|  | /* | 
|  | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | 
|  | * | 
|  | *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | 
|  | * | 
|  | *  Interactivity improvements by Mike Galbraith | 
|  | *  (C) 2007 Mike Galbraith <efault@gmx.de> | 
|  | * | 
|  | *  Various enhancements by Dmitry Adamushko. | 
|  | *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | 
|  | * | 
|  | *  Group scheduling enhancements by Srivatsa Vaddagiri | 
|  | *  Copyright IBM Corporation, 2007 | 
|  | *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | 
|  | * | 
|  | *  Scaled math optimizations by Thomas Gleixner | 
|  | *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | 
|  | * | 
|  | *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra | 
|  | *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/latencytop.h> | 
|  |  | 
|  | /* | 
|  | * Targeted preemption latency for CPU-bound tasks: | 
|  | * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds) | 
|  | * | 
|  | * NOTE: this latency value is not the same as the concept of | 
|  | * 'timeslice length' - timeslices in CFS are of variable length | 
|  | * and have no persistent notion like in traditional, time-slice | 
|  | * based scheduling concepts. | 
|  | * | 
|  | * (to see the precise effective timeslice length of your workload, | 
|  | *  run vmstat and monitor the context-switches (cs) field) | 
|  | */ | 
|  | unsigned int sysctl_sched_latency = 20000000ULL; | 
|  |  | 
|  | /* | 
|  | * Minimal preemption granularity for CPU-bound tasks: | 
|  | * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds) | 
|  | */ | 
|  | unsigned int sysctl_sched_min_granularity = 4000000ULL; | 
|  |  | 
|  | /* | 
|  | * is kept at sysctl_sched_latency / sysctl_sched_min_granularity | 
|  | */ | 
|  | static unsigned int sched_nr_latency = 5; | 
|  |  | 
|  | /* | 
|  | * After fork, child runs first. (default) If set to 0 then | 
|  | * parent will (try to) run first. | 
|  | */ | 
|  | const_debug unsigned int sysctl_sched_child_runs_first = 1; | 
|  |  | 
|  | /* | 
|  | * sys_sched_yield() compat mode | 
|  | * | 
|  | * This option switches the agressive yield implementation of the | 
|  | * old scheduler back on. | 
|  | */ | 
|  | unsigned int __read_mostly sysctl_sched_compat_yield; | 
|  |  | 
|  | /* | 
|  | * SCHED_OTHER wake-up granularity. | 
|  | * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds) | 
|  | * | 
|  | * This option delays the preemption effects of decoupled workloads | 
|  | * and reduces their over-scheduling. Synchronous workloads will still | 
|  | * have immediate wakeup/sleep latencies. | 
|  | */ | 
|  | unsigned int sysctl_sched_wakeup_granularity = 5000000UL; | 
|  |  | 
|  | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; | 
|  |  | 
|  | static const struct sched_class fair_sched_class; | 
|  |  | 
|  | /************************************************************** | 
|  | * CFS operations on generic schedulable entities: | 
|  | */ | 
|  |  | 
|  | static inline struct task_struct *task_of(struct sched_entity *se) | 
|  | { | 
|  | return container_of(se, struct task_struct, se); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  |  | 
|  | /* cpu runqueue to which this cfs_rq is attached */ | 
|  | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return cfs_rq->rq; | 
|  | } | 
|  |  | 
|  | /* An entity is a task if it doesn't "own" a runqueue */ | 
|  | #define entity_is_task(se)	(!se->my_q) | 
|  |  | 
|  | /* Walk up scheduling entities hierarchy */ | 
|  | #define for_each_sched_entity(se) \ | 
|  | for (; se; se = se->parent) | 
|  |  | 
|  | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | 
|  | { | 
|  | return p->se.cfs_rq; | 
|  | } | 
|  |  | 
|  | /* runqueue on which this entity is (to be) queued */ | 
|  | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | 
|  | { | 
|  | return se->cfs_rq; | 
|  | } | 
|  |  | 
|  | /* runqueue "owned" by this group */ | 
|  | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | 
|  | { | 
|  | return grp->my_q; | 
|  | } | 
|  |  | 
|  | /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on | 
|  | * another cpu ('this_cpu') | 
|  | */ | 
|  | static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) | 
|  | { | 
|  | return cfs_rq->tg->cfs_rq[this_cpu]; | 
|  | } | 
|  |  | 
|  | /* Iterate thr' all leaf cfs_rq's on a runqueue */ | 
|  | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | 
|  | list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) | 
|  |  | 
|  | /* Do the two (enqueued) entities belong to the same group ? */ | 
|  | static inline int | 
|  | is_same_group(struct sched_entity *se, struct sched_entity *pse) | 
|  | { | 
|  | if (se->cfs_rq == pse->cfs_rq) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline struct sched_entity *parent_entity(struct sched_entity *se) | 
|  | { | 
|  | return se->parent; | 
|  | } | 
|  |  | 
|  | #else	/* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return container_of(cfs_rq, struct rq, cfs); | 
|  | } | 
|  |  | 
|  | #define entity_is_task(se)	1 | 
|  |  | 
|  | #define for_each_sched_entity(se) \ | 
|  | for (; se; se = NULL) | 
|  |  | 
|  | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | 
|  | { | 
|  | return &task_rq(p)->cfs; | 
|  | } | 
|  |  | 
|  | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | 
|  | { | 
|  | struct task_struct *p = task_of(se); | 
|  | struct rq *rq = task_rq(p); | 
|  |  | 
|  | return &rq->cfs; | 
|  | } | 
|  |  | 
|  | /* runqueue "owned" by this group */ | 
|  | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) | 
|  | { | 
|  | return &cpu_rq(this_cpu)->cfs; | 
|  | } | 
|  |  | 
|  | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | 
|  | for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) | 
|  |  | 
|  | static inline int | 
|  | is_same_group(struct sched_entity *se, struct sched_entity *pse) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline struct sched_entity *parent_entity(struct sched_entity *se) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #endif	/* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  |  | 
