| /* | 
 |  * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
 |  * All Rights Reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it would be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write the Free Software Foundation, | 
 |  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
 |  */ | 
 | #include "xfs.h" | 
 | #include "xfs_fs.h" | 
 | #include "xfs_types.h" | 
 | #include "xfs_bit.h" | 
 | #include "xfs_log.h" | 
 | #include "xfs_inum.h" | 
 | #include "xfs_trans.h" | 
 | #include "xfs_sb.h" | 
 | #include "xfs_ag.h" | 
 | #include "xfs_dir2.h" | 
 | #include "xfs_dmapi.h" | 
 | #include "xfs_mount.h" | 
 | #include "xfs_bmap_btree.h" | 
 | #include "xfs_alloc_btree.h" | 
 | #include "xfs_ialloc_btree.h" | 
 | #include "xfs_dir2_sf.h" | 
 | #include "xfs_attr_sf.h" | 
 | #include "xfs_dinode.h" | 
 | #include "xfs_inode.h" | 
 | #include "xfs_btree.h" | 
 | #include "xfs_ialloc.h" | 
 | #include "xfs_alloc.h" | 
 | #include "xfs_rtalloc.h" | 
 | #include "xfs_bmap.h" | 
 | #include "xfs_error.h" | 
 | #include "xfs_rw.h" | 
 | #include "xfs_quota.h" | 
 | #include "xfs_fsops.h" | 
 | #include "xfs_utils.h" | 
 | #include "xfs_trace.h" | 
 |  | 
 |  | 
 | STATIC void	xfs_unmountfs_wait(xfs_mount_t *); | 
 |  | 
 |  | 
 | #ifdef HAVE_PERCPU_SB | 
 | STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, | 
 | 						int); | 
 | STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, | 
 | 						int); | 
 | STATIC int	xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t, | 
 | 						int64_t, int); | 
 | STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); | 
 |  | 
 | #else | 
 |  | 
 | #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0) | 
 | #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0) | 
 | #define xfs_icsb_modify_counters(mp, a, b, c)		do { } while (0) | 
 |  | 
 | #endif | 
 |  | 
 | static const struct { | 
 | 	short offset; | 
 | 	short type;	/* 0 = integer | 
 | 			 * 1 = binary / string (no translation) | 
 | 			 */ | 
 | } xfs_sb_info[] = { | 
 |     { offsetof(xfs_sb_t, sb_magicnum),   0 }, | 
 |     { offsetof(xfs_sb_t, sb_blocksize),  0 }, | 
 |     { offsetof(xfs_sb_t, sb_dblocks),    0 }, | 
 |     { offsetof(xfs_sb_t, sb_rblocks),    0 }, | 
 |     { offsetof(xfs_sb_t, sb_rextents),   0 }, | 
 |     { offsetof(xfs_sb_t, sb_uuid),       1 }, | 
 |     { offsetof(xfs_sb_t, sb_logstart),   0 }, | 
 |     { offsetof(xfs_sb_t, sb_rootino),    0 }, | 
 |     { offsetof(xfs_sb_t, sb_rbmino),     0 }, | 
 |     { offsetof(xfs_sb_t, sb_rsumino),    0 }, | 
 |     { offsetof(xfs_sb_t, sb_rextsize),   0 }, | 
 |     { offsetof(xfs_sb_t, sb_agblocks),   0 }, | 
 |     { offsetof(xfs_sb_t, sb_agcount),    0 }, | 
 |     { offsetof(xfs_sb_t, sb_rbmblocks),  0 }, | 
 |     { offsetof(xfs_sb_t, sb_logblocks),  0 }, | 
 |     { offsetof(xfs_sb_t, sb_versionnum), 0 }, | 
 |     { offsetof(xfs_sb_t, sb_sectsize),   0 }, | 
 |     { offsetof(xfs_sb_t, sb_inodesize),  0 }, | 
 |     { offsetof(xfs_sb_t, sb_inopblock),  0 }, | 
 |     { offsetof(xfs_sb_t, sb_fname[0]),   1 }, | 
 |     { offsetof(xfs_sb_t, sb_blocklog),   0 }, | 
 |     { offsetof(xfs_sb_t, sb_sectlog),    0 }, | 
 |     { offsetof(xfs_sb_t, sb_inodelog),   0 }, | 
 |     { offsetof(xfs_sb_t, sb_inopblog),   0 }, | 
 |     { offsetof(xfs_sb_t, sb_agblklog),   0 }, | 
 |     { offsetof(xfs_sb_t, sb_rextslog),   0 }, | 
 |     { offsetof(xfs_sb_t, sb_inprogress), 0 }, | 
 |     { offsetof(xfs_sb_t, sb_imax_pct),   0 }, | 
 |     { offsetof(xfs_sb_t, sb_icount),     0 }, | 
 |     { offsetof(xfs_sb_t, sb_ifree),      0 }, | 
 |     { offsetof(xfs_sb_t, sb_fdblocks),   0 }, | 
 |     { offsetof(xfs_sb_t, sb_frextents),  0 }, | 
 |     { offsetof(xfs_sb_t, sb_uquotino),   0 }, | 
 |     { offsetof(xfs_sb_t, sb_gquotino),   0 }, | 
 |     { offsetof(xfs_sb_t, sb_qflags),     0 }, | 
 |     { offsetof(xfs_sb_t, sb_flags),      0 }, | 
 |     { offsetof(xfs_sb_t, sb_shared_vn),  0 }, | 
 |     { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, | 
 |     { offsetof(xfs_sb_t, sb_unit),	 0 }, | 
 |     { offsetof(xfs_sb_t, sb_width),	 0 }, | 
 |     { offsetof(xfs_sb_t, sb_dirblklog),	 0 }, | 
 |     { offsetof(xfs_sb_t, sb_logsectlog), 0 }, | 
 |     { offsetof(xfs_sb_t, sb_logsectsize),0 }, | 
 |     { offsetof(xfs_sb_t, sb_logsunit),	 0 }, | 
 |     { offsetof(xfs_sb_t, sb_features2),	 0 }, | 
 |     { offsetof(xfs_sb_t, sb_bad_features2), 0 }, | 
 |     { sizeof(xfs_sb_t),			 0 } | 
 | }; | 
 |  | 
 | static DEFINE_MUTEX(xfs_uuid_table_mutex); | 
 | static int xfs_uuid_table_size; | 
 | static uuid_t *xfs_uuid_table; | 
 |  | 
 | /* | 
 |  * See if the UUID is unique among mounted XFS filesystems. | 
 |  * Mount fails if UUID is nil or a FS with the same UUID is already mounted. | 
 |  */ | 
 | STATIC int | 
 | xfs_uuid_mount( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	uuid_t			*uuid = &mp->m_sb.sb_uuid; | 
 | 	int			hole, i; | 
 |  | 
 | 	if (mp->m_flags & XFS_MOUNT_NOUUID) | 
 | 		return 0; | 
 |  | 
 | 	if (uuid_is_nil(uuid)) { | 
 | 		cmn_err(CE_WARN, | 
 | 			"XFS: Filesystem %s has nil UUID - can't mount", | 
 | 			mp->m_fsname); | 
 | 		return XFS_ERROR(EINVAL); | 
 | 	} | 
 |  | 
 | 	mutex_lock(&xfs_uuid_table_mutex); | 
 | 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { | 
 | 		if (uuid_is_nil(&xfs_uuid_table[i])) { | 
 | 			hole = i; | 
 | 			continue; | 
 | 		} | 
 | 		if (uuid_equal(uuid, &xfs_uuid_table[i])) | 
 | 			goto out_duplicate; | 
 | 	} | 
 |  | 
 | 	if (hole < 0) { | 
 | 		xfs_uuid_table = kmem_realloc(xfs_uuid_table, | 
 | 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), | 
 | 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table), | 
 | 			KM_SLEEP); | 
 | 		hole = xfs_uuid_table_size++; | 
 | 	} | 
 | 	xfs_uuid_table[hole] = *uuid; | 
 | 	mutex_unlock(&xfs_uuid_table_mutex); | 
 |  | 
 | 	return 0; | 
 |  | 
 |  out_duplicate: | 
 | 	mutex_unlock(&xfs_uuid_table_mutex); | 
 | 	cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount", | 
 | 			 mp->m_fsname); | 
 | 	return XFS_ERROR(EINVAL); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_uuid_unmount( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	uuid_t			*uuid = &mp->m_sb.sb_uuid; | 
 | 	int			i; | 
 |  | 
 | 	if (mp->m_flags & XFS_MOUNT_NOUUID) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&xfs_uuid_table_mutex); | 
 | 	for (i = 0; i < xfs_uuid_table_size; i++) { | 
 | 		if (uuid_is_nil(&xfs_uuid_table[i])) | 
 | 			continue; | 
 | 		if (!uuid_equal(uuid, &xfs_uuid_table[i])) | 
 | 			continue; | 
 | 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); | 
 | 		break; | 
 | 	} | 
 | 	ASSERT(i < xfs_uuid_table_size); | 
 | 	mutex_unlock(&xfs_uuid_table_mutex); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Free up the resources associated with a mount structure.  Assume that | 
 |  * the structure was initially zeroed, so we can tell which fields got | 
 |  * initialized. | 
 |  */ | 
 | STATIC void | 
 | xfs_free_perag( | 
 | 	xfs_mount_t	*mp) | 
 | { | 
 | 	if (mp->m_perag) { | 
 | 		int	agno; | 
 |  | 
 | 		for (agno = 0; agno < mp->m_maxagi; agno++) | 
 | 			if (mp->m_perag[agno].pagb_list) | 
 | 				kmem_free(mp->m_perag[agno].pagb_list); | 
 | 		kmem_free(mp->m_perag); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Check size of device based on the (data/realtime) block count. | 
 |  * Note: this check is used by the growfs code as well as mount. | 
 |  */ | 
 | int | 
 | xfs_sb_validate_fsb_count( | 
 | 	xfs_sb_t	*sbp, | 
 | 	__uint64_t	nblocks) | 
 | { | 
 | 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); | 
 | 	ASSERT(sbp->sb_blocklog >= BBSHIFT); | 
 |  | 
 | #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */ | 
 | 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) | 
 | 		return E2BIG; | 
 | #else                  /* Limited by UINT_MAX of sectors */ | 
 | 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) | 
 | 		return E2BIG; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check the validity of the SB found. | 
 |  */ | 
 | STATIC int | 
 | xfs_mount_validate_sb( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_sb_t	*sbp, | 
 | 	int		flags) | 
 | { | 
 | 	/* | 
 | 	 * If the log device and data device have the | 
 | 	 * same device number, the log is internal. | 
 | 	 * Consequently, the sb_logstart should be non-zero.  If | 
 | 	 * we have a zero sb_logstart in this case, we may be trying to mount | 
 | 	 * a volume filesystem in a non-volume manner. | 
 | 	 */ | 
 | 	if (sbp->sb_magicnum != XFS_SB_MAGIC) { | 
 | 		xfs_fs_mount_cmn_err(flags, "bad magic number"); | 
 | 		return XFS_ERROR(EWRONGFS); | 
 | 	} | 
 |  | 
 | 	if (!xfs_sb_good_version(sbp)) { | 
 | 		xfs_fs_mount_cmn_err(flags, "bad version"); | 
 | 		return XFS_ERROR(EWRONGFS); | 
 | 	} | 
 |  | 
 | 	if (unlikely( | 
 | 	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { | 
 | 		xfs_fs_mount_cmn_err(flags, | 
 | 			"filesystem is marked as having an external log; " | 
 | 			"specify logdev on the\nmount command line."); | 
 | 		return XFS_ERROR(EINVAL); | 
 | 	} | 
 |  | 
 | 	if (unlikely( | 
 | 	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { | 
 | 		xfs_fs_mount_cmn_err(flags, | 
 | 			"filesystem is marked as having an internal log; " | 
 | 			"do not specify logdev on\nthe mount command line."); | 
 | 		return XFS_ERROR(EINVAL); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * More sanity checking. These were stolen directly from | 
 | 	 * xfs_repair. | 
 | 	 */ | 
 | 	if (unlikely( | 
 | 	    sbp->sb_agcount <= 0					|| | 
 | 	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			|| | 
 | 	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			|| | 
 | 	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			|| | 
 | 	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			|| | 
 | 	    sbp->sb_sectsize != (1 << sbp->sb_sectlog)			|| | 
 | 	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			|| | 
 | 	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			|| | 
 | 	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			|| | 
 | 	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			|| | 
 | 	    sbp->sb_blocksize != (1 << sbp->sb_blocklog)		|| | 
 | 	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			|| | 
