| /* | 
 |  * Copyright (C) 2007,2008 Oracle.  All rights reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public | 
 |  * License v2 as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public | 
 |  * License along with this program; if not, write to the | 
 |  * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
 |  * Boston, MA 021110-1307, USA. | 
 |  */ | 
 |  | 
 | #include <linux/sched.h> | 
 | #include "ctree.h" | 
 | #include "disk-io.h" | 
 | #include "transaction.h" | 
 | #include "print-tree.h" | 
 | #include "locking.h" | 
 |  | 
 | static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root | 
 | 		      *root, struct btrfs_path *path, int level); | 
 | static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root | 
 | 		      *root, struct btrfs_key *ins_key, | 
 | 		      struct btrfs_path *path, int data_size, int extend); | 
 | static int push_node_left(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_root *root, struct extent_buffer *dst, | 
 | 			  struct extent_buffer *src, int empty); | 
 | static int balance_node_right(struct btrfs_trans_handle *trans, | 
 | 			      struct btrfs_root *root, | 
 | 			      struct extent_buffer *dst_buf, | 
 | 			      struct extent_buffer *src_buf); | 
 | static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
 | 		   struct btrfs_path *path, int level, int slot); | 
 |  | 
 | struct btrfs_path *btrfs_alloc_path(void) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); | 
 | 	if (path) | 
 | 		path->reada = 1; | 
 | 	return path; | 
 | } | 
 |  | 
 | /* | 
 |  * set all locked nodes in the path to blocking locks.  This should | 
 |  * be done before scheduling | 
 |  */ | 
 | noinline void btrfs_set_path_blocking(struct btrfs_path *p) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) { | 
 | 		if (p->nodes[i] && p->locks[i]) | 
 | 			btrfs_set_lock_blocking(p->nodes[i]); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * reset all the locked nodes in the patch to spinning locks. | 
 |  * | 
 |  * held is used to keep lockdep happy, when lockdep is enabled | 
 |  * we set held to a blocking lock before we go around and | 
 |  * retake all the spinlocks in the path.  You can safely use NULL | 
 |  * for held | 
 |  */ | 
 | noinline void btrfs_clear_path_blocking(struct btrfs_path *p, | 
 | 					struct extent_buffer *held) | 
 | { | 
 | 	int i; | 
 |  | 
 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
 | 	/* lockdep really cares that we take all of these spinlocks | 
 | 	 * in the right order.  If any of the locks in the path are not | 
 | 	 * currently blocking, it is going to complain.  So, make really | 
 | 	 * really sure by forcing the path to blocking before we clear | 
 | 	 * the path blocking. | 
 | 	 */ | 
 | 	if (held) | 
 | 		btrfs_set_lock_blocking(held); | 
 | 	btrfs_set_path_blocking(p); | 
 | #endif | 
 |  | 
 | 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { | 
 | 		if (p->nodes[i] && p->locks[i]) | 
 | 			btrfs_clear_lock_blocking(p->nodes[i]); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
 | 	if (held) | 
 | 		btrfs_clear_lock_blocking(held); | 
 | #endif | 
 | } | 
 |  | 
 | /* this also releases the path */ | 
 | void btrfs_free_path(struct btrfs_path *p) | 
 | { | 
 | 	btrfs_release_path(NULL, p); | 
 | 	kmem_cache_free(btrfs_path_cachep, p); | 
 | } | 
 |  | 
 | /* | 
 |  * path release drops references on the extent buffers in the path | 
 |  * and it drops any locks held by this path | 
 |  * | 
 |  * It is safe to call this on paths that no locks or extent buffers held. | 
 |  */ | 
 | noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) { | 
 | 		p->slots[i] = 0; | 
 | 		if (!p->nodes[i]) | 
 | 			continue; | 
 | 		if (p->locks[i]) { | 
 | 			btrfs_tree_unlock(p->nodes[i]); | 
 | 			p->locks[i] = 0; | 
 | 		} | 
 | 		free_extent_buffer(p->nodes[i]); | 
 | 		p->nodes[i] = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * safely gets a reference on the root node of a tree.  A lock | 
 |  * is not taken, so a concurrent writer may put a different node | 
 |  * at the root of the tree.  See btrfs_lock_root_node for the | 
 |  * looping required. | 
 |  * | 
 |  * The extent buffer returned by this has a reference taken, so | 
 |  * it won't disappear.  It may stop being the root of the tree | 
 |  * at any time because there are no locks held. | 
 |  */ | 
 | struct extent_buffer *btrfs_root_node(struct btrfs_root *root) | 
 | { | 
 | 	struct extent_buffer *eb; | 
 | 	spin_lock(&root->node_lock); | 
 | 	eb = root->node; | 
 | 	extent_buffer_get(eb); | 
 | 	spin_unlock(&root->node_lock); | 
