|  | /* | 
|  | * raid10.c : Multiple Devices driver for Linux | 
|  | * | 
|  | * Copyright (C) 2000-2004 Neil Brown | 
|  | * | 
|  | * RAID-10 support for md. | 
|  | * | 
|  | * Base on code in raid1.c.  See raid1.c for futher copyright information. | 
|  | * | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2, or (at your option) | 
|  | * any later version. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * (for example /usr/src/linux/COPYING); if not, write to the Free | 
|  | * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | #include "dm-bio-list.h" | 
|  | #include <linux/raid/raid10.h> | 
|  | #include <linux/raid/bitmap.h> | 
|  |  | 
|  | /* | 
|  | * RAID10 provides a combination of RAID0 and RAID1 functionality. | 
|  | * The layout of data is defined by | 
|  | *    chunk_size | 
|  | *    raid_disks | 
|  | *    near_copies (stored in low byte of layout) | 
|  | *    far_copies (stored in second byte of layout) | 
|  | * | 
|  | * The data to be stored is divided into chunks using chunksize. | 
|  | * Each device is divided into far_copies sections. | 
|  | * In each section, chunks are laid out in a style similar to raid0, but | 
|  | * near_copies copies of each chunk is stored (each on a different drive). | 
|  | * The starting device for each section is offset near_copies from the starting | 
|  | * device of the previous section. | 
|  | * Thus there are (near_copies*far_copies) of each chunk, and each is on a different | 
|  | * drive. | 
|  | * near_copies and far_copies must be at least one, and their product is at most | 
|  | * raid_disks. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Number of guaranteed r10bios in case of extreme VM load: | 
|  | */ | 
|  | #define	NR_RAID10_BIOS 256 | 
|  |  | 
|  | static void unplug_slaves(mddev_t *mddev); | 
|  |  | 
|  | static void allow_barrier(conf_t *conf); | 
|  | static void lower_barrier(conf_t *conf); | 
|  |  | 
|  | static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) | 
|  | { | 
|  | conf_t *conf = data; | 
|  | r10bio_t *r10_bio; | 
|  | int size = offsetof(struct r10bio_s, devs[conf->copies]); | 
|  |  | 
|  | /* allocate a r10bio with room for raid_disks entries in the bios array */ | 
|  | r10_bio = kzalloc(size, gfp_flags); | 
|  | if (!r10_bio) | 
|  | unplug_slaves(conf->mddev); | 
|  |  | 
|  | return r10_bio; | 
|  | } | 
|  |  | 
|  | static void r10bio_pool_free(void *r10_bio, void *data) | 
|  | { | 
|  | kfree(r10_bio); | 
|  | } | 
|  |  | 
|  | #define RESYNC_BLOCK_SIZE (64*1024) | 
|  | //#define RESYNC_BLOCK_SIZE PAGE_SIZE | 
|  | #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) | 
|  | #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) | 
|  | #define RESYNC_WINDOW (2048*1024) | 
|  |  | 
|  | /* | 
|  | * When performing a resync, we need to read and compare, so | 
|  | * we need as many pages are there are copies. | 
|  | * When performing a recovery, we need 2 bios, one for read, | 
|  | * one for write (we recover only one drive per r10buf) | 
|  | * | 
|  | */ | 
|  | static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) | 
|  | { | 
|  | conf_t *conf = data; | 
|  | struct page *page; | 
|  | r10bio_t *r10_bio; | 
|  | struct bio *bio; | 
|  | int i, j; | 
|  | int nalloc; | 
|  |  | 
|  | r10_bio = r10bio_pool_alloc(gfp_flags, conf); | 
|  | if (!r10_bio) { | 
|  | unplug_slaves(conf->mddev); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) | 
|  | nalloc = conf->copies; /* resync */ | 
|  | else | 
|  | nalloc = 2; /* recovery */ | 
|  |  | 
|  | /* | 
|  | * Allocate bios. | 
|  | */ | 
|  | for (j = nalloc ; j-- ; ) { | 
|  | bio = bio_alloc(gfp_flags, RESYNC_PAGES); | 
|  | if (!bio) | 
|  | goto out_free_bio; | 
|  | r10_bio->devs[j].bio = bio; | 
|  | } | 
|  | /* | 
|  | * Allocate RESYNC_PAGES data pages and attach them | 
|  | * where needed. | 
|  | */ | 
|  | for (j = 0 ; j < nalloc; j++) { | 
|  | bio = r10_bio->devs[j].bio; | 
|  | for (i = 0; i < RESYNC_PAGES; i++) { | 
|  | page = alloc_page(gfp_flags); | 
|  | if (unlikely(!page)) | 
|  | goto out_free_pages; | 
|  |  | 
|  | bio->bi_io_vec[i].bv_page = page; | 
|  | } | 
|  | } | 
|  |  | 
|  | return r10_bio; | 
|  |  | 
|  | out_free_pages: | 
|  | for ( ; i > 0 ; i--) | 
|  | safe_put_page(bio->bi_io_vec[i-1].bv_page); | 
|  | while (j--) | 
|  | for (i = 0; i < RESYNC_PAGES ; i++) | 
|  | safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); | 
|  | j = -1; | 
|  | out_free_bio: | 
|  | while ( ++j < nalloc ) | 
|  | bio_put(r10_bio->devs[j].bio); | 
|  | r10bio_pool_free(r10_bio, conf); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void r10buf_pool_free(void *__r10_bio, void *data) | 
|  | { | 
|  | int i; | 
|  | conf_t *conf = data; | 
|  | r10bio_t *r10bio = __r10_bio; | 
|  | int j; | 
|  |  | 
|  | for (j=0; j < conf->copies; j++) { | 
|  | struct bio *bio = r10bio->devs[j].bio; | 
|  | if (bio) { | 
|  | for (i = 0; i < RESYNC_PAGES; i++) { | 
|  | safe_put_page(bio->bi_io_vec[i].bv_page); | 
|  | bio->bi_io_vec[i].bv_page = NULL; | 
|  | } | 
|  | bio_put(bio); | 
|  | } | 
|  | } | 
|  | r10bio_pool_free(r10bio, conf); | 
|  | } | 
|  |  | 
|  | static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < conf->copies; i++) { | 
|  | struct bio **bio = & r10_bio->devs[i].bio; | 
|  | if (*bio && *bio != IO_BLOCKED) | 
|  | bio_put(*bio); | 
|  | *bio = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void free_r10bio(r10bio_t *r10_bio) | 
|  | { | 
|  | conf_t *conf = mddev_to_conf(r10_bio->mddev); | 
|  |  | 
|  | /* | 
|  | * Wake up any possible resync thread that waits for the device | 
|  | * to go idle. | 
|  | */ | 
|  | allow_barrier(conf); | 
|  |  | 
|  | put_all_bios(conf, r10_bio); | 
|  | mempool_free(r10_bio, conf->r10bio_pool); | 
|  | } | 
|  |  | 
|  | static void put_buf(r10bio_t *r10_bio) | 
|  | { | 
|  | conf_t *conf = mddev_to_conf(r10_bio->mddev); | 
|  |  | 
|  | mempool_free(r10_bio, conf->r10buf_pool); | 
|  |  | 
|  | lower_barrier(conf); | 
|  | } | 
|  |  | 
|  | static void reschedule_retry(r10bio_t *r10_bio) | 
|  | { | 
|  | unsigned long flags; | 
|  | mddev_t *mddev = r10_bio->mddev; | 
|  | conf_t *conf = mddev_to_conf(mddev); | 
|  |  | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | list_add(&r10_bio->retry_list, &conf->retry_list); | 
|  | conf->nr_queued ++; | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  |  | 
|  | md_wakeup_thread(mddev->thread); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * raid_end_bio_io() is called when we have finished servicing a mirrored | 
|  | * operation and are ready to return a success/failure code to the buffer | 
|  | * cache layer. | 
|  | */ | 
|  | static void raid_end_bio_io(r10bio_t *r10_bio) | 
|  | { | 
|  | struct bio *bio = r10_bio->master_bio; | 
|  |  | 
|  | bio_endio(bio, bio->bi_size, | 
|  | test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); | 
|  | free_r10bio(r10_bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update disk head position estimator based on IRQ completion info. | 
|  | */ | 
|  | static inline void update_head_pos(int slot, r10bio_t *r10_bio) | 
|  | { | 
|  | conf_t *conf = mddev_to_conf(r10_bio->mddev); | 
|  |  | 
|  | conf->mirrors[r10_bio->devs[slot].devnum].head_position = | 
|  | r10_bio->devs[slot].addr + (r10_bio->sectors); | 
|  | } | 
|  |  | 
|  | static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error) | 
|  | { | 
|  | int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | 
|  | r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); | 
|  | int slot, dev; | 
|  | conf_t *conf = mddev_to_conf(r10_bio->mddev); | 
|  |  | 
|  | if (bio->bi_size) | 
|  | return 1; | 
|  |  | 
|  | slot = r10_bio->read_slot; | 
|  | dev = r10_bio->devs[slot].devnum; | 
|  | /* | 
|  | * this branch is our 'one mirror IO has finished' event handler: | 
|  | */ | 
|  | update_head_pos(slot, r10_bio); | 
|  |  | 
|  | if (uptodate) { | 
|  | /* | 
|  | * Set R10BIO_Uptodate in our master bio, so that | 
|  | * we will return a good error code to the higher | 
|  | * levels even if IO on some other mirrored buffer fails. | 
|  | * | 
|  | * The 'master' represents the composite IO operation to | 
|  | * user-side. So if something waits for IO, then it will | 
|  | * wait for the 'master' bio. | 
|  | */ | 
|  | set_bit(R10BIO_Uptodate, &r10_bio->state); | 
|  | raid_end_bio_io(r10_bio); | 
|  | } else { | 
|  | /* | 
|  | * oops, read error: | 
|  | */ | 
|  | char b[BDEVNAME_SIZE]; | 
|  | if (printk_ratelimit()) | 
|  | printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", | 
|  | bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); | 