 | 	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			|| | 
 | 	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			|| | 
 | 	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			|| | 
 | 	    sbp->sb_inodesize != (1 << sbp->sb_inodelog)		|| | 
 | 	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	|| | 
 | 	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	|| | 
 | 	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	|| | 
 | 	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) { | 
 | 		xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed"); | 
 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Sanity check AG count, size fields against data size field | 
 | 	 */ | 
 | 	if (unlikely( | 
 | 	    sbp->sb_dblocks == 0 || | 
 | 	    sbp->sb_dblocks > | 
 | 	     (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks || | 
 | 	    sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) * | 
 | 			      sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) { | 
 | 		xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed"); | 
 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Until this is fixed only page-sized or smaller data blocks work. | 
 | 	 */ | 
 | 	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { | 
 | 		xfs_fs_mount_cmn_err(flags, | 
 | 			"file system with blocksize %d bytes", | 
 | 			sbp->sb_blocksize); | 
 | 		xfs_fs_mount_cmn_err(flags, | 
 | 			"only pagesize (%ld) or less will currently work.", | 
 | 			PAGE_SIZE); | 
 | 		return XFS_ERROR(ENOSYS); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Currently only very few inode sizes are supported. | 
 | 	 */ | 
 | 	switch (sbp->sb_inodesize) { | 
 | 	case 256: | 
 | 	case 512: | 
 | 	case 1024: | 
 | 	case 2048: | 
 | 		break; | 
 | 	default: | 
 | 		xfs_fs_mount_cmn_err(flags, | 
 | 			"inode size of %d bytes not supported", | 
 | 			sbp->sb_inodesize); | 
 | 		return XFS_ERROR(ENOSYS); | 
 | 	} | 
 |  | 
 | 	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || | 
 | 	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { | 
 | 		xfs_fs_mount_cmn_err(flags, | 
 | 			"file system too large to be mounted on this system."); | 
 | 		return XFS_ERROR(E2BIG); | 
 | 	} | 
 |  | 
 | 	if (unlikely(sbp->sb_inprogress)) { | 
 | 		xfs_fs_mount_cmn_err(flags, "file system busy"); | 
 | 		return XFS_ERROR(EFSCORRUPTED); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Version 1 directory format has never worked on Linux. | 
 | 	 */ | 
 | 	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) { | 
 | 		xfs_fs_mount_cmn_err(flags, | 
 | 			"file system using version 1 directory format"); | 
 | 		return XFS_ERROR(ENOSYS); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_initialize_perag_icache( | 
 | 	xfs_perag_t	*pag) | 
 | { | 
 | 	if (!pag->pag_ici_init) { | 
 | 		rwlock_init(&pag->pag_ici_lock); | 
 | 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); | 
 | 		pag->pag_ici_init = 1; | 
 | 	} | 
 | } | 
 |  | 
 | xfs_agnumber_t | 
 | xfs_initialize_perag( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_agnumber_t	agcount) | 
 | { | 
 | 	xfs_agnumber_t	index, max_metadata; | 
 | 	xfs_perag_t	*pag; | 
 | 	xfs_agino_t	agino; | 
 | 	xfs_ino_t	ino; | 
 | 	xfs_sb_t	*sbp = &mp->m_sb; | 
 | 	xfs_ino_t	max_inum = XFS_MAXINUMBER_32; | 
 |  | 
 | 	/* Check to see if the filesystem can overflow 32 bit inodes */ | 
 | 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); | 
 | 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); | 
 |  | 
 | 	/* Clear the mount flag if no inode can overflow 32 bits | 
 | 	 * on this filesystem, or if specifically requested.. | 
 | 	 */ | 
 | 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) { | 
 | 		mp->m_flags |= XFS_MOUNT_32BITINODES; | 
 | 	} else { | 
 | 		mp->m_flags &= ~XFS_MOUNT_32BITINODES; | 
 | 	} | 
 |  | 
 | 	/* If we can overflow then setup the ag headers accordingly */ | 
 | 	if (mp->m_flags & XFS_MOUNT_32BITINODES) { | 
 | 		/* Calculate how much should be reserved for inodes to | 
 | 		 * meet the max inode percentage. | 
 | 		 */ | 
 | 		if (mp->m_maxicount) { | 
 | 			__uint64_t	icount; | 
 |  | 
 | 			icount = sbp->sb_dblocks * sbp->sb_imax_pct; | 
 | 			do_div(icount, 100); | 
 | 			icount += sbp->sb_agblocks - 1; | 
 | 			do_div(icount, sbp->sb_agblocks); | 
 | 			max_metadata = icount; | 
 | 		} else { | 
 | 			max_metadata = agcount; | 
 | 		} | 
 | 		for (index = 0; index < agcount; index++) { | 
 | 			ino = XFS_AGINO_TO_INO(mp, index, agino); | 
 | 			if (ino > max_inum) { | 
 | 				index++; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* This ag is preferred for inodes */ | 
 | 			pag = &mp->m_perag[index]; | 
 | 			pag->pagi_inodeok = 1; | 
 | 			if (index < max_metadata) | 
 | 				pag->pagf_metadata = 1; | 
 | 			xfs_initialize_perag_icache(pag); | 
 | 		} | 
 | 	} else { | 
 | 		/* Setup default behavior for smaller filesystems */ | 
 | 		for (index = 0; index < agcount; index++) { | 
 | 			pag = &mp->m_perag[index]; | 
 | 			pag->pagi_inodeok = 1; | 
 | 			xfs_initialize_perag_icache(pag); | 
 | 		} | 
 | 	} | 
 | 	return index; | 
 | } | 
 |  | 
 | void | 
 | xfs_sb_from_disk( | 
 | 	xfs_sb_t	*to, | 
 | 	xfs_dsb_t	*from) | 
 | { | 
 | 	to->sb_magicnum = be32_to_cpu(from->sb_magicnum); | 
 | 	to->sb_blocksize = be32_to_cpu(from->sb_blocksize); | 
 | 	to->sb_dblocks = be64_to_cpu(from->sb_dblocks); | 
 | 	to->sb_rblocks = be64_to_cpu(from->sb_rblocks); | 
 | 	to->sb_rextents = be64_to_cpu(from->sb_rextents); | 
 | 	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); | 
 | 	to->sb_logstart = be64_to_cpu(from->sb_logstart); | 
 | 	to->sb_rootino = be64_to_cpu(from->sb_rootino); | 
 | 	to->sb_rbmino = be64_to_cpu(from->sb_rbmino); | 
 | 	to->sb_rsumino = be64_to_cpu(from->sb_rsumino); | 
 | 	to->sb_rextsize = be32_to_cpu(from->sb_rextsize); | 
 | 	to->sb_agblocks = be32_to_cpu(from->sb_agblocks); | 
 | 	to->sb_agcount = be32_to_cpu(from->sb_agcount); | 
 | 	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); | 
 | 	to->sb_logblocks = be32_to_cpu(from->sb_logblocks); | 
 | 	to->sb_versionnum = be16_to_cpu(from->sb_versionnum); | 
 | 	to->sb_sectsize = be16_to_cpu(from->sb_sectsize); | 
 | 	to->sb_inodesize = be16_to_cpu(from->sb_inodesize); | 
 | 	to->sb_inopblock = be16_to_cpu(from->sb_inopblock); | 
 | 	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); | 
 | 	to->sb_blocklog = from->sb_blocklog; | 
 | 	to->sb_sectlog = from->sb_sectlog; | 
 | 	to->sb_inodelog = from->sb_inodelog; | 
 | 	to->sb_inopblog = from->sb_inopblog; | 
 | 	to->sb_agblklog = from->sb_agblklog; | 
 | 	to->sb_rextslog = from->sb_rextslog; | 
 | 	to->sb_inprogress = from->sb_inprogress; | 
 | 	to->sb_imax_pct = from->sb_imax_pct; | 
 | 	to->sb_icount = be64_to_cpu(from->sb_icount); | 
 | 	to->sb_ifree = be64_to_cpu(from->sb_ifree); | 
 | 	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); | 
 | 	to->sb_frextents = be64_to_cpu(from->sb_frextents); | 
 | 	to->sb_uquotino = be64_to_cpu(from->sb_uquotino); | 
 | 	to->sb_gquotino = be64_to_cpu(from->sb_gquotino); | 
 | 	to->sb_qflags = be16_to_cpu(from->sb_qflags); | 
 | 	to->sb_flags = from->sb_flags; | 
 | 	to->sb_shared_vn = from->sb_shared_vn; | 
 | 	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); | 
 | 	to->sb_unit = be32_to_cpu(from->sb_unit); | 
 | 	to->sb_width = be32_to_cpu(from->sb_width); | 
 | 	to->sb_dirblklog = from->sb_dirblklog; | 
 | 	to->sb_logsectlog = from->sb_logsectlog; | 
 | 	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); | 
 | 	to->sb_logsunit = be32_to_cpu(from->sb_logsunit); | 
 | 	to->sb_features2 = be32_to_cpu(from->sb_features2); | 
 | 	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); | 
 | } | 
 |  | 
 | /* | 
 |  * Copy in core superblock to ondisk one. | 
 |  * | 
 |  * The fields argument is mask of superblock fields to copy. | 
 |  */ | 
 | void | 
 | xfs_sb_to_disk( | 
 | 	xfs_dsb_t	*to, | 
 | 	xfs_sb_t	*from, | 
 | 	__int64_t	fields) | 
 | { | 
 | 	xfs_caddr_t	to_ptr = (xfs_caddr_t)to; | 
 | 	xfs_caddr_t	from_ptr = (xfs_caddr_t)from; | 
 | 	xfs_sb_field_t	f; | 
 | 	int		first; | 
 | 	int		size; | 
 |  | 
 | 	ASSERT(fields); | 
 | 	if (!fields) | 
 | 		return; | 
 |  | 
 | 	while (fields) { | 
 | 		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); | 
 | 		first = xfs_sb_info[f].offset; | 
 | 		size = xfs_sb_info[f + 1].offset - first; | 
 |  | 
 | 		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); | 
 |  | 
 | 		if (size == 1 || xfs_sb_info[f].type == 1) { | 
 | 			memcpy(to_ptr + first, from_ptr + first, size); | 
 | 		} else { | 
 | 			switch (size) { | 
 | 			case 2: | 
 | 				*(__be16 *)(to_ptr + first) = | 
 | 					cpu_to_be16(*(__u16 *)(from_ptr + first)); | 
 | 				break; | 
 | 			case 4: | 
 | 				*(__be32 *)(to_ptr + first) = | 
 | 					cpu_to_be32(*(__u32 *)(from_ptr + first)); | 
 | 				break; | 
 | 			case 8: | 
 | 				*(__be64 *)(to_ptr + first) = | 
 | 					cpu_to_be64(*(__u64 *)(from_ptr + first)); | 
 | 				break; | 
 | 			default: | 
 | 				ASSERT(0); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		fields &= ~(1LL << f); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_readsb | 
 |  * | 
 |  * Does the initial read of the superblock. | 
 |  */ | 
 | int | 
 | xfs_readsb(xfs_mount_t *mp, int flags) | 
 | { | 
 | 	unsigned int	sector_size; | 
 | 	unsigned int	extra_flags; | 
 | 	xfs_buf_t	*bp; | 
 | 	int		error; | 
 |  | 
 | 	ASSERT(mp->m_sb_bp == NULL); | 
 | 	ASSERT(mp->m_ddev_targp != NULL); | 
 |  | 
 | 	/* | 
 | 	 * Allocate a (locked) buffer to hold the superblock. | 
 | 	 * This will be kept around at all times to optimize | 
 | 	 * access to the superblock. | 
 | 	 */ | 
 | 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); | 
 | 	extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED; | 
 |  | 
 | 	bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR, BTOBB(sector_size), | 
 | 			  extra_flags); | 
 | 	if (!bp || XFS_BUF_ISERROR(bp)) { | 
 | 		xfs_fs_mount_cmn_err(flags, "SB read failed"); | 
 | 		error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; | 
 | 		goto fail; | 
 | 	} | 
 | 	ASSERT(XFS_BUF_ISBUSY(bp)); | 
 | 	ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); | 
 |  | 
 | 	/* | 
 | 	 * Initialize the mount structure from the superblock. | 
 | 	 * But first do some basic consistency checking. | 
