|  | /* | 
|  | * Low-level PCI config space access for OLPC systems who lack the VSA | 
|  | * PCI virtualization software. | 
|  | * | 
|  | * Copyright © 2006  Advanced Micro Devices, Inc. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * The AMD Geode chipset (ie: GX2 processor, cs5536 I/O companion device) | 
|  | * has some I/O functions (display, southbridge, sound, USB HCIs, etc) | 
|  | * that more or less behave like PCI devices, but the hardware doesn't | 
|  | * directly implement the PCI configuration space headers.  AMD provides | 
|  | * "VSA" (Virtual System Architecture) software that emulates PCI config | 
|  | * space for these devices, by trapping I/O accesses to PCI config register | 
|  | * (CF8/CFC) and running some code in System Management Mode interrupt state. | 
|  | * On the OLPC platform, we don't want to use that VSA code because | 
|  | * (a) it slows down suspend/resume, and (b) recompiling it requires special | 
|  | * compilers that are hard to get.  So instead of letting the complex VSA | 
|  | * code simulate the PCI config registers for the on-chip devices, we | 
|  | * just simulate them the easy way, by inserting the code into the | 
|  | * pci_write_config and pci_read_config path.  Most of the config registers | 
|  | * are read-only anyway, so the bulk of the simulation is just table lookup. | 
|  | */ | 
|  |  | 
|  | #include <linux/pci.h> | 
|  | #include <linux/init.h> | 
|  | #include <asm/olpc.h> | 
|  | #include <asm/geode.h> | 
|  | #include <asm/pci_x86.h> | 
|  |  | 
|  | /* | 
|  | * In the tables below, the first two line (8 longwords) are the | 
|  | * size masks that are used when the higher level PCI code determines | 
|  | * the size of the region by writing ~0 to a base address register | 
|  | * and reading back the result. | 
|  | * | 
|  | * The following lines are the values that are read during normal | 
|  | * PCI config access cycles, i.e. not after just having written | 
|  | * ~0 to a base address register. | 
|  | */ | 
|  |  | 
|  | static const uint32_t lxnb_hdr[] = {  /* dev 1 function 0 - devfn = 8 */ | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  |  | 
|  | 0x281022, 0x2200005, 0x6000021, 0x80f808,	/* AMD Vendor ID */ | 
|  | 0x0,	0x0,	0x0,	0x0,   /* No virtual registers, hence no BAR */ | 
|  | 0x0,	0x0,	0x0,	0x28100b, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | }; | 
|  |  | 
|  | static const uint32_t gxnb_hdr[] = {  /* dev 1 function 0 - devfn = 8 */ | 
|  | 0xfffffffd, 0x0, 0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  |  | 
|  | 0x28100b, 0x2200005, 0x6000021, 0x80f808,	/* NSC Vendor ID */ | 
|  | 0xac1d,	0x0,	0x0,	0x0,  /* I/O BAR - base of virtual registers */ | 
|  | 0x0,	0x0,	0x0,	0x28100b, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | }; | 
|  |  | 
|  | static const uint32_t lxfb_hdr[] = {  /* dev 1 function 1 - devfn = 9 */ | 
|  | 0xff000008, 0xffffc000, 0xffffc000, 0xffffc000, | 
|  | 0xffffc000,	0x0,	0x0,	0x0, | 
|  |  | 
|  | 0x20811022, 0x2200003, 0x3000000, 0x0,		/* AMD Vendor ID */ | 
|  | 0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000, /* FB, GP, VG, DF */ | 
|  | 0xfe00c000, 0x0, 0x0,	0x30100b,		/* VIP */ | 
|  | 0x0,	0x0,	0x0,	0x10e,	   /* INTA, IRQ14 for graphics accel */ | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | 0x3d0,	0x3c0,	0xa0000, 0x0,	    /* VG IO, VG IO, EGA FB, MONO FB */ | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | }; | 
|  |  | 
|  | static const uint32_t gxfb_hdr[] = {  /* dev 1 function 1 - devfn = 9 */ | 
|  | 0xff800008, 0xffffc000, 0xffffc000, 0xffffc000, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  |  | 
|  | 0x30100b, 0x2200003, 0x3000000, 0x0,		/* NSC Vendor ID */ | 
|  | 0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000,	/* FB, GP, VG, DF */ | 