|  | /************************************************************** | 
|  | * Scheduling class tree data structure manipulation methods: | 
|  | */ | 
|  |  | 
|  | static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime) | 
|  | { | 
|  | s64 delta = (s64)(vruntime - min_vruntime); | 
|  | if (delta > 0) | 
|  | min_vruntime = vruntime; | 
|  |  | 
|  | return min_vruntime; | 
|  | } | 
|  |  | 
|  | static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) | 
|  | { | 
|  | s64 delta = (s64)(vruntime - min_vruntime); | 
|  | if (delta < 0) | 
|  | min_vruntime = vruntime; | 
|  |  | 
|  | return min_vruntime; | 
|  | } | 
|  |  | 
|  | static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | return se->vruntime - cfs_rq->min_vruntime; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enqueue an entity into the rb-tree: | 
|  | */ | 
|  | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct sched_entity *entry; | 
|  | s64 key = entity_key(cfs_rq, se); | 
|  | int leftmost = 1; | 
|  |  | 
|  | /* | 
|  | * Find the right place in the rbtree: | 
|  | */ | 
|  | while (*link) { | 
|  | parent = *link; | 
|  | entry = rb_entry(parent, struct sched_entity, run_node); | 
|  | /* | 
|  | * We dont care about collisions. Nodes with | 
|  | * the same key stay together. | 
|  | */ | 
|  | if (key < entity_key(cfs_rq, entry)) { | 
|  | link = &parent->rb_left; | 
|  | } else { | 
|  | link = &parent->rb_right; | 
|  | leftmost = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Maintain a cache of leftmost tree entries (it is frequently | 
|  | * used): | 
|  | */ | 
|  | if (leftmost) { | 
|  | cfs_rq->rb_leftmost = &se->run_node; | 
|  | /* | 
|  | * maintain cfs_rq->min_vruntime to be a monotonic increasing | 
|  | * value tracking the leftmost vruntime in the tree. | 
|  | */ | 
|  | cfs_rq->min_vruntime = | 
|  | max_vruntime(cfs_rq->min_vruntime, se->vruntime); | 
|  | } | 
|  |  | 
|  | rb_link_node(&se->run_node, parent, link); | 
|  | rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); | 
|  | } | 
|  |  | 
|  | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | if (cfs_rq->rb_leftmost == &se->run_node) { | 
|  | struct rb_node *next_node; | 
|  | struct sched_entity *next; | 
|  |  | 
|  | next_node = rb_next(&se->run_node); | 
|  | cfs_rq->rb_leftmost = next_node; | 
|  |  | 
|  | if (next_node) { | 
|  | next = rb_entry(next_node, | 
|  | struct sched_entity, run_node); | 
|  | cfs_rq->min_vruntime = | 
|  | max_vruntime(cfs_rq->min_vruntime, | 
|  | next->vruntime); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cfs_rq->next == se) | 
|  | cfs_rq->next = NULL; | 
|  |  | 
|  | rb_erase(&se->run_node, &cfs_rq->tasks_timeline); | 
|  | } | 
|  |  | 
|  | static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return cfs_rq->rb_leftmost; | 
|  | } | 
|  |  | 
|  | static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node); | 
|  | } | 
|  |  | 
|  | static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); | 
|  |  | 
|  | if (!last) | 
|  | return NULL; | 
|  |  | 
|  | return rb_entry(last, struct sched_entity, run_node); | 
|  | } | 
|  |  | 
|  | /************************************************************** | 
|  | * Scheduling class statistics methods: | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | int sched_nr_latency_handler(struct ctl_table *table, int write, | 
|  | struct file *filp, void __user *buffer, size_t *lenp, | 
|  | loff_t *ppos) | 
|  | { | 
|  | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 
|  |  | 
|  | if (ret || !write) | 
|  | return ret; | 
|  |  | 
|  | sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, | 
|  | sysctl_sched_min_granularity); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * delta *= P[w / rw] | 
|  | */ | 
|  | static inline unsigned long | 
|  | calc_delta_weight(unsigned long delta, struct sched_entity *se) | 
|  | { | 
|  | for_each_sched_entity(se) { | 
|  | delta = calc_delta_mine(delta, | 
|  | se->load.weight, &cfs_rq_of(se)->load); | 
|  | } | 
|  |  | 
|  | return delta; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * delta /= w | 
|  | */ | 
|  | static inline unsigned long | 
|  | calc_delta_fair(unsigned long delta, struct sched_entity *se) | 
|  | { | 
|  | if (unlikely(se->load.weight != NICE_0_LOAD)) | 
|  | delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); | 
|  |  | 
|  | return delta; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The idea is to set a period in which each task runs once. | 
|  | * | 
|  | * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch | 
|  | * this period because otherwise the slices get too small. | 
|  | * | 
|  | * p = (nr <= nl) ? l : l*nr/nl | 
|  | */ | 
|  | static u64 __sched_period(unsigned long nr_running) | 
|  | { | 
|  | u64 period = sysctl_sched_latency; | 
|  | unsigned long nr_latency = sched_nr_latency; | 
|  |  | 
|  | if (unlikely(nr_running > nr_latency)) { | 
|  | period = sysctl_sched_min_granularity; | 
|  | period *= nr_running; | 
|  | } | 
|  |  | 
|  | return period; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We calculate the wall-time slice from the period by taking a part | 
|  | * proportional to the weight. | 
|  | * | 
|  | * s = p*P[w/rw] | 
|  | */ | 
|  | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | unsigned long nr_running = cfs_rq->nr_running; | 
|  |  | 
|  | if (unlikely(!se->on_rq)) | 
|  | nr_running++; | 
|  |  | 
|  | return calc_delta_weight(__sched_period(nr_running), se); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We calculate the vruntime slice of a to be inserted task | 
|  | * | 
|  | * vs = s/w | 
|  | */ | 
|  | static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | return calc_delta_fair(sched_slice(cfs_rq, se), se); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the current task's runtime statistics. Skip current tasks that | 
|  | * are not in our scheduling class. | 