|  | reschedule_retry(r10_bio); | 
|  | } | 
|  |  | 
|  | rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error) | 
|  | { | 
|  | int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | 
|  | r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); | 
|  | int slot, dev; | 
|  | conf_t *conf = mddev_to_conf(r10_bio->mddev); | 
|  |  | 
|  | if (bio->bi_size) | 
|  | return 1; | 
|  |  | 
|  | for (slot = 0; slot < conf->copies; slot++) | 
|  | if (r10_bio->devs[slot].bio == bio) | 
|  | break; | 
|  | dev = r10_bio->devs[slot].devnum; | 
|  |  | 
|  | /* | 
|  | * this branch is our 'one mirror IO has finished' event handler: | 
|  | */ | 
|  | if (!uptodate) { | 
|  | md_error(r10_bio->mddev, conf->mirrors[dev].rdev); | 
|  | /* an I/O failed, we can't clear the bitmap */ | 
|  | set_bit(R10BIO_Degraded, &r10_bio->state); | 
|  | } else | 
|  | /* | 
|  | * Set R10BIO_Uptodate in our master bio, so that | 
|  | * we will return a good error code for to the higher | 
|  | * levels even if IO on some other mirrored buffer fails. | 
|  | * | 
|  | * The 'master' represents the composite IO operation to | 
|  | * user-side. So if something waits for IO, then it will | 
|  | * wait for the 'master' bio. | 
|  | */ | 
|  | set_bit(R10BIO_Uptodate, &r10_bio->state); | 
|  |  | 
|  | update_head_pos(slot, r10_bio); | 
|  |  | 
|  | /* | 
|  | * | 
|  | * Let's see if all mirrored write operations have finished | 
|  | * already. | 
|  | */ | 
|  | if (atomic_dec_and_test(&r10_bio->remaining)) { | 
|  | /* clear the bitmap if all writes complete successfully */ | 
|  | bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, | 
|  | r10_bio->sectors, | 
|  | !test_bit(R10BIO_Degraded, &r10_bio->state), | 
|  | 0); | 
|  | md_write_end(r10_bio->mddev); | 
|  | raid_end_bio_io(r10_bio); | 
|  | } | 
|  |  | 
|  | rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * RAID10 layout manager | 
|  | * Aswell as the chunksize and raid_disks count, there are two | 
|  | * parameters: near_copies and far_copies. | 
|  | * near_copies * far_copies must be <= raid_disks. | 
|  | * Normally one of these will be 1. | 
|  | * If both are 1, we get raid0. | 
|  | * If near_copies == raid_disks, we get raid1. | 
|  | * | 
|  | * Chunks are layed out in raid0 style with near_copies copies of the | 
|  | * first chunk, followed by near_copies copies of the next chunk and | 
|  | * so on. | 
|  | * If far_copies > 1, then after 1/far_copies of the array has been assigned | 
|  | * as described above, we start again with a device offset of near_copies. | 
|  | * So we effectively have another copy of the whole array further down all | 
|  | * the drives, but with blocks on different drives. | 
|  | * With this layout, and block is never stored twice on the one device. | 
|  | * | 
|  | * raid10_find_phys finds the sector offset of a given virtual sector | 
|  | * on each device that it is on. If a block isn't on a device, | 
|  | * that entry in the array is set to MaxSector. | 
|  | * | 
|  | * raid10_find_virt does the reverse mapping, from a device and a | 
|  | * sector offset to a virtual address | 
|  | */ | 
|  |  | 
|  | static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) | 
|  | { | 
|  | int n,f; | 
|  | sector_t sector; | 
|  | sector_t chunk; | 
|  | sector_t stripe; | 
|  | int dev; | 
|  |  | 
|  | int slot = 0; | 
|  |  | 
|  | /* now calculate first sector/dev */ | 
|  | chunk = r10bio->sector >> conf->chunk_shift; | 
|  | sector = r10bio->sector & conf->chunk_mask; | 
|  |  | 
|  | chunk *= conf->near_copies; | 
|  | stripe = chunk; | 
|  | dev = sector_div(stripe, conf->raid_disks); | 
|  |  | 
|  | sector += stripe << conf->chunk_shift; | 
|  |  | 
|  | /* and calculate all the others */ | 
|  | for (n=0; n < conf->near_copies; n++) { | 
|  | int d = dev; | 
|  | sector_t s = sector; | 
|  | r10bio->devs[slot].addr = sector; | 
|  | r10bio->devs[slot].devnum = d; | 
|  | slot++; | 
|  |  | 
|  | for (f = 1; f < conf->far_copies; f++) { | 
|  | d += conf->near_copies; | 
|  | if (d >= conf->raid_disks) | 
|  | d -= conf->raid_disks; | 
|  | s += conf->stride; | 
|  | r10bio->devs[slot].devnum = d; | 
|  | r10bio->devs[slot].addr = s; | 
|  | slot++; | 
|  | } | 
|  | dev++; | 
|  | if (dev >= conf->raid_disks) { | 
|  | dev = 0; | 
|  | sector += (conf->chunk_mask + 1); | 
|  | } | 
|  | } | 
|  | BUG_ON(slot != conf->copies); | 
|  | } | 
|  |  | 
|  | static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) | 
|  | { | 
|  | sector_t offset, chunk, vchunk; | 
|  |  | 
|  | while (sector > conf->stride) { | 
|  | sector -= conf->stride; | 
|  | if (dev < conf->near_copies) | 
|  | dev += conf->raid_disks - conf->near_copies; | 
|  | else | 
|  | dev -= conf->near_copies; | 
|  | } | 
|  |  | 
|  | offset = sector & conf->chunk_mask; | 
|  | chunk = sector >> conf->chunk_shift; | 
|  | vchunk = chunk * conf->raid_disks + dev; | 
|  | sector_div(vchunk, conf->near_copies); | 
|  | return (vchunk << conf->chunk_shift) + offset; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged | 
|  | *	@q: request queue | 
|  | *	@bio: the buffer head that's been built up so far | 
|  | *	@biovec: the request that could be merged to it. | 
|  | * | 
|  | *	Return amount of bytes we can accept at this offset | 
|  | *      If near_copies == raid_disk, there are no striping issues, | 
|  | *      but in that case, the function isn't called at all. | 
|  | */ | 
|  | static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio, | 
|  | struct bio_vec *bio_vec) | 
|  | { | 
|  | mddev_t *mddev = q->queuedata; | 
|  | sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); | 
|  | int max; | 
|  | unsigned int chunk_sectors = mddev->chunk_size >> 9; | 
|  | unsigned int bio_sectors = bio->bi_size >> 9; | 
|  |  | 
|  | max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; | 
|  | if (max < 0) max = 0; /* bio_add cannot handle a negative return */ | 
|  | if (max <= bio_vec->bv_len && bio_sectors == 0) | 
|  | return bio_vec->bv_len; | 
|  | else | 
|  | return max; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine returns the disk from which the requested read should | 
|  | * be done. There is a per-array 'next expected sequential IO' sector | 
|  | * number - if this matches on the next IO then we use the last disk. | 
|  | * There is also a per-disk 'last know head position' sector that is | 
|  | * maintained from IRQ contexts, both the normal and the resync IO | 
|  | * completion handlers update this position correctly. If there is no | 
|  | * perfect sequential match then we pick the disk whose head is closest. | 
|  | * | 
|  | * If there are 2 mirrors in the same 2 devices, performance degrades | 
|  | * because position is mirror, not device based. | 
|  | * | 
|  | * The rdev for the device selected will have nr_pending incremented. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * FIXME: possibly should rethink readbalancing and do it differently | 
|  | * depending on near_copies / far_copies geometry. | 
|  | */ | 
|  | static int read_balance(conf_t *conf, r10bio_t *r10_bio) | 
|  | { | 
|  | const unsigned long this_sector = r10_bio->sector; | 
|  | int disk, slot, nslot; | 
|  | const int sectors = r10_bio->sectors; | 
|  | sector_t new_distance, current_distance; | 
|  | mdk_rdev_t *rdev; | 
|  |  | 
|  | raid10_find_phys(conf, r10_bio); | 
|  | rcu_read_lock(); | 
|  | /* | 
|  | * Check if we can balance. We can balance on the whole | 
|  | * device if no resync is going on (recovery is ok), or below | 
|  | * the resync window. We take the first readable disk when | 
|  | * above the resync window. | 
|  | */ | 
|  | if (conf->mddev->recovery_cp < MaxSector | 
|  | && (this_sector + sectors >= conf->next_resync)) { | 
|  | /* make sure that disk is operational */ | 
|  | slot = 0; | 
|  | disk = r10_bio->devs[slot].devnum; | 
|  |  | 
|  | while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || | 
|  | r10_bio->devs[slot].bio == IO_BLOCKED || | 
|  | !test_bit(In_sync, &rdev->flags)) { | 
|  | slot++; | 
|  | if (slot == conf->copies) { | 
|  | slot = 0; | 
|  | disk = -1; | 
|  | break; | 
|  | } | 
|  | disk = r10_bio->devs[slot].devnum; | 
|  | } | 
|  | goto rb_out; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* make sure the disk is operational */ | 
|  | slot = 0; | 
|  | disk = r10_bio->devs[slot].devnum; | 
|  | while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || | 
|  | r10_bio->devs[slot].bio == IO_BLOCKED || | 
|  | !test_bit(In_sync, &rdev->flags)) { | 
|  | slot ++; | 
|  | if (slot == conf->copies) { | 
|  | disk = -1; | 
|  | goto rb_out; | 
|  | } | 