|  | 0x0,	0x0,	0x0,	0x30100b, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | 0x3d0,	0x3c0,	0xa0000, 0x0,  	    /* VG IO, VG IO, EGA FB, MONO FB */ | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | }; | 
|  |  | 
|  | static const uint32_t aes_hdr[] = {	/* dev 1 function 2 - devfn = 0xa */ | 
|  | 0xffffc000, 0x0, 0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  |  | 
|  | 0x20821022, 0x2a00006, 0x10100000, 0x8,		/* NSC Vendor ID */ | 
|  | 0xfe010000, 0x0, 0x0,	0x0,			/* AES registers */ | 
|  | 0x0,	0x0,	0x0,	0x20821022, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | }; | 
|  |  | 
|  |  | 
|  | static const uint32_t isa_hdr[] = {  /* dev f function 0 - devfn = 78 */ | 
|  | 0xfffffff9, 0xffffff01, 0xffffffc1, 0xffffffe1, | 
|  | 0xffffff81, 0xffffffc1, 0x0, 0x0, | 
|  |  | 
|  | 0x20901022, 0x2a00049, 0x6010003, 0x802000, | 
|  | 0x18b1,	0x1001,	0x1801,	0x1881,	/* SMB-8   GPIO-256 MFGPT-64  IRQ-32 */ | 
|  | 0x1401,	0x1841,	0x0,	0x20901022,		/* PMS-128 ACPI-64 */ | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0xaa5b,			/* IRQ steering */ | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | }; | 
|  |  | 
|  | static const uint32_t ac97_hdr[] = {  /* dev f function 3 - devfn = 7b */ | 
|  | 0xffffff81, 0x0, 0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  |  | 
|  | 0x20931022, 0x2a00041, 0x4010001, 0x0, | 
|  | 0x1481,	0x0,	0x0,	0x0,			/* I/O BAR-128 */ | 
|  | 0x0,	0x0,	0x0,	0x20931022, | 
|  | 0x0,	0x0,	0x0,	0x205,			/* IntB, IRQ5 */ | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | }; | 
|  |  | 
|  | static const uint32_t ohci_hdr[] = {  /* dev f function 4 - devfn = 7c */ | 
|  | 0xfffff000, 0x0, 0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  |  | 
|  | 0x20941022, 0x2300006, 0xc031002, 0x0, | 
|  | 0xfe01a000, 0x0, 0x0,	0x0,			/* MEMBAR-1000 */ | 
|  | 0x0,	0x0,	0x0,	0x20941022, | 
|  | 0x0,	0x40,	0x0,	0x40a,			/* CapPtr INT-D, IRQA */ | 
|  | 0xc8020001, 0x0, 0x0,	0x0,	/* Capabilities - 40 is R/O, | 
|  | 44 is mask 8103 (power control) */ | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  | }; | 
|  |  | 
|  | static const uint32_t ehci_hdr[] = {  /* dev f function 4 - devfn = 7d */ | 
|  | 0xfffff000, 0x0, 0x0,	0x0, | 
|  | 0x0,	0x0,	0x0,	0x0, | 
|  |  | 
|  | 0x20951022, 0x2300006, 0xc032002, 0x0, | 
|  | 0xfe01b000, 0x0, 0x0,	0x0,			/* MEMBAR-1000 */ | 
|  | 0x0,	0x0,	0x0,	0x20951022, | 
|  | 0x0,	0x40,	0x0,	0x40a,			/* CapPtr INT-D, IRQA */ | 
|  | 0xc8020001, 0x0, 0x0,	0x0,	/* Capabilities - 40 is R/O, 44 is | 
|  | mask 8103 (power control) */ | 
|  | #if 0 | 
|  | 0x1,	0x40080000, 0x0, 0x0,	/* EECP - see EHCI spec section 2.1.7 */ | 
|  | #endif | 
|  | 0x01000001, 0x0, 0x0,	0x0,	/* EECP - see EHCI spec section 2.1.7 */ | 
|  | 0x2020,	0x0,	0x0,	0x0,	/* (EHCI page 8) 60 SBRN (R/O), | 
|  | 61 FLADJ (R/W), PORTWAKECAP  */ | 
|  | }; | 
|  |  | 
|  | static uint32_t ff_loc = ~0; | 
|  | static uint32_t zero_loc; | 
|  | static int bar_probing;		/* Set after a write of ~0 to a BAR */ | 
|  | static int is_lx; | 
|  |  | 
|  | #define NB_SLOT 0x1	/* Northbridge - GX chip - Device 1 */ | 
|  | #define SB_SLOT 0xf	/* Southbridge - CS5536 chip - Device F */ | 
|  |  | 
|  | static int is_simulated(unsigned int bus, unsigned int devfn) | 
|  | { | 
|  | return (!bus && ((PCI_SLOT(devfn) == NB_SLOT) || | 
|  | (PCI_SLOT(devfn) == SB_SLOT))); | 
|  | } | 
|  |  | 
|  | static uint32_t *hdr_addr(const uint32_t *hdr, int reg) | 
|  | { | 
|  | uint32_t addr; | 
|  |  | 
|  | /* | 
|  | * This is a little bit tricky.  The header maps consist of | 
|  | * 0x20 bytes of size masks, followed by 0x70 bytes of header data. | 
|  | * In the normal case, when not probing a BAR's size, we want | 