|  | */ | 
|  | static inline void | 
|  | __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, | 
|  | unsigned long delta_exec) | 
|  | { | 
|  | unsigned long delta_exec_weighted; | 
|  |  | 
|  | schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max)); | 
|  |  | 
|  | curr->sum_exec_runtime += delta_exec; | 
|  | schedstat_add(cfs_rq, exec_clock, delta_exec); | 
|  | delta_exec_weighted = calc_delta_fair(delta_exec, curr); | 
|  | curr->vruntime += delta_exec_weighted; | 
|  | } | 
|  |  | 
|  | static void update_curr(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct sched_entity *curr = cfs_rq->curr; | 
|  | u64 now = rq_of(cfs_rq)->clock; | 
|  | unsigned long delta_exec; | 
|  |  | 
|  | if (unlikely(!curr)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Get the amount of time the current task was running | 
|  | * since the last time we changed load (this cannot | 
|  | * overflow on 32 bits): | 
|  | */ | 
|  | delta_exec = (unsigned long)(now - curr->exec_start); | 
|  |  | 
|  | __update_curr(cfs_rq, curr, delta_exec); | 
|  | curr->exec_start = now; | 
|  |  | 
|  | if (entity_is_task(curr)) { | 
|  | struct task_struct *curtask = task_of(curr); | 
|  |  | 
|  | cpuacct_charge(curtask, delta_exec); | 
|  | account_group_exec_runtime(curtask, delta_exec); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | schedstat_set(se->wait_start, rq_of(cfs_rq)->clock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Task is being enqueued - update stats: | 
|  | */ | 
|  | static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | /* | 
|  | * Are we enqueueing a waiting task? (for current tasks | 
|  | * a dequeue/enqueue event is a NOP) | 
|  | */ | 
|  | if (se != cfs_rq->curr) | 
|  | update_stats_wait_start(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | static void | 
|  | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | schedstat_set(se->wait_max, max(se->wait_max, | 
|  | rq_of(cfs_rq)->clock - se->wait_start)); | 
|  | schedstat_set(se->wait_count, se->wait_count + 1); | 
|  | schedstat_set(se->wait_sum, se->wait_sum + | 
|  | rq_of(cfs_rq)->clock - se->wait_start); | 
|  | schedstat_set(se->wait_start, 0); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | /* | 
|  | * Mark the end of the wait period if dequeueing a | 
|  | * waiting task: | 
|  | */ | 
|  | if (se != cfs_rq->curr) | 
|  | update_stats_wait_end(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are picking a new current task - update its stats: | 
|  | */ | 
|  | static inline void | 
|  | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | /* | 
|  | * We are starting a new run period: | 
|  | */ | 
|  | se->exec_start = rq_of(cfs_rq)->clock; | 
|  | } | 
|  |  | 
|  | /************************************************** | 
|  | * Scheduling class queueing methods: | 
|  | */ | 
|  |  | 
|  | #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED | 
|  | static void | 
|  | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | 
|  | { | 
|  | cfs_rq->task_weight += weight; | 
|  | } | 
|  | #else | 
|  | static inline void | 
|  | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void | 
|  | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | update_load_add(&cfs_rq->load, se->load.weight); | 
|  | if (!parent_entity(se)) | 
|  | inc_cpu_load(rq_of(cfs_rq), se->load.weight); | 
|  | if (entity_is_task(se)) { | 
|  | add_cfs_task_weight(cfs_rq, se->load.weight); | 
|  | list_add(&se->group_node, &cfs_rq->tasks); | 
|  | } | 
|  | cfs_rq->nr_running++; | 
|  | se->on_rq = 1; | 
|  | } | 
|  |  | 
|  | static void | 
|  | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | update_load_sub(&cfs_rq->load, se->load.weight); | 
|  | if (!parent_entity(se)) | 
|  | dec_cpu_load(rq_of(cfs_rq), se->load.weight); | 
|  | if (entity_is_task(se)) { | 
|  | add_cfs_task_weight(cfs_rq, -se->load.weight); | 
|  | list_del_init(&se->group_node); | 
|  | } | 
|  | cfs_rq->nr_running--; | 
|  | se->on_rq = 0; | 
|  | } | 
|  |  | 
|  | static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | if (se->sleep_start) { | 
|  | u64 delta = rq_of(cfs_rq)->clock - se->sleep_start; | 
|  | struct task_struct *tsk = task_of(se); | 
|  |  | 
|  | if ((s64)delta < 0) | 
|  | delta = 0; | 
|  |  | 
|  | if (unlikely(delta > se->sleep_max)) | 
|  | se->sleep_max = delta; | 
|  |  | 
|  | se->sleep_start = 0; | 
|  | se->sum_sleep_runtime += delta; | 
|  |  | 
|  | account_scheduler_latency(tsk, delta >> 10, 1); | 
|  | } | 
|  | if (se->block_start) { | 
|  | u64 delta = rq_of(cfs_rq)->clock - se->block_start; | 
|  | struct task_struct *tsk = task_of(se); | 
|  |  | 
|  | if ((s64)delta < 0) | 
|  | delta = 0; | 
|  |  | 
|  | if (unlikely(delta > se->block_max)) | 
|  | se->block_max = delta; | 
|  |  | 
|  | se->block_start = 0; | 
|  | se->sum_sleep_runtime += delta; | 
|  |  | 
|  | /* | 
|  | * Blocking time is in units of nanosecs, so shift by 20 to | 
|  | * get a milliseconds-range estimation of the amount of | 
|  | * time that the task spent sleeping: | 
|  | */ | 
|  | if (unlikely(prof_on == SLEEP_PROFILING)) { | 
|  |  | 
|  | profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk), | 
|  | delta >> 20); | 
|  | } | 
|  | account_scheduler_latency(tsk, delta >> 10, 0); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | s64 d = se->vruntime - cfs_rq->min_vruntime; | 
|  |  | 
|  | if (d < 0) | 
|  | d = -d; | 
|  |  | 
|  | if (d > 3*sysctl_sched_latency) | 
|  | schedstat_inc(cfs_rq, nr_spread_over); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void | 
|  | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | 
|  | { | 
|  | u64 vruntime; | 
|  |  | 
|  | if (first_fair(cfs_rq)) { | 
|  | vruntime = min_vruntime(cfs_rq->min_vruntime, | 
|  | __pick_next_entity(cfs_rq)->vruntime); | 
|  | } else | 
|  | vruntime = cfs_rq->min_vruntime; | 
|  |  | 
|  | /* | 
|  | * The 'current' period is already promised to the current tasks, | 
|  | * however the extra weight of the new task will slow them down a | 
