|  | /* | 
|  | * linux/arch/ia64/kernel/time.c | 
|  | * | 
|  | * Copyright (C) 1998-2003 Hewlett-Packard Co | 
|  | *	Stephane Eranian <eranian@hpl.hp.com> | 
|  | *	David Mosberger <davidm@hpl.hp.com> | 
|  | * Copyright (C) 1999 Don Dugger <don.dugger@intel.com> | 
|  | * Copyright (C) 1999-2000 VA Linux Systems | 
|  | * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/efi.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/timex.h> | 
|  |  | 
|  | #include <asm/machvec.h> | 
|  | #include <asm/delay.h> | 
|  | #include <asm/hw_irq.h> | 
|  | #include <asm/ptrace.h> | 
|  | #include <asm/sal.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/system.h> | 
|  |  | 
|  | extern unsigned long wall_jiffies; | 
|  |  | 
|  | volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */ | 
|  |  | 
|  | #ifdef CONFIG_IA64_DEBUG_IRQ | 
|  |  | 
|  | unsigned long last_cli_ip; | 
|  | EXPORT_SYMBOL(last_cli_ip); | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static struct time_interpolator itc_interpolator = { | 
|  | .shift = 16, | 
|  | .mask = 0xffffffffffffffffLL, | 
|  | .source = TIME_SOURCE_CPU | 
|  | }; | 
|  |  | 
|  | static irqreturn_t | 
|  | timer_interrupt (int irq, void *dev_id, struct pt_regs *regs) | 
|  | { | 
|  | unsigned long new_itm; | 
|  |  | 
|  | if (unlikely(cpu_is_offline(smp_processor_id()))) { | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | platform_timer_interrupt(irq, dev_id, regs); | 
|  |  | 
|  | new_itm = local_cpu_data->itm_next; | 
|  |  | 
|  | if (!time_after(ia64_get_itc(), new_itm)) | 
|  | printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n", | 
|  | ia64_get_itc(), new_itm); | 
|  |  | 
|  | profile_tick(CPU_PROFILING, regs); | 
|  |  | 
|  | while (1) { | 
|  | update_process_times(user_mode(regs)); | 
|  |  | 
|  | new_itm += local_cpu_data->itm_delta; | 
|  |  | 
|  | if (smp_processor_id() == time_keeper_id) { | 
|  | /* | 
|  | * Here we are in the timer irq handler. We have irqs locally | 
|  | * disabled, but we don't know if the timer_bh is running on | 
|  | * another CPU. We need to avoid to SMP race by acquiring the | 
|  | * xtime_lock. | 
|  | */ | 
|  | write_seqlock(&xtime_lock); | 
|  | do_timer(regs); | 
|  | local_cpu_data->itm_next = new_itm; | 
|  | write_sequnlock(&xtime_lock); | 
|  | } else | 
|  | local_cpu_data->itm_next = new_itm; | 
|  |  | 
|  | if (time_after(new_itm, ia64_get_itc())) | 
|  | break; | 
|  | } | 
|  |  | 
|  | do { | 
|  | /* | 
|  | * If we're too close to the next clock tick for | 
|  | * comfort, we increase the safety margin by | 
|  | * intentionally dropping the next tick(s).  We do NOT | 
|  | * update itm.next because that would force us to call | 
|  | * do_timer() which in turn would let our clock run | 
|  | * too fast (with the potentially devastating effect | 
|  | * of losing monotony of time). | 
|  | */ | 
|  | while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2)) | 
|  | new_itm += local_cpu_data->itm_delta; | 
|  | ia64_set_itm(new_itm); | 
|  | /* double check, in case we got hit by a (slow) PMI: */ | 
|  | } while (time_after_eq(ia64_get_itc(), new_itm)); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Encapsulate access to the itm structure for SMP. | 
|  | */ | 
|  | void | 
|  | ia64_cpu_local_tick (void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | unsigned long shift = 0, delta; | 
|  |  | 
|  | /* arrange for the cycle counter to generate a timer interrupt: */ | 
|  | ia64_set_itv(IA64_TIMER_VECTOR); | 
|  |  | 
|  | delta = local_cpu_data->itm_delta; | 
|  | /* | 
|  | * Stagger the timer tick for each CPU so they don't occur all at (almost) the | 
|  | * same time: | 
|  | */ | 
|  | if (cpu) { | 
|  | unsigned long hi = 1UL << ia64_fls(cpu); | 
|  | shift = (2*(cpu - hi) + 1) * delta/hi/2; | 
|  | } | 
|  | local_cpu_data->itm_next = ia64_get_itc() + delta + shift; | 
|  | ia64_set_itm(local_cpu_data->itm_next); | 
|  | } | 
|  |  | 
|  | static int nojitter; | 
|  |  | 
|  | static int __init nojitter_setup(char *str) | 
|  | { | 
|  | nojitter = 1; | 
|  | printk("Jitter checking for ITC timers disabled\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("nojitter", nojitter_setup); | 
|  |  | 
|  |  | 
|  | void __devinit | 
|  | ia64_init_itm (void) | 
|  | { | 
|  | unsigned long platform_base_freq, itc_freq; | 
|  | struct pal_freq_ratio itc_ratio, proc_ratio; | 
|  | long status, platform_base_drift, itc_drift; | 
|  |  | 
|  | /* | 
|  | * According to SAL v2.6, we need to use a SAL call to determine the platform base | 
|  | * frequency and then a PAL call to determine the frequency ratio between the ITC | 
|  | * and the base frequency. | 
|  | */ | 
|  | status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM, | 
|  | &platform_base_freq, &platform_base_drift); | 
|  | if (status != 0) { | 
|  | printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status)); | 
|  | } else { | 