 | 	return eb; | 
 | } | 
 |  | 
 | /* loop around taking references on and locking the root node of the | 
 |  * tree until you end up with a lock on the root.  A locked buffer | 
 |  * is returned, with a reference held. | 
 |  */ | 
 | struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) | 
 | { | 
 | 	struct extent_buffer *eb; | 
 |  | 
 | 	while (1) { | 
 | 		eb = btrfs_root_node(root); | 
 | 		btrfs_tree_lock(eb); | 
 |  | 
 | 		spin_lock(&root->node_lock); | 
 | 		if (eb == root->node) { | 
 | 			spin_unlock(&root->node_lock); | 
 | 			break; | 
 | 		} | 
 | 		spin_unlock(&root->node_lock); | 
 |  | 
 | 		btrfs_tree_unlock(eb); | 
 | 		free_extent_buffer(eb); | 
 | 	} | 
 | 	return eb; | 
 | } | 
 |  | 
 | /* cowonly root (everything not a reference counted cow subvolume), just get | 
 |  * put onto a simple dirty list.  transaction.c walks this to make sure they | 
 |  * get properly updated on disk. | 
 |  */ | 
 | static void add_root_to_dirty_list(struct btrfs_root *root) | 
 | { | 
 | 	if (root->track_dirty && list_empty(&root->dirty_list)) { | 
 | 		list_add(&root->dirty_list, | 
 | 			 &root->fs_info->dirty_cowonly_roots); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * used by snapshot creation to make a copy of a root for a tree with | 
 |  * a given objectid.  The buffer with the new root node is returned in | 
 |  * cow_ret, and this func returns zero on success or a negative error code. | 
 |  */ | 
 | int btrfs_copy_root(struct btrfs_trans_handle *trans, | 
 | 		      struct btrfs_root *root, | 
 | 		      struct extent_buffer *buf, | 
 | 		      struct extent_buffer **cow_ret, u64 new_root_objectid) | 
 | { | 
 | 	struct extent_buffer *cow; | 
 | 	u32 nritems; | 
 | 	int ret = 0; | 
 | 	int level; | 
 | 	struct btrfs_disk_key disk_key; | 
 |  | 
 | 	WARN_ON(root->ref_cows && trans->transid != | 
 | 		root->fs_info->running_transaction->transid); | 
 | 	WARN_ON(root->ref_cows && trans->transid != root->last_trans); | 
 |  | 
 | 	level = btrfs_header_level(buf); | 
 | 	nritems = btrfs_header_nritems(buf); | 
 | 	if (level == 0) | 
 | 		btrfs_item_key(buf, &disk_key, 0); | 
 | 	else | 
 | 		btrfs_node_key(buf, &disk_key, 0); | 
 |  | 
 | 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0, | 
 | 				     new_root_objectid, &disk_key, level, | 
 | 				     buf->start, 0); | 
 | 	if (IS_ERR(cow)) | 
 | 		return PTR_ERR(cow); | 
 |  | 
 | 	copy_extent_buffer(cow, buf, 0, 0, cow->len); | 
 | 	btrfs_set_header_bytenr(cow, cow->start); | 
 | 	btrfs_set_header_generation(cow, trans->transid); | 
 | 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); | 
 | 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | | 
 | 				     BTRFS_HEADER_FLAG_RELOC); | 
 | 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) | 
 | 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); | 
 | 	else | 
 | 		btrfs_set_header_owner(cow, new_root_objectid); | 
 |  | 
 | 	write_extent_buffer(cow, root->fs_info->fsid, | 
 | 			    (unsigned long)btrfs_header_fsid(cow), | 
 | 			    BTRFS_FSID_SIZE); | 
 |  | 
 | 	WARN_ON(btrfs_header_generation(buf) > trans->transid); | 
 | 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) | 
 | 		ret = btrfs_inc_ref(trans, root, cow, 1); | 
 | 	else | 
 | 		ret = btrfs_inc_ref(trans, root, cow, 0); | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	btrfs_mark_buffer_dirty(cow); | 
 | 	*cow_ret = cow; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * check if the tree block can be shared by multiple trees | 
 |  */ | 
 | int btrfs_block_can_be_shared(struct btrfs_root *root, | 
 | 			      struct extent_buffer *buf) | 
 | { | 
 | 	/* | 
 | 	 * Tree blocks not in refernece counted trees and tree roots | 
 | 	 * are never shared. If a block was allocated after the last | 
 | 	 * snapshot and the block was not allocated by tree relocation, | 
 | 	 * we know the block is not shared. | 
 | 	 */ | 
 | 	if (root->ref_cows && | 
 | 	    buf != root->node && buf != root->commit_root && | 
 | 	    (btrfs_header_generation(buf) <= | 
 | 	     btrfs_root_last_snapshot(&root->root_item) || | 
 | 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) | 
 | 		return 1; | 
 | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
 | 	if (root->ref_cows && | 
 | 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) | 
 | 		return 1; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, | 
 | 				       struct btrfs_root *root, | 
 | 				       struct extent_buffer *buf, | 
 | 				       struct extent_buffer *cow) | 
 | { | 
 | 	u64 refs; | 
 | 	u64 owner; | 
