| /* SCTP kernel implementation | 
 |  * Copyright (c) 1999-2000 Cisco, Inc. | 
 |  * Copyright (c) 1999-2001 Motorola, Inc. | 
 |  * Copyright (c) 2001-2003 International Business Machines Corp. | 
 |  * Copyright (c) 2001 Intel Corp. | 
 |  * Copyright (c) 2001 La Monte H.P. Yarroll | 
 |  * | 
 |  * This file is part of the SCTP kernel implementation | 
 |  * | 
 |  * This module provides the abstraction for an SCTP tranport representing | 
 |  * a remote transport address.  For local transport addresses, we just use | 
 |  * union sctp_addr. | 
 |  * | 
 |  * This SCTP implementation is free software; | 
 |  * you can redistribute it and/or modify it under the terms of | 
 |  * the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2, or (at your option) | 
 |  * any later version. | 
 |  * | 
 |  * This SCTP implementation is distributed in the hope that it | 
 |  * will be useful, but WITHOUT ANY WARRANTY; without even the implied | 
 |  *                 ************************ | 
 |  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | 
 |  * See the GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with GNU CC; see the file COPYING.  If not, write to | 
 |  * the Free Software Foundation, 59 Temple Place - Suite 330, | 
 |  * Boston, MA 02111-1307, USA. | 
 |  * | 
 |  * Please send any bug reports or fixes you make to the | 
 |  * email address(es): | 
 |  *    lksctp developers <lksctp-developers@lists.sourceforge.net> | 
 |  * | 
 |  * Or submit a bug report through the following website: | 
 |  *    http://www.sf.net/projects/lksctp | 
 |  * | 
 |  * Written or modified by: | 
 |  *    La Monte H.P. Yarroll <piggy@acm.org> | 
 |  *    Karl Knutson          <karl@athena.chicago.il.us> | 
 |  *    Jon Grimm             <jgrimm@us.ibm.com> | 
 |  *    Xingang Guo           <xingang.guo@intel.com> | 
 |  *    Hui Huang             <hui.huang@nokia.com> | 
 |  *    Sridhar Samudrala	    <sri@us.ibm.com> | 
 |  *    Ardelle Fan	    <ardelle.fan@intel.com> | 
 |  * | 
 |  * Any bugs reported given to us we will try to fix... any fixes shared will | 
 |  * be incorporated into the next SCTP release. | 
 |  */ | 
 |  | 
 | #include <linux/types.h> | 
 | #include <linux/random.h> | 
 | #include <net/sctp/sctp.h> | 
 | #include <net/sctp/sm.h> | 
 |  | 
 | /* 1st Level Abstractions.  */ | 
 |  | 
 | /* Initialize a new transport from provided memory.  */ | 
 | static struct sctp_transport *sctp_transport_init(struct sctp_transport *peer, | 
 | 						  const union sctp_addr *addr, | 
 | 						  gfp_t gfp) | 
 | { | 
 | 	/* Copy in the address.  */ | 
 | 	peer->ipaddr = *addr; | 
 | 	peer->af_specific = sctp_get_af_specific(addr->sa.sa_family); | 
 | 	peer->asoc = NULL; | 
 |  | 
 | 	peer->dst = NULL; | 
 | 	memset(&peer->saddr, 0, sizeof(union sctp_addr)); | 
 |  | 
 | 	/* From 6.3.1 RTO Calculation: | 
 | 	 * | 
 | 	 * C1) Until an RTT measurement has been made for a packet sent to the | 
 | 	 * given destination transport address, set RTO to the protocol | 
 | 	 * parameter 'RTO.Initial'. | 
 | 	 */ | 
 | 	peer->last_rto = peer->rto = msecs_to_jiffies(sctp_rto_initial); | 
 | 	peer->rtt = 0; | 
 | 	peer->rttvar = 0; | 
 | 	peer->srtt = 0; | 
 | 	peer->rto_pending = 0; | 