|  | status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio); | 
|  | if (status != 0) | 
|  | printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status); | 
|  | } | 
|  | if (status != 0) { | 
|  | /* invent "random" values */ | 
|  | printk(KERN_ERR | 
|  | "SAL/PAL failed to obtain frequency info---inventing reasonable values\n"); | 
|  | platform_base_freq = 100000000; | 
|  | platform_base_drift = -1;	/* no drift info */ | 
|  | itc_ratio.num = 3; | 
|  | itc_ratio.den = 1; | 
|  | } | 
|  | if (platform_base_freq < 40000000) { | 
|  | printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n", | 
|  | platform_base_freq); | 
|  | platform_base_freq = 75000000; | 
|  | platform_base_drift = -1; | 
|  | } | 
|  | if (!proc_ratio.den) | 
|  | proc_ratio.den = 1;	/* avoid division by zero */ | 
|  | if (!itc_ratio.den) | 
|  | itc_ratio.den = 1;	/* avoid division by zero */ | 
|  |  | 
|  | itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den; | 
|  |  | 
|  | local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ; | 
|  | printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, " | 
|  | "ITC freq=%lu.%03luMHz", smp_processor_id(), | 
|  | platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000, | 
|  | itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000); | 
|  |  | 
|  | if (platform_base_drift != -1) { | 
|  | itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den; | 
|  | printk("+/-%ldppm\n", itc_drift); | 
|  | } else { | 
|  | itc_drift = -1; | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den; | 
|  | local_cpu_data->itc_freq = itc_freq; | 
|  | local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC; | 
|  | local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT) | 
|  | + itc_freq/2)/itc_freq; | 
|  |  | 
|  | if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) { | 
|  | itc_interpolator.frequency = local_cpu_data->itc_freq; | 
|  | itc_interpolator.drift = itc_drift; | 
|  | #ifdef CONFIG_SMP | 
|  | /* On IA64 in an SMP configuration ITCs are never accurately synchronized. | 
|  | * Jitter compensation requires a cmpxchg which may limit | 
|  | * the scalability of the syscalls for retrieving time. | 
|  | * The ITC synchronization is usually successful to within a few | 
|  | * ITC ticks but this is not a sure thing. If you need to improve | 
|  | * timer performance in SMP situations then boot the kernel with the | 
|  | * "nojitter" option. However, doing so may result in time fluctuating (maybe | 
|  | * even going backward) if the ITC offsets between the individual CPUs | 
|  | * are too large. | 
|  | */ | 
|  | if (!nojitter) itc_interpolator.jitter = 1; | 
|  | #endif | 
|  | register_time_interpolator(&itc_interpolator); | 
|  | } | 
|  |  | 
|  | /* Setup the CPU local timer tick */ | 
|  | ia64_cpu_local_tick(); | 
|  | } | 
|  |  | 
|  | static struct irqaction timer_irqaction = { | 
|  | .handler =	timer_interrupt, | 
|  | .flags =	IRQF_DISABLED, | 
|  | .name =		"timer" | 
|  | }; | 
|  |  | 
|  | void __devinit ia64_disable_timer(void) | 
|  | { | 
|  | ia64_set_itv(1 << 16); | 
|  | } | 
|  |  | 
|  | void __init | 
|  | time_init (void) | 
|  | { | 
|  | register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction); | 
|  | efi_gettimeofday(&xtime); | 
|  | ia64_init_itm(); | 
|  |  | 
|  | /* | 
|  | * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the | 
|  | * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC). | 
|  | */ | 
|  | set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generic udelay assumes that if preemption is allowed and the thread | 
|  | * migrates to another CPU, that the ITC values are synchronized across | 
|  | * all CPUs. | 
|  | */ | 
|  | static void | 
|  | ia64_itc_udelay (unsigned long usecs) | 
|  | { | 
|  | unsigned long start = ia64_get_itc(); | 
|  | unsigned long end = start + usecs*local_cpu_data->cyc_per_usec; | 
|  |  | 
|  | while (time_before(ia64_get_itc(), end)) | 
|  | cpu_relax(); | 
|  | } | 
|  |  | 
|  | void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay; | 
|  |  | 
|  | void | 
|  | udelay (unsigned long usecs) | 
|  | { | 
|  | (*ia64_udelay)(usecs); | 
|  | } | 
|  | EXPORT_SYMBOL(udelay); | 
|  |  | 
|  | static unsigned long long ia64_itc_printk_clock(void) | 
|  | { | 
|  | if (ia64_get_kr(IA64_KR_PER_CPU_DATA)) | 
|  | return sched_clock(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long long ia64_default_printk_clock(void) | 
|  | { | 
|  | return (unsigned long long)(jiffies_64 - INITIAL_JIFFIES) * | 
|  | (1000000000/HZ); | 
|  | } | 
|  |  | 
|  | unsigned long long (*ia64_printk_clock)(void) = &ia64_default_printk_clock; | 
|  |  | 
|  | unsigned long long printk_clock(void) | 
|  | { | 
|  | return ia64_printk_clock(); | 
|  | } | 
|  |  | 
|  | void __init | 
|  | ia64_setup_printk_clock(void) | 
|  | { | 
|  | if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) | 
|  | ia64_printk_clock = ia64_itc_printk_clock; | 
|  | } |