 | 	u64 flags; | 
 | 	u64 new_flags = 0; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Backrefs update rules: | 
 | 	 * | 
 | 	 * Always use full backrefs for extent pointers in tree block | 
 | 	 * allocated by tree relocation. | 
 | 	 * | 
 | 	 * If a shared tree block is no longer referenced by its owner | 
 | 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid), | 
 | 	 * use full backrefs for extent pointers in tree block. | 
 | 	 * | 
 | 	 * If a tree block is been relocating | 
 | 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), | 
 | 	 * use full backrefs for extent pointers in tree block. | 
 | 	 * The reason for this is some operations (such as drop tree) | 
 | 	 * are only allowed for blocks use full backrefs. | 
 | 	 */ | 
 |  | 
 | 	if (btrfs_block_can_be_shared(root, buf)) { | 
 | 		ret = btrfs_lookup_extent_info(trans, root, buf->start, | 
 | 					       buf->len, &refs, &flags); | 
 | 		BUG_ON(ret); | 
 | 		BUG_ON(refs == 0); | 
 | 	} else { | 
 | 		refs = 1; | 
 | 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || | 
 | 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) | 
 | 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
 | 		else | 
 | 			flags = 0; | 
 | 	} | 
 |  | 
 | 	owner = btrfs_header_owner(buf); | 
 | 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && | 
 | 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); | 
 |  | 
 | 	if (refs > 1) { | 
 | 		if ((owner == root->root_key.objectid || | 
 | 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && | 
 | 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { | 
 | 			ret = btrfs_inc_ref(trans, root, buf, 1); | 
 | 			BUG_ON(ret); | 
 |  | 
 | 			if (root->root_key.objectid == | 
 | 			    BTRFS_TREE_RELOC_OBJECTID) { | 
 | 				ret = btrfs_dec_ref(trans, root, buf, 0); | 
 | 				BUG_ON(ret); | 
 | 				ret = btrfs_inc_ref(trans, root, cow, 1); | 
 | 				BUG_ON(ret); | 
 | 			} | 
 | 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
 | 		} else { | 
 |  | 
 | 			if (root->root_key.objectid == | 
 | 			    BTRFS_TREE_RELOC_OBJECTID) | 
 | 				ret = btrfs_inc_ref(trans, root, cow, 1); | 
 | 			else | 
 | 				ret = btrfs_inc_ref(trans, root, cow, 0); | 
 | 			BUG_ON(ret); | 
 | 		} | 
 | 		if (new_flags != 0) { | 
 | 			ret = btrfs_set_disk_extent_flags(trans, root, | 
 | 							  buf->start, | 
 | 							  buf->len, | 
 | 							  new_flags, 0); | 
 | 			BUG_ON(ret); | 
 | 		} | 
 | 	} else { | 
 | 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { | 
 | 			if (root->root_key.objectid == | 
 | 			    BTRFS_TREE_RELOC_OBJECTID) | 
 | 				ret = btrfs_inc_ref(trans, root, cow, 1); | 
 | 			else | 
 | 				ret = btrfs_inc_ref(trans, root, cow, 0); | 
 | 			BUG_ON(ret); | 
 | 			ret = btrfs_dec_ref(trans, root, buf, 1); | 
 | 			BUG_ON(ret); | 
 | 		} | 
 | 		clean_tree_block(trans, root, buf); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * does the dirty work in cow of a single block.  The parent block (if | 
 |  * supplied) is updated to point to the new cow copy.  The new buffer is marked | 
 |  * dirty and returned locked.  If you modify the block it needs to be marked | 
 |  * dirty again. | 
 |  * | 
 |  * search_start -- an allocation hint for the new block | 
 |  * | 
 |  * empty_size -- a hint that you plan on doing more cow.  This is the size in | 
 |  * bytes the allocator should try to find free next to the block it returns. | 
 |  * This is just a hint and may be ignored by the allocator. | 
 |  */ | 
 | static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_root *root, | 
 | 			     struct extent_buffer *buf, | 
 | 			     struct extent_buffer *parent, int parent_slot, | 
 | 			     struct extent_buffer **cow_ret, | 
 | 			     u64 search_start, u64 empty_size) | 
 | { | 
 | 	struct btrfs_disk_key disk_key; | 
 | 	struct extent_buffer *cow; | 
 | 	int level; | 
 | 	int unlock_orig = 0; | 
 | 	u64 parent_start; | 
 |  | 
 | 	if (*cow_ret == buf) | 
 | 		unlock_orig = 1; | 
 |  | 
 | 	btrfs_assert_tree_locked(buf); | 
 |  | 
 | 	WARN_ON(root->ref_cows && trans->transid != | 
 | 		root->fs_info->running_transaction->transid); | 
 | 	WARN_ON(root->ref_cows && trans->transid != root->last_trans); | 
 |  | 
 | 	level = btrfs_header_level(buf); | 
 |  | 
 | 	if (level == 0) | 
 | 		btrfs_item_key(buf, &disk_key, 0); | 
 | 	else | 
 | 		btrfs_node_key(buf, &disk_key, 0); | 
 |  | 
 | 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { | 
 | 		if (parent) | 
 | 			parent_start = parent->start; | 
 | 		else | 
 | 			parent_start = 0; | 
 | 	} else | 
 | 		parent_start = 0; | 
 |  | 