 | 	peer->fast_recovery = 0; | 
 |  | 
 | 	peer->last_time_heard = jiffies; | 
 | 	peer->last_time_used = jiffies; | 
 | 	peer->last_time_ecne_reduced = jiffies; | 
 |  | 
 | 	peer->init_sent_count = 0; | 
 |  | 
 | 	peer->param_flags = SPP_HB_DISABLE | | 
 | 			    SPP_PMTUD_ENABLE | | 
 | 			    SPP_SACKDELAY_ENABLE; | 
 | 	peer->hbinterval  = 0; | 
 |  | 
 | 	/* Initialize the default path max_retrans.  */ | 
 | 	peer->pathmaxrxt  = sctp_max_retrans_path; | 
 | 	peer->error_count = 0; | 
 |  | 
 | 	INIT_LIST_HEAD(&peer->transmitted); | 
 | 	INIT_LIST_HEAD(&peer->send_ready); | 
 | 	INIT_LIST_HEAD(&peer->transports); | 
 |  | 
 | 	peer->T3_rtx_timer.expires = 0; | 
 | 	peer->hb_timer.expires = 0; | 
 |  | 
 | 	setup_timer(&peer->T3_rtx_timer, sctp_generate_t3_rtx_event, | 
 | 			(unsigned long)peer); | 
 | 	setup_timer(&peer->hb_timer, sctp_generate_heartbeat_event, | 
 | 			(unsigned long)peer); | 
 |  | 
 | 	/* Initialize the 64-bit random nonce sent with heartbeat. */ | 
 | 	get_random_bytes(&peer->hb_nonce, sizeof(peer->hb_nonce)); | 
 |  | 
 | 	atomic_set(&peer->refcnt, 1); | 
 | 	peer->dead = 0; | 
 |  | 
 | 	peer->malloced = 0; | 
 |  | 
 | 	/* Initialize the state information for SFR-CACC */ | 
 | 	peer->cacc.changeover_active = 0; | 
 | 	peer->cacc.cycling_changeover = 0; | 
 | 	peer->cacc.next_tsn_at_change = 0; | 
 | 	peer->cacc.cacc_saw_newack = 0; | 
 |  | 
 | 	return peer; | 
 | } | 
 |  | 
 | /* Allocate and initialize a new transport.  */ | 
 | struct sctp_transport *sctp_transport_new(const union sctp_addr *addr, | 
 | 					  gfp_t gfp) | 
 | { | 
 | 	struct sctp_transport *transport; | 
 |  | 
 | 	transport = t_new(struct sctp_transport, gfp); | 
 | 	if (!transport) | 
 | 		goto fail; | 
 |  | 
 | 	if (!sctp_transport_init(transport, addr, gfp)) | 
 | 		goto fail_init; | 
 |  | 
 | 	transport->malloced = 1; | 
 | 	SCTP_DBG_OBJCNT_INC(transport); | 
 |  | 
 | 	return transport; | 
 |  | 
 | fail_init: | 
 | 	kfree(transport); | 
 |  | 
 | fail: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* This transport is no longer needed.  Free up if possible, or | 
 |  * delay until it last reference count. | 
 |  */ | 
 | void sctp_transport_free(struct sctp_transport *transport) | 
 | { | 
 | 	transport->dead = 1; | 
 |  | 
 | 	/* Try to delete the heartbeat timer.  */ | 
 | 	if (del_timer(&transport->hb_timer)) | 
 | 		sctp_transport_put(transport); | 
 |  | 
 | 	/* Delete the T3_rtx timer if it's active. | 
 | 	 * There is no point in not doing this now and letting | 
 | 	 * structure hang around in memory since we know | 
 | 	 * the tranport is going away. | 
 | 	 */ | 
 | 	if (timer_pending(&transport->T3_rtx_timer) && | 
 | 	    del_timer(&transport->T3_rtx_timer)) | 
 | 		sctp_transport_put(transport); | 
 |  | 
 |  | 
 | 	sctp_transport_put(transport); | 
 | } | 
 |  | 
 | /* Destroy the transport data structure. | 
 |  * Assumes there are no more users of this structure. | 
 |  */ | 
 | static void sctp_transport_destroy(struct sctp_transport *transport) | 
 | { | 
 | 	SCTP_ASSERT(transport->dead, "Transport is not dead", return); | 
 |  | 
 | 	if (transport->asoc) | 
 | 		sctp_association_put(transport->asoc); | 
 |  | 
 | 	sctp_packet_free(&transport->packet); | 