|  | * little, place the new task so that it fits in the slot that | 
|  | * stays open at the end. | 
|  | */ | 
|  | if (initial && sched_feat(START_DEBIT)) | 
|  | vruntime += sched_vslice(cfs_rq, se); | 
|  |  | 
|  | if (!initial) { | 
|  | /* sleeps upto a single latency don't count. */ | 
|  | if (sched_feat(NEW_FAIR_SLEEPERS)) { | 
|  | unsigned long thresh = sysctl_sched_latency; | 
|  |  | 
|  | /* | 
|  | * convert the sleeper threshold into virtual time | 
|  | */ | 
|  | if (sched_feat(NORMALIZED_SLEEPER)) | 
|  | thresh = calc_delta_fair(thresh, se); | 
|  |  | 
|  | vruntime -= thresh; | 
|  | } | 
|  |  | 
|  | /* ensure we never gain time by being placed backwards. */ | 
|  | vruntime = max_vruntime(se->vruntime, vruntime); | 
|  | } | 
|  |  | 
|  | se->vruntime = vruntime; | 
|  | } | 
|  |  | 
|  | static void | 
|  | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup) | 
|  | { | 
|  | /* | 
|  | * Update run-time statistics of the 'current'. | 
|  | */ | 
|  | update_curr(cfs_rq); | 
|  | account_entity_enqueue(cfs_rq, se); | 
|  |  | 
|  | if (wakeup) { | 
|  | place_entity(cfs_rq, se, 0); | 
|  | enqueue_sleeper(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | update_stats_enqueue(cfs_rq, se); | 
|  | check_spread(cfs_rq, se); | 
|  | if (se != cfs_rq->curr) | 
|  | __enqueue_entity(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | static void | 
|  | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) | 
|  | { | 
|  | /* | 
|  | * Update run-time statistics of the 'current'. | 
|  | */ | 
|  | update_curr(cfs_rq); | 
|  |  | 
|  | update_stats_dequeue(cfs_rq, se); | 
|  | if (sleep) { | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | if (entity_is_task(se)) { | 
|  | struct task_struct *tsk = task_of(se); | 
|  |  | 
|  | if (tsk->state & TASK_INTERRUPTIBLE) | 
|  | se->sleep_start = rq_of(cfs_rq)->clock; | 
|  | if (tsk->state & TASK_UNINTERRUPTIBLE) | 
|  | se->block_start = rq_of(cfs_rq)->clock; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (se != cfs_rq->curr) | 
|  | __dequeue_entity(cfs_rq, se); | 
|  | account_entity_dequeue(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Preempt the current task with a newly woken task if needed: | 
|  | */ | 
|  | static void | 
|  | check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) | 
|  | { | 
|  | unsigned long ideal_runtime, delta_exec; | 
|  |  | 
|  | ideal_runtime = sched_slice(cfs_rq, curr); | 
|  | delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | 
|  | if (delta_exec > ideal_runtime) | 
|  | resched_task(rq_of(cfs_rq)->curr); | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | /* 'current' is not kept within the tree. */ | 
|  | if (se->on_rq) { | 
|  | /* | 
|  | * Any task has to be enqueued before it get to execute on | 
|  | * a CPU. So account for the time it spent waiting on the | 
|  | * runqueue. | 
|  | */ | 
|  | update_stats_wait_end(cfs_rq, se); | 
|  | __dequeue_entity(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | update_stats_curr_start(cfs_rq, se); | 
|  | cfs_rq->curr = se; | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | /* | 
|  | * Track our maximum slice length, if the CPU's load is at | 
|  | * least twice that of our own weight (i.e. dont track it | 
|  | * when there are only lesser-weight tasks around): | 
|  | */ | 
|  | if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { | 
|  | se->slice_max = max(se->slice_max, | 
|  | se->sum_exec_runtime - se->prev_sum_exec_runtime); | 
|  | } | 
|  | #endif | 
|  | se->prev_sum_exec_runtime = se->sum_exec_runtime; | 
|  | } | 
|  |  | 
|  | static struct sched_entity * | 
|  | pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | struct rq *rq = rq_of(cfs_rq); | 
|  | u64 pair_slice = rq->clock - cfs_rq->pair_start; | 
|  |  | 
|  | if (!cfs_rq->next || pair_slice > sysctl_sched_min_granularity) { | 
|  | cfs_rq->pair_start = rq->clock; | 
|  | return se; | 
|  | } | 
|  |  | 
|  | return cfs_rq->next; | 
|  | } | 
|  |  | 
|  | static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct sched_entity *se = NULL; | 
|  |  | 
|  | if (first_fair(cfs_rq)) { | 
|  | se = __pick_next_entity(cfs_rq); | 
|  | se = pick_next(cfs_rq, se); | 
|  | set_next_entity(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | return se; | 
|  | } | 
|  |  | 
|  | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) | 
|  | { | 
|  | /* | 
|  | * If still on the runqueue then deactivate_task() | 
|  | * was not called and update_curr() has to be done: | 
|  | */ | 
|  | if (prev->on_rq) | 
|  | update_curr(cfs_rq); | 
|  |  | 
|  | check_spread(cfs_rq, prev); | 
|  | if (prev->on_rq) { | 
|  | update_stats_wait_start(cfs_rq, prev); | 
|  | /* Put 'current' back into the tree. */ | 
|  | __enqueue_entity(cfs_rq, prev); | 
|  | } | 
|  | cfs_rq->curr = NULL; | 
|  | } | 
|  |  | 
|  | static void | 
|  | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | 
|  | { | 
|  | /* | 
|  | * Update run-time statistics of the 'current'. | 
|  | */ | 
|  | update_curr(cfs_rq); | 
|  |  | 
|  | #ifdef CONFIG_SCHED_HRTICK | 
|  | /* | 
|  | * queued ticks are scheduled to match the slice, so don't bother | 
|  | * validating it and just reschedule. | 
|  | */ | 
|  | if (queued) { | 
|  | resched_task(rq_of(cfs_rq)->curr); | 
|  | return; | 
|  | } | 
|  | /* | 
|  | * don't let the period tick interfere with the hrtick preemption | 
|  | */ | 
|  | if (!sched_feat(DOUBLE_TICK) && | 
|  | hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) | 
|  | return; | 
|  | #endif | 
|  |  | 
|  | if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT)) | 
|  | check_preempt_tick(cfs_rq, curr); | 
|  | } | 
|  |  | 
|  | /************************************************** | 
|  | * CFS operations on tasks: | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_SCHED_HRTICK | 
|  | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | struct sched_entity *se = &p->se; | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  |  | 
|  | WARN_ON(task_rq(p) != rq); | 
|  |  | 
