
|  | { | 
|  | struct siginfo info; | 
|  |  | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code = SI_USER; | 
|  | info.si_pid = current->tgid; | 
|  | info.si_uid = current->uid; | 
|  |  | 
|  | return kill_something_info(sig, &info, pid); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  sys_tgkill - send signal to one specific thread | 
|  | *  @tgid: the thread group ID of the thread | 
|  | *  @pid: the PID of the thread | 
|  | *  @sig: signal to be sent | 
|  | * | 
|  | *  This syscall also checks the tgid and returns -ESRCH even if the PID | 
|  | *  exists but it's not belonging to the target process anymore. This | 
|  | *  method solves the problem of threads exiting and PIDs getting reused. | 
|  | */ | 
|  | asmlinkage long sys_tgkill(int tgid, int pid, int sig) | 
|  | { | 
|  | struct siginfo info; | 
|  | int error; | 
|  | struct task_struct *p; | 
|  |  | 
|  | /* This is only valid for single tasks */ | 
|  | if (pid <= 0 || tgid <= 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code = SI_TKILL; | 
|  | info.si_pid = current->tgid; | 
|  | info.si_uid = current->uid; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | p = find_task_by_pid(pid); | 
|  | error = -ESRCH; | 
|  | if (p && (p->tgid == tgid)) { | 
|  | error = check_kill_permission(sig, &info, p); | 
|  | /* | 
|  | * The null signal is a permissions and process existence | 
|  | * probe.  No signal is actually delivered. | 
|  | */ | 
|  | if (!error && sig && p->sighand) { | 
|  | spin_lock_irq(&p->sighand->siglock); | 
|  | handle_stop_signal(sig, p); | 
|  | error = specific_send_sig_info(sig, &info, p); | 
|  | spin_unlock_irq(&p->sighand->siglock); | 
|  | } | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  Send a signal to only one task, even if it's a CLONE_THREAD task. | 
|  | */ | 
|  | asmlinkage long | 
|  | sys_tkill(int pid, int sig) | 
|  | { | 
|  | struct siginfo info; | 
|  | int error; | 
|  | struct task_struct *p; | 
|  |  | 
|  | /* This is only valid for single tasks */ | 
|  | if (pid <= 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code = SI_TKILL; | 
|  | info.si_pid = current->tgid; | 
|  | info.si_uid = current->uid; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | p = find_task_by_pid(pid); | 
|  | error = -ESRCH; | 
|  | if (p) { | 
|  | error = check_kill_permission(sig, &info, p); | 
|  | /* | 
|  | * The null signal is a permissions and process existence | 
|  | * probe.  No signal is actually delivered. | 
|  | */ | 
|  | if (!error && sig && p->sighand) { | 
|  | spin_lock_irq(&p->sighand->siglock); | 
|  | handle_stop_signal(sig, p); | 
|  | error = specific_send_sig_info(sig, &info, p); | 
|  | spin_unlock_irq(&p->sighand->siglock); | 
|  | } | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | asmlinkage long | 
|  | sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) | 
|  | { | 
|  | siginfo_t info; | 
|  |  | 
|  | if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* Not even root can pretend to send signals from the kernel. | 
|  | Nor can they impersonate a kill(), which adds source info.  */ | 
|  | if (info.si_code >= 0) | 
|  | return -EPERM; | 
|  | info.si_signo = sig; | 
|  |  | 
|  | /* POSIX.1b doesn't mention process groups.  */ | 
|  | return kill_proc_info(sig, &info, pid); | 
|  | } | 
|  |  | 
|  | int | 
|  | do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact) | 
|  | { | 
|  | struct k_sigaction *k; | 
|  |  | 
|  | if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) | 
|  | return -EINVAL; | 
|  |  | 
|  | k = ¤t->sighand->action[sig-1]; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | if (signal_pending(current)) { | 
|  | /* | 
|  | * If there might be a fatal signal pending on multiple | 
|  | * threads, make sure we take it before changing the action. | 