 |  | 
 | 	dst_release(transport->dst); | 
 | 	kfree(transport); | 
 | 	SCTP_DBG_OBJCNT_DEC(transport); | 
 | } | 
 |  | 
 | /* Start T3_rtx timer if it is not already running and update the heartbeat | 
 |  * timer.  This routine is called every time a DATA chunk is sent. | 
 |  */ | 
 | void sctp_transport_reset_timers(struct sctp_transport *transport, int force) | 
 | { | 
 | 	/* RFC 2960 6.3.2 Retransmission Timer Rules | 
 | 	 * | 
 | 	 * R1) Every time a DATA chunk is sent to any address(including a | 
 | 	 * retransmission), if the T3-rtx timer of that address is not running | 
 | 	 * start it running so that it will expire after the RTO of that | 
 | 	 * address. | 
 | 	 */ | 
 |  | 
 | 	if (force || !timer_pending(&transport->T3_rtx_timer)) | 
 | 		if (!mod_timer(&transport->T3_rtx_timer, | 
 | 			       jiffies + transport->rto)) | 
 | 			sctp_transport_hold(transport); | 
 |  | 
 | 	/* When a data chunk is sent, reset the heartbeat interval.  */ | 
 | 	if (!mod_timer(&transport->hb_timer, | 
 | 		       sctp_transport_timeout(transport))) | 
 | 	    sctp_transport_hold(transport); | 
 | } | 
 |  | 
 | /* This transport has been assigned to an association. | 
 |  * Initialize fields from the association or from the sock itself. | 
 |  * Register the reference count in the association. | 
 |  */ | 
 | void sctp_transport_set_owner(struct sctp_transport *transport, | 
 | 			      struct sctp_association *asoc) | 
 | { | 
 | 	transport->asoc = asoc; | 
 | 	sctp_association_hold(asoc); | 
 | } | 
 |  | 
 | /* Initialize the pmtu of a transport. */ | 
 | void sctp_transport_pmtu(struct sctp_transport *transport) | 
 | { | 
 | 	struct dst_entry *dst; | 
 |  | 
 | 	dst = transport->af_specific->get_dst(NULL, &transport->ipaddr, NULL); | 
 |  | 
 | 	if (dst) { | 
 | 		transport->pathmtu = dst_mtu(dst); | 
 | 		dst_release(dst); | 
 | 	} else | 
 | 		transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT; | 
 | } | 
 |  | 
 | /* this is a complete rip-off from __sk_dst_check | 
 |  * the cookie is always 0 since this is how it's used in the | 
 |  * pmtu code | 
 |  */ | 
 | static struct dst_entry *sctp_transport_dst_check(struct sctp_transport *t) | 
 | { | 
 | 	struct dst_entry *dst = t->dst; | 
 |  | 
 | 	if (dst && dst->obsolete && dst->ops->check(dst, 0) == NULL) { | 
 | 		dst_release(t->dst); | 
 | 		t->dst = NULL; | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return dst; | 
 | } | 
 |  | 
 | void sctp_transport_update_pmtu(struct sctp_transport *t, u32 pmtu) | 
 | { | 
 | 	struct dst_entry *dst; | 
 |  | 
 | 	if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) { | 
 | 		printk(KERN_WARNING "%s: Reported pmtu %d too low, " | 
 | 		       "using default minimum of %d\n", | 
 | 		       __func__, pmtu, | 
 | 		       SCTP_DEFAULT_MINSEGMENT); | 
 | 		/* Use default minimum segment size and disable | 
 | 		 * pmtu discovery on this transport. | 
 | 		 */ | 
 | 		t->pathmtu = SCTP_DEFAULT_MINSEGMENT; | 
 | 	} else { | 
 | 		t->pathmtu = pmtu; | 
 | 	} | 
 |  | 
 | 	dst = sctp_transport_dst_check(t); | 
 | 	if (dst) | 
 | 		dst->ops->update_pmtu(dst, pmtu); | 
 | } | 
 |  | 
 | /* Caches the dst entry and source address for a transport's destination | 