 | 	 */ | 
 | 	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); | 
 |  | 
 | 	error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags); | 
 | 	if (error) { | 
 | 		xfs_fs_mount_cmn_err(flags, "SB validate failed"); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We must be able to do sector-sized and sector-aligned IO. | 
 | 	 */ | 
 | 	if (sector_size > mp->m_sb.sb_sectsize) { | 
 | 		xfs_fs_mount_cmn_err(flags, | 
 | 			"device supports only %u byte sectors (not %u)", | 
 | 			sector_size, mp->m_sb.sb_sectsize); | 
 | 		error = ENOSYS; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If device sector size is smaller than the superblock size, | 
 | 	 * re-read the superblock so the buffer is correctly sized. | 
 | 	 */ | 
 | 	if (sector_size < mp->m_sb.sb_sectsize) { | 
 | 		XFS_BUF_UNMANAGE(bp); | 
 | 		xfs_buf_relse(bp); | 
 | 		sector_size = mp->m_sb.sb_sectsize; | 
 | 		bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR, | 
 | 				  BTOBB(sector_size), extra_flags); | 
 | 		if (!bp || XFS_BUF_ISERROR(bp)) { | 
 | 			xfs_fs_mount_cmn_err(flags, "SB re-read failed"); | 
 | 			error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; | 
 | 			goto fail; | 
 | 		} | 
 | 		ASSERT(XFS_BUF_ISBUSY(bp)); | 
 | 		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); | 
 | 	} | 
 |  | 
 | 	/* Initialize per-cpu counters */ | 
 | 	xfs_icsb_reinit_counters(mp); | 
 |  | 
 | 	mp->m_sb_bp = bp; | 
 | 	xfs_buf_relse(bp); | 
 | 	ASSERT(XFS_BUF_VALUSEMA(bp) > 0); | 
 | 	return 0; | 
 |  | 
 |  fail: | 
 | 	if (bp) { | 
 | 		XFS_BUF_UNMANAGE(bp); | 
 | 		xfs_buf_relse(bp); | 
 | 	} | 
 | 	return error; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * xfs_mount_common | 
 |  * | 
 |  * Mount initialization code establishing various mount | 
 |  * fields from the superblock associated with the given | 
 |  * mount structure | 
 |  */ | 
 | STATIC void | 
 | xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) | 
 | { | 
 | 	mp->m_agfrotor = mp->m_agirotor = 0; | 
 | 	spin_lock_init(&mp->m_agirotor_lock); | 
 | 	mp->m_maxagi = mp->m_sb.sb_agcount; | 
 | 	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; | 
 | 	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; | 
 | 	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; | 
 | 	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; | 
 | 	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; | 
 | 	mp->m_blockmask = sbp->sb_blocksize - 1; | 
 | 	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; | 
 | 	mp->m_blockwmask = mp->m_blockwsize - 1; | 
 |  | 
 | 	mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); | 
 | 	mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); | 
 | 	mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; | 
 | 	mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; | 
 |  | 
 | 	mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); | 
 | 	mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); | 
 | 	mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2; | 
 | 	mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2; | 
 |  | 
 | 	mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); | 
 | 	mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); | 
 | 	mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; | 
 | 	mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; | 
 |  | 
 | 	mp->m_bsize = XFS_FSB_TO_BB(mp, 1); | 
 | 	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, | 
 | 					sbp->sb_inopblock); | 
 | 	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_initialize_perag_data | 
 |  * | 
 |  * Read in each per-ag structure so we can count up the number of | 
 |  * allocated inodes, free inodes and used filesystem blocks as this | 
 |  * information is no longer persistent in the superblock. Once we have | 
 |  * this information, write it into the in-core superblock structure. | 
 |  */ | 
 | STATIC int | 
 | xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) | 
 | { | 
 | 	xfs_agnumber_t	index; | 
 | 	xfs_perag_t	*pag; | 
 | 	xfs_sb_t	*sbp = &mp->m_sb; | 
 | 	uint64_t	ifree = 0; | 
 | 	uint64_t	ialloc = 0; | 
 | 	uint64_t	bfree = 0; | 
 | 	uint64_t	bfreelst = 0; | 
 | 	uint64_t	btree = 0; | 
 | 	int		error; | 
 |  | 
 | 	for (index = 0; index < agcount; index++) { | 
 | 		/* | 
 | 		 * read the agf, then the agi. This gets us | 
 | 		 * all the information we need and populates the | 
 | 		 * per-ag structures for us. | 
 | 		 */ | 
 | 		error = xfs_alloc_pagf_init(mp, NULL, index, 0); | 
 | 		if (error) | 
 | 			return error; | 
 |  | 
 | 		error = xfs_ialloc_pagi_init(mp, NULL, index); | 
 | 		if (error) | 
 | 			return error; | 
 | 		pag = &mp->m_perag[index]; | 
 | 		ifree += pag->pagi_freecount; | 
 | 		ialloc += pag->pagi_count; | 
 | 		bfree += pag->pagf_freeblks; | 
 | 		bfreelst += pag->pagf_flcount; | 
 | 		btree += pag->pagf_btreeblks; | 
 | 	} | 
 | 	/* | 
 | 	 * Overwrite incore superblock counters with just-read data | 
 | 	 */ | 
 | 	spin_lock(&mp->m_sb_lock); | 
 | 	sbp->sb_ifree = ifree; | 
 | 	sbp->sb_icount = ialloc; | 
 | 	sbp->sb_fdblocks = bfree + bfreelst + btree; | 
 | 	spin_unlock(&mp->m_sb_lock); | 
 |  | 
 | 	/* Fixup the per-cpu counters as well. */ | 
 | 	xfs_icsb_reinit_counters(mp); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Update alignment values based on mount options and sb values | 
 |  */ | 
 | STATIC int | 
 | xfs_update_alignment(xfs_mount_t *mp) | 
 | { | 
 | 	xfs_sb_t	*sbp = &(mp->m_sb); | 
 |  | 
 | 	if (mp->m_dalign) { | 
 | 		/* | 
 | 		 * If stripe unit and stripe width are not multiples | 
 | 		 * of the fs blocksize turn off alignment. | 
 | 		 */ | 
 | 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || | 
 | 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) { | 
 | 			if (mp->m_flags & XFS_MOUNT_RETERR) { | 
 | 				cmn_err(CE_WARN, | 
 | 					"XFS: alignment check 1 failed"); | 
 | 				return XFS_ERROR(EINVAL); | 
 | 			} | 
 | 			mp->m_dalign = mp->m_swidth = 0; | 
 | 		} else { | 
 | 			/* | 
 | 			 * Convert the stripe unit and width to FSBs. | 
 | 			 */ | 
 | 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); | 
 | 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { | 
 | 				if (mp->m_flags & XFS_MOUNT_RETERR) { | 
 | 					return XFS_ERROR(EINVAL); | 
 | 				} | 
 | 				xfs_fs_cmn_err(CE_WARN, mp, | 
 | "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)", | 
 | 					mp->m_dalign, mp->m_swidth, | 
 | 					sbp->sb_agblocks); | 
 |  | 
 | 				mp->m_dalign = 0; | 
 | 				mp->m_swidth = 0; | 
 | 			} else if (mp->m_dalign) { | 
 | 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); | 
 | 			} else { | 
 | 				if (mp->m_flags & XFS_MOUNT_RETERR) { | 
 | 					xfs_fs_cmn_err(CE_WARN, mp, | 
 | "stripe alignment turned off: sunit(%d) less than bsize(%d)", | 
 |                                         	mp->m_dalign, | 
 | 						mp->m_blockmask +1); | 
 | 					return XFS_ERROR(EINVAL); | 
 | 				} | 
 | 				mp->m_swidth = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Update superblock with new values | 
 | 		 * and log changes | 
 | 		 */ | 
 | 		if (xfs_sb_version_hasdalign(sbp)) { | 
 | 			if (sbp->sb_unit != mp->m_dalign) { | 
 | 				sbp->sb_unit = mp->m_dalign; | 
 | 				mp->m_update_flags |= XFS_SB_UNIT; | 
 | 			} | 
 | 			if (sbp->sb_width != mp->m_swidth) { | 
 | 				sbp->sb_width = mp->m_swidth; | 
 | 				mp->m_update_flags |= XFS_SB_WIDTH; | 
 | 			} | 
 | 		} | 
 | 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && | 
 | 		    xfs_sb_version_hasdalign(&mp->m_sb)) { | 
 | 			mp->m_dalign = sbp->sb_unit; | 
 | 			mp->m_swidth = sbp->sb_width; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Set the maximum inode count for this filesystem | 
 |  */ | 
 | STATIC void | 
 | xfs_set_maxicount(xfs_mount_t *mp) | 
 | { | 
 | 	xfs_sb_t	*sbp = &(mp->m_sb); | 
 | 	__uint64_t	icount; | 
 |  | 
 | 	if (sbp->sb_imax_pct) { | 
 | 		/* | 
 | 		 * Make sure the maximum inode count is a multiple | 
 | 		 * of the units we allocate inodes in. | 
 | 		 */ | 
 | 		icount = sbp->sb_dblocks * sbp->sb_imax_pct; | 
 | 		do_div(icount, 100); | 
 | 		do_div(icount, mp->m_ialloc_blks); | 
 | 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  << | 
 | 				   sbp->sb_inopblog; | 
 | 	} else { | 
 | 		mp->m_maxicount = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Set the default minimum read and write sizes unless | 
 |  * already specified in a mount option. | 
 |  * We use smaller I/O sizes when the file system | 
 |  * is being used for NFS service (wsync mount option). | 
 |  */ | 
 | STATIC void | 
 | xfs_set_rw_sizes(xfs_mount_t *mp) | 
 | { | 
 | 	xfs_sb_t	*sbp = &(mp->m_sb); | 
 | 	int		readio_log, writeio_log; | 
 |  | 
 | 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { | 
 | 		if (mp->m_flags & XFS_MOUNT_WSYNC) { | 
 | 			readio_log = XFS_WSYNC_READIO_LOG; | 
 | 			writeio_log = XFS_WSYNC_WRITEIO_LOG; | 
 | 		} else { | 
 | 			readio_log = XFS_READIO_LOG_LARGE; | 
 | 			writeio_log = XFS_WRITEIO_LOG_LARGE; | 
 | 		} | 
 | 	} else { | 
 | 		readio_log = mp->m_readio_log; | 
 | 		writeio_log = mp->m_writeio_log; | 
 | 	} | 
 |  | 
 | 	if (sbp->sb_blocklog > readio_log) { | 
 | 		mp->m_readio_log = sbp->sb_blocklog; | 
 | 	} else { | 
 | 		mp->m_readio_log = readio_log; | 
 | 	} | 
 | 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); | 
 | 	if (sbp->sb_blocklog > writeio_log) { | 
 | 		mp->m_writeio_log = sbp->sb_blocklog; | 
 | 	} else { | 
 | 		mp->m_writeio_log = writeio_log; | 
 | 	} | 
 | 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); | 
 | } | 
 |  | 
 | /* | 
 |  * Set whether we're using inode alignment. | 
 |  */ | 
 | STATIC void | 
 | xfs_set_inoalignment(xfs_mount_t *mp) | 
 | { | 
 | 	if (xfs_sb_version_hasalign(&mp->m_sb) && | 
 | 	    mp->m_sb.sb_inoalignmt >= | 
 | 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) | 
 | 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; | 
 | 	else | 
 | 		mp->m_inoalign_mask = 0; | 
 | 	/* | 
 | 	 * If we are using stripe alignment, check whether | 
 | 	 * the stripe unit is a multiple of the inode alignment | 
 | 	 */ | 
 | 	if (mp->m_dalign && mp->m_inoalign_mask && | 
 | 	    !(mp->m_dalign & mp->m_inoalign_mask)) | 
 | 		mp->m_sinoalign = mp->m_dalign; | 