|  | */ | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | return -ERESTARTNOINTR; | 
|  | } | 
|  |  | 
|  | if (oact) | 
|  | *oact = *k; | 
|  |  | 
|  | if (act) { | 
|  | /* | 
|  | * POSIX 3.3.1.3: | 
|  | *  "Setting a signal action to SIG_IGN for a signal that is | 
|  | *   pending shall cause the pending signal to be discarded, | 
|  | *   whether or not it is blocked." | 
|  | * | 
|  | *  "Setting a signal action to SIG_DFL for a signal that is | 
|  | *   pending and whose default action is to ignore the signal | 
|  | *   (for example, SIGCHLD), shall cause the pending signal to | 
|  | *   be discarded, whether or not it is blocked" | 
|  | */ | 
|  | if (act->sa.sa_handler == SIG_IGN || | 
|  | (act->sa.sa_handler == SIG_DFL && | 
|  | sig_kernel_ignore(sig))) { | 
|  | /* | 
|  | * This is a fairly rare case, so we only take the | 
|  | * tasklist_lock once we're sure we'll need it. | 
|  | * Now we must do this little unlock and relock | 
|  | * dance to maintain the lock hierarchy. | 
|  | */ | 
|  | struct task_struct *t = current; | 
|  | spin_unlock_irq(&t->sighand->siglock); | 
|  | read_lock(&tasklist_lock); | 
|  | spin_lock_irq(&t->sighand->siglock); | 
|  | *k = *act; | 
|  | sigdelsetmask(&k->sa.sa_mask, | 
|  | sigmask(SIGKILL) | sigmask(SIGSTOP)); | 
|  | rm_from_queue(sigmask(sig), &t->signal->shared_pending); | 
|  | do { | 
|  | rm_from_queue(sigmask(sig), &t->pending); | 
|  | recalc_sigpending_tsk(t); | 
|  | t = next_thread(t); | 
|  | } while (t != current); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | read_unlock(&tasklist_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *k = *act; | 
|  | sigdelsetmask(&k->sa.sa_mask, | 
|  | sigmask(SIGKILL) | sigmask(SIGSTOP)); | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) | 
|  | { | 
|  | stack_t oss; | 
|  | int error; | 
|  |  | 
|  | if (uoss) { | 
|  | oss.ss_sp = (void __user *) current->sas_ss_sp; | 
|  | oss.ss_size = current->sas_ss_size; | 
|  | oss.ss_flags = sas_ss_flags(sp); | 
|  | } | 
|  |  | 
|  | if (uss) { | 
|  | void __user *ss_sp; | 
|  | size_t ss_size; | 
|  | int ss_flags; | 
|  |  | 
|  | error = -EFAULT; | 
|  | if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) | 
|  | || __get_user(ss_sp, &uss->ss_sp) | 
|  | || __get_user(ss_flags, &uss->ss_flags) | 
|  | || __get_user(ss_size, &uss->ss_size)) | 
|  | goto out; | 
|  |  | 
|  | error = -EPERM; | 
|  | if (on_sig_stack(sp)) | 
|  | goto out; | 
|  |  | 
|  | error = -EINVAL; | 
|  | /* | 
|  | * | 
|  | * Note - this code used to test ss_flags incorrectly | 
|  | *  	  old code may have been written using ss_flags==0 | 
|  | *	  to mean ss_flags==SS_ONSTACK (as this was the only | 
|  | *	  way that worked) - this fix preserves that older | 
|  | *	  mechanism | 
|  | */ | 
|  | if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) | 
|  | goto out; | 
|  |  | 
|  | if (ss_flags == SS_DISABLE) { | 
|  | ss_size = 0; | 
|  | ss_sp = NULL; | 
|  | } else { | 
|  | error = -ENOMEM; | 
|  | if (ss_size < MINSIGSTKSZ) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | current->sas_ss_sp = (unsigned long) ss_sp; | 
|  | current->sas_ss_size = ss_size; | 
|  | } | 
|  |  | 
|  | if (uoss) { | 
|  | error = -EFAULT; | 
|  | if (copy_to_user(uoss, &oss, sizeof(oss))) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | error = 0; | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_SIGPENDING | 
|  |  | 
|  | asmlinkage long | 
|  | sys_sigpending(old_sigset_t __user *set) | 
|  | { | 
|  | return do_sigpending(set, sizeof(*set)); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_SIGPROCMASK | 
|  | /* Some platforms have their own version with special arguments others | 
|  | support only sys_rt_sigprocmask.  */ | 