|  | disk = r10_bio->devs[slot].devnum; | 
|  | } | 
|  |  | 
|  |  | 
|  | current_distance = abs(r10_bio->devs[slot].addr - | 
|  | conf->mirrors[disk].head_position); | 
|  |  | 
|  | /* Find the disk whose head is closest */ | 
|  |  | 
|  | for (nslot = slot; nslot < conf->copies; nslot++) { | 
|  | int ndisk = r10_bio->devs[nslot].devnum; | 
|  |  | 
|  |  | 
|  | if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || | 
|  | r10_bio->devs[nslot].bio == IO_BLOCKED || | 
|  | !test_bit(In_sync, &rdev->flags)) | 
|  | continue; | 
|  |  | 
|  | /* This optimisation is debatable, and completely destroys | 
|  | * sequential read speed for 'far copies' arrays.  So only | 
|  | * keep it for 'near' arrays, and review those later. | 
|  | */ | 
|  | if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { | 
|  | disk = ndisk; | 
|  | slot = nslot; | 
|  | break; | 
|  | } | 
|  | new_distance = abs(r10_bio->devs[nslot].addr - | 
|  | conf->mirrors[ndisk].head_position); | 
|  | if (new_distance < current_distance) { | 
|  | current_distance = new_distance; | 
|  | disk = ndisk; | 
|  | slot = nslot; | 
|  | } | 
|  | } | 
|  |  | 
|  | rb_out: | 
|  | r10_bio->read_slot = slot; | 
|  | /*	conf->next_seq_sect = this_sector + sectors;*/ | 
|  |  | 
|  | if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) | 
|  | atomic_inc(&conf->mirrors[disk].rdev->nr_pending); | 
|  | else | 
|  | disk = -1; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return disk; | 
|  | } | 
|  |  | 
|  | static void unplug_slaves(mddev_t *mddev) | 
|  | { | 
|  | conf_t *conf = mddev_to_conf(mddev); | 
|  | int i; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (i=0; i<mddev->raid_disks; i++) { | 
|  | mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); | 
|  | if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { | 
|  | request_queue_t *r_queue = bdev_get_queue(rdev->bdev); | 
|  |  | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (r_queue->unplug_fn) | 
|  | r_queue->unplug_fn(r_queue); | 
|  |  | 
|  | rdev_dec_pending(rdev, mddev); | 
|  | rcu_read_lock(); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void raid10_unplug(request_queue_t *q) | 
|  | { | 
|  | mddev_t *mddev = q->queuedata; | 
|  |  | 
|  | unplug_slaves(q->queuedata); | 
|  | md_wakeup_thread(mddev->thread); | 
|  | } | 
|  |  | 
|  | static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk, | 
|  | sector_t *error_sector) | 
|  | { | 
|  | mddev_t *mddev = q->queuedata; | 
|  | conf_t *conf = mddev_to_conf(mddev); | 
|  | int i, ret = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (i=0; i<mddev->raid_disks && ret == 0; i++) { | 
|  | mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); | 
|  | if (rdev && !test_bit(Faulty, &rdev->flags)) { | 
|  | struct block_device *bdev = rdev->bdev; | 
|  | request_queue_t *r_queue = bdev_get_queue(bdev); | 
|  |  | 
|  | if (!r_queue->issue_flush_fn) | 
|  | ret = -EOPNOTSUPP; | 
|  | else { | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | rcu_read_unlock(); | 
|  | ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, | 
|  | error_sector); | 
|  | rdev_dec_pending(rdev, mddev); | 
|  | rcu_read_lock(); | 
|  | } | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Barriers.... | 
|  | * Sometimes we need to suspend IO while we do something else, | 
|  | * either some resync/recovery, or reconfigure the array. | 
|  | * To do this we raise a 'barrier'. | 
|  | * The 'barrier' is a counter that can be raised multiple times | 
|  | * to count how many activities are happening which preclude | 
|  | * normal IO. | 
|  | * We can only raise the barrier if there is no pending IO. | 
|  | * i.e. if nr_pending == 0. | 
|  | * We choose only to raise the barrier if no-one is waiting for the | 
|  | * barrier to go down.  This means that as soon as an IO request | 
|  | * is ready, no other operations which require a barrier will start | 
|  | * until the IO request has had a chance. | 
|  | * | 
|  | * So: regular IO calls 'wait_barrier'.  When that returns there | 
|  | *    is no backgroup IO happening,  It must arrange to call | 
|  | *    allow_barrier when it has finished its IO. | 
|  | * backgroup IO calls must call raise_barrier.  Once that returns | 
|  | *    there is no normal IO happeing.  It must arrange to call | 
|  | *    lower_barrier when the particular background IO completes. | 
|  | */ | 
|  | #define RESYNC_DEPTH 32 | 
|  |  | 
|  | static void raise_barrier(conf_t *conf, int force) | 
|  | { | 
|  | BUG_ON(force && !conf->barrier); | 
|  | spin_lock_irq(&conf->resync_lock); | 
|  |  | 
|  | /* Wait until no block IO is waiting (unless 'force') */ | 
|  | wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, | 
|  | conf->resync_lock, | 
|  | raid10_unplug(conf->mddev->queue)); | 
|  |  | 
|  | /* block any new IO from starting */ | 
|  | conf->barrier++; | 
|  |  | 
|  | /* No wait for all pending IO to complete */ | 
|  | wait_event_lock_irq(conf->wait_barrier, | 
|  | !conf->nr_pending && conf->barrier < RESYNC_DEPTH, | 
|  | conf->resync_lock, | 
|  | raid10_unplug(conf->mddev->queue)); | 
|  |  | 
|  | spin_unlock_irq(&conf->resync_lock); | 
|  | } | 
|  |  | 
|  | static void lower_barrier(conf_t *conf) | 
|  | { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&conf->resync_lock, flags); | 
|  | conf->barrier--; | 
|  | spin_unlock_irqrestore(&conf->resync_lock, flags); | 
|  | wake_up(&conf->wait_barrier); | 
|  | } | 
|  |  | 
|  | static void wait_barrier(conf_t *conf) | 
|  | { | 
|  | spin_lock_irq(&conf->resync_lock); | 
|  | if (conf->barrier) { | 
|  | conf->nr_waiting++; | 
|  | wait_event_lock_irq(conf->wait_barrier, !conf->barrier, | 
|  | conf->resync_lock, | 
|  | raid10_unplug(conf->mddev->queue)); | 
|  | conf->nr_waiting--; | 
|  | } | 
|  | conf->nr_pending++; | 
|  | spin_unlock_irq(&conf->resync_lock); | 
|  | } | 
|  |  | 
|  | static void allow_barrier(conf_t *conf) | 
|  | { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&conf->resync_lock, flags); | 
|  | conf->nr_pending--; | 
|  | spin_unlock_irqrestore(&conf->resync_lock, flags); | 
|  | wake_up(&conf->wait_barrier); | 
|  | } | 
|  |  | 
|  | static void freeze_array(conf_t *conf) | 
|  | { | 
|  | /* stop syncio and normal IO and wait for everything to | 
|  | * go quiet. | 
|  | * We increment barrier and nr_waiting, and then | 
|  | * wait until barrier+nr_pending match nr_queued+2 | 
|  | */ | 
|  | spin_lock_irq(&conf->resync_lock); | 
|  | conf->barrier++; | 
|  | conf->nr_waiting++; | 
|  | wait_event_lock_irq(conf->wait_barrier, | 
|  | conf->barrier+conf->nr_pending == conf->nr_queued+2, | 
|  | conf->resync_lock, | 
|  | raid10_unplug(conf->mddev->queue)); | 
|  | spin_unlock_irq(&conf->resync_lock); | 
|  | } | 
|  |  | 
|  | static void unfreeze_array(conf_t *conf) | 
|  | { | 
|  | /* reverse the effect of the freeze */ | 
|  | spin_lock_irq(&conf->resync_lock); | 
|  | conf->barrier--; | 
|  | conf->nr_waiting--; | 
|  | wake_up(&conf->wait_barrier); | 
|  | spin_unlock_irq(&conf->resync_lock); | 
|  | } | 
|  |  | 
|  | static int make_request(request_queue_t *q, struct bio * bio) | 
|  | { | 
|  | mddev_t *mddev = q->queuedata; | 
|  | conf_t *conf = mddev_to_conf(mddev); | 
|  | mirror_info_t *mirror; | 
|  | r10bio_t *r10_bio; | 
|  | struct bio *read_bio; | 
|  | int i; | 
|  | int chunk_sects = conf->chunk_mask + 1; | 
|  | const int rw = bio_data_dir(bio); | 
|  | struct bio_list bl; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (unlikely(bio_barrier(bio))) { | 
|  | bio_endio(bio, bio->bi_size, -EOPNOTSUPP); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* If this request crosses a chunk boundary, we need to | 
|  | * split it.  This will only happen for 1 PAGE (or less) requests. | 
|  | */ | 
|  | if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) | 
|  | > chunk_sects && | 
|  | conf->near_copies < conf->raid_disks)) { | 
|  | struct bio_pair *bp; | 
|  | /* Sanity check -- queue functions should prevent this happening */ | 
|  | if (bio->bi_vcnt != 1 || | 
|  | bio->bi_idx != 0) | 
|  | goto bad_map; | 
|  | /* This is a one page bio that upper layers | 
|  | * refuse to split for us, so we need to split it. | 
|  | */ | 
|  | bp = bio_split(bio, bio_split_pool, | 
|  | chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); | 
|  | if (make_request(q, &bp->bio1)) | 
|  | generic_make_request(&bp->bio1); | 
|  | if (make_request(q, &bp->bio2)) | 
|  | generic_make_request(&bp->bio2); | 
|  |  | 
|  | bio_pair_release(bp); | 
|  | return 0; | 
|  | bad_map: | 
|  | printk("raid10_make_request bug: can't convert block across chunks" | 