|  | if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) { | 
|  | u64 slice = sched_slice(cfs_rq, se); | 
|  | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; | 
|  | s64 delta = slice - ran; | 
|  |  | 
|  | if (delta < 0) { | 
|  | if (rq->curr == p) | 
|  | resched_task(p); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Don't schedule slices shorter than 10000ns, that just | 
|  | * doesn't make sense. Rely on vruntime for fairness. | 
|  | */ | 
|  | if (rq->curr != p) | 
|  | delta = max_t(s64, 10000LL, delta); | 
|  |  | 
|  | hrtick_start(rq, delta); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called from enqueue/dequeue and updates the hrtick when the | 
|  | * current task is from our class and nr_running is low enough | 
|  | * to matter. | 
|  | */ | 
|  | static void hrtick_update(struct rq *rq) | 
|  | { | 
|  | struct task_struct *curr = rq->curr; | 
|  |  | 
|  | if (curr->sched_class != &fair_sched_class) | 
|  | return; | 
|  |  | 
|  | if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) | 
|  | hrtick_start_fair(rq, curr); | 
|  | } | 
|  | #else /* !CONFIG_SCHED_HRTICK */ | 
|  | static inline void | 
|  | hrtick_start_fair(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void hrtick_update(struct rq *rq) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The enqueue_task method is called before nr_running is | 
|  | * increased. Here we update the fair scheduling stats and | 
|  | * then put the task into the rbtree: | 
|  | */ | 
|  | static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  | struct sched_entity *se = &p->se; | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | if (se->on_rq) | 
|  | break; | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | enqueue_entity(cfs_rq, se, wakeup); | 
|  | wakeup = 1; | 
|  | } | 
|  |  | 
|  | hrtick_update(rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The dequeue_task method is called before nr_running is | 
|  | * decreased. We remove the task from the rbtree and | 
|  | * update the fair scheduling stats: | 
|  | */ | 
|  | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  | struct sched_entity *se = &p->se; | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | dequeue_entity(cfs_rq, se, sleep); | 
|  | /* Don't dequeue parent if it has other entities besides us */ | 
|  | if (cfs_rq->load.weight) | 
|  | break; | 
|  | sleep = 1; | 
|  | } | 
|  |  | 
|  | hrtick_update(rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sched_yield() support is very simple - we dequeue and enqueue. | 
|  | * | 
|  | * If compat_yield is turned on then we requeue to the end of the tree. | 
|  | */ | 
|  | static void yield_task_fair(struct rq *rq) | 
|  | { | 
|  | struct task_struct *curr = rq->curr; | 
|  | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 
|  | struct sched_entity *rightmost, *se = &curr->se; | 
|  |  | 
|  | /* | 
|  | * Are we the only task in the tree? | 
|  | */ | 
|  | if (unlikely(cfs_rq->nr_running == 1)) | 
|  | return; | 
|  |  | 
|  | if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) { | 
|  | update_rq_clock(rq); | 
|  | /* | 
|  | * Update run-time statistics of the 'current'. | 
|  | */ | 
|  | update_curr(cfs_rq); | 
|  |  | 
|  | return; | 
|  | } | 
|  | /* | 
|  | * Find the rightmost entry in the rbtree: | 
|  | */ | 
|  | rightmost = __pick_last_entity(cfs_rq); | 
|  | /* | 
|  | * Already in the rightmost position? | 
|  | */ | 
|  | if (unlikely(!rightmost || rightmost->vruntime < se->vruntime)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Minimally necessary key value to be last in the tree: | 
|  | * Upon rescheduling, sched_class::put_prev_task() will place | 
|  | * 'current' within the tree based on its new key value. | 
|  | */ | 
|  | se->vruntime = rightmost->vruntime + 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * wake_idle() will wake a task on an idle cpu if task->cpu is | 
|  | * not idle and an idle cpu is available.  The span of cpus to | 
|  | * search starts with cpus closest then further out as needed, | 
|  | * so we always favor a closer, idle cpu. | 
|  | * Domains may include CPUs that are not usable for migration, | 
|  | * hence we need to mask them out (cpu_active_map) | 
|  | * | 
|  | * Returns the CPU we should wake onto. | 
|  | */ | 
|  | #if defined(ARCH_HAS_SCHED_WAKE_IDLE) | 
|  | static int wake_idle(int cpu, struct task_struct *p) | 
|  | { | 
|  | cpumask_t tmp; | 
|  | struct sched_domain *sd; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * If it is idle, then it is the best cpu to run this task. | 
|  | * | 
|  | * This cpu is also the best, if it has more than one task already. | 
|  | * Siblings must be also busy(in most cases) as they didn't already | 
|  | * pickup the extra load from this cpu and hence we need not check | 
|  | * sibling runqueue info. This will avoid the checks and cache miss | 
|  | * penalities associated with that. | 
|  | */ | 
|  | if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1) | 
|  | return cpu; | 
|  |  | 
|  | for_each_domain(cpu, sd) { | 
|  | if ((sd->flags & SD_WAKE_IDLE) | 
|  | || ((sd->flags & SD_WAKE_IDLE_FAR) | 
|  | && !task_hot(p, task_rq(p)->clock, sd))) { | 
|  | cpus_and(tmp, sd->span, p->cpus_allowed); | 
|  | cpus_and(tmp, tmp, cpu_active_map); | 
|  | for_each_cpu_mask_nr(i, tmp) { | 
|  | if (idle_cpu(i)) { | 
|  | if (i != task_cpu(p)) { | 
|  | schedstat_inc(p, | 
|  | se.nr_wakeups_idle); | 
|  | } | 
|  | return i; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  | return cpu; | 
|  | } | 
|  | #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/ | 
|  | static inline int wake_idle(int cpu, struct task_struct *p) | 
|  | { | 
|  | return cpu; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | /* | 
|  | * effective_load() calculates the load change as seen from the root_task_group | 
|  | * | 
|  | * Adding load to a group doesn't make a group heavier, but can cause movement | 
|  | * of group shares between cpus. Assuming the shares were perfectly aligned one | 