 | 	else | 
 | 		mp->m_sinoalign = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check that the data (and log if separate) are an ok size. | 
 |  */ | 
 | STATIC int | 
 | xfs_check_sizes(xfs_mount_t *mp) | 
 | { | 
 | 	xfs_buf_t	*bp; | 
 | 	xfs_daddr_t	d; | 
 | 	int		error; | 
 |  | 
 | 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); | 
 | 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { | 
 | 		cmn_err(CE_WARN, "XFS: size check 1 failed"); | 
 | 		return XFS_ERROR(E2BIG); | 
 | 	} | 
 | 	error = xfs_read_buf(mp, mp->m_ddev_targp, | 
 | 			     d - XFS_FSS_TO_BB(mp, 1), | 
 | 			     XFS_FSS_TO_BB(mp, 1), 0, &bp); | 
 | 	if (!error) { | 
 | 		xfs_buf_relse(bp); | 
 | 	} else { | 
 | 		cmn_err(CE_WARN, "XFS: size check 2 failed"); | 
 | 		if (error == ENOSPC) | 
 | 			error = XFS_ERROR(E2BIG); | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	if (mp->m_logdev_targp != mp->m_ddev_targp) { | 
 | 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); | 
 | 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { | 
 | 			cmn_err(CE_WARN, "XFS: size check 3 failed"); | 
 | 			return XFS_ERROR(E2BIG); | 
 | 		} | 
 | 		error = xfs_read_buf(mp, mp->m_logdev_targp, | 
 | 				     d - XFS_FSB_TO_BB(mp, 1), | 
 | 				     XFS_FSB_TO_BB(mp, 1), 0, &bp); | 
 | 		if (!error) { | 
 | 			xfs_buf_relse(bp); | 
 | 		} else { | 
 | 			cmn_err(CE_WARN, "XFS: size check 3 failed"); | 
 | 			if (error == ENOSPC) | 
 | 				error = XFS_ERROR(E2BIG); | 
 | 			return error; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Clear the quotaflags in memory and in the superblock. | 
 |  */ | 
 | int | 
 | xfs_mount_reset_sbqflags( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	int			error; | 
 | 	struct xfs_trans	*tp; | 
 |  | 
 | 	mp->m_qflags = 0; | 
 |  | 
 | 	/* | 
 | 	 * It is OK to look at sb_qflags here in mount path, | 
 | 	 * without m_sb_lock. | 
 | 	 */ | 
 | 	if (mp->m_sb.sb_qflags == 0) | 
 | 		return 0; | 
 | 	spin_lock(&mp->m_sb_lock); | 
 | 	mp->m_sb.sb_qflags = 0; | 
 | 	spin_unlock(&mp->m_sb_lock); | 
 |  | 
 | 	/* | 
 | 	 * If the fs is readonly, let the incore superblock run | 
 | 	 * with quotas off but don't flush the update out to disk | 
 | 	 */ | 
 | 	if (mp->m_flags & XFS_MOUNT_RDONLY) | 
 | 		return 0; | 
 |  | 
 | #ifdef QUOTADEBUG | 
 | 	xfs_fs_cmn_err(CE_NOTE, mp, "Writing superblock quota changes"); | 
 | #endif | 
 |  | 
 | 	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); | 
 | 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, | 
 | 				      XFS_DEFAULT_LOG_COUNT); | 
 | 	if (error) { | 
 | 		xfs_trans_cancel(tp, 0); | 
 | 		xfs_fs_cmn_err(CE_ALERT, mp, | 
 | 			"xfs_mount_reset_sbqflags: Superblock update failed!"); | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	xfs_mod_sb(tp, XFS_SB_QFLAGS); | 
 | 	return xfs_trans_commit(tp, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * This function does the following on an initial mount of a file system: | 
 |  *	- reads the superblock from disk and init the mount struct | 
 |  *	- if we're a 32-bit kernel, do a size check on the superblock | 
 |  *		so we don't mount terabyte filesystems | 
 |  *	- init mount struct realtime fields | 
 |  *	- allocate inode hash table for fs | 
 |  *	- init directory manager | 
 |  *	- perform recovery and init the log manager | 
 |  */ | 
 | int | 
 | xfs_mountfs( | 
 | 	xfs_mount_t	*mp) | 
 | { | 
 | 	xfs_sb_t	*sbp = &(mp->m_sb); | 
 | 	xfs_inode_t	*rip; | 
 | 	__uint64_t	resblks; | 
 | 	uint		quotamount = 0; | 
 | 	uint		quotaflags = 0; | 
 | 	int		error = 0; | 
 |  | 
 | 	xfs_mount_common(mp, sbp); | 
 |  | 
 | 	/* | 
 | 	 * Check for a mismatched features2 values.  Older kernels | 
 | 	 * read & wrote into the wrong sb offset for sb_features2 | 
 | 	 * on some platforms due to xfs_sb_t not being 64bit size aligned | 
 | 	 * when sb_features2 was added, which made older superblock | 
 | 	 * reading/writing routines swap it as a 64-bit value. | 
 | 	 * | 
 | 	 * For backwards compatibility, we make both slots equal. | 
 | 	 * | 
 | 	 * If we detect a mismatched field, we OR the set bits into the | 
 | 	 * existing features2 field in case it has already been modified; we | 
 | 	 * don't want to lose any features.  We then update the bad location | 
 | 	 * with the ORed value so that older kernels will see any features2 | 
 | 	 * flags, and mark the two fields as needing updates once the | 
 | 	 * transaction subsystem is online. | 
 | 	 */ | 
 | 	if (xfs_sb_has_mismatched_features2(sbp)) { | 
 | 		cmn_err(CE_WARN, | 
 | 			"XFS: correcting sb_features alignment problem"); | 
 | 		sbp->sb_features2 |= sbp->sb_bad_features2; | 
 | 		sbp->sb_bad_features2 = sbp->sb_features2; | 
 | 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; | 
 |  | 
 | 		/* | 
 | 		 * Re-check for ATTR2 in case it was found in bad_features2 | 
 | 		 * slot. | 
 | 		 */ | 
 | 		if (xfs_sb_version_hasattr2(&mp->m_sb) && | 
 | 		   !(mp->m_flags & XFS_MOUNT_NOATTR2)) | 
 | 			mp->m_flags |= XFS_MOUNT_ATTR2; | 
 | 	} | 
 |  | 
 | 	if (xfs_sb_version_hasattr2(&mp->m_sb) && | 
 | 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) { | 
 | 		xfs_sb_version_removeattr2(&mp->m_sb); | 
 | 		mp->m_update_flags |= XFS_SB_FEATURES2; | 
 |  | 
 | 		/* update sb_versionnum for the clearing of the morebits */ | 
 | 		if (!sbp->sb_features2) | 
 | 			mp->m_update_flags |= XFS_SB_VERSIONNUM; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check if sb_agblocks is aligned at stripe boundary | 
 | 	 * If sb_agblocks is NOT aligned turn off m_dalign since | 
 | 	 * allocator alignment is within an ag, therefore ag has | 
 | 	 * to be aligned at stripe boundary. | 
 | 	 */ | 
 | 	error = xfs_update_alignment(mp); | 
 | 	if (error) | 
 | 		goto out; | 
 |  | 
 | 	xfs_alloc_compute_maxlevels(mp); | 
 | 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); | 
 | 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); | 
 | 	xfs_ialloc_compute_maxlevels(mp); | 
 |  | 
 | 	xfs_set_maxicount(mp); | 
 |  | 
 | 	mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog); | 
 |  | 
 | 	error = xfs_uuid_mount(mp); | 
 | 	if (error) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Set the minimum read and write sizes | 
 | 	 */ | 
 | 	xfs_set_rw_sizes(mp); | 
 |  | 
 | 	/* | 
 | 	 * Set the inode cluster size. | 
 | 	 * This may still be overridden by the file system | 
 | 	 * block size if it is larger than the chosen cluster size. | 
 | 	 */ | 
 | 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; | 
 |  | 
 | 	/* | 
 | 	 * Set inode alignment fields | 
 | 	 */ | 
 | 	xfs_set_inoalignment(mp); | 
 |  | 
 | 	/* | 
 | 	 * Check that the data (and log if separate) are an ok size. | 
 | 	 */ | 
 | 	error = xfs_check_sizes(mp); | 
 | 	if (error) | 
 | 		goto out_remove_uuid; | 
 |  | 
 | 	/* | 
 | 	 * Initialize realtime fields in the mount structure | 
 | 	 */ | 
 | 	error = xfs_rtmount_init(mp); | 
 | 	if (error) { | 
 | 		cmn_err(CE_WARN, "XFS: RT mount failed"); | 
 | 		goto out_remove_uuid; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 *  Copies the low order bits of the timestamp and the randomly | 
 | 	 *  set "sequence" number out of a UUID. | 
 | 	 */ | 
 | 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); | 
 |  | 
 | 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */ | 
 |  | 
 | 	xfs_dir_mount(mp); | 
 |  | 
 | 	/* | 
 | 	 * Initialize the attribute manager's entries. | 
 | 	 */ | 
 | 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; | 
 |  | 
 | 	/* | 
 | 	 * Initialize the precomputed transaction reservations values. | 
 | 	 */ | 
 | 	xfs_trans_init(mp); | 
 |  | 
 | 	/* | 
 | 	 * Allocate and initialize the per-ag data. | 
 | 	 */ | 
 | 	init_rwsem(&mp->m_peraglock); | 
 | 	mp->m_perag = kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), | 
 | 				  KM_MAYFAIL); | 
 | 	if (!mp->m_perag) | 
 | 		goto out_remove_uuid; | 
 |  | 
 | 	mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount); | 
 |  | 
 | 	if (!sbp->sb_logblocks) { | 
 | 		cmn_err(CE_WARN, "XFS: no log defined"); | 
 | 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); | 
 | 		error = XFS_ERROR(EFSCORRUPTED); | 
 | 		goto out_free_perag; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * log's mount-time initialization. Perform 1st part recovery if needed | 
 | 	 */ | 
 | 	error = xfs_log_mount(mp, mp->m_logdev_targp, | 
 | 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), | 
 | 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); | 
 | 	if (error) { | 
 | 		cmn_err(CE_WARN, "XFS: log mount failed"); | 
 | 		goto out_free_perag; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now the log is mounted, we know if it was an unclean shutdown or | 
 | 	 * not. If it was, with the first phase of recovery has completed, we | 
 | 	 * have consistent AG blocks on disk. We have not recovered EFIs yet, | 
 | 	 * but they are recovered transactionally in the second recovery phase | 
 | 	 * later. | 
 | 	 * | 
 | 	 * Hence we can safely re-initialise incore superblock counters from | 
 | 	 * the per-ag data. These may not be correct if the filesystem was not | 
 | 	 * cleanly unmounted, so we need to wait for recovery to finish before | 
 | 	 * doing this. | 
 | 	 * | 
 | 	 * If the filesystem was cleanly unmounted, then we can trust the | 
 | 	 * values in the superblock to be correct and we don't need to do | 
 | 	 * anything here. | 
 | 	 * | 
 | 	 * If we are currently making the filesystem, the initialisation will | 
 | 	 * fail as the perag data is in an undefined state. | 
 | 	 */ | 
 | 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) && | 
 | 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && | 
 | 	     !mp->m_sb.sb_inprogress) { | 
 | 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount); | 
 | 		if (error) | 
 | 			goto out_free_perag; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Get and sanity-check the root inode. | 
 | 	 * Save the pointer to it in the mount structure. | 
 | 	 */ | 
 | 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0); | 
 | 	if (error) { | 
 | 		cmn_err(CE_WARN, "XFS: failed to read root inode"); | 
 | 		goto out_log_dealloc; | 
 | 	} | 
 |  | 
 | 	ASSERT(rip != NULL); | 
 |  | 
 | 	if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) { | 