|  | " or bigger than %dk %llu %d\n", chunk_sects/2, | 
|  | (unsigned long long)bio->bi_sector, bio->bi_size >> 10); | 
|  |  | 
|  | bio_io_error(bio, bio->bi_size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | md_write_start(mddev, bio); | 
|  |  | 
|  | /* | 
|  | * Register the new request and wait if the reconstruction | 
|  | * thread has put up a bar for new requests. | 
|  | * Continue immediately if no resync is active currently. | 
|  | */ | 
|  | wait_barrier(conf); | 
|  |  | 
|  | disk_stat_inc(mddev->gendisk, ios[rw]); | 
|  | disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); | 
|  |  | 
|  | r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); | 
|  |  | 
|  | r10_bio->master_bio = bio; | 
|  | r10_bio->sectors = bio->bi_size >> 9; | 
|  |  | 
|  | r10_bio->mddev = mddev; | 
|  | r10_bio->sector = bio->bi_sector; | 
|  | r10_bio->state = 0; | 
|  |  | 
|  | if (rw == READ) { | 
|  | /* | 
|  | * read balancing logic: | 
|  | */ | 
|  | int disk = read_balance(conf, r10_bio); | 
|  | int slot = r10_bio->read_slot; | 
|  | if (disk < 0) { | 
|  | raid_end_bio_io(r10_bio); | 
|  | return 0; | 
|  | } | 
|  | mirror = conf->mirrors + disk; | 
|  |  | 
|  | read_bio = bio_clone(bio, GFP_NOIO); | 
|  |  | 
|  | r10_bio->devs[slot].bio = read_bio; | 
|  |  | 
|  | read_bio->bi_sector = r10_bio->devs[slot].addr + | 
|  | mirror->rdev->data_offset; | 
|  | read_bio->bi_bdev = mirror->rdev->bdev; | 
|  | read_bio->bi_end_io = raid10_end_read_request; | 
|  | read_bio->bi_rw = READ; | 
|  | read_bio->bi_private = r10_bio; | 
|  |  | 
|  | generic_make_request(read_bio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * WRITE: | 
|  | */ | 
|  | /* first select target devices under spinlock and | 
|  | * inc refcount on their rdev.  Record them by setting | 
|  | * bios[x] to bio | 
|  | */ | 
|  | raid10_find_phys(conf, r10_bio); | 
|  | rcu_read_lock(); | 
|  | for (i = 0;  i < conf->copies; i++) { | 
|  | int d = r10_bio->devs[i].devnum; | 
|  | mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); | 
|  | if (rdev && | 
|  | !test_bit(Faulty, &rdev->flags)) { | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | r10_bio->devs[i].bio = bio; | 
|  | } else { | 
|  | r10_bio->devs[i].bio = NULL; | 
|  | set_bit(R10BIO_Degraded, &r10_bio->state); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | atomic_set(&r10_bio->remaining, 0); | 
|  |  | 
|  | bio_list_init(&bl); | 
|  | for (i = 0; i < conf->copies; i++) { | 
|  | struct bio *mbio; | 
|  | int d = r10_bio->devs[i].devnum; | 
|  | if (!r10_bio->devs[i].bio) | 
|  | continue; | 
|  |  | 
|  | mbio = bio_clone(bio, GFP_NOIO); | 
|  | r10_bio->devs[i].bio = mbio; | 
|  |  | 
|  | mbio->bi_sector	= r10_bio->devs[i].addr+ | 
|  | conf->mirrors[d].rdev->data_offset; | 
|  | mbio->bi_bdev = conf->mirrors[d].rdev->bdev; | 
|  | mbio->bi_end_io	= raid10_end_write_request; | 
|  | mbio->bi_rw = WRITE; | 
|  | mbio->bi_private = r10_bio; | 
|  |  | 
|  | atomic_inc(&r10_bio->remaining); | 
|  | bio_list_add(&bl, mbio); | 
|  | } | 
|  |  | 
|  | bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | bio_list_merge(&conf->pending_bio_list, &bl); | 
|  | blk_plug_device(mddev->queue); | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void status(struct seq_file *seq, mddev_t *mddev) | 
|  | { | 
|  | conf_t *conf = mddev_to_conf(mddev); | 
|  | int i; | 
|  |  | 
|  | if (conf->near_copies < conf->raid_disks) | 
|  | seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); | 
|  | if (conf->near_copies > 1) | 
|  | seq_printf(seq, " %d near-copies", conf->near_copies); | 
|  | if (conf->far_copies > 1) | 
|  | seq_printf(seq, " %d far-copies", conf->far_copies); | 
|  |  | 
|  | seq_printf(seq, " [%d/%d] [", conf->raid_disks, | 
|  | conf->working_disks); | 
|  | for (i = 0; i < conf->raid_disks; i++) | 
|  | seq_printf(seq, "%s", | 
|  | conf->mirrors[i].rdev && | 
|  | test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); | 
|  | seq_printf(seq, "]"); | 
|  | } | 
|  |  | 
|  | static void error(mddev_t *mddev, mdk_rdev_t *rdev) | 
|  | { | 
|  | char b[BDEVNAME_SIZE]; | 
|  | conf_t *conf = mddev_to_conf(mddev); | 
|  |  | 
|  | /* | 
|  | * If it is not operational, then we have already marked it as dead | 
|  | * else if it is the last working disks, ignore the error, let the | 
|  | * next level up know. | 
|  | * else mark the drive as failed | 
|  | */ | 
|  | if (test_bit(In_sync, &rdev->flags) | 
|  | && conf->working_disks == 1) | 
|  | /* | 
|  | * Don't fail the drive, just return an IO error. | 
|  | * The test should really be more sophisticated than | 
|  | * "working_disks == 1", but it isn't critical, and | 
|  | * can wait until we do more sophisticated "is the drive | 
|  | * really dead" tests... | 
|  | */ | 
|  | return; | 
|  | if (test_bit(In_sync, &rdev->flags)) { | 
|  | mddev->degraded++; | 
|  | conf->working_disks--; | 
|  | /* | 
|  | * if recovery is running, make sure it aborts. | 
|  | */ | 
|  | set_bit(MD_RECOVERY_ERR, &mddev->recovery); | 
|  | } | 
|  | clear_bit(In_sync, &rdev->flags); | 
|  | set_bit(Faulty, &rdev->flags); | 
|  | mddev->sb_dirty = 1; | 
|  | printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n" | 
|  | "	Operation continuing on %d devices\n", | 
|  | bdevname(rdev->bdev,b), conf->working_disks); | 
|  | } | 
|  |  | 
|  | static void print_conf(conf_t *conf) | 
|  | { | 
|  | int i; | 
|  | mirror_info_t *tmp; | 
|  |  | 
|  | printk("RAID10 conf printout:\n"); | 
|  | if (!conf) { | 
|  | printk("(!conf)\n"); | 
|  | return; | 
|  | } | 
|  | printk(" --- wd:%d rd:%d\n", conf->working_disks, | 
|  | conf->raid_disks); | 
|  |  | 
|  | for (i = 0; i < conf->raid_disks; i++) { | 
|  | char b[BDEVNAME_SIZE]; | 
|  | tmp = conf->mirrors + i; | 
|  | if (tmp->rdev) | 
|  | printk(" disk %d, wo:%d, o:%d, dev:%s\n", | 
|  | i, !test_bit(In_sync, &tmp->rdev->flags), | 
|  | !test_bit(Faulty, &tmp->rdev->flags), | 
|  | bdevname(tmp->rdev->bdev,b)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void close_sync(conf_t *conf) | 
|  | { | 
|  | wait_barrier(conf); | 
|  | allow_barrier(conf); | 
|  |  | 
|  | mempool_destroy(conf->r10buf_pool); | 
|  | conf->r10buf_pool = NULL; | 
|  | } | 
|  |  | 
|  | /* check if there are enough drives for | 
|  | * every block to appear on atleast one | 
|  | */ | 
|  | static int enough(conf_t *conf) | 
|  | { | 
|  | int first = 0; | 
|  |  | 
|  | do { | 
|  | int n = conf->copies; | 
|  | int cnt = 0; | 
|  | while (n--) { | 
|  | if (conf->mirrors[first].rdev) | 
|  | cnt++; | 
|  | first = (first+1) % conf->raid_disks; | 
|  | } | 
|  | if (cnt == 0) | 
|  | return 0; | 
|  | } while (first != 0); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int raid10_spare_active(mddev_t *mddev) | 
|  | { | 
|  | int i; | 
|  | conf_t *conf = mddev->private; | 
|  | mirror_info_t *tmp; | 
|  |  | 
|  | /* | 
|  | * Find all non-in_sync disks within the RAID10 configuration | 
|  | * and mark them in_sync | 
|  | */ | 
|  | for (i = 0; i < conf->raid_disks; i++) { | 
|  | tmp = conf->mirrors + i; | 
|  | if (tmp->rdev | 
|  | && !test_bit(Faulty, &tmp->rdev->flags) | 
|  | && !test_bit(In_sync, &tmp->rdev->flags)) { | 
|  | conf->working_disks++; | 
|  | mddev->degraded--; | 
|  | set_bit(In_sync, &tmp->rdev->flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | print_conf(conf); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) | 
|  | { | 
|  | conf_t *conf = mddev->private; | 
|  | int found = 0; | 
|  | int mirror; | 
|  | mirror_info_t *p; | 
|  |  | 
|  | if (mddev->recovery_cp < MaxSector) | 
|  | /* only hot-add to in-sync arrays, as recovery is | 
|  | * very different from resync | 
|  | */ | 
|  | return 0; | 
|  | if (!enough(conf)) | 
|  | return 0; | 
|  |  | 
|  | if (rdev->saved_raid_disk >= 0 && | 
|  | conf->mirrors[rdev->saved_raid_disk].rdev == NULL) | 
|  | mirror = rdev->saved_raid_disk; | 
|  | else | 
|  | mirror = 0; | 
|  | for ( ; mirror < mddev->raid_disks; mirror++) | 
|  | if ( !(p=conf->mirrors+mirror)->rdev) { | 
|  |  | 
|  | blk_queue_stack_limits(mddev->queue, | 
|  | rdev->bdev->bd_disk->queue); | 
|  | /* as we don't honour merge_bvec_fn, we must never risk | 
|  | * violating it, so limit ->max_sector to one PAGE, as | 
|  | * a one page request is never in violation. | 
|  | */ | 
|  | if (rdev->bdev->bd_disk->queue->merge_bvec_fn && | 
|  | mddev->queue->max_sectors > (PAGE_SIZE>>9)) | 
|  | mddev->queue->max_sectors = (PAGE_SIZE>>9); | 
|  |  | 
|  | p->head_position = 0; | 
|  | rdev->raid_disk = mirror; | 
|  | found = 1; | 
|  | if (rdev->saved_raid_disk != mirror) | 
|  | conf->fullsync = 1; | 