|  | * can calculate the shift in shares. | 
|  | * | 
|  | * The problem is that perfectly aligning the shares is rather expensive, hence | 
|  | * we try to avoid doing that too often - see update_shares(), which ratelimits | 
|  | * this change. | 
|  | * | 
|  | * We compensate this by not only taking the current delta into account, but | 
|  | * also considering the delta between when the shares were last adjusted and | 
|  | * now. | 
|  | * | 
|  | * We still saw a performance dip, some tracing learned us that between | 
|  | * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased | 
|  | * significantly. Therefore try to bias the error in direction of failing | 
|  | * the affine wakeup. | 
|  | * | 
|  | */ | 
|  | static long effective_load(struct task_group *tg, int cpu, | 
|  | long wl, long wg) | 
|  | { | 
|  | struct sched_entity *se = tg->se[cpu]; | 
|  |  | 
|  | if (!tg->parent) | 
|  | return wl; | 
|  |  | 
|  | /* | 
|  | * By not taking the decrease of shares on the other cpu into | 
|  | * account our error leans towards reducing the affine wakeups. | 
|  | */ | 
|  | if (!wl && sched_feat(ASYM_EFF_LOAD)) | 
|  | return wl; | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | long S, rw, s, a, b; | 
|  | long more_w; | 
|  |  | 
|  | /* | 
|  | * Instead of using this increment, also add the difference | 
|  | * between when the shares were last updated and now. | 
|  | */ | 
|  | more_w = se->my_q->load.weight - se->my_q->rq_weight; | 
|  | wl += more_w; | 
|  | wg += more_w; | 
|  |  | 
|  | S = se->my_q->tg->shares; | 
|  | s = se->my_q->shares; | 
|  | rw = se->my_q->rq_weight; | 
|  |  | 
|  | a = S*(rw + wl); | 
|  | b = S*rw + s*wg; | 
|  |  | 
|  | wl = s*(a-b); | 
|  |  | 
|  | if (likely(b)) | 
|  | wl /= b; | 
|  |  | 
|  | /* | 
|  | * Assume the group is already running and will | 
|  | * thus already be accounted for in the weight. | 
|  | * | 
|  | * That is, moving shares between CPUs, does not | 
|  | * alter the group weight. | 
|  | */ | 
|  | wg = 0; | 
|  | } | 
|  |  | 
|  | return wl; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline unsigned long effective_load(struct task_group *tg, int cpu, | 
|  | unsigned long wl, unsigned long wg) | 
|  | { | 
|  | return wl; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static int | 
|  | wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | 
|  | struct task_struct *p, int prev_cpu, int this_cpu, int sync, | 
|  | int idx, unsigned long load, unsigned long this_load, | 
|  | unsigned int imbalance) | 
|  | { | 
|  | struct task_struct *curr = this_rq->curr; | 
|  | struct task_group *tg; | 
|  | unsigned long tl = this_load; | 
|  | unsigned long tl_per_task; | 
|  | unsigned long weight; | 
|  | int balanced; | 
|  |  | 
|  | if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS)) | 
|  | return 0; | 
|  |  | 
|  | if (!sync && sched_feat(SYNC_WAKEUPS) && | 
|  | curr->se.avg_overlap < sysctl_sched_migration_cost && | 
|  | p->se.avg_overlap < sysctl_sched_migration_cost) | 
|  | sync = 1; | 
|  |  | 
|  | /* | 
|  | * If sync wakeup then subtract the (maximum possible) | 
|  | * effect of the currently running task from the load | 
|  | * of the current CPU: | 
|  | */ | 
|  | if (sync) { | 
|  | tg = task_group(current); | 
|  | weight = current->se.load.weight; | 
|  |  | 
|  | tl += effective_load(tg, this_cpu, -weight, -weight); | 
|  | load += effective_load(tg, prev_cpu, 0, -weight); | 
|  | } | 
|  |  | 
|  | tg = task_group(p); | 
|  | weight = p->se.load.weight; | 
|  |  | 
|  | balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <= | 
|  | imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); | 
|  |  | 
|  | /* | 
|  | * If the currently running task will sleep within | 
|  | * a reasonable amount of time then attract this newly | 
|  | * woken task: | 
|  | */ | 
|  | if (sync && balanced) | 
|  | return 1; | 
|  |  | 
|  | schedstat_inc(p, se.nr_wakeups_affine_attempts); | 
|  | tl_per_task = cpu_avg_load_per_task(this_cpu); | 
|  |  | 
|  | if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <= | 
|  | tl_per_task)) { | 
|  | /* | 
|  | * This domain has SD_WAKE_AFFINE and | 
|  | * p is cache cold in this domain, and | 
|  | * there is no bad imbalance. | 
|  | */ | 
|  | schedstat_inc(this_sd, ttwu_move_affine); | 
|  | schedstat_inc(p, se.nr_wakeups_affine); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int select_task_rq_fair(struct task_struct *p, int sync) | 
|  | { | 
|  | struct sched_domain *sd, *this_sd = NULL; | 
|  | int prev_cpu, this_cpu, new_cpu; | 
|  | unsigned long load, this_load; | 
|  | struct rq *this_rq; | 
|  | unsigned int imbalance; | 
|  | int idx; | 
|  |  | 
|  | prev_cpu	= task_cpu(p); | 
|  | this_cpu	= smp_processor_id(); | 
|  | this_rq		= cpu_rq(this_cpu); | 
|  | new_cpu		= prev_cpu; | 
|  |  | 
|  | if (prev_cpu == this_cpu) | 
|  | goto out; | 
|  | /* | 
|  | * 'this_sd' is the first domain that both | 
|  | * this_cpu and prev_cpu are present in: | 
|  | */ | 
|  | for_each_domain(this_cpu, sd) { | 
|  | if (cpu_isset(prev_cpu, sd->span)) { | 
|  | this_sd = sd; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed))) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Check for affine wakeup and passive balancing possibilities. | 
|  | */ | 
|  | if (!this_sd) | 
|  | goto out; | 
|  |  | 
|  | idx = this_sd->wake_idx; | 
|  |  | 
|  | imbalance = 100 + (this_sd->imbalance_pct - 100) / 2; | 
|  |  | 
|  | load = source_load(prev_cpu, idx); | 
|  | this_load = target_load(this_cpu, idx); | 
|  |  | 
|  | if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx, | 
|  | load, this_load, imbalance)) | 
|  | return this_cpu; | 
|  |  | 
|  | /* | 
|  | * Start passive balancing when half the imbalance_pct | 
|  | * limit is reached. | 
|  | */ | 
|  | if (this_sd->flags & SD_WAKE_BALANCE) { | 
|  | if (imbalance*this_load <= 100*load) { | 
|  | schedstat_inc(this_sd, ttwu_move_balance); | 
|  | schedstat_inc(p, se.nr_wakeups_passive); | 