 | 		cmn_err(CE_WARN, "XFS: corrupted root inode"); | 
 | 		cmn_err(CE_WARN, "Device %s - root %llu is not a directory", | 
 | 			XFS_BUFTARG_NAME(mp->m_ddev_targp), | 
 | 			(unsigned long long)rip->i_ino); | 
 | 		xfs_iunlock(rip, XFS_ILOCK_EXCL); | 
 | 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, | 
 | 				 mp); | 
 | 		error = XFS_ERROR(EFSCORRUPTED); | 
 | 		goto out_rele_rip; | 
 | 	} | 
 | 	mp->m_rootip = rip;	/* save it */ | 
 |  | 
 | 	xfs_iunlock(rip, XFS_ILOCK_EXCL); | 
 |  | 
 | 	/* | 
 | 	 * Initialize realtime inode pointers in the mount structure | 
 | 	 */ | 
 | 	error = xfs_rtmount_inodes(mp); | 
 | 	if (error) { | 
 | 		/* | 
 | 		 * Free up the root inode. | 
 | 		 */ | 
 | 		cmn_err(CE_WARN, "XFS: failed to read RT inodes"); | 
 | 		goto out_rele_rip; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this is a read-only mount defer the superblock updates until | 
 | 	 * the next remount into writeable mode.  Otherwise we would never | 
 | 	 * perform the update e.g. for the root filesystem. | 
 | 	 */ | 
 | 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { | 
 | 		error = xfs_mount_log_sb(mp, mp->m_update_flags); | 
 | 		if (error) { | 
 | 			cmn_err(CE_WARN, "XFS: failed to write sb changes"); | 
 | 			goto out_rtunmount; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Initialise the XFS quota management subsystem for this mount | 
 | 	 */ | 
 | 	if (XFS_IS_QUOTA_RUNNING(mp)) { | 
 | 		error = xfs_qm_newmount(mp, "amount, "aflags); | 
 | 		if (error) | 
 | 			goto out_rtunmount; | 
 | 	} else { | 
 | 		ASSERT(!XFS_IS_QUOTA_ON(mp)); | 
 |  | 
 | 		/* | 
 | 		 * If a file system had quotas running earlier, but decided to | 
 | 		 * mount without -o uquota/pquota/gquota options, revoke the | 
 | 		 * quotachecked license. | 
 | 		 */ | 
 | 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { | 
 | 			cmn_err(CE_NOTE, | 
 | 				"XFS: resetting qflags for filesystem %s", | 
 | 				mp->m_fsname); | 
 |  | 
 | 			error = xfs_mount_reset_sbqflags(mp); | 
 | 			if (error) | 
 | 				return error; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Finish recovering the file system.  This part needed to be | 
 | 	 * delayed until after the root and real-time bitmap inodes | 
 | 	 * were consistently read in. | 
 | 	 */ | 
 | 	error = xfs_log_mount_finish(mp); | 
 | 	if (error) { | 
 | 		cmn_err(CE_WARN, "XFS: log mount finish failed"); | 
 | 		goto out_rtunmount; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Complete the quota initialisation, post-log-replay component. | 
 | 	 */ | 
 | 	if (quotamount) { | 
 | 		ASSERT(mp->m_qflags == 0); | 
 | 		mp->m_qflags = quotaflags; | 
 |  | 
 | 		xfs_qm_mount_quotas(mp); | 
 | 	} | 
 |  | 
 | #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY) | 
 | 	if (XFS_IS_QUOTA_ON(mp)) | 
 | 		xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas turned on"); | 
 | 	else | 
 | 		xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas not turned on"); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Now we are mounted, reserve a small amount of unused space for | 
 | 	 * privileged transactions. This is needed so that transaction | 
 | 	 * space required for critical operations can dip into this pool | 
 | 	 * when at ENOSPC. This is needed for operations like create with | 
 | 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations | 
 | 	 * are not allowed to use this reserved space. | 
 | 	 * | 
 | 	 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller. | 
 | 	 * This may drive us straight to ENOSPC on mount, but that implies | 
 | 	 * we were already there on the last unmount. Warn if this occurs. | 
 | 	 */ | 
 | 	resblks = mp->m_sb.sb_dblocks; | 
 | 	do_div(resblks, 20); | 
 | 	resblks = min_t(__uint64_t, resblks, 1024); | 
 | 	error = xfs_reserve_blocks(mp, &resblks, NULL); | 
 | 	if (error) | 
 | 		cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. " | 
 | 				"Continuing without a reserve pool."); | 
 |  | 
 | 	return 0; | 
 |  | 
 |  out_rtunmount: | 
 | 	xfs_rtunmount_inodes(mp); | 
 |  out_rele_rip: | 
 | 	IRELE(rip); | 
 |  out_log_dealloc: | 
 | 	xfs_log_unmount(mp); | 
 |  out_free_perag: | 
 | 	xfs_free_perag(mp); | 
 |  out_remove_uuid: | 
 | 	xfs_uuid_unmount(mp); | 
 |  out: | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * This flushes out the inodes,dquots and the superblock, unmounts the | 
 |  * log and makes sure that incore structures are freed. | 
 |  */ | 
 | void | 
 | xfs_unmountfs( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	__uint64_t		resblks; | 
 | 	int			error; | 
 |  | 
 | 	xfs_qm_unmount_quotas(mp); | 
 | 	xfs_rtunmount_inodes(mp); | 
 | 	IRELE(mp->m_rootip); | 
 |  | 
 | 	/* | 
 | 	 * We can potentially deadlock here if we have an inode cluster | 
 | 	 * that has been freed has its buffer still pinned in memory because | 
 | 	 * the transaction is still sitting in a iclog. The stale inodes | 
 | 	 * on that buffer will have their flush locks held until the | 
 | 	 * transaction hits the disk and the callbacks run. the inode | 
 | 	 * flush takes the flush lock unconditionally and with nothing to | 
 | 	 * push out the iclog we will never get that unlocked. hence we | 
 | 	 * need to force the log first. | 
 | 	 */ | 
 | 	xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); | 
 | 	xfs_reclaim_inodes(mp, XFS_IFLUSH_ASYNC); | 
 |  | 
 | 	xfs_qm_unmount(mp); | 
 |  | 
 | 	/* | 
 | 	 * Flush out the log synchronously so that we know for sure | 
 | 	 * that nothing is pinned.  This is important because bflush() | 
 | 	 * will skip pinned buffers. | 
 | 	 */ | 
 | 	xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); | 
 |  | 
 | 	xfs_binval(mp->m_ddev_targp); | 
 | 	if (mp->m_rtdev_targp) { | 
 | 		xfs_binval(mp->m_rtdev_targp); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Unreserve any blocks we have so that when we unmount we don't account | 
 | 	 * the reserved free space as used. This is really only necessary for | 
 | 	 * lazy superblock counting because it trusts the incore superblock | 
 | 	 * counters to be absolutely correct on clean unmount. | 
 | 	 * | 
 | 	 * We don't bother correcting this elsewhere for lazy superblock | 
 | 	 * counting because on mount of an unclean filesystem we reconstruct the | 
 | 	 * correct counter value and this is irrelevant. | 
 | 	 * | 
 | 	 * For non-lazy counter filesystems, this doesn't matter at all because | 
 | 	 * we only every apply deltas to the superblock and hence the incore | 
 | 	 * value does not matter.... | 
 | 	 */ | 
 | 	resblks = 0; | 
 | 	error = xfs_reserve_blocks(mp, &resblks, NULL); | 
 | 	if (error) | 
 | 		cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. " | 
 | 				"Freespace may not be correct on next mount."); | 
 |  | 
 | 	error = xfs_log_sbcount(mp, 1); | 
 | 	if (error) | 
 | 		cmn_err(CE_WARN, "XFS: Unable to update superblock counters. " | 
 | 				"Freespace may not be correct on next mount."); | 
 | 	xfs_unmountfs_writesb(mp); | 
 | 	xfs_unmountfs_wait(mp); 		/* wait for async bufs */ | 
 | 	xfs_log_unmount_write(mp); | 
 | 	xfs_log_unmount(mp); | 
 | 	xfs_uuid_unmount(mp); | 
 |  | 
 | #if defined(DEBUG) | 
 | 	xfs_errortag_clearall(mp, 0); | 
 | #endif | 
 | 	xfs_free_perag(mp); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_unmountfs_wait(xfs_mount_t *mp) | 
 | { | 
 | 	if (mp->m_logdev_targp != mp->m_ddev_targp) | 
 | 		xfs_wait_buftarg(mp->m_logdev_targp); | 
 | 	if (mp->m_rtdev_targp) | 
 | 		xfs_wait_buftarg(mp->m_rtdev_targp); | 
 | 	xfs_wait_buftarg(mp->m_ddev_targp); | 
 | } | 
 |  | 
 | int | 
 | xfs_fs_writable(xfs_mount_t *mp) | 
 | { | 
 | 	return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) || | 
 | 		(mp->m_flags & XFS_MOUNT_RDONLY)); | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_log_sbcount | 
 |  * | 
 |  * Called either periodically to keep the on disk superblock values | 
 |  * roughly up to date or from unmount to make sure the values are | 
 |  * correct on a clean unmount. | 
 |  * | 
 |  * Note this code can be called during the process of freezing, so | 
 |  * we may need to use the transaction allocator which does not not | 
 |  * block when the transaction subsystem is in its frozen state. | 
 |  */ | 
 | int | 
 | xfs_log_sbcount( | 
 | 	xfs_mount_t	*mp, | 
 | 	uint		sync) | 
 | { | 
 | 	xfs_trans_t	*tp; | 
 | 	int		error; | 
 |  | 
 | 	if (!xfs_fs_writable(mp)) | 
 | 		return 0; | 
 |  | 
 | 	xfs_icsb_sync_counters(mp, 0); | 
 |  | 
 | 	/* | 
 | 	 * we don't need to do this if we are updating the superblock | 
 | 	 * counters on every modification. | 
 | 	 */ | 
 | 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) | 
 | 		return 0; | 
 |  | 
 | 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP); | 
 | 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, | 
 | 					XFS_DEFAULT_LOG_COUNT); | 
 | 	if (error) { | 
 | 		xfs_trans_cancel(tp, 0); | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); | 
 | 	if (sync) | 
 | 		xfs_trans_set_sync(tp); | 
 | 	error = xfs_trans_commit(tp, 0); | 
 | 	return error; | 
 | } | 
 |  | 
 | int | 
 | xfs_unmountfs_writesb(xfs_mount_t *mp) | 
 | { | 
 | 	xfs_buf_t	*sbp; | 
 | 	int		error = 0; | 
 |  | 
 | 	/* | 
 | 	 * skip superblock write if fs is read-only, or | 
 | 	 * if we are doing a forced umount. | 
 | 	 */ | 
 | 	if (!((mp->m_flags & XFS_MOUNT_RDONLY) || | 
 | 		XFS_FORCED_SHUTDOWN(mp))) { | 
 |  | 
 | 		sbp = xfs_getsb(mp, 0); | 
 |  | 
 | 		XFS_BUF_UNDONE(sbp); | 
 | 		XFS_BUF_UNREAD(sbp); | 
 | 		XFS_BUF_UNDELAYWRITE(sbp); | 
 | 		XFS_BUF_WRITE(sbp); | 
 | 		XFS_BUF_UNASYNC(sbp); | 
 | 		ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp); | 
 | 		xfsbdstrat(mp, sbp); | 
 | 		error = xfs_iowait(sbp); | 
 | 		if (error) | 
 | 			xfs_ioerror_alert("xfs_unmountfs_writesb", | 
 | 					  mp, sbp, XFS_BUF_ADDR(sbp)); | 
 | 		xfs_buf_relse(sbp); | 
 | 	} | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_mod_sb() can be used to copy arbitrary changes to the | 
 |  * in-core superblock into the superblock buffer to be logged. | 
 |  * It does not provide the higher level of locking that is | 
 |  * needed to protect the in-core superblock from concurrent | 
 |  * access. | 
 |  */ | 
 | void | 
 | xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) | 
