| /* | 
 |  *  arch/s390/mm/vmem.c | 
 |  * | 
 |  *    Copyright IBM Corp. 2006 | 
 |  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com> | 
 |  */ | 
 |  | 
 | #include <linux/bootmem.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/list.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/sections.h> | 
 |  | 
 | static DEFINE_MUTEX(vmem_mutex); | 
 |  | 
 | struct memory_segment { | 
 | 	struct list_head list; | 
 | 	unsigned long start; | 
 | 	unsigned long size; | 
 | }; | 
 |  | 
 | static LIST_HEAD(mem_segs); | 
 |  | 
 | static void __ref *vmem_alloc_pages(unsigned int order) | 
 | { | 
 | 	if (slab_is_available()) | 
 | 		return (void *)__get_free_pages(GFP_KERNEL, order); | 
 | 	return alloc_bootmem_pages((1 << order) * PAGE_SIZE); | 
 | } | 
 |  | 
 | static inline pud_t *vmem_pud_alloc(void) | 
 | { | 
 | 	pud_t *pud = NULL; | 
 |  | 
 | #ifdef CONFIG_64BIT | 
 | 	pud = vmem_alloc_pages(2); | 
 | 	if (!pud) | 
 | 		return NULL; | 
 | 	clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4); | 
 | #endif | 
 | 	return pud; | 
 | } | 
 |  | 
 | static inline pmd_t *vmem_pmd_alloc(void) | 
 | { | 
 | 	pmd_t *pmd = NULL; | 
 |  | 
 | #ifdef CONFIG_64BIT | 
 | 	pmd = vmem_alloc_pages(2); | 
 | 	if (!pmd) | 
 | 		return NULL; | 
 | 	clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4); | 
 | #endif | 
 | 	return pmd; | 
 | } | 
 |  | 
 | static pte_t __ref *vmem_pte_alloc(void) | 
 | { | 
 | 	pte_t *pte; | 
 |  | 
 | 	if (slab_is_available()) | 
 | 		pte = (pte_t *) page_table_alloc(&init_mm); | 
 | 	else | 
 | 		pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t)); | 
 | 	if (!pte) | 
 | 		return NULL; | 
 | 	clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY, | 
 | 		    PTRS_PER_PTE * sizeof(pte_t)); | 
 | 	return pte; | 
 | } | 
 |  | 
 | /* | 
 |  * Add a physical memory range to the 1:1 mapping. | 
 |  */ | 
 | static int vmem_add_mem(unsigned long start, unsigned long size, int ro) | 
 | { | 
 | 	unsigned long address; | 
 | 	pgd_t *pg_dir; | 
 | 	pud_t *pu_dir; | 
 | 	pmd_t *pm_dir; | 
 | 	pte_t *pt_dir; | 
 | 	pte_t  pte; | 
 | 	int ret = -ENOMEM; | 
 |  | 
 | 	for (address = start; address < start + size; address += PAGE_SIZE) { | 
 | 		pg_dir = pgd_offset_k(address); | 
 | 		if (pgd_none(*pg_dir)) { | 
 | 			pu_dir = vmem_pud_alloc(); | 
 | 			if (!pu_dir) | 
 | 				goto out; | 
 | 			pgd_populate_kernel(&init_mm, pg_dir, pu_dir); | 
 | 		} | 
 |  | 
 | 		pu_dir = pud_offset(pg_dir, address); | 
 | 		if (pud_none(*pu_dir)) { | 
 | 			pm_dir = vmem_pmd_alloc(); | 
 | 			if (!pm_dir) | 
 | 				goto out; | 
 | 			pud_populate_kernel(&init_mm, pu_dir, pm_dir); | 
 | 		} | 
 |  | 
 | 		pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0)); | 
 | 		pm_dir = pmd_offset(pu_dir, address); | 
 |  | 
 | #ifdef __s390x__ | 
 | 		if (MACHINE_HAS_HPAGE && !(address & ~HPAGE_MASK) && | 
 | 		    (address + HPAGE_SIZE <= start + size) && | 
 | 		    (address >= HPAGE_SIZE)) { | 
 | 			pte_val(pte) |= _SEGMENT_ENTRY_LARGE; | 
 | 			pmd_val(*pm_dir) = pte_val(pte); | 
 | 			address += HPAGE_SIZE - PAGE_SIZE; | 
 | 			continue; | 
 | 		} | 
 | #endif | 
 | 		if (pmd_none(*pm_dir)) { | 
 | 			pt_dir = vmem_pte_alloc(); | 
 | 			if (!pt_dir) | 
 | 				goto out; | 
 | 			pmd_populate_kernel(&init_mm, pm_dir, pt_dir); | 
 | 		} | 
 |  | 
 | 		pt_dir = pte_offset_kernel(pm_dir, address); | 
 | 		*pt_dir = pte; | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	flush_tlb_kernel_range(start, start + size); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Remove a physical memory range from the 1:1 mapping. | 