|  | return this_cpu; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | return wake_idle(new_cpu, p); | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | static unsigned long wakeup_gran(struct sched_entity *se) | 
|  | { | 
|  | unsigned long gran = sysctl_sched_wakeup_granularity; | 
|  |  | 
|  | /* | 
|  | * More easily preempt - nice tasks, while not making it harder for | 
|  | * + nice tasks. | 
|  | */ | 
|  | if (sched_feat(ASYM_GRAN)) | 
|  | gran = calc_delta_mine(gran, NICE_0_LOAD, &se->load); | 
|  |  | 
|  | return gran; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Preempt the current task with a newly woken task if needed: | 
|  | */ | 
|  | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | 
|  | { | 
|  | struct task_struct *curr = rq->curr; | 
|  | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 
|  | struct sched_entity *se = &curr->se, *pse = &p->se; | 
|  | s64 delta_exec; | 
|  |  | 
|  | if (unlikely(rt_prio(p->prio))) { | 
|  | update_rq_clock(rq); | 
|  | update_curr(cfs_rq); | 
|  | resched_task(curr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (unlikely(se == pse)) | 
|  | return; | 
|  |  | 
|  | cfs_rq_of(pse)->next = pse; | 
|  |  | 
|  | /* | 
|  | * We can come here with TIF_NEED_RESCHED already set from new task | 
|  | * wake up path. | 
|  | */ | 
|  | if (test_tsk_need_resched(curr)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Batch tasks do not preempt (their preemption is driven by | 
|  | * the tick): | 
|  | */ | 
|  | if (unlikely(p->policy == SCHED_BATCH)) | 
|  | return; | 
|  |  | 
|  | if (!sched_feat(WAKEUP_PREEMPT)) | 
|  | return; | 
|  |  | 
|  | if (sched_feat(WAKEUP_OVERLAP) && (sync || | 
|  | (se->avg_overlap < sysctl_sched_migration_cost && | 
|  | pse->avg_overlap < sysctl_sched_migration_cost))) { | 
|  | resched_task(curr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | delta_exec = se->sum_exec_runtime - se->prev_sum_exec_runtime; | 
|  | if (delta_exec > wakeup_gran(pse)) | 
|  | resched_task(curr); | 
|  | } | 
|  |  | 
|  | static struct task_struct *pick_next_task_fair(struct rq *rq) | 
|  | { | 
|  | struct task_struct *p; | 
|  | struct cfs_rq *cfs_rq = &rq->cfs; | 
|  | struct sched_entity *se; | 
|  |  | 
|  | if (unlikely(!cfs_rq->nr_running)) | 
|  | return NULL; | 
|  |  | 
|  | do { | 
|  | se = pick_next_entity(cfs_rq); | 
|  | cfs_rq = group_cfs_rq(se); | 
|  | } while (cfs_rq); | 
|  |  | 
|  | p = task_of(se); | 
|  | hrtick_start_fair(rq, p); | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account for a descheduled task: | 
|  | */ | 
|  | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) | 
|  | { | 
|  | struct sched_entity *se = &prev->se; | 
|  | struct cfs_rq *cfs_rq; | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | put_prev_entity(cfs_rq, se); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /************************************************** | 
|  | * Fair scheduling class load-balancing methods: | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Load-balancing iterator. Note: while the runqueue stays locked | 
|  | * during the whole iteration, the current task might be | 
|  | * dequeued so the iterator has to be dequeue-safe. Here we | 
|  | * achieve that by always pre-iterating before returning | 
|  | * the current task: | 
|  | */ | 
|  | static struct task_struct * | 
|  | __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next) | 
|  | { | 
|  | struct task_struct *p = NULL; | 
|  | struct sched_entity *se; | 
|  |  | 
|  | if (next == &cfs_rq->tasks) | 
|  | return NULL; | 
|  |  | 
|  | se = list_entry(next, struct sched_entity, group_node); | 
|  | p = task_of(se); | 
|  | cfs_rq->balance_iterator = next->next; | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static struct task_struct *load_balance_start_fair(void *arg) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = arg; | 
|  |  | 
|  | return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next); | 
|  | } | 
|  |  | 
|  | static struct task_struct *load_balance_next_fair(void *arg) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = arg; | 
|  |  | 
|  | return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator); | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
|  | unsigned long max_load_move, struct sched_domain *sd, | 
|  | enum cpu_idle_type idle, int *all_pinned, int *this_best_prio, | 
|  | struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct rq_iterator cfs_rq_iterator; | 
|  |  | 
|  | cfs_rq_iterator.start = load_balance_start_fair; | 
|  | cfs_rq_iterator.next = load_balance_next_fair; | 
|  | cfs_rq_iterator.arg = cfs_rq; | 
|  |  | 
|  | return balance_tasks(this_rq, this_cpu, busiest, | 
|  | max_load_move, sd, idle, all_pinned, | 
|  | this_best_prio, &cfs_rq_iterator); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | static unsigned long | 
|  | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
|  | unsigned long max_load_move, | 
|  | struct sched_domain *sd, enum cpu_idle_type idle, | 
|  | int *all_pinned, int *this_best_prio) | 
|  | { | 
|  | long rem_load_move = max_load_move; | 
|  | int busiest_cpu = cpu_of(busiest); | 
|  | struct task_group *tg; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | update_h_load(busiest_cpu); | 
|  |  | 
|  | list_for_each_entry_rcu(tg, &task_groups, list) { | 
|  | struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu]; | 
|  | unsigned long busiest_h_load = busiest_cfs_rq->h_load; | 
|  | unsigned long busiest_weight = busiest_cfs_rq->load.weight; | 
|  | u64 rem_load, moved_load; | 
|  |  | 
|  | /* | 
|  | * empty group | 
|  | */ | 
|  | if (!busiest_cfs_rq->task_weight) | 
|  | continue; | 
|  |  | 
|  | rem_load = (u64)rem_load_move * busiest_weight; | 
|  | rem_load = div_u64(rem_load, busiest_h_load + 1); | 
|  |  | 
|  | moved_load = __load_balance_fair(this_rq, this_cpu, busiest, | 
|  | rem_load, sd, idle, all_pinned, this_best_prio, | 
|  | tg->cfs_rq[busiest_cpu]); | 
|  |  | 
|  | if (!moved_load) | 
|  | continue; | 
|  |  | 