 | 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, | 
 | 				     root->root_key.objectid, &disk_key, | 
 | 				     level, search_start, empty_size); | 
 | 	if (IS_ERR(cow)) | 
 | 		return PTR_ERR(cow); | 
 |  | 
 | 	/* cow is set to blocking by btrfs_init_new_buffer */ | 
 |  | 
 | 	copy_extent_buffer(cow, buf, 0, 0, cow->len); | 
 | 	btrfs_set_header_bytenr(cow, cow->start); | 
 | 	btrfs_set_header_generation(cow, trans->transid); | 
 | 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); | 
 | 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | | 
 | 				     BTRFS_HEADER_FLAG_RELOC); | 
 | 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) | 
 | 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); | 
 | 	else | 
 | 		btrfs_set_header_owner(cow, root->root_key.objectid); | 
 |  | 
 | 	write_extent_buffer(cow, root->fs_info->fsid, | 
 | 			    (unsigned long)btrfs_header_fsid(cow), | 
 | 			    BTRFS_FSID_SIZE); | 
 |  | 
 | 	update_ref_for_cow(trans, root, buf, cow); | 
 |  | 
 | 	if (buf == root->node) { | 
 | 		WARN_ON(parent && parent != buf); | 
 | 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || | 
 | 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) | 
 | 			parent_start = buf->start; | 
 | 		else | 
 | 			parent_start = 0; | 
 |  | 
 | 		spin_lock(&root->node_lock); | 
 | 		root->node = cow; | 
 | 		extent_buffer_get(cow); | 
 | 		spin_unlock(&root->node_lock); | 
 |  | 
 | 		btrfs_free_extent(trans, root, buf->start, buf->len, | 
 | 				  parent_start, root->root_key.objectid, | 
 | 				  level, 0); | 
 | 		free_extent_buffer(buf); | 
 | 		add_root_to_dirty_list(root); | 
 | 	} else { | 
 | 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) | 
 | 			parent_start = parent->start; | 
 | 		else | 
 | 			parent_start = 0; | 
 |  | 
 | 		WARN_ON(trans->transid != btrfs_header_generation(parent)); | 
 | 		btrfs_set_node_blockptr(parent, parent_slot, | 
 | 					cow->start); | 
 | 		btrfs_set_node_ptr_generation(parent, parent_slot, | 
 | 					      trans->transid); | 
 | 		btrfs_mark_buffer_dirty(parent); | 
 | 		btrfs_free_extent(trans, root, buf->start, buf->len, | 
 | 				  parent_start, root->root_key.objectid, | 
 | 				  level, 0); | 
 | 	} | 
 | 	if (unlock_orig) | 
 | 		btrfs_tree_unlock(buf); | 
 | 	free_extent_buffer(buf); | 
 | 	btrfs_mark_buffer_dirty(cow); | 
 | 	*cow_ret = cow; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int should_cow_block(struct btrfs_trans_handle *trans, | 
 | 				   struct btrfs_root *root, | 
 | 				   struct extent_buffer *buf) | 
 | { | 
 | 	if (btrfs_header_generation(buf) == trans->transid && | 
 | 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && | 
 | 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && | 
 | 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * cows a single block, see __btrfs_cow_block for the real work. | 
 |  * This version of it has extra checks so that a block isn't cow'd more than | 
 |  * once per transaction, as long as it hasn't been written yet | 
 |  */ | 
 | noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, | 
 | 		    struct btrfs_root *root, struct extent_buffer *buf, | 
 | 		    struct extent_buffer *parent, int parent_slot, | 
 | 		    struct extent_buffer **cow_ret) | 
 | { | 
 | 	u64 search_start; | 
 | 	int ret; | 
 |  | 
 | 	if (trans->transaction != root->fs_info->running_transaction) { | 
 | 		printk(KERN_CRIT "trans %llu running %llu\n", | 
 | 		       (unsigned long long)trans->transid, | 
 | 		       (unsigned long long) | 
 | 		       root->fs_info->running_transaction->transid); | 
 | 		WARN_ON(1); | 
 | 	} | 
 | 	if (trans->transid != root->fs_info->generation) { | 
 | 		printk(KERN_CRIT "trans %llu running %llu\n", | 
 | 		       (unsigned long long)trans->transid, | 
 | 		       (unsigned long long)root->fs_info->generation); | 
 | 		WARN_ON(1); | 
 | 	} | 
 |  | 
 | 	if (!should_cow_block(trans, root, buf)) { | 
 | 		*cow_ret = buf; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); | 
 |  | 
 | 	if (parent) | 
 | 		btrfs_set_lock_blocking(parent); | 
 | 	btrfs_set_lock_blocking(buf); | 
 |  | 
 | 	ret = __btrfs_cow_block(trans, root, buf, parent, | 
 | 				 parent_slot, cow_ret, search_start, 0); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function for defrag to decide if two blocks pointed to by a | 
 |  * node are actually close by | 
 |  */ | 
 | static int close_blocks(u64 blocknr, u64 other, u32 blocksize) | 
 | { | 
 | 	if (blocknr < other && other - (blocknr + blocksize) < 32768) | 
 | 		return 1; | 