|  |  | 
|  | asmlinkage long | 
|  | sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) | 
|  | { | 
|  | int error; | 
|  | old_sigset_t old_set, new_set; | 
|  |  | 
|  | if (set) { | 
|  | error = -EFAULT; | 
|  | if (copy_from_user(&new_set, set, sizeof(*set))) | 
|  | goto out; | 
|  | new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | old_set = current->blocked.sig[0]; | 
|  |  | 
|  | error = 0; | 
|  | switch (how) { | 
|  | default: | 
|  | error = -EINVAL; | 
|  | break; | 
|  | case SIG_BLOCK: | 
|  | sigaddsetmask(¤t->blocked, new_set); | 
|  | break; | 
|  | case SIG_UNBLOCK: | 
|  | sigdelsetmask(¤t->blocked, new_set); | 
|  | break; | 
|  | case SIG_SETMASK: | 
|  | current->blocked.sig[0] = new_set; | 
|  | break; | 
|  | } | 
|  |  | 
|  | recalc_sigpending(); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | if (error) | 
|  | goto out; | 
|  | if (oset) | 
|  | goto set_old; | 
|  | } else if (oset) { | 
|  | old_set = current->blocked.sig[0]; | 
|  | set_old: | 
|  | error = -EFAULT; | 
|  | if (copy_to_user(oset, &old_set, sizeof(*oset))) | 
|  | goto out; | 
|  | } | 
|  | error = 0; | 
|  | out: | 
|  | return error; | 
|  | } | 
|  | #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_RT_SIGACTION | 
|  | asmlinkage long | 
|  | sys_rt_sigaction(int sig, | 
|  | const struct sigaction __user *act, | 
|  | struct sigaction __user *oact, | 
|  | size_t sigsetsize) | 
|  | { | 
|  | struct k_sigaction new_sa, old_sa; | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | /* XXX: Don't preclude handling different sized sigset_t's.  */ | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | goto out; | 
|  |  | 
|  | if (act) { | 
|  | if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); | 
|  |  | 
|  | if (!ret && oact) { | 
|  | if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) | 
|  | return -EFAULT; | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  | #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_SGETMASK | 
|  |  | 
|  | /* | 
|  | * For backwards compatibility.  Functionality superseded by sigprocmask. | 
|  | */ | 
|  | asmlinkage long | 
|  | sys_sgetmask(void) | 
|  | { | 
|  | /* SMP safe */ | 
|  | return current->blocked.sig[0]; | 
|  | } | 
|  |  | 
|  | asmlinkage long | 
|  | sys_ssetmask(int newmask) | 
|  | { | 
|  | int old; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | old = current->blocked.sig[0]; | 
|  |  | 
|  | siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| | 
|  | sigmask(SIGSTOP))); | 
|  | recalc_sigpending(); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | return old; | 
|  | } | 
|  | #endif /* __ARCH_WANT_SGETMASK */ | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_SIGNAL | 
|  | /* | 
|  | * For backwards compatibility.  Functionality superseded by sigaction. | 
|  | */ | 
|  | asmlinkage unsigned long | 
|  | sys_signal(int sig, __sighandler_t handler) | 
|  | { | 
|  | struct k_sigaction new_sa, old_sa; | 
|  | int ret; | 
|  |  | 
|  | new_sa.sa.sa_handler = handler; | 
|  | new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; | 
|  |  | 
|  | ret = do_sigaction(sig, &new_sa, &old_sa); | 
|  |  | 
|  | return ret ? ret : (unsigned long)old_sa.sa.sa_handler; | 
|  | } | 
|  | #endif /* __ARCH_WANT_SYS_SIGNAL */ | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_PAUSE | 
|  |  | 
|  | asmlinkage long | 
|  | sys_pause(void) | 
|  | { | 
|  | current->state = TASK_INTERRUPTIBLE; | 
|  | schedule(); | 
|  | return -ERESTARTNOHAND; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | void __init signals_init(void) | 
|  | { | 
|  | sigqueue_cachep = | 
|  | kmem_cache_create("sigqueue", | 
|  | sizeof(struct sigqueue), | 
|  | __alignof__(struct sigqueue), | 
|  | SLAB_PANIC, NULL, NULL); | 
|  | } |