|  | rcu_assign_pointer(p->rdev, rdev); | 
|  | break; | 
|  | } | 
|  |  | 
|  | print_conf(conf); | 
|  | return found; | 
|  | } | 
|  |  | 
|  | static int raid10_remove_disk(mddev_t *mddev, int number) | 
|  | { | 
|  | conf_t *conf = mddev->private; | 
|  | int err = 0; | 
|  | mdk_rdev_t *rdev; | 
|  | mirror_info_t *p = conf->mirrors+ number; | 
|  |  | 
|  | print_conf(conf); | 
|  | rdev = p->rdev; | 
|  | if (rdev) { | 
|  | if (test_bit(In_sync, &rdev->flags) || | 
|  | atomic_read(&rdev->nr_pending)) { | 
|  | err = -EBUSY; | 
|  | goto abort; | 
|  | } | 
|  | p->rdev = NULL; | 
|  | synchronize_rcu(); | 
|  | if (atomic_read(&rdev->nr_pending)) { | 
|  | /* lost the race, try later */ | 
|  | err = -EBUSY; | 
|  | p->rdev = rdev; | 
|  | } | 
|  | } | 
|  | abort: | 
|  |  | 
|  | print_conf(conf); | 
|  | return err; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error) | 
|  | { | 
|  | r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); | 
|  | conf_t *conf = mddev_to_conf(r10_bio->mddev); | 
|  | int i,d; | 
|  |  | 
|  | if (bio->bi_size) | 
|  | return 1; | 
|  |  | 
|  | for (i=0; i<conf->copies; i++) | 
|  | if (r10_bio->devs[i].bio == bio) | 
|  | break; | 
|  | if (i == conf->copies) | 
|  | BUG(); | 
|  | update_head_pos(i, r10_bio); | 
|  | d = r10_bio->devs[i].devnum; | 
|  |  | 
|  | if (test_bit(BIO_UPTODATE, &bio->bi_flags)) | 
|  | set_bit(R10BIO_Uptodate, &r10_bio->state); | 
|  | else { | 
|  | atomic_add(r10_bio->sectors, | 
|  | &conf->mirrors[d].rdev->corrected_errors); | 
|  | if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) | 
|  | md_error(r10_bio->mddev, | 
|  | conf->mirrors[d].rdev); | 
|  | } | 
|  |  | 
|  | /* for reconstruct, we always reschedule after a read. | 
|  | * for resync, only after all reads | 
|  | */ | 
|  | if (test_bit(R10BIO_IsRecover, &r10_bio->state) || | 
|  | atomic_dec_and_test(&r10_bio->remaining)) { | 
|  | /* we have read all the blocks, | 
|  | * do the comparison in process context in raid10d | 
|  | */ | 
|  | reschedule_retry(r10_bio); | 
|  | } | 
|  | rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error) | 
|  | { | 
|  | int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | 
|  | r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); | 
|  | mddev_t *mddev = r10_bio->mddev; | 
|  | conf_t *conf = mddev_to_conf(mddev); | 
|  | int i,d; | 
|  |  | 
|  | if (bio->bi_size) | 
|  | return 1; | 
|  |  | 
|  | for (i = 0; i < conf->copies; i++) | 
|  | if (r10_bio->devs[i].bio == bio) | 
|  | break; | 
|  | d = r10_bio->devs[i].devnum; | 
|  |  | 
|  | if (!uptodate) | 
|  | md_error(mddev, conf->mirrors[d].rdev); | 
|  | update_head_pos(i, r10_bio); | 
|  |  | 
|  | while (atomic_dec_and_test(&r10_bio->remaining)) { | 
|  | if (r10_bio->master_bio == NULL) { | 
|  | /* the primary of several recovery bios */ | 
|  | md_done_sync(mddev, r10_bio->sectors, 1); | 
|  | put_buf(r10_bio); | 
|  | break; | 
|  | } else { | 
|  | r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; | 
|  | put_buf(r10_bio); | 
|  | r10_bio = r10_bio2; | 
|  | } | 
|  | } | 
|  | rdev_dec_pending(conf->mirrors[d].rdev, mddev); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: sync and recover and handled very differently for raid10 | 
|  | * This code is for resync. | 
|  | * For resync, we read through virtual addresses and read all blocks. | 
|  | * If there is any error, we schedule a write.  The lowest numbered | 
|  | * drive is authoritative. | 
|  | * However requests come for physical address, so we need to map. | 
|  | * For every physical address there are raid_disks/copies virtual addresses, | 
|  | * which is always are least one, but is not necessarly an integer. | 
|  | * This means that a physical address can span multiple chunks, so we may | 
|  | * have to submit multiple io requests for a single sync request. | 
|  | */ | 
|  | /* | 
|  | * We check if all blocks are in-sync and only write to blocks that | 
|  | * aren't in sync | 
|  | */ | 
|  | static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) | 
|  | { | 
|  | conf_t *conf = mddev_to_conf(mddev); | 
|  | int i, first; | 
|  | struct bio *tbio, *fbio; | 
|  |  | 
|  | atomic_set(&r10_bio->remaining, 1); | 
|  |  | 
|  | /* find the first device with a block */ | 
|  | for (i=0; i<conf->copies; i++) | 
|  | if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) | 
|  | break; | 
|  |  | 
|  | if (i == conf->copies) | 
|  | goto done; | 
|  |  | 
|  | first = i; | 
|  | fbio = r10_bio->devs[i].bio; | 
|  |  | 
|  | /* now find blocks with errors */ | 
|  | for (i=0 ; i < conf->copies ; i++) { | 
|  | int  j, d; | 
|  | int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); | 
|  |  | 
|  | tbio = r10_bio->devs[i].bio; | 
|  |  | 
|  | if (tbio->bi_end_io != end_sync_read) | 
|  | continue; | 
|  | if (i == first) | 
|  | continue; | 
|  | if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { | 
|  | /* We know that the bi_io_vec layout is the same for | 
|  | * both 'first' and 'i', so we just compare them. | 
|  | * All vec entries are PAGE_SIZE; | 
|  | */ | 
|  | for (j = 0; j < vcnt; j++) | 
|  | if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), | 
|  | page_address(tbio->bi_io_vec[j].bv_page), | 
|  | PAGE_SIZE)) | 
|  | break; | 
|  | if (j == vcnt) | 
|  | continue; | 
|  | mddev->resync_mismatches += r10_bio->sectors; | 
|  | } | 
|  | if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) | 
|  | /* Don't fix anything. */ | 
|  | continue; | 
|  | /* Ok, we need to write this bio | 
|  | * First we need to fixup bv_offset, bv_len and | 
|  | * bi_vecs, as the read request might have corrupted these | 
|  | */ | 
|  | tbio->bi_vcnt = vcnt; | 
|  | tbio->bi_size = r10_bio->sectors << 9; | 
|  | tbio->bi_idx = 0; | 
|  | tbio->bi_phys_segments = 0; | 
|  | tbio->bi_hw_segments = 0; | 
|  | tbio->bi_hw_front_size = 0; | 
|  | tbio->bi_hw_back_size = 0; | 
|  | tbio->bi_flags &= ~(BIO_POOL_MASK - 1); | 
|  | tbio->bi_flags |= 1 << BIO_UPTODATE; | 
|  | tbio->bi_next = NULL; | 
|  | tbio->bi_rw = WRITE; | 
|  | tbio->bi_private = r10_bio; | 
|  | tbio->bi_sector = r10_bio->devs[i].addr; | 
|  |  | 
|  | for (j=0; j < vcnt ; j++) { | 
|  | tbio->bi_io_vec[j].bv_offset = 0; | 
|  | tbio->bi_io_vec[j].bv_len = PAGE_SIZE; | 
|  |  | 
|  | memcpy(page_address(tbio->bi_io_vec[j].bv_page), | 
|  | page_address(fbio->bi_io_vec[j].bv_page), | 
|  | PAGE_SIZE); | 
|  | } | 
|  | tbio->bi_end_io = end_sync_write; | 
|  |  | 
|  | d = r10_bio->devs[i].devnum; | 
|  | atomic_inc(&conf->mirrors[d].rdev->nr_pending); | 
|  | atomic_inc(&r10_bio->remaining); | 
|  | md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); | 
|  |  | 
|  | tbio->bi_sector += conf->mirrors[d].rdev->data_offset; | 
|  | tbio->bi_bdev = conf->mirrors[d].rdev->bdev; | 
|  | generic_make_request(tbio); | 
|  | } | 
|  |  | 
|  | done: | 
|  | if (atomic_dec_and_test(&r10_bio->remaining)) { | 
|  | md_done_sync(mddev, r10_bio->sectors, 1); | 
|  | put_buf(r10_bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now for the recovery code. | 
|  | * Recovery happens across physical sectors. | 
|  | * We recover all non-is_sync drives by finding the virtual address of | 
|  | * each, and then choose a working drive that also has that virt address. | 
|  | * There is a separate r10_bio for each non-in_sync drive. | 
|  | * Only the first two slots are in use. The first for reading, | 
|  | * The second for writing. | 
|  | * | 
|  | */ | 
|  |  | 
|  | static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) | 
|  | { | 
|  | conf_t *conf = mddev_to_conf(mddev); | 
|  | int i, d; | 
|  | struct bio *bio, *wbio; | 
|  |  | 
|  |  | 
|  | /* move the pages across to the second bio | 
|  | * and submit the write request | 
|  | */ | 
|  | bio = r10_bio->devs[0].bio; | 
|  | wbio = r10_bio->devs[1].bio; | 
|  | for (i=0; i < wbio->bi_vcnt; i++) { | 
|  | struct page *p = bio->bi_io_vec[i].bv_page; | 
|  | bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; | 
|  | wbio->bi_io_vec[i].bv_page = p; | 
|  | } | 
|  | d = r10_bio->devs[1].devnum; | 
|  |  | 
|  | atomic_inc(&conf->mirrors[d].rdev->nr_pending); | 
|  | md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); | 
|  | if (test_bit(R10BIO_Uptodate, &r10_bio->state)) | 
|  | generic_make_request(wbio); | 
|  | else | 
|  | bio_endio(wbio, wbio->bi_size, -EIO); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This is a kernel thread which: | 
|  | * | 
|  | *	1.	Retries failed read operations on working mirrors. | 
|  | *	2.	Updates the raid superblock when problems encounter. | 
|  | *	3.	Performs writes following reads for array syncronising. | 