 | 	if (blocknr > other && blocknr - (other + blocksize) < 32768) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * compare two keys in a memcmp fashion | 
 |  */ | 
 | static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) | 
 | { | 
 | 	struct btrfs_key k1; | 
 |  | 
 | 	btrfs_disk_key_to_cpu(&k1, disk); | 
 |  | 
 | 	return btrfs_comp_cpu_keys(&k1, k2); | 
 | } | 
 |  | 
 | /* | 
 |  * same as comp_keys only with two btrfs_key's | 
 |  */ | 
 | int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) | 
 | { | 
 | 	if (k1->objectid > k2->objectid) | 
 | 		return 1; | 
 | 	if (k1->objectid < k2->objectid) | 
 | 		return -1; | 
 | 	if (k1->type > k2->type) | 
 | 		return 1; | 
 | 	if (k1->type < k2->type) | 
 | 		return -1; | 
 | 	if (k1->offset > k2->offset) | 
 | 		return 1; | 
 | 	if (k1->offset < k2->offset) | 
 | 		return -1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * this is used by the defrag code to go through all the | 
 |  * leaves pointed to by a node and reallocate them so that | 
 |  * disk order is close to key order | 
 |  */ | 
 | int btrfs_realloc_node(struct btrfs_trans_handle *trans, | 
 | 		       struct btrfs_root *root, struct extent_buffer *parent, | 
 | 		       int start_slot, int cache_only, u64 *last_ret, | 
 | 		       struct btrfs_key *progress) | 
 | { | 
 | 	struct extent_buffer *cur; | 
 | 	u64 blocknr; | 
 | 	u64 gen; | 
 | 	u64 search_start = *last_ret; | 
 | 	u64 last_block = 0; | 
 | 	u64 other; | 
 | 	u32 parent_nritems; | 
 | 	int end_slot; | 
 | 	int i; | 
 | 	int err = 0; | 
 | 	int parent_level; | 
 | 	int uptodate; | 
 | 	u32 blocksize; | 
 | 	int progress_passed = 0; | 
 | 	struct btrfs_disk_key disk_key; | 
 |  | 
 | 	parent_level = btrfs_header_level(parent); | 
 | 	if (cache_only && parent_level != 1) | 
 | 		return 0; | 
 |  | 
 | 	if (trans->transaction != root->fs_info->running_transaction) | 
 | 		WARN_ON(1); | 
 | 	if (trans->transid != root->fs_info->generation) | 
 | 		WARN_ON(1); | 
 |  | 
 | 	parent_nritems = btrfs_header_nritems(parent); | 
 | 	blocksize = btrfs_level_size(root, parent_level - 1); | 
 | 	end_slot = parent_nritems; | 
 |  | 
 | 	if (parent_nritems == 1) | 
 | 		return 0; | 
 |  | 
 | 	btrfs_set_lock_blocking(parent); | 
 |  | 
 | 	for (i = start_slot; i < end_slot; i++) { | 
 | 		int close = 1; | 
 |  | 
 | 		if (!parent->map_token) { | 
 | 			map_extent_buffer(parent, | 
 | 					btrfs_node_key_ptr_offset(i), | 
 | 					sizeof(struct btrfs_key_ptr), | 
 | 					&parent->map_token, &parent->kaddr, | 
 | 					&parent->map_start, &parent->map_len, | 
 | 					KM_USER1); | 
 | 		} | 
 | 		btrfs_node_key(parent, &disk_key, i); | 
 | 		if (!progress_passed && comp_keys(&disk_key, progress) < 0) | 
 | 			continue; | 
 |  | 
 | 		progress_passed = 1; | 
 | 		blocknr = btrfs_node_blockptr(parent, i); | 
 | 		gen = btrfs_node_ptr_generation(parent, i); | 
 | 		if (last_block == 0) | 
 | 			last_block = blocknr; | 
 |  | 
 | 		if (i > 0) { | 
 | 			other = btrfs_node_blockptr(parent, i - 1); | 
 | 			close = close_blocks(blocknr, other, blocksize); | 
 | 		} | 
 | 		if (!close && i < end_slot - 2) { | 
 | 			other = btrfs_node_blockptr(parent, i + 1); | 
 | 			close = close_blocks(blocknr, other, blocksize); | 
 | 		} | 
 | 		if (close) { | 
 | 			last_block = blocknr; | 
 | 			continue; | 
 | 		} | 
 | 		if (parent->map_token) { | 
 | 			unmap_extent_buffer(parent, parent->map_token, | 
 | 					    KM_USER1); | 
 | 			parent->map_token = NULL; | 
 | 		} | 
 |  | 
 | 		cur = btrfs_find_tree_block(root, blocknr, blocksize); | 
 | 		if (cur) | 
 | 			uptodate = btrfs_buffer_uptodate(cur, gen); | 
 | 		else | 
 | 			uptodate = 0; | 
 | 		if (!cur || !uptodate) { | 
 | 			if (cache_only) { | 
 | 				free_extent_buffer(cur); | 
 | 				continue; | 
 | 			} | 
 | 			if (!cur) { | 
 | 				cur = read_tree_block(root, blocknr, | 
 | 							 blocksize, gen); | 
 | 			} else if (!uptodate) { | 
 | 				btrfs_read_buffer(cur, gen); | 
 | 			} | 
 | 		} | 
 | 		if (search_start == 0) | 
 | 			search_start = last_block; | 
 |  | 
 | 		btrfs_tree_lock(cur); | 
 | 		btrfs_set_lock_blocking(cur); | 
 | 		err = __btrfs_cow_block(trans, root, cur, parent, i, | 
 | 					&cur, search_start, | 
 | 					min(16 * blocksize, | 
 | 					    (end_slot - i) * blocksize)); | 
 | 		if (err) { | 
 | 			btrfs_tree_unlock(cur); | 
 | 			free_extent_buffer(cur); | 
 | 			break; | 
 | 		} | 
 | 		search_start = cur->start; | 
 | 		last_block = cur->start; | 
 | 		*last_ret = search_start; | 
 | 		btrfs_tree_unlock(cur); | 
 | 		free_extent_buffer(cur); | 
 | 	} | 
 | 	if (parent->map_token) { | 