 | { | 
 | 	xfs_buf_t	*bp; | 
 | 	int		first; | 
 | 	int		last; | 
 | 	xfs_mount_t	*mp; | 
 | 	xfs_sb_field_t	f; | 
 |  | 
 | 	ASSERT(fields); | 
 | 	if (!fields) | 
 | 		return; | 
 | 	mp = tp->t_mountp; | 
 | 	bp = xfs_trans_getsb(tp, mp, 0); | 
 | 	first = sizeof(xfs_sb_t); | 
 | 	last = 0; | 
 |  | 
 | 	/* translate/copy */ | 
 |  | 
 | 	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields); | 
 |  | 
 | 	/* find modified range */ | 
 |  | 
 | 	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); | 
 | 	ASSERT((1LL << f) & XFS_SB_MOD_BITS); | 
 | 	first = xfs_sb_info[f].offset; | 
 |  | 
 | 	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); | 
 | 	ASSERT((1LL << f) & XFS_SB_MOD_BITS); | 
 | 	last = xfs_sb_info[f + 1].offset - 1; | 
 |  | 
 | 	xfs_trans_log_buf(tp, bp, first, last); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply | 
 |  * a delta to a specified field in the in-core superblock.  Simply | 
 |  * switch on the field indicated and apply the delta to that field. | 
 |  * Fields are not allowed to dip below zero, so if the delta would | 
 |  * do this do not apply it and return EINVAL. | 
 |  * | 
 |  * The m_sb_lock must be held when this routine is called. | 
 |  */ | 
 | STATIC int | 
 | xfs_mod_incore_sb_unlocked( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_sb_field_t	field, | 
 | 	int64_t		delta, | 
 | 	int		rsvd) | 
 | { | 
 | 	int		scounter;	/* short counter for 32 bit fields */ | 
 | 	long long	lcounter;	/* long counter for 64 bit fields */ | 
 | 	long long	res_used, rem; | 
 |  | 
 | 	/* | 
 | 	 * With the in-core superblock spin lock held, switch | 
 | 	 * on the indicated field.  Apply the delta to the | 
 | 	 * proper field.  If the fields value would dip below | 
 | 	 * 0, then do not apply the delta and return EINVAL. | 
 | 	 */ | 
 | 	switch (field) { | 
 | 	case XFS_SBS_ICOUNT: | 
 | 		lcounter = (long long)mp->m_sb.sb_icount; | 
 | 		lcounter += delta; | 
 | 		if (lcounter < 0) { | 
 | 			ASSERT(0); | 
 | 			return XFS_ERROR(EINVAL); | 
 | 		} | 
 | 		mp->m_sb.sb_icount = lcounter; | 
 | 		return 0; | 
 | 	case XFS_SBS_IFREE: | 
 | 		lcounter = (long long)mp->m_sb.sb_ifree; | 
 | 		lcounter += delta; | 
 | 		if (lcounter < 0) { | 
 | 			ASSERT(0); | 
 | 			return XFS_ERROR(EINVAL); | 
 | 		} | 
 | 		mp->m_sb.sb_ifree = lcounter; | 
 | 		return 0; | 
 | 	case XFS_SBS_FDBLOCKS: | 
 | 		lcounter = (long long) | 
 | 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); | 
 | 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); | 
 |  | 
 | 		if (delta > 0) {		/* Putting blocks back */ | 
 | 			if (res_used > delta) { | 
 | 				mp->m_resblks_avail += delta; | 
 | 			} else { | 
 | 				rem = delta - res_used; | 
 | 				mp->m_resblks_avail = mp->m_resblks; | 
 | 				lcounter += rem; | 
 | 			} | 
 | 		} else {				/* Taking blocks away */ | 
 |  | 
 | 			lcounter += delta; | 
 |  | 
 | 		/* | 
 | 		 * If were out of blocks, use any available reserved blocks if | 
 | 		 * were allowed to. | 
 | 		 */ | 
 |  | 
 | 			if (lcounter < 0) { | 
 | 				if (rsvd) { | 
 | 					lcounter = (long long)mp->m_resblks_avail + delta; | 
 | 					if (lcounter < 0) { | 
 | 						return XFS_ERROR(ENOSPC); | 
 | 					} | 
 | 					mp->m_resblks_avail = lcounter; | 
 | 					return 0; | 
 | 				} else {	/* not reserved */ | 
 | 					return XFS_ERROR(ENOSPC); | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); | 
 | 		return 0; | 
 | 	case XFS_SBS_FREXTENTS: | 
 | 		lcounter = (long long)mp->m_sb.sb_frextents; | 
 | 		lcounter += delta; | 
 | 		if (lcounter < 0) { | 
 | 			return XFS_ERROR(ENOSPC); | 
 | 		} | 
 | 		mp->m_sb.sb_frextents = lcounter; | 
 | 		return 0; | 
 | 	case XFS_SBS_DBLOCKS: | 
 | 		lcounter = (long long)mp->m_sb.sb_dblocks; | 
 | 		lcounter += delta; | 
 | 		if (lcounter < 0) { | 
 | 			ASSERT(0); | 
 | 			return XFS_ERROR(EINVAL); | 
 | 		} | 
 | 		mp->m_sb.sb_dblocks = lcounter; | 
 | 		return 0; | 
 | 	case XFS_SBS_AGCOUNT: | 
 | 		scounter = mp->m_sb.sb_agcount; | 
 | 		scounter += delta; | 
 | 		if (scounter < 0) { | 
 | 			ASSERT(0); | 
 | 			return XFS_ERROR(EINVAL); | 
 | 		} | 
 | 		mp->m_sb.sb_agcount = scounter; | 
 | 		return 0; | 
 | 	case XFS_SBS_IMAX_PCT: | 
 | 		scounter = mp->m_sb.sb_imax_pct; | 
 | 		scounter += delta; | 
 | 		if (scounter < 0) { | 
 | 			ASSERT(0); | 
 | 			return XFS_ERROR(EINVAL); | 
 | 		} | 
 | 		mp->m_sb.sb_imax_pct = scounter; | 
 | 		return 0; | 
 | 	case XFS_SBS_REXTSIZE: | 
 | 		scounter = mp->m_sb.sb_rextsize; | 
 | 		scounter += delta; | 
 | 		if (scounter < 0) { | 
 | 			ASSERT(0); | 
 | 			return XFS_ERROR(EINVAL); | 
 | 		} | 
 | 		mp->m_sb.sb_rextsize = scounter; | 
 | 		return 0; | 
 | 	case XFS_SBS_RBMBLOCKS: | 
 | 		scounter = mp->m_sb.sb_rbmblocks; | 
 | 		scounter += delta; | 
 | 		if (scounter < 0) { | 
 | 			ASSERT(0); | 
 | 			return XFS_ERROR(EINVAL); | 
 | 		} | 
 | 		mp->m_sb.sb_rbmblocks = scounter; | 
 | 		return 0; | 
 | 	case XFS_SBS_RBLOCKS: | 
 | 		lcounter = (long long)mp->m_sb.sb_rblocks; | 
 | 		lcounter += delta; | 
 | 		if (lcounter < 0) { | 
 | 			ASSERT(0); | 
 | 			return XFS_ERROR(EINVAL); | 
 | 		} | 
 | 		mp->m_sb.sb_rblocks = lcounter; | 
 | 		return 0; | 
 | 	case XFS_SBS_REXTENTS: | 
 | 		lcounter = (long long)mp->m_sb.sb_rextents; | 
 | 		lcounter += delta; | 
 | 		if (lcounter < 0) { | 
 | 			ASSERT(0); | 
 | 			return XFS_ERROR(EINVAL); | 
 | 		} | 
 | 		mp->m_sb.sb_rextents = lcounter; | 
 | 		return 0; | 
 | 	case XFS_SBS_REXTSLOG: | 
 | 		scounter = mp->m_sb.sb_rextslog; | 
 | 		scounter += delta; | 
 | 		if (scounter < 0) { | 
 | 			ASSERT(0); | 
 | 			return XFS_ERROR(EINVAL); | 
 | 		} | 
 | 		mp->m_sb.sb_rextslog = scounter; | 
 | 		return 0; | 
 | 	default: | 
 | 		ASSERT(0); | 
 | 		return XFS_ERROR(EINVAL); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_mod_incore_sb() is used to change a field in the in-core | 
 |  * superblock structure by the specified delta.  This modification | 
 |  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked() | 
 |  * routine to do the work. | 
 |  */ | 
 | int | 
 | xfs_mod_incore_sb( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_sb_field_t	field, | 
 | 	int64_t		delta, | 
 | 	int		rsvd) | 
 | { | 
 | 	int	status; | 
 |  | 
 | 	/* check for per-cpu counters */ | 
 | 	switch (field) { | 
 | #ifdef HAVE_PERCPU_SB | 
 | 	case XFS_SBS_ICOUNT: | 
 | 	case XFS_SBS_IFREE: | 
 | 	case XFS_SBS_FDBLOCKS: | 
 | 		if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { | 
 | 			status = xfs_icsb_modify_counters(mp, field, | 
 | 							delta, rsvd); | 
 | 			break; | 
 | 		} | 
 | 		/* FALLTHROUGH */ | 
 | #endif | 
 | 	default: | 
 | 		spin_lock(&mp->m_sb_lock); | 
 | 		status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); | 
 | 		spin_unlock(&mp->m_sb_lock); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return status; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_mod_incore_sb_batch() is used to change more than one field | 
 |  * in the in-core superblock structure at a time.  This modification | 
 |  * is protected by a lock internal to this module.  The fields and | 
 |  * changes to those fields are specified in the array of xfs_mod_sb | 
 |  * structures passed in. | 
 |  * | 
 |  * Either all of the specified deltas will be applied or none of | 
 |  * them will.  If any modified field dips below 0, then all modifications | 
 |  * will be backed out and EINVAL will be returned. | 
 |  */ | 
 | int | 
 | xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd) | 
 | { | 
 | 	int		status=0; | 
 | 	xfs_mod_sb_t	*msbp; | 
 |  | 
 | 	/* | 
 | 	 * Loop through the array of mod structures and apply each | 
 | 	 * individually.  If any fail, then back out all those | 
 | 	 * which have already been applied.  Do all of this within | 
 | 	 * the scope of the m_sb_lock so that all of the changes will | 
 | 	 * be atomic. | 
 | 	 */ | 
 | 	spin_lock(&mp->m_sb_lock); | 
 | 	msbp = &msb[0]; | 
 | 	for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) { | 
 | 		/* | 
 | 		 * Apply the delta at index n.  If it fails, break | 
 | 		 * from the loop so we'll fall into the undo loop | 
 | 		 * below. | 
 | 		 */ | 
 | 		switch (msbp->msb_field) { | 
 | #ifdef HAVE_PERCPU_SB | 
 | 		case XFS_SBS_ICOUNT: | 
 | 		case XFS_SBS_IFREE: | 
 | 		case XFS_SBS_FDBLOCKS: | 
 | 			if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { | 
 | 				spin_unlock(&mp->m_sb_lock); | 
 | 				status = xfs_icsb_modify_counters(mp, | 
 | 							msbp->msb_field, | 
 | 							msbp->msb_delta, rsvd); | 
 | 				spin_lock(&mp->m_sb_lock); | 
 | 				break; | 
 | 			} | 
 | 			/* FALLTHROUGH */ | 
 | #endif | 
 | 		default: | 
 | 			status = xfs_mod_incore_sb_unlocked(mp, | 
 | 						msbp->msb_field, | 
 | 						msbp->msb_delta, rsvd); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (status != 0) { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we didn't complete the loop above, then back out | 
 | 	 * any changes made to the superblock.  If you add code | 
 | 	 * between the loop above and here, make sure that you | 
 | 	 * preserve the value of status. Loop back until | 
 | 	 * we step below the beginning of the array.  Make sure | 
 | 	 * we don't touch anything back there. | 
 | 	 */ | 
 | 	if (status != 0) { | 
 | 		msbp--; | 
 | 		while (msbp >= msb) { | 
 | 			switch (msbp->msb_field) { | 
 | #ifdef HAVE_PERCPU_SB | 
 | 			case XFS_SBS_ICOUNT: | 
 | 			case XFS_SBS_IFREE: | 
 | 			case XFS_SBS_FDBLOCKS: | 
 | 				if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { | 
 | 					spin_unlock(&mp->m_sb_lock); | 
 | 					status = xfs_icsb_modify_counters(mp, | 
 | 							msbp->msb_field, | 
 | 							-(msbp->msb_delta), | 
 | 							rsvd); | 
 | 					spin_lock(&mp->m_sb_lock); | 
 | 					break; | 
 | 				} | 
 | 				/* FALLTHROUGH */ | 
 | #endif | 
 | 			default: | 
 | 				status = xfs_mod_incore_sb_unlocked(mp, | 
 | 							msbp->msb_field, | 
 | 							-(msbp->msb_delta), | 
 | 							rsvd); | 
 | 				break; | 
 | 			} | 
 | 			ASSERT(status == 0); | 
 | 			msbp--; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&mp->m_sb_lock); | 
 | 	return status; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_getsb() is called to obtain the buffer for the superblock. | 
 |  * The buffer is returned locked and read in from disk. | 