|  | */ | 
|  |  | 
|  | static void raid10d(mddev_t *mddev) | 
|  | { | 
|  | r10bio_t *r10_bio; | 
|  | struct bio *bio; | 
|  | unsigned long flags; | 
|  | conf_t *conf = mddev_to_conf(mddev); | 
|  | struct list_head *head = &conf->retry_list; | 
|  | int unplug=0; | 
|  | mdk_rdev_t *rdev; | 
|  |  | 
|  | md_check_recovery(mddev); | 
|  |  | 
|  | for (;;) { | 
|  | char b[BDEVNAME_SIZE]; | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  |  | 
|  | if (conf->pending_bio_list.head) { | 
|  | bio = bio_list_get(&conf->pending_bio_list); | 
|  | blk_remove_plug(mddev->queue); | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | /* flush any pending bitmap writes to disk before proceeding w/ I/O */ | 
|  | if (bitmap_unplug(mddev->bitmap) != 0) | 
|  | printk("%s: bitmap file write failed!\n", mdname(mddev)); | 
|  |  | 
|  | while (bio) { /* submit pending writes */ | 
|  | struct bio *next = bio->bi_next; | 
|  | bio->bi_next = NULL; | 
|  | generic_make_request(bio); | 
|  | bio = next; | 
|  | } | 
|  | unplug = 1; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (list_empty(head)) | 
|  | break; | 
|  | r10_bio = list_entry(head->prev, r10bio_t, retry_list); | 
|  | list_del(head->prev); | 
|  | conf->nr_queued--; | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  |  | 
|  | mddev = r10_bio->mddev; | 
|  | conf = mddev_to_conf(mddev); | 
|  | if (test_bit(R10BIO_IsSync, &r10_bio->state)) { | 
|  | sync_request_write(mddev, r10_bio); | 
|  | unplug = 1; | 
|  | } else 	if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { | 
|  | recovery_request_write(mddev, r10_bio); | 
|  | unplug = 1; | 
|  | } else { | 
|  | int mirror; | 
|  | /* we got a read error. Maybe the drive is bad.  Maybe just | 
|  | * the block and we can fix it. | 
|  | * We freeze all other IO, and try reading the block from | 
|  | * other devices.  When we find one, we re-write | 
|  | * and check it that fixes the read error. | 
|  | * This is all done synchronously while the array is | 
|  | * frozen. | 
|  | */ | 
|  | int sect = 0; /* Offset from r10_bio->sector */ | 
|  | int sectors = r10_bio->sectors; | 
|  | freeze_array(conf); | 
|  | if (mddev->ro == 0) while(sectors) { | 
|  | int s = sectors; | 
|  | int sl = r10_bio->read_slot; | 
|  | int success = 0; | 
|  |  | 
|  | if (s > (PAGE_SIZE>>9)) | 
|  | s = PAGE_SIZE >> 9; | 
|  |  | 
|  | do { | 
|  | int d = r10_bio->devs[sl].devnum; | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | if (rdev && | 
|  | test_bit(In_sync, &rdev->flags) && | 
|  | sync_page_io(rdev->bdev, | 
|  | r10_bio->devs[sl].addr + | 
|  | sect + rdev->data_offset, | 
|  | s<<9, | 
|  | conf->tmppage, READ)) | 
|  | success = 1; | 
|  | else { | 
|  | sl++; | 
|  | if (sl == conf->copies) | 
|  | sl = 0; | 
|  | } | 
|  | } while (!success && sl != r10_bio->read_slot); | 
|  |  | 
|  | if (success) { | 
|  | int start = sl; | 
|  | /* write it back and re-read */ | 
|  | while (sl != r10_bio->read_slot) { | 
|  | int d; | 
|  | if (sl==0) | 
|  | sl = conf->copies; | 
|  | sl--; | 
|  | d = r10_bio->devs[sl].devnum; | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | atomic_add(s, &rdev->corrected_errors); | 
|  | if (rdev && | 
|  | test_bit(In_sync, &rdev->flags)) { | 
|  | if (sync_page_io(rdev->bdev, | 
|  | r10_bio->devs[sl].addr + | 
|  | sect + rdev->data_offset, | 
|  | s<<9, conf->tmppage, WRITE) == 0) | 
|  | /* Well, this device is dead */ | 
|  | md_error(mddev, rdev); | 
|  | } | 
|  | } | 
|  | sl = start; | 
|  | while (sl != r10_bio->read_slot) { | 
|  | int d; | 
|  | if (sl==0) | 
|  | sl = conf->copies; | 
|  | sl--; | 
|  | d = r10_bio->devs[sl].devnum; | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | if (rdev && | 
|  | test_bit(In_sync, &rdev->flags)) { | 
|  | if (sync_page_io(rdev->bdev, | 
|  | r10_bio->devs[sl].addr + | 
|  | sect + rdev->data_offset, | 
|  | s<<9, conf->tmppage, READ) == 0) | 
|  | /* Well, this device is dead */ | 
|  | md_error(mddev, rdev); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* Cannot read from anywhere -- bye bye array */ | 
|  | md_error(mddev, conf->mirrors[r10_bio->devs[r10_bio->read_slot].devnum].rdev); | 
|  | break; | 
|  | } | 
|  | sectors -= s; | 
|  | sect += s; | 
|  | } | 
|  |  | 
|  | unfreeze_array(conf); | 
|  |  | 
|  | bio = r10_bio->devs[r10_bio->read_slot].bio; | 
|  | r10_bio->devs[r10_bio->read_slot].bio = | 
|  | mddev->ro ? IO_BLOCKED : NULL; | 
|  | bio_put(bio); | 
|  | mirror = read_balance(conf, r10_bio); | 
|  | if (mirror == -1) { | 
|  | printk(KERN_ALERT "raid10: %s: unrecoverable I/O" | 
|  | " read error for block %llu\n", | 
|  | bdevname(bio->bi_bdev,b), | 
|  | (unsigned long long)r10_bio->sector); | 
|  | raid_end_bio_io(r10_bio); | 
|  | } else { | 
|  | rdev = conf->mirrors[mirror].rdev; | 
|  | if (printk_ratelimit()) | 
|  | printk(KERN_ERR "raid10: %s: redirecting sector %llu to" | 
|  | " another mirror\n", | 
|  | bdevname(rdev->bdev,b), | 
|  | (unsigned long long)r10_bio->sector); | 
|  | bio = bio_clone(r10_bio->master_bio, GFP_NOIO); | 
|  | r10_bio->devs[r10_bio->read_slot].bio = bio; | 
|  | bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr | 
|  | + rdev->data_offset; | 
|  | bio->bi_bdev = rdev->bdev; | 
|  | bio->bi_rw = READ; | 
|  | bio->bi_private = r10_bio; | 
|  | bio->bi_end_io = raid10_end_read_request; | 
|  | unplug = 1; | 
|  | generic_make_request(bio); | 
|  | } | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | if (unplug) | 
|  | unplug_slaves(mddev); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int init_resync(conf_t *conf) | 
|  | { | 
|  | int buffs; | 
|  |  | 
|  | buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; | 
|  | if (conf->r10buf_pool) | 
|  | BUG(); | 
|  | conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); | 
|  | if (!conf->r10buf_pool) | 
|  | return -ENOMEM; | 
|  | conf->next_resync = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * perform a "sync" on one "block" | 
|  | * | 
|  | * We need to make sure that no normal I/O request - particularly write | 
|  | * requests - conflict with active sync requests. | 
|  | * | 
|  | * This is achieved by tracking pending requests and a 'barrier' concept | 
|  | * that can be installed to exclude normal IO requests. | 
|  | * | 
|  | * Resync and recovery are handled very differently. | 
|  | * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. | 
|  | * | 
|  | * For resync, we iterate over virtual addresses, read all copies, | 
|  | * and update if there are differences.  If only one copy is live, | 
|  | * skip it. | 
|  | * For recovery, we iterate over physical addresses, read a good | 
|  | * value for each non-in_sync drive, and over-write. | 
|  | * | 
|  | * So, for recovery we may have several outstanding complex requests for a | 
|  | * given address, one for each out-of-sync device.  We model this by allocating | 
|  | * a number of r10_bio structures, one for each out-of-sync device. | 
|  | * As we setup these structures, we collect all bio's together into a list | 
|  | * which we then process collectively to add pages, and then process again | 
|  | * to pass to generic_make_request. | 
|  | * | 
|  | * The r10_bio structures are linked using a borrowed master_bio pointer. | 
|  | * This link is counted in ->remaining.  When the r10_bio that points to NULL | 
|  | * has its remaining count decremented to 0, the whole complex operation | 
|  | * is complete. | 
|  | * | 
|  | */ | 
|  |  | 
|  | static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) | 
|  | { | 
|  | conf_t *conf = mddev_to_conf(mddev); | 
|  | r10bio_t *r10_bio; | 
|  | struct bio *biolist = NULL, *bio; | 
|  | sector_t max_sector, nr_sectors; | 
|  | int disk; | 
|  | int i; | 
|  | int max_sync; | 
|  | int sync_blocks; | 
|  |  | 
|  | sector_t sectors_skipped = 0; | 
|  | int chunks_skipped = 0; | 
|  |  | 
|  | if (!conf->r10buf_pool) | 
|  | if (init_resync(conf)) | 
|  | return 0; | 
|  |  | 
|  | skipped: | 
|  | max_sector = mddev->size << 1; | 
|  | if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) | 
|  | max_sector = mddev->resync_max_sectors; | 
|  | if (sector_nr >= max_sector) { | 
|  | /* If we aborted, we need to abort the | 
|  | * sync on the 'current' bitmap chucks (there can | 
|  | * be several when recovering multiple devices). | 
|  | * as we may have started syncing it but not finished. | 
|  | * We can find the current address in | 
|  | * mddev->curr_resync, but for recovery, | 
|  | * we need to convert that to several | 
|  | * virtual addresses. | 
|  | */ | 
|  | if (mddev->curr_resync < max_sector) { /* aborted */ | 