 | 		unmap_extent_buffer(parent, parent->map_token, | 
 | 				    KM_USER1); | 
 | 		parent->map_token = NULL; | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * The leaf data grows from end-to-front in the node. | 
 |  * this returns the address of the start of the last item, | 
 |  * which is the stop of the leaf data stack | 
 |  */ | 
 | static inline unsigned int leaf_data_end(struct btrfs_root *root, | 
 | 					 struct extent_buffer *leaf) | 
 | { | 
 | 	u32 nr = btrfs_header_nritems(leaf); | 
 | 	if (nr == 0) | 
 | 		return BTRFS_LEAF_DATA_SIZE(root); | 
 | 	return btrfs_item_offset_nr(leaf, nr - 1); | 
 | } | 
 |  | 
 | /* | 
 |  * extra debugging checks to make sure all the items in a key are | 
 |  * well formed and in the proper order | 
 |  */ | 
 | static int check_node(struct btrfs_root *root, struct btrfs_path *path, | 
 | 		      int level) | 
 | { | 
 | 	struct extent_buffer *parent = NULL; | 
 | 	struct extent_buffer *node = path->nodes[level]; | 
 | 	struct btrfs_disk_key parent_key; | 
 | 	struct btrfs_disk_key node_key; | 
 | 	int parent_slot; | 
 | 	int slot; | 
 | 	struct btrfs_key cpukey; | 
 | 	u32 nritems = btrfs_header_nritems(node); | 
 |  | 
 | 	if (path->nodes[level + 1]) | 
 | 		parent = path->nodes[level + 1]; | 
 |  | 
 | 	slot = path->slots[level]; | 
 | 	BUG_ON(nritems == 0); | 
 | 	if (parent) { | 
 | 		parent_slot = path->slots[level + 1]; | 
 | 		btrfs_node_key(parent, &parent_key, parent_slot); | 
 | 		btrfs_node_key(node, &node_key, 0); | 
 | 		BUG_ON(memcmp(&parent_key, &node_key, | 
 | 			      sizeof(struct btrfs_disk_key))); | 
 | 		BUG_ON(btrfs_node_blockptr(parent, parent_slot) != | 
 | 		       btrfs_header_bytenr(node)); | 
 | 	} | 
 | 	BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root)); | 
 | 	if (slot != 0) { | 
 | 		btrfs_node_key_to_cpu(node, &cpukey, slot - 1); | 
 | 		btrfs_node_key(node, &node_key, slot); | 
 | 		BUG_ON(comp_keys(&node_key, &cpukey) <= 0); | 
 | 	} | 
 | 	if (slot < nritems - 1) { | 
 | 		btrfs_node_key_to_cpu(node, &cpukey, slot + 1); | 
 | 		btrfs_node_key(node, &node_key, slot); | 
 | 		BUG_ON(comp_keys(&node_key, &cpukey) >= 0); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * extra checking to make sure all the items in a leaf are | 
 |  * well formed and in the proper order | 
 |  */ | 
 | static int check_leaf(struct btrfs_root *root, struct btrfs_path *path, | 
 | 		      int level) | 
 | { | 
 | 	struct extent_buffer *leaf = path->nodes[level]; | 
 | 	struct extent_buffer *parent = NULL; | 
 | 	int parent_slot; | 
 | 	struct btrfs_key cpukey; | 
 | 	struct btrfs_disk_key parent_key; | 
 | 	struct btrfs_disk_key leaf_key; | 
 | 	int slot = path->slots[0]; | 
 |  | 
 | 	u32 nritems = btrfs_header_nritems(leaf); | 
 |  | 
 | 	if (path->nodes[level + 1]) | 
 | 		parent = path->nodes[level + 1]; | 
 |  | 
 | 	if (nritems == 0) | 
 | 		return 0; | 
 |  | 
 | 	if (parent) { | 
 | 		parent_slot = path->slots[level + 1]; | 
 | 		btrfs_node_key(parent, &parent_key, parent_slot); | 
 | 		btrfs_item_key(leaf, &leaf_key, 0); | 
 |  | 
 | 		BUG_ON(memcmp(&parent_key, &leaf_key, | 
 | 		       sizeof(struct btrfs_disk_key))); | 
 | 		BUG_ON(btrfs_node_blockptr(parent, parent_slot) != | 
 | 		       btrfs_header_bytenr(leaf)); | 
 | 	} | 
 | 	if (slot != 0 && slot < nritems - 1) { | 
 | 		btrfs_item_key(leaf, &leaf_key, slot); | 
 | 		btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1); | 
 | 		if (comp_keys(&leaf_key, &cpukey) <= 0) { | 
 | 			btrfs_print_leaf(root, leaf); | 
 | 			printk(KERN_CRIT "slot %d offset bad key\n", slot); | 
 | 			BUG_ON(1); | 
 | 		} | 
 | 		if (btrfs_item_offset_nr(leaf, slot - 1) != | 
 | 		       btrfs_item_end_nr(leaf, slot)) { | 
 | 			btrfs_print_leaf(root, leaf); | 
 | 			printk(KERN_CRIT "slot %d offset bad\n", slot); | 
 | 			BUG_ON(1); | 
 | 		} | 
 | 	} | 
 | 	if (slot < nritems - 1) { | 
 | 		btrfs_item_key(leaf, &leaf_key, slot); | 
 | 		btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1); | 
 | 		BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0); | 
 | 		if (btrfs_item_offset_nr(leaf, slot) != | 
 | 			btrfs_item_end_nr(leaf, slot + 1)) { | 
 | 			btrfs_print_leaf(root, leaf); | 
 | 			printk(KERN_CRIT "slot %d offset bad\n", slot); | 
 | 			BUG_ON(1); | 
 | 		} | 
 | 	} | 
 | 	BUG_ON(btrfs_item_offset_nr(leaf, 0) + | 
 | 	       btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline int check_block(struct btrfs_root *root, | 
 | 				struct btrfs_path *path, int level) | 
 | { | 
 | 	return 0; | 
 | 	if (level == 0) | 
 | 		return check_leaf(root, path, level); | 
 | 	return check_node(root, path, level); | 