|  | * to access the header data, so we add 0x20 to the reg offset, | 
|  | * thus skipping the size mask area. | 
|  | * In the BAR probing case, we want to access the size mask for | 
|  | * the BAR, so we subtract 0x10 (the config header offset for | 
|  | * BAR0), and don't skip the size mask area. | 
|  | */ | 
|  |  | 
|  | addr = (uint32_t)hdr + reg + (bar_probing ? -0x10 : 0x20); | 
|  |  | 
|  | bar_probing = 0; | 
|  | return (uint32_t *)addr; | 
|  | } | 
|  |  | 
|  | static int pci_olpc_read(unsigned int seg, unsigned int bus, | 
|  | unsigned int devfn, int reg, int len, uint32_t *value) | 
|  | { | 
|  | uint32_t *addr; | 
|  |  | 
|  | /* Use the hardware mechanism for non-simulated devices */ | 
|  | if (!is_simulated(bus, devfn)) | 
|  | return pci_direct_conf1.read(seg, bus, devfn, reg, len, value); | 
|  |  | 
|  | /* | 
|  | * No device has config registers past 0x70, so we save table space | 
|  | * by not storing entries for the nonexistent registers | 
|  | */ | 
|  | if (reg >= 0x70) | 
|  | addr = &zero_loc; | 
|  | else { | 
|  | switch (devfn) { | 
|  | case  0x8: | 
|  | addr = hdr_addr(is_lx ? lxnb_hdr : gxnb_hdr, reg); | 
|  | break; | 
|  | case  0x9: | 
|  | addr = hdr_addr(is_lx ? lxfb_hdr : gxfb_hdr, reg); | 
|  | break; | 
|  | case  0xa: | 
|  | addr = is_lx ? hdr_addr(aes_hdr, reg) : &ff_loc; | 
|  | break; | 
|  | case 0x78: | 
|  | addr = hdr_addr(isa_hdr, reg); | 
|  | break; | 
|  | case 0x7b: | 
|  | addr = hdr_addr(ac97_hdr, reg); | 
|  | break; | 
|  | case 0x7c: | 
|  | addr = hdr_addr(ohci_hdr, reg); | 
|  | break; | 
|  | case 0x7d: | 
|  | addr = hdr_addr(ehci_hdr, reg); | 
|  | break; | 
|  | default: | 
|  | addr = &ff_loc; | 
|  | break; | 
|  | } | 
|  | } | 
|  | switch (len) { | 
|  | case 1: | 
|  | *value = *(uint8_t *)addr; | 
|  | break; | 
|  | case 2: | 
|  | *value = *(uint16_t *)addr; | 
|  | break; | 
|  | case 4: | 
|  | *value = *addr; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pci_olpc_write(unsigned int seg, unsigned int bus, | 
|  | unsigned int devfn, int reg, int len, uint32_t value) | 
|  | { | 
|  | /* Use the hardware mechanism for non-simulated devices */ | 
|  | if (!is_simulated(bus, devfn)) | 
|  | return pci_direct_conf1.write(seg, bus, devfn, reg, len, value); | 
|  |  | 
|  | /* XXX we may want to extend this to simulate EHCI power management */ | 
|  |  | 
|  | /* | 
|  | * Mostly we just discard writes, but if the write is a size probe | 
|  | * (i.e. writing ~0 to a BAR), we remember it and arrange to return | 
|  | * the appropriate size mask on the next read.  This is cheating | 
|  | * to some extent, because it depends on the fact that the next | 
|  | * access after such a write will always be a read to the same BAR. | 
|  | */ | 
|  |  | 
|  | if ((reg >= 0x10) && (reg < 0x2c)) { | 
|  | /* write is to a BAR */ | 
|  | if (value == ~0) | 
|  | bar_probing = 1; | 
|  | } else { | 
|  | /* | 
|  | * No warning on writes to ROM BAR, CMD, LATENCY_TIMER, | 
|  | * CACHE_LINE_SIZE, or PM registers. | 
|  | */ | 
|  | if ((reg != PCI_ROM_ADDRESS) && (reg != PCI_COMMAND_MASTER) && | 
|  | (reg != PCI_LATENCY_TIMER) && | 
|  | (reg != PCI_CACHE_LINE_SIZE) && (reg != 0x44)) | 
|  | printk(KERN_WARNING "OLPC PCI: Config write to devfn" | 
|  | " %x reg %x value %x\n", devfn, reg, value); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct pci_raw_ops pci_olpc_conf = { | 
|  | .read =	pci_olpc_read, | 
|  | .write = pci_olpc_write, | 
|  | }; | 
|  |  | 
|  | int __init pci_olpc_init(void) | 
|  | { | 
|  | if (!machine_is_olpc() || olpc_has_vsa()) | 
|  | return -ENODEV; | 
|  |  | 
|  | printk(KERN_INFO "PCI: Using configuration type OLPC\n"); | 
|  | raw_pci_ops = &pci_olpc_conf; | 
|  | is_lx = is_geode_lx(); | 
|  | return 0; | 
|  | } |