|  | moved_load *= busiest_h_load; | 
|  | moved_load = div_u64(moved_load, busiest_weight + 1); | 
|  |  | 
|  | rem_load_move -= moved_load; | 
|  | if (rem_load_move < 0) | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return max_load_move - rem_load_move; | 
|  | } | 
|  | #else | 
|  | static unsigned long | 
|  | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
|  | unsigned long max_load_move, | 
|  | struct sched_domain *sd, enum cpu_idle_type idle, | 
|  | int *all_pinned, int *this_best_prio) | 
|  | { | 
|  | return __load_balance_fair(this_rq, this_cpu, busiest, | 
|  | max_load_move, sd, idle, all_pinned, | 
|  | this_best_prio, &busiest->cfs); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int | 
|  | move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
|  | struct sched_domain *sd, enum cpu_idle_type idle) | 
|  | { | 
|  | struct cfs_rq *busy_cfs_rq; | 
|  | struct rq_iterator cfs_rq_iterator; | 
|  |  | 
|  | cfs_rq_iterator.start = load_balance_start_fair; | 
|  | cfs_rq_iterator.next = load_balance_next_fair; | 
|  |  | 
|  | for_each_leaf_cfs_rq(busiest, busy_cfs_rq) { | 
|  | /* | 
|  | * pass busy_cfs_rq argument into | 
|  | * load_balance_[start|next]_fair iterators | 
|  | */ | 
|  | cfs_rq_iterator.arg = busy_cfs_rq; | 
|  | if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle, | 
|  | &cfs_rq_iterator)) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * scheduler tick hitting a task of our scheduling class: | 
|  | */ | 
|  | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  | struct sched_entity *se = &curr->se; | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | entity_tick(cfs_rq, se, queued); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0) | 
|  |  | 
|  | /* | 
|  | * Share the fairness runtime between parent and child, thus the | 
|  | * total amount of pressure for CPU stays equal - new tasks | 
|  | * get a chance to run but frequent forkers are not allowed to | 
|  | * monopolize the CPU. Note: the parent runqueue is locked, | 
|  | * the child is not running yet. | 
|  | */ | 
|  | static void task_new_fair(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = task_cfs_rq(p); | 
|  | struct sched_entity *se = &p->se, *curr = cfs_rq->curr; | 
|  | int this_cpu = smp_processor_id(); | 
|  |  | 
|  | sched_info_queued(p); | 
|  |  | 
|  | update_curr(cfs_rq); | 
|  | place_entity(cfs_rq, se, 1); | 
|  |  | 
|  | /* 'curr' will be NULL if the child belongs to a different group */ | 
|  | if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) && | 
|  | curr && curr->vruntime < se->vruntime) { | 
|  | /* | 
|  | * Upon rescheduling, sched_class::put_prev_task() will place | 
|  | * 'current' within the tree based on its new key value. | 
|  | */ | 
|  | swap(curr->vruntime, se->vruntime); | 
|  | resched_task(rq->curr); | 
|  | } | 
|  |  | 
|  | enqueue_task_fair(rq, p, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Priority of the task has changed. Check to see if we preempt | 
|  | * the current task. | 
|  | */ | 
|  | static void prio_changed_fair(struct rq *rq, struct task_struct *p, | 
|  | int oldprio, int running) | 
|  | { | 
|  | /* | 
|  | * Reschedule if we are currently running on this runqueue and | 
|  | * our priority decreased, or if we are not currently running on | 
|  | * this runqueue and our priority is higher than the current's | 
|  | */ | 
|  | if (running) { | 
|  | if (p->prio > oldprio) | 
|  | resched_task(rq->curr); | 
|  | } else | 
|  | check_preempt_curr(rq, p, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We switched to the sched_fair class. | 
|  | */ | 
|  | static void switched_to_fair(struct rq *rq, struct task_struct *p, | 
|  | int running) | 
|  | { | 
|  | /* | 
|  | * We were most likely switched from sched_rt, so | 
|  | * kick off the schedule if running, otherwise just see | 
|  | * if we can still preempt the current task. | 
|  | */ | 
|  | if (running) | 
|  | resched_task(rq->curr); | 
|  | else | 
|  | check_preempt_curr(rq, p, 0); | 
|  | } | 
|  |  | 
|  | /* Account for a task changing its policy or group. | 
|  | * | 
|  | * This routine is mostly called to set cfs_rq->curr field when a task | 
|  | * migrates between groups/classes. | 
|  | */ | 
|  | static void set_curr_task_fair(struct rq *rq) | 
|  | { | 
|  | struct sched_entity *se = &rq->curr->se; | 
|  |  | 
|  | for_each_sched_entity(se) | 
|  | set_next_entity(cfs_rq_of(se), se); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | static void moved_group_fair(struct task_struct *p) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = task_cfs_rq(p); | 
|  |  | 
|  | update_curr(cfs_rq); | 
|  | place_entity(cfs_rq, &p->se, 1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * All the scheduling class methods: | 
|  | */ | 
|  | static const struct sched_class fair_sched_class = { | 
|  | .next			= &idle_sched_class, | 
|  | .enqueue_task		= enqueue_task_fair, | 
|  | .dequeue_task		= dequeue_task_fair, | 
|  | .yield_task		= yield_task_fair, | 
|  | #ifdef CONFIG_SMP | 
|  | .select_task_rq		= select_task_rq_fair, | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | .check_preempt_curr	= check_preempt_wakeup, | 
|  |  | 
|  | .pick_next_task		= pick_next_task_fair, | 
|  | .put_prev_task		= put_prev_task_fair, | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | .load_balance		= load_balance_fair, | 
|  | .move_one_task		= move_one_task_fair, | 
|  | #endif | 
|  |  | 
|  | .set_curr_task          = set_curr_task_fair, | 
|  | .task_tick		= task_tick_fair, | 
|  | .task_new		= task_new_fair, | 
|  |  | 
|  | .prio_changed		= prio_changed_fair, | 
|  | .switched_to		= switched_to_fair, | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | .moved_group		= moved_group_fair, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | static void print_cfs_stats(struct seq_file *m, int cpu) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) | 
|  | print_cfs_rq(m, cpu, cfs_rq); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | #endif |