 | } | 
 |  | 
 | /* | 
 |  * search for key in the extent_buffer.  The items start at offset p, | 
 |  * and they are item_size apart.  There are 'max' items in p. | 
 |  * | 
 |  * the slot in the array is returned via slot, and it points to | 
 |  * the place where you would insert key if it is not found in | 
 |  * the array. | 
 |  * | 
 |  * slot may point to max if the key is bigger than all of the keys | 
 |  */ | 
 | static noinline int generic_bin_search(struct extent_buffer *eb, | 
 | 				       unsigned long p, | 
 | 				       int item_size, struct btrfs_key *key, | 
 | 				       int max, int *slot) | 
 | { | 
 | 	int low = 0; | 
 | 	int high = max; | 
 | 	int mid; | 
 | 	int ret; | 
 | 	struct btrfs_disk_key *tmp = NULL; | 
 | 	struct btrfs_disk_key unaligned; | 
 | 	unsigned long offset; | 
 | 	char *map_token = NULL; | 
 | 	char *kaddr = NULL; | 
 | 	unsigned long map_start = 0; | 
 | 	unsigned long map_len = 0; | 
 | 	int err; | 
 |  | 
 | 	while (low < high) { | 
 | 		mid = (low + high) / 2; | 
 | 		offset = p + mid * item_size; | 
 |  | 
 | 		if (!map_token || offset < map_start || | 
 | 		    (offset + sizeof(struct btrfs_disk_key)) > | 
 | 		    map_start + map_len) { | 
 | 			if (map_token) { | 
 | 				unmap_extent_buffer(eb, map_token, KM_USER0); | 
 | 				map_token = NULL; | 
 | 			} | 
 |  | 
 | 			err = map_private_extent_buffer(eb, offset, | 
 | 						sizeof(struct btrfs_disk_key), | 
 | 						&map_token, &kaddr, | 
 | 						&map_start, &map_len, KM_USER0); | 
 |  | 
 | 			if (!err) { | 
 | 				tmp = (struct btrfs_disk_key *)(kaddr + offset - | 
 | 							map_start); | 
 | 			} else { | 
 | 				read_extent_buffer(eb, &unaligned, | 
 | 						   offset, sizeof(unaligned)); | 
 | 				tmp = &unaligned; | 
 | 			} | 
 |  | 
 | 		} else { | 
 | 			tmp = (struct btrfs_disk_key *)(kaddr + offset - | 
 | 							map_start); | 
 | 		} | 
 | 		ret = comp_keys(tmp, key); | 
 |  | 
 | 		if (ret < 0) | 
 | 			low = mid + 1; | 
 | 		else if (ret > 0) | 
 | 			high = mid; | 
 | 		else { | 
 | 			*slot = mid; | 
 | 			if (map_token) | 
 | 				unmap_extent_buffer(eb, map_token, KM_USER0); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | 	*slot = low; | 
 | 	if (map_token) | 
 | 		unmap_extent_buffer(eb, map_token, KM_USER0); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * simple bin_search frontend that does the right thing for | 
 |  * leaves vs nodes | 
 |  */ | 
 | static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, | 
 | 		      int level, int *slot) | 
 | { | 
 | 	if (level == 0) { | 
 | 		return generic_bin_search(eb, | 
 | 					  offsetof(struct btrfs_leaf, items), | 
 | 					  sizeof(struct btrfs_item), | 
 | 					  key, btrfs_header_nritems(eb), | 
 | 					  slot); | 
 | 	} else { | 
 | 		return generic_bin_search(eb, | 
 | 					  offsetof(struct btrfs_node, ptrs), | 
 | 					  sizeof(struct btrfs_key_ptr), | 
 | 					  key, btrfs_header_nritems(eb), | 
 | 					  slot); | 
 | 	} | 
 | 	return -1; | 
 | } | 
 |  | 
 | int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, | 
 | 		     int level, int *slot) | 
 | { | 
 | 	return bin_search(eb, key, level, slot); | 
 | } | 
 |  | 
 | /* given a node and slot number, this reads the blocks it points to.  The | 
 |  * extent buffer is returned with a reference taken (but unlocked). | 
 |  * NULL is returned on error. | 
 |  */ | 
 | static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, | 
 | 				   struct extent_buffer *parent, int slot) | 
 | { | 
 | 	int level = btrfs_header_level(parent); | 
 | 	if (slot < 0) | 
 | 		return NULL; | 
 | 	if (slot >= btrfs_header_nritems(parent)) | 
 | 		return NULL; | 
 |  | 
 | 	BUG_ON(level == 0); | 
 |  | 
 | 	return read_tree_block(root, btrfs_node_blockptr(parent, slot), | 
 | 		       btrfs_level_size(root, level - 1), | 
 | 		       btrfs_node_ptr_generation(parent, slot)); | 
 | } | 
 |  | 
 | /* | 
 |  * node level balancing, used to make sure nodes are in proper order for | 
 |  * item deletion.  We balance from the top down, so we have to make sure | 
 |  * that a deletion won't leave an node completely empty later on. | 
 |  */ | 
 | static noinline int balance_level(struct btrfs_trans_handle *trans, | 
 | 			 struct btrfs_root *root, | 
 | 			 struct btrfs_path *path, int level) | 
 | { | 
 | 	struct extent_buffer *right = NULL; | 
 | 	struct extent_buffer *mid; | 
 | 	struct extent_buffer *left = NULL; | 
 | 	struct extent_buffer *parent = NULL; | 
 | 	int ret = 0; | 
 | 	int wret; | 
 | 	int pslot; | 
 | 	int orig_slot = path->slots[level]; | 