|  | if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) | 
|  | bitmap_end_sync(mddev->bitmap, mddev->curr_resync, | 
|  | &sync_blocks, 1); | 
|  | else for (i=0; i<conf->raid_disks; i++) { | 
|  | sector_t sect = | 
|  | raid10_find_virt(conf, mddev->curr_resync, i); | 
|  | bitmap_end_sync(mddev->bitmap, sect, | 
|  | &sync_blocks, 1); | 
|  | } | 
|  | } else /* completed sync */ | 
|  | conf->fullsync = 0; | 
|  |  | 
|  | bitmap_close_sync(mddev->bitmap); | 
|  | close_sync(conf); | 
|  | *skipped = 1; | 
|  | return sectors_skipped; | 
|  | } | 
|  | if (chunks_skipped >= conf->raid_disks) { | 
|  | /* if there has been nothing to do on any drive, | 
|  | * then there is nothing to do at all.. | 
|  | */ | 
|  | *skipped = 1; | 
|  | return (max_sector - sector_nr) + sectors_skipped; | 
|  | } | 
|  |  | 
|  | /* make sure whole request will fit in a chunk - if chunks | 
|  | * are meaningful | 
|  | */ | 
|  | if (conf->near_copies < conf->raid_disks && | 
|  | max_sector > (sector_nr | conf->chunk_mask)) | 
|  | max_sector = (sector_nr | conf->chunk_mask) + 1; | 
|  | /* | 
|  | * If there is non-resync activity waiting for us then | 
|  | * put in a delay to throttle resync. | 
|  | */ | 
|  | if (!go_faster && conf->nr_waiting) | 
|  | msleep_interruptible(1000); | 
|  |  | 
|  | /* Again, very different code for resync and recovery. | 
|  | * Both must result in an r10bio with a list of bios that | 
|  | * have bi_end_io, bi_sector, bi_bdev set, | 
|  | * and bi_private set to the r10bio. | 
|  | * For recovery, we may actually create several r10bios | 
|  | * with 2 bios in each, that correspond to the bios in the main one. | 
|  | * In this case, the subordinate r10bios link back through a | 
|  | * borrowed master_bio pointer, and the counter in the master | 
|  | * includes a ref from each subordinate. | 
|  | */ | 
|  | /* First, we decide what to do and set ->bi_end_io | 
|  | * To end_sync_read if we want to read, and | 
|  | * end_sync_write if we will want to write. | 
|  | */ | 
|  |  | 
|  | max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); | 
|  | if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { | 
|  | /* recovery... the complicated one */ | 
|  | int i, j, k; | 
|  | r10_bio = NULL; | 
|  |  | 
|  | for (i=0 ; i<conf->raid_disks; i++) | 
|  | if (conf->mirrors[i].rdev && | 
|  | !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { | 
|  | int still_degraded = 0; | 
|  | /* want to reconstruct this device */ | 
|  | r10bio_t *rb2 = r10_bio; | 
|  | sector_t sect = raid10_find_virt(conf, sector_nr, i); | 
|  | int must_sync; | 
|  | /* Unless we are doing a full sync, we only need | 
|  | * to recover the block if it is set in the bitmap | 
|  | */ | 
|  | must_sync = bitmap_start_sync(mddev->bitmap, sect, | 
|  | &sync_blocks, 1); | 
|  | if (sync_blocks < max_sync) | 
|  | max_sync = sync_blocks; | 
|  | if (!must_sync && | 
|  | !conf->fullsync) { | 
|  | /* yep, skip the sync_blocks here, but don't assume | 
|  | * that there will never be anything to do here | 
|  | */ | 
|  | chunks_skipped = -1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); | 
|  | raise_barrier(conf, rb2 != NULL); | 
|  | atomic_set(&r10_bio->remaining, 0); | 
|  |  | 
|  | r10_bio->master_bio = (struct bio*)rb2; | 
|  | if (rb2) | 
|  | atomic_inc(&rb2->remaining); | 
|  | r10_bio->mddev = mddev; | 
|  | set_bit(R10BIO_IsRecover, &r10_bio->state); | 
|  | r10_bio->sector = sect; | 
|  |  | 
|  | raid10_find_phys(conf, r10_bio); | 
|  | /* Need to check if this section will still be | 
|  | * degraded | 
|  | */ | 
|  | for (j=0; j<conf->copies;j++) { | 
|  | int d = r10_bio->devs[j].devnum; | 
|  | if (conf->mirrors[d].rdev == NULL || | 
|  | test_bit(Faulty, &conf->mirrors[d].rdev->flags)) { | 
|  | still_degraded = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | must_sync = bitmap_start_sync(mddev->bitmap, sect, | 
|  | &sync_blocks, still_degraded); | 
|  |  | 
|  | for (j=0; j<conf->copies;j++) { | 
|  | int d = r10_bio->devs[j].devnum; | 
|  | if (conf->mirrors[d].rdev && | 
|  | test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { | 
|  | /* This is where we read from */ | 
|  | bio = r10_bio->devs[0].bio; | 
|  | bio->bi_next = biolist; | 
|  | biolist = bio; | 
|  | bio->bi_private = r10_bio; | 
|  | bio->bi_end_io = end_sync_read; | 
|  | bio->bi_rw = 0; | 
|  | bio->bi_sector = r10_bio->devs[j].addr + | 
|  | conf->mirrors[d].rdev->data_offset; | 
|  | bio->bi_bdev = conf->mirrors[d].rdev->bdev; | 
|  | atomic_inc(&conf->mirrors[d].rdev->nr_pending); | 
|  | atomic_inc(&r10_bio->remaining); | 
|  | /* and we write to 'i' */ | 
|  |  | 
|  | for (k=0; k<conf->copies; k++) | 
|  | if (r10_bio->devs[k].devnum == i) | 
|  | break; | 
|  | bio = r10_bio->devs[1].bio; | 
|  | bio->bi_next = biolist; | 
|  | biolist = bio; | 
|  | bio->bi_private = r10_bio; | 
|  | bio->bi_end_io = end_sync_write; | 
|  | bio->bi_rw = 1; | 
|  | bio->bi_sector = r10_bio->devs[k].addr + | 
|  | conf->mirrors[i].rdev->data_offset; | 
|  | bio->bi_bdev = conf->mirrors[i].rdev->bdev; | 
|  |  | 
|  | r10_bio->devs[0].devnum = d; | 
|  | r10_bio->devs[1].devnum = i; | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (j == conf->copies) { | 
|  | /* Cannot recover, so abort the recovery */ | 
|  | put_buf(r10_bio); | 
|  | r10_bio = rb2; | 
|  | if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery)) | 
|  | printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", | 
|  | mdname(mddev)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (biolist == NULL) { | 
|  | while (r10_bio) { | 
|  | r10bio_t *rb2 = r10_bio; | 
|  | r10_bio = (r10bio_t*) rb2->master_bio; | 
|  | rb2->master_bio = NULL; | 
|  | put_buf(rb2); | 
|  | } | 
|  | goto giveup; | 
|  | } | 
|  | } else { | 
|  | /* resync. Schedule a read for every block at this virt offset */ | 
|  | int count = 0; | 
|  |  | 
|  | if (!bitmap_start_sync(mddev->bitmap, sector_nr, | 
|  | &sync_blocks, mddev->degraded) && | 
|  | !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { | 
|  | /* We can skip this block */ | 
|  | *skipped = 1; | 
|  | return sync_blocks + sectors_skipped; | 
|  | } | 
|  | if (sync_blocks < max_sync) | 
|  | max_sync = sync_blocks; | 
|  | r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); | 
|  |  | 
|  | r10_bio->mddev = mddev; | 
|  | atomic_set(&r10_bio->remaining, 0); | 
|  | raise_barrier(conf, 0); | 
|  | conf->next_resync = sector_nr; | 
|  |  | 
|  | r10_bio->master_bio = NULL; | 
|  | r10_bio->sector = sector_nr; | 
|  | set_bit(R10BIO_IsSync, &r10_bio->state); | 
|  | raid10_find_phys(conf, r10_bio); | 
|  | r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; | 
|  |  | 
|  | for (i=0; i<conf->copies; i++) { | 
|  | int d = r10_bio->devs[i].devnum; | 
|  | bio = r10_bio->devs[i].bio; | 
|  | bio->bi_end_io = NULL; | 
|  | if (conf->mirrors[d].rdev == NULL || | 
|  | test_bit(Faulty, &conf->mirrors[d].rdev->flags)) | 
|  | continue; | 
|  | atomic_inc(&conf->mirrors[d].rdev->nr_pending); | 
|  | atomic_inc(&r10_bio->remaining); | 
|  | bio->bi_next = biolist; | 
|  | biolist = bio; | 
|  | bio->bi_private = r10_bio; | 
|  | bio->bi_end_io = end_sync_read; | 
|  | bio->bi_rw = 0; | 
|  | bio->bi_sector = r10_bio->devs[i].addr + | 
|  | conf->mirrors[d].rdev->data_offset; | 
|  | bio->bi_bdev = conf->mirrors[d].rdev->bdev; | 
|  | count++; | 
|  | } | 
|  |  | 
|  | if (count < 2) { | 
|  | for (i=0; i<conf->copies; i++) { | 
|  | int d = r10_bio->devs[i].devnum; | 
|  | if (r10_bio->devs[i].bio->bi_end_io) | 
|  | rdev_dec_pending(conf->mirrors[d].rdev, mddev); | 
|  | } | 
|  | put_buf(r10_bio); | 
|  | biolist = NULL; | 
|  | goto giveup; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (bio = biolist; bio ; bio=bio->bi_next) { | 
|  |  | 
|  | bio->bi_flags &= ~(BIO_POOL_MASK - 1); | 
|  | if (bio->bi_end_io) | 
|  | bio->bi_flags |= 1 << BIO_UPTODATE; | 
|  | bio->bi_vcnt = 0; | 
|  | bio->bi_idx = 0; | 
|  | bio->bi_phys_segments = 0; | 
|  | bio->bi_hw_segments = 0; | 
|  | bio->bi_size = 0; | 
|  | } | 
|  |  | 
|  | nr_sectors = 0; | 
|  | if (sector_nr + max_sync < max_sector) | 
|  | max_sector = sector_nr + max_sync; | 
|  | do { | 
|  | struct page *page; | 
|  | int len = PAGE_SIZE; | 
|  | disk = 0; | 
|  | if (sector_nr + (len>>9) > max_sector) | 
|  | len = (max_sector - sector_nr) << 9; | 
|  | if (len == 0) | 
|  | break; | 
|  | for (bio= biolist ; bio ; bio=bio->bi_next) { | 
|  | page = bio->bi_io_vec[bio->bi_vcnt].bv_page; | 
|  | if (bio_add_page(bio, page, len, 0) == 0) { | 
|  | /* stop here */ | 
|  | struct bio *bio2; | 
|  | bio->bi_io_vec[bio->bi_vcnt].bv_page = page; | 