 |  * address. | 
 |  */ | 
 | void sctp_transport_route(struct sctp_transport *transport, | 
 | 			  union sctp_addr *saddr, struct sctp_sock *opt) | 
 | { | 
 | 	struct sctp_association *asoc = transport->asoc; | 
 | 	struct sctp_af *af = transport->af_specific; | 
 | 	union sctp_addr *daddr = &transport->ipaddr; | 
 | 	struct dst_entry *dst; | 
 |  | 
 | 	dst = af->get_dst(asoc, daddr, saddr); | 
 |  | 
 | 	if (saddr) | 
 | 		memcpy(&transport->saddr, saddr, sizeof(union sctp_addr)); | 
 | 	else | 
 | 		af->get_saddr(opt, asoc, dst, daddr, &transport->saddr); | 
 |  | 
 | 	transport->dst = dst; | 
 | 	if ((transport->param_flags & SPP_PMTUD_DISABLE) && transport->pathmtu) { | 
 | 		return; | 
 | 	} | 
 | 	if (dst) { | 
 | 		transport->pathmtu = dst_mtu(dst); | 
 |  | 
 | 		/* Initialize sk->sk_rcv_saddr, if the transport is the | 
 | 		 * association's active path for getsockname(). | 
 | 		 */ | 
 | 		if (asoc && (transport == asoc->peer.active_path)) | 
 | 			opt->pf->af->to_sk_saddr(&transport->saddr, | 
 | 						 asoc->base.sk); | 
 | 	} else | 
 | 		transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT; | 
 | } | 
 |  | 
 | /* Hold a reference to a transport.  */ | 
 | void sctp_transport_hold(struct sctp_transport *transport) | 
 | { | 
 | 	atomic_inc(&transport->refcnt); | 
 | } | 
 |  | 
 | /* Release a reference to a transport and clean up | 
 |  * if there are no more references. | 
 |  */ | 
 | void sctp_transport_put(struct sctp_transport *transport) | 
 | { | 
 | 	if (atomic_dec_and_test(&transport->refcnt)) | 
 | 		sctp_transport_destroy(transport); | 
 | } | 
 |  | 
 | /* Update transport's RTO based on the newly calculated RTT. */ | 
 | void sctp_transport_update_rto(struct sctp_transport *tp, __u32 rtt) | 
 | { | 
 | 	/* Check for valid transport.  */ | 
 | 	SCTP_ASSERT(tp, "NULL transport", return); | 
 |  | 
 | 	/* We should not be doing any RTO updates unless rto_pending is set.  */ | 
 | 	SCTP_ASSERT(tp->rto_pending, "rto_pending not set", return); | 
 |  | 
 | 	if (tp->rttvar || tp->srtt) { | 
 | 		/* 6.3.1 C3) When a new RTT measurement R' is made, set | 
 | 		 * RTTVAR <- (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'| | 
 | 		 * SRTT <- (1 - RTO.Alpha) * SRTT + RTO.Alpha * R' | 
 | 		 */ | 
 |  | 
 | 		/* Note:  The above algorithm has been rewritten to | 
 | 		 * express rto_beta and rto_alpha as inverse powers | 
 | 		 * of two. | 
 | 		 * For example, assuming the default value of RTO.Alpha of | 
 | 		 * 1/8, rto_alpha would be expressed as 3. | 
 | 		 */ | 
 | 		tp->rttvar = tp->rttvar - (tp->rttvar >> sctp_rto_beta) | 
 | 			+ ((abs(tp->srtt - rtt)) >> sctp_rto_beta); | 
 | 		tp->srtt = tp->srtt - (tp->srtt >> sctp_rto_alpha) | 
 | 			+ (rtt >> sctp_rto_alpha); | 
 | 	} else { | 
 | 		/* 6.3.1 C2) When the first RTT measurement R is made, set | 
 | 		 * SRTT <- R, RTTVAR <- R/2. | 
 | 		 */ | 
 | 		tp->srtt = rtt; | 
 | 		tp->rttvar = rtt >> 1; | 
 | 	} | 
 |  | 
 | 	/* 6.3.1 G1) Whenever RTTVAR is computed, if RTTVAR = 0, then | 
 | 	 * adjust RTTVAR <- G, where G is the CLOCK GRANULARITY. | 
 | 	 */ | 
 | 	if (tp->rttvar == 0) | 
 | 		tp->rttvar = SCTP_CLOCK_GRANULARITY; | 
 |  | 