 |  * The buffer should be released with a call to xfs_brelse(). | 
 |  * | 
 |  * If the flags parameter is BUF_TRYLOCK, then we'll only return | 
 |  * the superblock buffer if it can be locked without sleeping. | 
 |  * If it can't then we'll return NULL. | 
 |  */ | 
 | xfs_buf_t * | 
 | xfs_getsb( | 
 | 	xfs_mount_t	*mp, | 
 | 	int		flags) | 
 | { | 
 | 	xfs_buf_t	*bp; | 
 |  | 
 | 	ASSERT(mp->m_sb_bp != NULL); | 
 | 	bp = mp->m_sb_bp; | 
 | 	if (flags & XFS_BUF_TRYLOCK) { | 
 | 		if (!XFS_BUF_CPSEMA(bp)) { | 
 | 			return NULL; | 
 | 		} | 
 | 	} else { | 
 | 		XFS_BUF_PSEMA(bp, PRIBIO); | 
 | 	} | 
 | 	XFS_BUF_HOLD(bp); | 
 | 	ASSERT(XFS_BUF_ISDONE(bp)); | 
 | 	return bp; | 
 | } | 
 |  | 
 | /* | 
 |  * Used to free the superblock along various error paths. | 
 |  */ | 
 | void | 
 | xfs_freesb( | 
 | 	xfs_mount_t	*mp) | 
 | { | 
 | 	xfs_buf_t	*bp; | 
 |  | 
 | 	/* | 
 | 	 * Use xfs_getsb() so that the buffer will be locked | 
 | 	 * when we call xfs_buf_relse(). | 
 | 	 */ | 
 | 	bp = xfs_getsb(mp, 0); | 
 | 	XFS_BUF_UNMANAGE(bp); | 
 | 	xfs_buf_relse(bp); | 
 | 	mp->m_sb_bp = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Used to log changes to the superblock unit and width fields which could | 
 |  * be altered by the mount options, as well as any potential sb_features2 | 
 |  * fixup. Only the first superblock is updated. | 
 |  */ | 
 | int | 
 | xfs_mount_log_sb( | 
 | 	xfs_mount_t	*mp, | 
 | 	__int64_t	fields) | 
 | { | 
 | 	xfs_trans_t	*tp; | 
 | 	int		error; | 
 |  | 
 | 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | | 
 | 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | | 
 | 			 XFS_SB_VERSIONNUM)); | 
 |  | 
 | 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); | 
 | 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, | 
 | 				XFS_DEFAULT_LOG_COUNT); | 
 | 	if (error) { | 
 | 		xfs_trans_cancel(tp, 0); | 
 | 		return error; | 
 | 	} | 
 | 	xfs_mod_sb(tp, fields); | 
 | 	error = xfs_trans_commit(tp, 0); | 
 | 	return error; | 
 | } | 
 |  | 
 |  | 
 | #ifdef HAVE_PERCPU_SB | 
 | /* | 
 |  * Per-cpu incore superblock counters | 
 |  * | 
 |  * Simple concept, difficult implementation | 
 |  * | 
 |  * Basically, replace the incore superblock counters with a distributed per cpu | 
 |  * counter for contended fields (e.g.  free block count). | 
 |  * | 
 |  * Difficulties arise in that the incore sb is used for ENOSPC checking, and | 
 |  * hence needs to be accurately read when we are running low on space. Hence | 
 |  * there is a method to enable and disable the per-cpu counters based on how | 
 |  * much "stuff" is available in them. | 
 |  * | 
 |  * Basically, a counter is enabled if there is enough free resource to justify | 
 |  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local | 
 |  * ENOSPC), then we disable the counters to synchronise all callers and | 
 |  * re-distribute the available resources. | 
 |  * | 
 |  * If, once we redistributed the available resources, we still get a failure, | 
 |  * we disable the per-cpu counter and go through the slow path. | 
 |  * | 
 |  * The slow path is the current xfs_mod_incore_sb() function.  This means that | 
 |  * when we disable a per-cpu counter, we need to drain its resources back to | 
 |  * the global superblock. We do this after disabling the counter to prevent | 
 |  * more threads from queueing up on the counter. | 
 |  * | 
 |  * Essentially, this means that we still need a lock in the fast path to enable | 
 |  * synchronisation between the global counters and the per-cpu counters. This | 
 |  * is not a problem because the lock will be local to a CPU almost all the time | 
 |  * and have little contention except when we get to ENOSPC conditions. | 
 |  * | 
 |  * Basically, this lock becomes a barrier that enables us to lock out the fast | 
 |  * path while we do things like enabling and disabling counters and | 
 |  * synchronising the counters. | 
 |  * | 
 |  * Locking rules: | 
 |  * | 
 |  * 	1. m_sb_lock before picking up per-cpu locks | 
 |  * 	2. per-cpu locks always picked up via for_each_online_cpu() order | 
 |  * 	3. accurate counter sync requires m_sb_lock + per cpu locks | 
 |  * 	4. modifying per-cpu counters requires holding per-cpu lock | 
 |  * 	5. modifying global counters requires holding m_sb_lock | 
 |  *	6. enabling or disabling a counter requires holding the m_sb_lock  | 
 |  *	   and _none_ of the per-cpu locks. | 
 |  * | 
 |  * Disabled counters are only ever re-enabled by a balance operation | 
 |  * that results in more free resources per CPU than a given threshold. | 
 |  * To ensure counters don't remain disabled, they are rebalanced when | 
 |  * the global resource goes above a higher threshold (i.e. some hysteresis | 
 |  * is present to prevent thrashing). | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | /* | 
 |  * hot-plug CPU notifier support. | 
 |  * | 
 |  * We need a notifier per filesystem as we need to be able to identify | 
 |  * the filesystem to balance the counters out. This is achieved by | 
 |  * having a notifier block embedded in the xfs_mount_t and doing pointer | 
 |  * magic to get the mount pointer from the notifier block address. | 
 |  */ | 
 | STATIC int | 
 | xfs_icsb_cpu_notify( | 
 | 	struct notifier_block *nfb, | 
 | 	unsigned long action, | 
 | 	void *hcpu) | 
 | { | 
 | 	xfs_icsb_cnts_t *cntp; | 
 | 	xfs_mount_t	*mp; | 
 |  | 
 | 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); | 
 | 	cntp = (xfs_icsb_cnts_t *) | 
 | 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); | 
 | 	switch (action) { | 
 | 	case CPU_UP_PREPARE: | 
 | 	case CPU_UP_PREPARE_FROZEN: | 
 | 		/* Easy Case - initialize the area and locks, and | 
 | 		 * then rebalance when online does everything else for us. */ | 
 | 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); | 
 | 		break; | 
 | 	case CPU_ONLINE: | 
 | 	case CPU_ONLINE_FROZEN: | 
 | 		xfs_icsb_lock(mp); | 
 | 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); | 
 | 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); | 
 | 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); | 
 | 		xfs_icsb_unlock(mp); | 
 | 		break; | 
 | 	case CPU_DEAD: | 
 | 	case CPU_DEAD_FROZEN: | 
 | 		/* Disable all the counters, then fold the dead cpu's | 
 | 		 * count into the total on the global superblock and | 
 | 		 * re-enable the counters. */ | 
 | 		xfs_icsb_lock(mp); | 
 | 		spin_lock(&mp->m_sb_lock); | 
 | 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); | 
 | 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); | 
 | 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); | 
 |  | 
 | 		mp->m_sb.sb_icount += cntp->icsb_icount; | 
 | 		mp->m_sb.sb_ifree += cntp->icsb_ifree; | 
 | 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; | 
 |  | 
 | 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); | 
 |  | 
 | 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); | 
 | 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); | 
 | 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); | 
 | 		spin_unlock(&mp->m_sb_lock); | 
 | 		xfs_icsb_unlock(mp); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 | #endif /* CONFIG_HOTPLUG_CPU */ | 
 |  | 
 | int | 
 | xfs_icsb_init_counters( | 
 | 	xfs_mount_t	*mp) | 
 | { | 
 | 	xfs_icsb_cnts_t *cntp; | 
 | 	int		i; | 
 |  | 
 | 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); | 
 | 	if (mp->m_sb_cnts == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; | 
 | 	mp->m_icsb_notifier.priority = 0; | 
 | 	register_hotcpu_notifier(&mp->m_icsb_notifier); | 
 | #endif /* CONFIG_HOTPLUG_CPU */ | 
 |  | 
 | 	for_each_online_cpu(i) { | 
 | 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); | 
 | 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); | 
 | 	} | 
 |  | 
 | 	mutex_init(&mp->m_icsb_mutex); | 
 |  | 
 | 	/* | 
 | 	 * start with all counters disabled so that the | 
 | 	 * initial balance kicks us off correctly | 
 | 	 */ | 
 | 	mp->m_icsb_counters = -1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void | 
 | xfs_icsb_reinit_counters( | 
 | 	xfs_mount_t	*mp) | 
 | { | 
 | 	xfs_icsb_lock(mp); | 
 | 	/* | 
 | 	 * start with all counters disabled so that the | 
 | 	 * initial balance kicks us off correctly | 
 | 	 */ | 
 | 	mp->m_icsb_counters = -1; | 
 | 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); | 
 | 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); | 
 | 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); | 
 | 	xfs_icsb_unlock(mp); | 
 | } | 
 |  | 
 | void | 
 | xfs_icsb_destroy_counters( | 
 | 	xfs_mount_t	*mp) | 
 | { | 
 | 	if (mp->m_sb_cnts) { | 
 | 		unregister_hotcpu_notifier(&mp->m_icsb_notifier); | 
 | 		free_percpu(mp->m_sb_cnts); | 
 | 	} | 
 | 	mutex_destroy(&mp->m_icsb_mutex); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_icsb_lock_cntr( | 
 | 	xfs_icsb_cnts_t	*icsbp) | 
 | { | 
 | 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { | 
 | 		ndelay(1000); | 
 | 	} | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_icsb_unlock_cntr( | 
 | 	xfs_icsb_cnts_t	*icsbp) | 
 | { | 
 | 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); | 
 | } | 
 |  | 
 |  | 
 | STATIC void | 
 | xfs_icsb_lock_all_counters( | 
 | 	xfs_mount_t	*mp) | 
 | { | 
 | 	xfs_icsb_cnts_t *cntp; | 
 | 	int		i; | 
 |  | 
 | 	for_each_online_cpu(i) { | 
 | 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); | 
 | 		xfs_icsb_lock_cntr(cntp); | 
 | 	} | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_icsb_unlock_all_counters( | 
 | 	xfs_mount_t	*mp) | 
 | { | 
 | 	xfs_icsb_cnts_t *cntp; | 
 | 	int		i; | 
 |  | 
 | 	for_each_online_cpu(i) { | 
 | 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); | 
 | 		xfs_icsb_unlock_cntr(cntp); | 
 | 	} | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_icsb_count( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_icsb_cnts_t	*cnt, | 
 | 	int		flags) | 
 | { | 
 | 	xfs_icsb_cnts_t *cntp; | 
 | 	int		i; | 
 |  | 
 | 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); | 
 |  | 
 | 	if (!(flags & XFS_ICSB_LAZY_COUNT)) | 
 | 		xfs_icsb_lock_all_counters(mp); | 
 |  | 
 | 	for_each_online_cpu(i) { | 
 | 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); | 
 | 		cnt->icsb_icount += cntp->icsb_icount; | 