 |  * Currently only invalidates page table entries. | 
 |  */ | 
 | static void vmem_remove_range(unsigned long start, unsigned long size) | 
 | { | 
 | 	unsigned long address; | 
 | 	pgd_t *pg_dir; | 
 | 	pud_t *pu_dir; | 
 | 	pmd_t *pm_dir; | 
 | 	pte_t *pt_dir; | 
 | 	pte_t  pte; | 
 |  | 
 | 	pte_val(pte) = _PAGE_TYPE_EMPTY; | 
 | 	for (address = start; address < start + size; address += PAGE_SIZE) { | 
 | 		pg_dir = pgd_offset_k(address); | 
 | 		pu_dir = pud_offset(pg_dir, address); | 
 | 		if (pud_none(*pu_dir)) | 
 | 			continue; | 
 | 		pm_dir = pmd_offset(pu_dir, address); | 
 | 		if (pmd_none(*pm_dir)) | 
 | 			continue; | 
 |  | 
 | 		if (pmd_huge(*pm_dir)) { | 
 | 			pmd_clear_kernel(pm_dir); | 
 | 			address += HPAGE_SIZE - PAGE_SIZE; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pt_dir = pte_offset_kernel(pm_dir, address); | 
 | 		*pt_dir = pte; | 
 | 	} | 
 | 	flush_tlb_kernel_range(start, start + size); | 
 | } | 
 |  | 
 | /* | 
 |  * Add a backed mem_map array to the virtual mem_map array. | 
 |  */ | 
 | int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node) | 
 | { | 
 | 	unsigned long address, start_addr, end_addr; | 
 | 	pgd_t *pg_dir; | 
 | 	pud_t *pu_dir; | 
 | 	pmd_t *pm_dir; | 
 | 	pte_t *pt_dir; | 
 | 	pte_t  pte; | 
 | 	int ret = -ENOMEM; | 
 |  | 
 | 	start_addr = (unsigned long) start; | 
 | 	end_addr = (unsigned long) (start + nr); | 
 |  | 
 | 	for (address = start_addr; address < end_addr; address += PAGE_SIZE) { | 
 | 		pg_dir = pgd_offset_k(address); | 
 | 		if (pgd_none(*pg_dir)) { | 
 | 			pu_dir = vmem_pud_alloc(); | 
 | 			if (!pu_dir) | 
 | 				goto out; | 
 | 			pgd_populate_kernel(&init_mm, pg_dir, pu_dir); | 
 | 		} | 
 |  | 
 | 		pu_dir = pud_offset(pg_dir, address); | 
 | 		if (pud_none(*pu_dir)) { | 
 | 			pm_dir = vmem_pmd_alloc(); | 
 | 			if (!pm_dir) | 
 | 				goto out; | 
 | 			pud_populate_kernel(&init_mm, pu_dir, pm_dir); | 
 | 		} | 
 |  | 
 | 		pm_dir = pmd_offset(pu_dir, address); | 
 | 		if (pmd_none(*pm_dir)) { | 
 | 			pt_dir = vmem_pte_alloc(); | 
 | 			if (!pt_dir) | 
 | 				goto out; | 
 | 			pmd_populate_kernel(&init_mm, pm_dir, pt_dir); | 
 | 		} | 
 |  | 
 | 		pt_dir = pte_offset_kernel(pm_dir, address); | 
 | 		if (pte_none(*pt_dir)) { | 
 | 			unsigned long new_page; | 
 |  | 
 | 			new_page =__pa(vmem_alloc_pages(0)); | 
 | 			if (!new_page) | 
 | 				goto out; | 
 | 			pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL); | 
 | 			*pt_dir = pte; | 
 | 		} | 
 | 	} | 
 | 	memset(start, 0, nr * sizeof(struct page)); | 
 | 	ret = 0; | 
 | out: | 
 | 	flush_tlb_kernel_range(start_addr, end_addr); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Add memory segment to the segment list if it doesn't overlap with | 
 |  * an already present segment. | 
 |  */ | 
 | static int insert_memory_segment(struct memory_segment *seg) | 
 | { | 
 | 	struct memory_segment *tmp; | 
 |  | 
 | 	if (seg->start + seg->size > VMEM_MAX_PHYS || | 
 | 	    seg->start + seg->size < seg->start) | 
 | 		return -ERANGE; | 
 |  | 
 | 	list_for_each_entry(tmp, &mem_segs, list) { | 
 | 		if (seg->start >= tmp->start + tmp->size) | 
 | 			continue; | 
 | 		if (seg->start + seg->size <= tmp->start) | 
 | 			continue; | 
 | 		return -ENOSPC; | 
 | 	} | 
 | 	list_add(&seg->list, &mem_segs); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Remove memory segment from the segment list. | 
 |  */ | 
 | static void remove_memory_segment(struct memory_segment *seg) | 
 | { | 
 | 	list_del(&seg->list); | 
 | } | 
 |  | 
 | static void __remove_shared_memory(struct memory_segment *seg) | 