 | 	/* 6.3.1 C3) After the computation, update RTO <- SRTT + 4 * RTTVAR. */ | 
 | 	tp->rto = tp->srtt + (tp->rttvar << 2); | 
 |  | 
 | 	/* 6.3.1 C6) Whenever RTO is computed, if it is less than RTO.Min | 
 | 	 * seconds then it is rounded up to RTO.Min seconds. | 
 | 	 */ | 
 | 	if (tp->rto < tp->asoc->rto_min) | 
 | 		tp->rto = tp->asoc->rto_min; | 
 |  | 
 | 	/* 6.3.1 C7) A maximum value may be placed on RTO provided it is | 
 | 	 * at least RTO.max seconds. | 
 | 	 */ | 
 | 	if (tp->rto > tp->asoc->rto_max) | 
 | 		tp->rto = tp->asoc->rto_max; | 
 |  | 
 | 	tp->rtt = rtt; | 
 | 	tp->last_rto = tp->rto; | 
 |  | 
 | 	/* Reset rto_pending so that a new RTT measurement is started when a | 
 | 	 * new data chunk is sent. | 
 | 	 */ | 
 | 	tp->rto_pending = 0; | 
 |  | 
 | 	SCTP_DEBUG_PRINTK("%s: transport: %p, rtt: %d, srtt: %d " | 
 | 			  "rttvar: %d, rto: %ld\n", __func__, | 
 | 			  tp, rtt, tp->srtt, tp->rttvar, tp->rto); | 
 | } | 
 |  | 
 | /* This routine updates the transport's cwnd and partial_bytes_acked | 
 |  * parameters based on the bytes acked in the received SACK. | 
 |  */ | 
 | void sctp_transport_raise_cwnd(struct sctp_transport *transport, | 
 | 			       __u32 sack_ctsn, __u32 bytes_acked) | 
 | { | 
 | 	__u32 cwnd, ssthresh, flight_size, pba, pmtu; | 
 |  | 
 | 	cwnd = transport->cwnd; | 
 | 	flight_size = transport->flight_size; | 
 |  | 
 | 	/* See if we need to exit Fast Recovery first */ | 
 | 	if (transport->fast_recovery && | 
 | 	    TSN_lte(transport->fast_recovery_exit, sack_ctsn)) | 
 | 		transport->fast_recovery = 0; | 
 |  | 
 | 	/* The appropriate cwnd increase algorithm is performed if, and only | 
 | 	 * if the cumulative TSN whould advanced and the congestion window is | 
 | 	 * being fully utilized. | 
 | 	 */ | 
 | 	if (TSN_lte(sack_ctsn, transport->asoc->ctsn_ack_point) || | 
 | 	    (flight_size < cwnd)) | 
 | 		return; | 
 |  | 
 | 	ssthresh = transport->ssthresh; | 
 | 	pba = transport->partial_bytes_acked; | 
 | 	pmtu = transport->asoc->pathmtu; | 
 |  | 
 | 	if (cwnd <= ssthresh) { | 
 | 		/* RFC 4960 7.2.1 | 
 | 		 * o  When cwnd is less than or equal to ssthresh, an SCTP | 
 | 		 *    endpoint MUST use the slow-start algorithm to increase | 
 | 		 *    cwnd only if the current congestion window is being fully | 
 | 		 *    utilized, an incoming SACK advances the Cumulative TSN | 
 | 		 *    Ack Point, and the data sender is not in Fast Recovery. | 
 | 		 *    Only when these three conditions are met can the cwnd be | 
 | 		 *    increased; otherwise, the cwnd MUST not be increased. | 
 | 		 *    If these conditions are met, then cwnd MUST be increased | 
 | 		 *    by, at most, the lesser of 1) the total size of the | 
 | 		 *    previously outstanding DATA chunk(s) acknowledged, and | 
 | 		 *    2) the destination's path MTU.  This upper bound protects | 
 | 		 *    against the ACK-Splitting attack outlined in [SAVAGE99]. | 
 | 		 */ | 
 | 		if (transport->fast_recovery) | 
 | 			return; | 
 |  | 
 | 		if (bytes_acked > pmtu) | 
 | 			cwnd += pmtu; | 
 | 		else | 
 | 			cwnd += bytes_acked; | 
 | 		SCTP_DEBUG_PRINTK("%s: SLOW START: transport: %p, " | 
 | 				  "bytes_acked: %d, cwnd: %d, ssthresh: %d, " | 
 | 				  "flight_size: %d, pba: %d\n", | 
 | 				  __func__, | 