|  | for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { | 
|  | /* remove last page from this bio */ | 
|  | bio2->bi_vcnt--; | 
|  | bio2->bi_size -= len; | 
|  | bio2->bi_flags &= ~(1<< BIO_SEG_VALID); | 
|  | } | 
|  | goto bio_full; | 
|  | } | 
|  | disk = i; | 
|  | } | 
|  | nr_sectors += len>>9; | 
|  | sector_nr += len>>9; | 
|  | } while (biolist->bi_vcnt < RESYNC_PAGES); | 
|  | bio_full: | 
|  | r10_bio->sectors = nr_sectors; | 
|  |  | 
|  | while (biolist) { | 
|  | bio = biolist; | 
|  | biolist = biolist->bi_next; | 
|  |  | 
|  | bio->bi_next = NULL; | 
|  | r10_bio = bio->bi_private; | 
|  | r10_bio->sectors = nr_sectors; | 
|  |  | 
|  | if (bio->bi_end_io == end_sync_read) { | 
|  | md_sync_acct(bio->bi_bdev, nr_sectors); | 
|  | generic_make_request(bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sectors_skipped) | 
|  | /* pretend they weren't skipped, it makes | 
|  | * no important difference in this case | 
|  | */ | 
|  | md_done_sync(mddev, sectors_skipped, 1); | 
|  |  | 
|  | return sectors_skipped + nr_sectors; | 
|  | giveup: | 
|  | /* There is nowhere to write, so all non-sync | 
|  | * drives must be failed, so try the next chunk... | 
|  | */ | 
|  | { | 
|  | sector_t sec = max_sector - sector_nr; | 
|  | sectors_skipped += sec; | 
|  | chunks_skipped ++; | 
|  | sector_nr = max_sector; | 
|  | goto skipped; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int run(mddev_t *mddev) | 
|  | { | 
|  | conf_t *conf; | 
|  | int i, disk_idx; | 
|  | mirror_info_t *disk; | 
|  | mdk_rdev_t *rdev; | 
|  | struct list_head *tmp; | 
|  | int nc, fc; | 
|  | sector_t stride, size; | 
|  |  | 
|  | if (mddev->chunk_size == 0) { | 
|  | printk(KERN_ERR "md/raid10: non-zero chunk size required.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | nc = mddev->layout & 255; | 
|  | fc = (mddev->layout >> 8) & 255; | 
|  | if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || | 
|  | (mddev->layout >> 16)) { | 
|  | printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", | 
|  | mdname(mddev), mddev->layout); | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * copy the already verified devices into our private RAID10 | 
|  | * bookkeeping area. [whatever we allocate in run(), | 
|  | * should be freed in stop()] | 
|  | */ | 
|  | conf = kzalloc(sizeof(conf_t), GFP_KERNEL); | 
|  | mddev->private = conf; | 
|  | if (!conf) { | 
|  | printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", | 
|  | mdname(mddev)); | 
|  | goto out; | 
|  | } | 
|  | conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, | 
|  | GFP_KERNEL); | 
|  | if (!conf->mirrors) { | 
|  | printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", | 
|  | mdname(mddev)); | 
|  | goto out_free_conf; | 
|  | } | 
|  |  | 
|  | conf->tmppage = alloc_page(GFP_KERNEL); | 
|  | if (!conf->tmppage) | 
|  | goto out_free_conf; | 
|  |  | 
|  | conf->near_copies = nc; | 
|  | conf->far_copies = fc; | 
|  | conf->copies = nc*fc; | 
|  | conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; | 
|  | conf->chunk_shift = ffz(~mddev->chunk_size) - 9; | 
|  | stride = mddev->size >> (conf->chunk_shift-1); | 
|  | sector_div(stride, fc); | 
|  | conf->stride = stride << conf->chunk_shift; | 
|  |  | 
|  | conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, | 
|  | r10bio_pool_free, conf); | 
|  | if (!conf->r10bio_pool) { | 
|  | printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", | 
|  | mdname(mddev)); | 
|  | goto out_free_conf; | 
|  | } | 
|  |  | 
|  | ITERATE_RDEV(mddev, rdev, tmp) { | 
|  | disk_idx = rdev->raid_disk; | 
|  | if (disk_idx >= mddev->raid_disks | 
|  | || disk_idx < 0) | 
|  | continue; | 
|  | disk = conf->mirrors + disk_idx; | 
|  |  | 
|  | disk->rdev = rdev; | 
|  |  | 
|  | blk_queue_stack_limits(mddev->queue, | 
|  | rdev->bdev->bd_disk->queue); | 
|  | /* as we don't honour merge_bvec_fn, we must never risk | 
|  | * violating it, so limit ->max_sector to one PAGE, as | 
|  | * a one page request is never in violation. | 
|  | */ | 
|  | if (rdev->bdev->bd_disk->queue->merge_bvec_fn && | 
|  | mddev->queue->max_sectors > (PAGE_SIZE>>9)) | 
|  | mddev->queue->max_sectors = (PAGE_SIZE>>9); | 
|  |  | 
|  | disk->head_position = 0; | 
|  | if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags)) | 
|  | conf->working_disks++; | 
|  | } | 
|  | conf->raid_disks = mddev->raid_disks; | 
|  | conf->mddev = mddev; | 
|  | spin_lock_init(&conf->device_lock); | 
|  | INIT_LIST_HEAD(&conf->retry_list); | 
|  |  | 
|  | spin_lock_init(&conf->resync_lock); | 
|  | init_waitqueue_head(&conf->wait_barrier); | 
|  |  | 
|  | /* need to check that every block has at least one working mirror */ | 
|  | if (!enough(conf)) { | 
|  | printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", | 
|  | mdname(mddev)); | 
|  | goto out_free_conf; | 
|  | } | 
|  |  | 
|  | mddev->degraded = 0; | 
|  | for (i = 0; i < conf->raid_disks; i++) { | 
|  |  | 
|  | disk = conf->mirrors + i; | 
|  |  | 
|  | if (!disk->rdev) { | 
|  | disk->head_position = 0; | 
|  | mddev->degraded++; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); | 
|  | if (!mddev->thread) { | 
|  | printk(KERN_ERR | 
|  | "raid10: couldn't allocate thread for %s\n", | 
|  | mdname(mddev)); | 
|  | goto out_free_conf; | 
|  | } | 
|  |  | 
|  | printk(KERN_INFO | 
|  | "raid10: raid set %s active with %d out of %d devices\n", | 
|  | mdname(mddev), mddev->raid_disks - mddev->degraded, | 
|  | mddev->raid_disks); | 
|  | /* | 
|  | * Ok, everything is just fine now | 
|  | */ | 
|  | size = conf->stride * conf->raid_disks; | 
|  | sector_div(size, conf->near_copies); | 
|  | mddev->array_size = size/2; | 
|  | mddev->resync_max_sectors = size; | 
|  |  | 
|  | mddev->queue->unplug_fn = raid10_unplug; | 
|  | mddev->queue->issue_flush_fn = raid10_issue_flush; | 
|  |  | 
|  | /* Calculate max read-ahead size. | 
|  | * We need to readahead at least twice a whole stripe.... | 
|  | * maybe... | 
|  | */ | 
|  | { | 
|  | int stripe = conf->raid_disks * mddev->chunk_size / PAGE_SIZE; | 
|  | stripe /= conf->near_copies; | 
|  | if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) | 
|  | mddev->queue->backing_dev_info.ra_pages = 2* stripe; | 
|  | } | 
|  |  | 
|  | if (conf->near_copies < mddev->raid_disks) | 
|  | blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); | 
|  | return 0; | 
|  |  | 
|  | out_free_conf: | 
|  | if (conf->r10bio_pool) | 
|  | mempool_destroy(conf->r10bio_pool); | 
|  | safe_put_page(conf->tmppage); | 
|  | kfree(conf->mirrors); | 
|  | kfree(conf); | 
|  | mddev->private = NULL; | 
|  | out: | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | static int stop(mddev_t *mddev) | 
|  | { | 
|  | conf_t *conf = mddev_to_conf(mddev); | 
|  |  | 
|  | md_unregister_thread(mddev->thread); | 
|  | mddev->thread = NULL; | 
|  | blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ | 
|  | if (conf->r10bio_pool) | 
|  | mempool_destroy(conf->r10bio_pool); | 
|  | kfree(conf->mirrors); | 
|  | kfree(conf); | 
|  | mddev->private = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void raid10_quiesce(mddev_t *mddev, int state) | 
|  | { | 
|  | conf_t *conf = mddev_to_conf(mddev); | 
|  |  | 
|  | switch(state) { | 
|  | case 1: | 
|  | raise_barrier(conf, 0); | 
|  | break; | 
|  | case 0: | 
|  | lower_barrier(conf); | 
|  | break; | 
|  | } | 
|  | if (mddev->thread) { | 
|  | if (mddev->bitmap) | 
|  | mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; | 
|  | else | 
|  | mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; | 
|  | md_wakeup_thread(mddev->thread); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct mdk_personality raid10_personality = | 
|  | { | 
|  | .name		= "raid10", | 
|  | .level		= 10, | 
|  | .owner		= THIS_MODULE, | 
|  | .make_request	= make_request, | 
|  | .run		= run, | 
|  | .stop		= stop, | 
|  | .status		= status, | 
|  | .error_handler	= error, | 
|  | .hot_add_disk	= raid10_add_disk, | 
|  | .hot_remove_disk= raid10_remove_disk, | 
|  | .spare_active	= raid10_spare_active, | 
|  | .sync_request	= sync_request, | 
|  | .quiesce	= raid10_quiesce, | 
|  | }; | 
|  |  | 
|  | static int __init raid_init(void) | 
|  | { | 
|  | return register_md_personality(&raid10_personality); | 
|  | } | 
|  |  | 
|  | static void raid_exit(void) | 
|  | { | 
|  | unregister_md_personality(&raid10_personality); | 
|  | } | 
|  |  | 
|  | module_init(raid_init); | 
|  | module_exit(raid_exit); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_ALIAS("md-personality-9"); /* RAID10 */ | 
|  | MODULE_ALIAS("md-raid10"); | 
|  | MODULE_ALIAS("md-level-10"); |