 | { | 
 | 	remove_memory_segment(seg); | 
 | 	vmem_remove_range(seg->start, seg->size); | 
 | } | 
 |  | 
 | int vmem_remove_mapping(unsigned long start, unsigned long size) | 
 | { | 
 | 	struct memory_segment *seg; | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&vmem_mutex); | 
 |  | 
 | 	ret = -ENOENT; | 
 | 	list_for_each_entry(seg, &mem_segs, list) { | 
 | 		if (seg->start == start && seg->size == size) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (seg->start != start || seg->size != size) | 
 | 		goto out; | 
 |  | 
 | 	ret = 0; | 
 | 	__remove_shared_memory(seg); | 
 | 	kfree(seg); | 
 | out: | 
 | 	mutex_unlock(&vmem_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int vmem_add_mapping(unsigned long start, unsigned long size) | 
 | { | 
 | 	struct memory_segment *seg; | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&vmem_mutex); | 
 | 	ret = -ENOMEM; | 
 | 	seg = kzalloc(sizeof(*seg), GFP_KERNEL); | 
 | 	if (!seg) | 
 | 		goto out; | 
 | 	seg->start = start; | 
 | 	seg->size = size; | 
 |  | 
 | 	ret = insert_memory_segment(seg); | 
 | 	if (ret) | 
 | 		goto out_free; | 
 |  | 
 | 	ret = vmem_add_mem(start, size, 0); | 
 | 	if (ret) | 
 | 		goto out_remove; | 
 | 	goto out; | 
 |  | 
 | out_remove: | 
 | 	__remove_shared_memory(seg); | 
 | out_free: | 
 | 	kfree(seg); | 
 | out: | 
 | 	mutex_unlock(&vmem_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * map whole physical memory to virtual memory (identity mapping) | 
 |  * we reserve enough space in the vmalloc area for vmemmap to hotplug | 
 |  * additional memory segments. | 
 |  */ | 
 | void __init vmem_map_init(void) | 
 | { | 
 | 	unsigned long ro_start, ro_end; | 
 | 	unsigned long start, end; | 
 | 	int i; | 
 |  | 
 | 	INIT_LIST_HEAD(&init_mm.context.crst_list); | 
 | 	INIT_LIST_HEAD(&init_mm.context.pgtable_list); | 
 | 	init_mm.context.noexec = 0; | 
 | 	ro_start = ((unsigned long)&_stext) & PAGE_MASK; | 
 | 	ro_end = PFN_ALIGN((unsigned long)&_eshared); | 
 | 	for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) { | 
 | 		start = memory_chunk[i].addr; | 
 | 		end = memory_chunk[i].addr + memory_chunk[i].size; | 
 | 		if (start >= ro_end || end <= ro_start) | 
 | 			vmem_add_mem(start, end - start, 0); | 
 | 		else if (start >= ro_start && end <= ro_end) | 
 | 			vmem_add_mem(start, end - start, 1); | 
 | 		else if (start >= ro_start) { | 
 | 			vmem_add_mem(start, ro_end - start, 1); | 
 | 			vmem_add_mem(ro_end, end - ro_end, 0); | 
 | 		} else if (end < ro_end) { | 
 | 			vmem_add_mem(start, ro_start - start, 0); | 
 | 			vmem_add_mem(ro_start, end - ro_start, 1); | 
 | 		} else { | 
 | 			vmem_add_mem(start, ro_start - start, 0); | 
 | 			vmem_add_mem(ro_start, ro_end - ro_start, 1); | 
 | 			vmem_add_mem(ro_end, end - ro_end, 0); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Convert memory chunk array to a memory segment list so there is a single | 
 |  * list that contains both r/w memory and shared memory segments. | 
 |  */ | 
 | static int __init vmem_convert_memory_chunk(void) | 
 | { | 
 | 	struct memory_segment *seg; | 
 | 	int i; | 
 |  | 
 | 	mutex_lock(&vmem_mutex); | 
 | 	for (i = 0; i < MEMORY_CHUNKS; i++) { | 
 | 		if (!memory_chunk[i].size) | 
 | 			continue; | 
 | 		seg = kzalloc(sizeof(*seg), GFP_KERNEL); | 
 | 		if (!seg) | 
 | 			panic("Out of memory...\n"); | 
 | 		seg->start = memory_chunk[i].addr; | 
 | 		seg->size = memory_chunk[i].size; | 
 | 		insert_memory_segment(seg); | 
 | 	} | 
 | 	mutex_unlock(&vmem_mutex); | 
 | 	return 0; | 
 | } | 
 |  | 
 | core_initcall(vmem_convert_memory_chunk); |