 | 				  transport, bytes_acked, cwnd, | 
 | 				  ssthresh, flight_size, pba); | 
 | 	} else { | 
 | 		/* RFC 2960 7.2.2 Whenever cwnd is greater than ssthresh, | 
 | 		 * upon each SACK arrival that advances the Cumulative TSN Ack | 
 | 		 * Point, increase partial_bytes_acked by the total number of | 
 | 		 * bytes of all new chunks acknowledged in that SACK including | 
 | 		 * chunks acknowledged by the new Cumulative TSN Ack and by | 
 | 		 * Gap Ack Blocks. | 
 | 		 * | 
 | 		 * When partial_bytes_acked is equal to or greater than cwnd | 
 | 		 * and before the arrival of the SACK the sender had cwnd or | 
 | 		 * more bytes of data outstanding (i.e., before arrival of the | 
 | 		 * SACK, flightsize was greater than or equal to cwnd), | 
 | 		 * increase cwnd by MTU, and reset partial_bytes_acked to | 
 | 		 * (partial_bytes_acked - cwnd). | 
 | 		 */ | 
 | 		pba += bytes_acked; | 
 | 		if (pba >= cwnd) { | 
 | 			cwnd += pmtu; | 
 | 			pba = ((cwnd < pba) ? (pba - cwnd) : 0); | 
 | 		} | 
 | 		SCTP_DEBUG_PRINTK("%s: CONGESTION AVOIDANCE: " | 
 | 				  "transport: %p, bytes_acked: %d, cwnd: %d, " | 
 | 				  "ssthresh: %d, flight_size: %d, pba: %d\n", | 
 | 				  __func__, | 
 | 				  transport, bytes_acked, cwnd, | 
 | 				  ssthresh, flight_size, pba); | 
 | 	} | 
 |  | 
 | 	transport->cwnd = cwnd; | 
 | 	transport->partial_bytes_acked = pba; | 
 | } | 
 |  | 
 | /* This routine is used to lower the transport's cwnd when congestion is | 
 |  * detected. | 
 |  */ | 
 | void sctp_transport_lower_cwnd(struct sctp_transport *transport, | 
 | 			       sctp_lower_cwnd_t reason) | 
 | { | 
 | 	switch (reason) { | 
 | 	case SCTP_LOWER_CWND_T3_RTX: | 
 | 		/* RFC 2960 Section 7.2.3, sctpimpguide | 
 | 		 * When the T3-rtx timer expires on an address, SCTP should | 
 | 		 * perform slow start by: | 
 | 		 *      ssthresh = max(cwnd/2, 4*MTU) | 
 | 		 *      cwnd = 1*MTU | 
 | 		 *      partial_bytes_acked = 0 | 
 | 		 */ | 
 | 		transport->ssthresh = max(transport->cwnd/2, | 
 | 					  4*transport->asoc->pathmtu); | 
 | 		transport->cwnd = transport->asoc->pathmtu; | 
 | 		break; | 
 |  | 
 | 	case SCTP_LOWER_CWND_FAST_RTX: | 
 | 		/* RFC 2960 7.2.4 Adjust the ssthresh and cwnd of the | 
 | 		 * destination address(es) to which the missing DATA chunks | 
 | 		 * were last sent, according to the formula described in | 
 | 		 * Section 7.2.3. | 
 | 		 * | 
 | 		 * RFC 2960 7.2.3, sctpimpguide Upon detection of packet | 
 | 		 * losses from SACK (see Section 7.2.4), An endpoint | 
 | 		 * should do the following: | 
 | 		 *      ssthresh = max(cwnd/2, 4*MTU) | 
 | 		 *      cwnd = ssthresh | 
 | 		 *      partial_bytes_acked = 0 | 
 | 		 */ | 
 | 		if (transport->fast_recovery) | 
 | 			return; | 
 |  | 
 | 		/* Mark Fast recovery */ | 
 | 		transport->fast_recovery = 1; | 
 | 		transport->fast_recovery_exit = transport->asoc->next_tsn - 1; | 
 |  | 
 | 		transport->ssthresh = max(transport->cwnd/2, | 
 | 					  4*transport->asoc->pathmtu); | 
 | 		transport->cwnd = transport->ssthresh; | 
 | 		break; | 
 |  | 
 | 	case SCTP_LOWER_CWND_ECNE: | 
 | 		/* RFC 2481 Section 6.1.2. | 
 | 		 * If the sender receives an ECN-Echo ACK packet | 