 | 		cnt->icsb_ifree += cntp->icsb_ifree; | 
 | 		cnt->icsb_fdblocks += cntp->icsb_fdblocks; | 
 | 	} | 
 |  | 
 | 	if (!(flags & XFS_ICSB_LAZY_COUNT)) | 
 | 		xfs_icsb_unlock_all_counters(mp); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_icsb_counter_disabled( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_sb_field_t	field) | 
 | { | 
 | 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); | 
 | 	return test_bit(field, &mp->m_icsb_counters); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_icsb_disable_counter( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_sb_field_t	field) | 
 | { | 
 | 	xfs_icsb_cnts_t	cnt; | 
 |  | 
 | 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); | 
 |  | 
 | 	/* | 
 | 	 * If we are already disabled, then there is nothing to do | 
 | 	 * here. We check before locking all the counters to avoid | 
 | 	 * the expensive lock operation when being called in the | 
 | 	 * slow path and the counter is already disabled. This is | 
 | 	 * safe because the only time we set or clear this state is under | 
 | 	 * the m_icsb_mutex. | 
 | 	 */ | 
 | 	if (xfs_icsb_counter_disabled(mp, field)) | 
 | 		return; | 
 |  | 
 | 	xfs_icsb_lock_all_counters(mp); | 
 | 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) { | 
 | 		/* drain back to superblock */ | 
 |  | 
 | 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); | 
 | 		switch(field) { | 
 | 		case XFS_SBS_ICOUNT: | 
 | 			mp->m_sb.sb_icount = cnt.icsb_icount; | 
 | 			break; | 
 | 		case XFS_SBS_IFREE: | 
 | 			mp->m_sb.sb_ifree = cnt.icsb_ifree; | 
 | 			break; | 
 | 		case XFS_SBS_FDBLOCKS: | 
 | 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; | 
 | 			break; | 
 | 		default: | 
 | 			BUG(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	xfs_icsb_unlock_all_counters(mp); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_icsb_enable_counter( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_sb_field_t	field, | 
 | 	uint64_t	count, | 
 | 	uint64_t	resid) | 
 | { | 
 | 	xfs_icsb_cnts_t	*cntp; | 
 | 	int		i; | 
 |  | 
 | 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); | 
 |  | 
 | 	xfs_icsb_lock_all_counters(mp); | 
 | 	for_each_online_cpu(i) { | 
 | 		cntp = per_cpu_ptr(mp->m_sb_cnts, i); | 
 | 		switch (field) { | 
 | 		case XFS_SBS_ICOUNT: | 
 | 			cntp->icsb_icount = count + resid; | 
 | 			break; | 
 | 		case XFS_SBS_IFREE: | 
 | 			cntp->icsb_ifree = count + resid; | 
 | 			break; | 
 | 		case XFS_SBS_FDBLOCKS: | 
 | 			cntp->icsb_fdblocks = count + resid; | 
 | 			break; | 
 | 		default: | 
 | 			BUG(); | 
 | 			break; | 
 | 		} | 
 | 		resid = 0; | 
 | 	} | 
 | 	clear_bit(field, &mp->m_icsb_counters); | 
 | 	xfs_icsb_unlock_all_counters(mp); | 
 | } | 
 |  | 
 | void | 
 | xfs_icsb_sync_counters_locked( | 
 | 	xfs_mount_t	*mp, | 
 | 	int		flags) | 
 | { | 
 | 	xfs_icsb_cnts_t	cnt; | 
 |  | 
 | 	xfs_icsb_count(mp, &cnt, flags); | 
 |  | 
 | 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) | 
 | 		mp->m_sb.sb_icount = cnt.icsb_icount; | 
 | 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) | 
 | 		mp->m_sb.sb_ifree = cnt.icsb_ifree; | 
 | 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) | 
 | 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; | 
 | } | 
 |  | 
 | /* | 
 |  * Accurate update of per-cpu counters to incore superblock | 
 |  */ | 
 | void | 
 | xfs_icsb_sync_counters( | 
 | 	xfs_mount_t	*mp, | 
 | 	int		flags) | 
 | { | 
 | 	spin_lock(&mp->m_sb_lock); | 
 | 	xfs_icsb_sync_counters_locked(mp, flags); | 
 | 	spin_unlock(&mp->m_sb_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Balance and enable/disable counters as necessary. | 
 |  * | 
 |  * Thresholds for re-enabling counters are somewhat magic.  inode counts are | 
 |  * chosen to be the same number as single on disk allocation chunk per CPU, and | 
 |  * free blocks is something far enough zero that we aren't going thrash when we | 
 |  * get near ENOSPC. We also need to supply a minimum we require per cpu to | 
 |  * prevent looping endlessly when xfs_alloc_space asks for more than will | 
 |  * be distributed to a single CPU but each CPU has enough blocks to be | 
 |  * reenabled. | 
 |  * | 
 |  * Note that we can be called when counters are already disabled. | 
 |  * xfs_icsb_disable_counter() optimises the counter locking in this case to | 
 |  * prevent locking every per-cpu counter needlessly. | 
 |  */ | 
 |  | 
 | #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64 | 
 | #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ | 
 | 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) | 
 | STATIC void | 
 | xfs_icsb_balance_counter_locked( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_sb_field_t  field, | 
 | 	int		min_per_cpu) | 
 | { | 
 | 	uint64_t	count, resid; | 
 | 	int		weight = num_online_cpus(); | 
 | 	uint64_t	min = (uint64_t)min_per_cpu; | 
 |  | 
 | 	/* disable counter and sync counter */ | 
 | 	xfs_icsb_disable_counter(mp, field); | 
 |  | 
 | 	/* update counters  - first CPU gets residual*/ | 
 | 	switch (field) { | 
 | 	case XFS_SBS_ICOUNT: | 
 | 		count = mp->m_sb.sb_icount; | 
 | 		resid = do_div(count, weight); | 
 | 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) | 
 | 			return; | 
 | 		break; | 
 | 	case XFS_SBS_IFREE: | 
 | 		count = mp->m_sb.sb_ifree; | 
 | 		resid = do_div(count, weight); | 
 | 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) | 
 | 			return; | 
 | 		break; | 
 | 	case XFS_SBS_FDBLOCKS: | 
 | 		count = mp->m_sb.sb_fdblocks; | 
 | 		resid = do_div(count, weight); | 
 | 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) | 
 | 			return; | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 		count = resid = 0;	/* quiet, gcc */ | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	xfs_icsb_enable_counter(mp, field, count, resid); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_icsb_balance_counter( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_sb_field_t  fields, | 
 | 	int		min_per_cpu) | 
 | { | 
 | 	spin_lock(&mp->m_sb_lock); | 
 | 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); | 
 | 	spin_unlock(&mp->m_sb_lock); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_icsb_modify_counters( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_sb_field_t	field, | 
 | 	int64_t		delta, | 
 | 	int		rsvd) | 
 | { | 
 | 	xfs_icsb_cnts_t	*icsbp; | 
 | 	long long	lcounter;	/* long counter for 64 bit fields */ | 
 | 	int		ret = 0; | 
 |  | 
 | 	might_sleep(); | 
 | again: | 
 | 	preempt_disable(); | 
 | 	icsbp = this_cpu_ptr(mp->m_sb_cnts); | 
 |  | 
 | 	/* | 
 | 	 * if the counter is disabled, go to slow path | 
 | 	 */ | 
 | 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) | 
 | 		goto slow_path; | 
 | 	xfs_icsb_lock_cntr(icsbp); | 
 | 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) { | 
 | 		xfs_icsb_unlock_cntr(icsbp); | 
 | 		goto slow_path; | 
 | 	} | 
 |  | 
 | 	switch (field) { | 
 | 	case XFS_SBS_ICOUNT: | 
 | 		lcounter = icsbp->icsb_icount; | 
 | 		lcounter += delta; | 
 | 		if (unlikely(lcounter < 0)) | 
 | 			goto balance_counter; | 
 | 		icsbp->icsb_icount = lcounter; | 
 | 		break; | 
 |  | 
 | 	case XFS_SBS_IFREE: | 
 | 		lcounter = icsbp->icsb_ifree; | 
 | 		lcounter += delta; | 
 | 		if (unlikely(lcounter < 0)) | 
 | 			goto balance_counter; | 
 | 		icsbp->icsb_ifree = lcounter; | 
 | 		break; | 
 |  | 
 | 	case XFS_SBS_FDBLOCKS: | 
 | 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); | 
 |  | 
 | 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); | 
 | 		lcounter += delta; | 
 | 		if (unlikely(lcounter < 0)) | 
 | 			goto balance_counter; | 
 | 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 		break; | 
 | 	} | 
 | 	xfs_icsb_unlock_cntr(icsbp); | 
 | 	preempt_enable(); | 
 | 	return 0; | 
 |  | 
 | slow_path: | 
 | 	preempt_enable(); | 
 |  | 
 | 	/* | 
 | 	 * serialise with a mutex so we don't burn lots of cpu on | 
 | 	 * the superblock lock. We still need to hold the superblock | 
 | 	 * lock, however, when we modify the global structures. | 
 | 	 */ | 
 | 	xfs_icsb_lock(mp); | 
 |  | 
 | 	/* | 
 | 	 * Now running atomically. | 
 | 	 * | 
 | 	 * If the counter is enabled, someone has beaten us to rebalancing. | 
 | 	 * Drop the lock and try again in the fast path.... | 
 | 	 */ | 
 | 	if (!(xfs_icsb_counter_disabled(mp, field))) { | 
 | 		xfs_icsb_unlock(mp); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The counter is currently disabled. Because we are | 
 | 	 * running atomically here, we know a rebalance cannot | 
 | 	 * be in progress. Hence we can go straight to operating | 
 | 	 * on the global superblock. We do not call xfs_mod_incore_sb() | 
 | 	 * here even though we need to get the m_sb_lock. Doing so | 
 | 	 * will cause us to re-enter this function and deadlock. | 
 | 	 * Hence we get the m_sb_lock ourselves and then call | 
 | 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates | 
 | 	 * directly on the global counters. | 
 | 	 */ | 
 | 	spin_lock(&mp->m_sb_lock); | 
 | 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); | 
 | 	spin_unlock(&mp->m_sb_lock); | 
 |  | 
 | 	/* | 
 | 	 * Now that we've modified the global superblock, we | 
 | 	 * may be able to re-enable the distributed counters | 
 | 	 * (e.g. lots of space just got freed). After that | 
 | 	 * we are done. | 
 | 	 */ | 
 | 	if (ret != ENOSPC) | 
 | 		xfs_icsb_balance_counter(mp, field, 0); | 
 | 	xfs_icsb_unlock(mp); | 
 | 	return ret; | 
 |  | 
 | balance_counter: | 
 | 	xfs_icsb_unlock_cntr(icsbp); | 
 | 	preempt_enable(); | 
 |  | 
 | 	/* | 
 | 	 * We may have multiple threads here if multiple per-cpu | 
 | 	 * counters run dry at the same time. This will mean we can | 
 | 	 * do more balances than strictly necessary but it is not | 
 | 	 * the common slowpath case. | 
 | 	 */ | 
 | 	xfs_icsb_lock(mp); | 
 |  | 
 | 	/* | 
 | 	 * running atomically. | 
 | 	 * | 
 | 	 * This will leave the counter in the correct state for future | 
 | 	 * accesses. After the rebalance, we simply try again and our retry | 
 | 	 * will either succeed through the fast path or slow path without | 
 | 	 * another balance operation being required. | 
 | 	 */ | 
 | 	xfs_icsb_balance_counter(mp, field, delta); | 
 | 	xfs_icsb_unlock(mp); | 
 | 	goto again; | 
 | } | 
 |  | 
 | #endif |