 | 		 * then the sender knows that congestion was encountered in the | 
 | 		 * network on the path from the sender to the receiver. The | 
 | 		 * indication of congestion should be treated just as a | 
 | 		 * congestion loss in non-ECN Capable TCP. That is, the TCP | 
 | 		 * source halves the congestion window "cwnd" and reduces the | 
 | 		 * slow start threshold "ssthresh". | 
 | 		 * A critical condition is that TCP does not react to | 
 | 		 * congestion indications more than once every window of | 
 | 		 * data (or more loosely more than once every round-trip time). | 
 | 		 */ | 
 | 		if ((jiffies - transport->last_time_ecne_reduced) > | 
 | 		    transport->rtt) { | 
 | 			transport->ssthresh = max(transport->cwnd/2, | 
 | 						  4*transport->asoc->pathmtu); | 
 | 			transport->cwnd = transport->ssthresh; | 
 | 			transport->last_time_ecne_reduced = jiffies; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case SCTP_LOWER_CWND_INACTIVE: | 
 | 		/* RFC 2960 Section 7.2.1, sctpimpguide | 
 | 		 * When the endpoint does not transmit data on a given | 
 | 		 * transport address, the cwnd of the transport address | 
 | 		 * should be adjusted to max(cwnd/2, 4*MTU) per RTO. | 
 | 		 * NOTE: Although the draft recommends that this check needs | 
 | 		 * to be done every RTO interval, we do it every hearbeat | 
 | 		 * interval. | 
 | 		 */ | 
 | 		if ((jiffies - transport->last_time_used) > transport->rto) | 
 | 			transport->cwnd = max(transport->cwnd/2, | 
 | 						 4*transport->asoc->pathmtu); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	transport->partial_bytes_acked = 0; | 
 | 	SCTP_DEBUG_PRINTK("%s: transport: %p reason: %d cwnd: " | 
 | 			  "%d ssthresh: %d\n", __func__, | 
 | 			  transport, reason, | 
 | 			  transport->cwnd, transport->ssthresh); | 
 | } | 
 |  | 
 | /* What is the next timeout value for this transport? */ | 
 | unsigned long sctp_transport_timeout(struct sctp_transport *t) | 
 | { | 
 | 	unsigned long timeout; | 
 | 	timeout = t->rto + sctp_jitter(t->rto); | 
 | 	if (t->state != SCTP_UNCONFIRMED) | 
 | 		timeout += t->hbinterval; | 
 | 	timeout += jiffies; | 
 | 	return timeout; | 
 | } | 
 |  | 
 | /* Reset transport variables to their initial values */ | 
 | void sctp_transport_reset(struct sctp_transport *t) | 
 | { | 
 | 	struct sctp_association *asoc = t->asoc; | 
 |  | 
 | 	/* RFC 2960 (bis), Section 5.2.4 | 
 | 	 * All the congestion control parameters (e.g., cwnd, ssthresh) | 
 | 	 * related to this peer MUST be reset to their initial values | 
 | 	 * (see Section 6.2.1) | 
 | 	 */ | 
 | 	t->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); | 
 | 	t->ssthresh = asoc->peer.i.a_rwnd; | 
 | 	t->last_rto = t->rto = asoc->rto_initial; | 
 | 	t->rtt = 0; | 
 | 	t->srtt = 0; | 
 | 	t->rttvar = 0; | 
 |  | 
 | 	/* Reset these additional varibles so that we have a clean | 
 | 	 * slate. | 
 | 	 */ | 
 | 	t->partial_bytes_acked = 0; | 
 | 	t->flight_size = 0; | 
 | 	t->error_count = 0; | 
 | 	t->rto_pending = 0; | 
 | 	t->fast_recovery = 0; | 
 |  | 
 | 	/* Initialize the state information for SFR-CACC */ | 
 | 	t->cacc.changeover_active = 0; | 
 | 	t->cacc.cycling_changeover = 0; | 
 | 	t->cacc.next_tsn_at_change = 0; | 
 | 	t->cacc.cacc_saw_newack = 0; | 
 | } |