 | 	int err_on_enospc = 0; | 
 | 	u64 orig_ptr; | 
 |  | 
 | 	if (level == 0) | 
 | 		return 0; | 
 |  | 
 | 	mid = path->nodes[level]; | 
 |  | 
 | 	WARN_ON(!path->locks[level]); | 
 | 	WARN_ON(btrfs_header_generation(mid) != trans->transid); | 
 |  | 
 | 	orig_ptr = btrfs_node_blockptr(mid, orig_slot); | 
 |  | 
 | 	if (level < BTRFS_MAX_LEVEL - 1) | 
 | 		parent = path->nodes[level + 1]; | 
 | 	pslot = path->slots[level + 1]; | 
 |  | 
 | 	/* | 
 | 	 * deal with the case where there is only one pointer in the root | 
 | 	 * by promoting the node below to a root | 
 | 	 */ | 
 | 	if (!parent) { | 
 | 		struct extent_buffer *child; | 
 |  | 
 | 		if (btrfs_header_nritems(mid) != 1) | 
 | 			return 0; | 
 |  | 
 | 		/* promote the child to a root */ | 
 | 		child = read_node_slot(root, mid, 0); | 
 | 		BUG_ON(!child); | 
 | 		btrfs_tree_lock(child); | 
 | 		btrfs_set_lock_blocking(child); | 
 | 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child); | 
 | 		BUG_ON(ret); | 
 |  | 
 | 		spin_lock(&root->node_lock); | 
 | 		root->node = child; | 
 | 		spin_unlock(&root->node_lock); | 
 |  | 
 | 		add_root_to_dirty_list(root); | 
 | 		btrfs_tree_unlock(child); | 
 |  | 
 | 		path->locks[level] = 0; | 
 | 		path->nodes[level] = NULL; | 
 | 		clean_tree_block(trans, root, mid); | 
 | 		btrfs_tree_unlock(mid); | 
 | 		/* once for the path */ | 
 | 		free_extent_buffer(mid); | 
 | 		ret = btrfs_free_extent(trans, root, mid->start, mid->len, | 
 | 					0, root->root_key.objectid, level, 1); | 
 | 		/* once for the root ptr */ | 
 | 		free_extent_buffer(mid); | 
 | 		return ret; | 
 | 	} | 
 | 	if (btrfs_header_nritems(mid) > | 
 | 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4) | 
 | 		return 0; | 
 |  | 
 | 	if (btrfs_header_nritems(mid) < 2) | 
 | 		err_on_enospc = 1; | 
 |  | 
 | 	left = read_node_slot(root, parent, pslot - 1); | 
 | 	if (left) { | 
 | 		btrfs_tree_lock(left); | 
 | 		btrfs_set_lock_blocking(left); | 
 | 		wret = btrfs_cow_block(trans, root, left, | 
 | 				       parent, pslot - 1, &left); | 
 | 		if (wret) { | 
 | 			ret = wret; | 
 | 			goto enospc; | 
 | 		} | 
 | 	} | 
 | 	right = read_node_slot(root, parent, pslot + 1); | 
 | 	if (right) { | 
 | 		btrfs_tree_lock(right); | 
 | 		btrfs_set_lock_blocking(right); | 
 | 		wret = btrfs_cow_block(trans, root, right, | 
 | 				       parent, pslot + 1, &right); | 
 | 		if (wret) { | 
 | 			ret = wret; | 
 | 			goto enospc; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* first, try to make some room in the middle buffer */ | 
 | 	if (left) { | 
 | 		orig_slot += btrfs_header_nritems(left); | 
 | 		wret = push_node_left(trans, root, left, mid, 1); | 
 | 		if (wret < 0) | 
 | 			ret = wret; | 
 | 		if (btrfs_header_nritems(mid) < 2) | 
 | 			err_on_enospc = 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * then try to empty the right most buffer into the middle | 
 | 	 */ | 
 | 	if (right) { | 
 | 		wret = push_node_left(trans, root, mid, right, 1); | 
 | 		if (wret < 0 && wret != -ENOSPC) | 
 | 			ret = wret; | 
 | 		if (btrfs_header_nritems(right) == 0) { | 
 | 			u64 bytenr = right->start; | 
 | 			u32 blocksize = right->len; | 
 |  | 
 | 			clean_tree_block(trans, root, right); | 
 | 			btrfs_tree_unlock(right); | 
 | 			free_extent_buffer(right); | 
 | 			right = NULL; | 
 | 			wret = del_ptr(trans, root, path, level + 1, pslot + | 
 | 				       1); | 
 | 			if (wret) | 
 | 				ret = wret; | 
 | 			wret = btrfs_free_extent(trans, root, bytenr, | 
 | 						 blocksize, 0, | 
 | 						 root->root_key.objectid, | 
 | 						 level, 0); | 
 | 			if (wret) | 
 | 				ret = wret; | 
 | 		} else { | 
 | 			struct btrfs_disk_key right_key; | 
 | 			btrfs_node_key(right, &right_key, 0); | 
 | 			btrfs_set_node_key(parent, &right_key, pslot + 1); | 
 | 			btrfs_mark_buffer_dirty(parent); | 
 | 		} | 
 | 	} | 
 | 	if (btrfs_header_nritems(mid) == 1) { | 
 | 		/* | 
 | 		 * we're not allowed to leave a node with one item in the | 
 | 		 * tree during a delete.  A deletion from lower in the tree | 
 | 		 * could try to delete the only pointer in this node. | 
 | 		 * So, pull some keys from the left. | 
 | 		 * There has to be a left pointer at this point because | 
 | 		 * otherwise we would have pulled some pointers from the | 
 | 		 * right | 
 | 		 */ | 
 | 		BUG_ON(!left); | 
 | 		wret = balance_node_right(trans, root, mid, left); | 
 | 		if (wret < 0) { | 
 | 			ret = wret; | 
 | 			goto enospc; | 
 | 		} | 
 | 		if (wret == 1) { | 
 | 			wret = push_node_left(trans, root, left, mid, 1); | 
 | 			if (wret < 0) | 
 | 				ret = wret; | 
 | 		} | 
 | 		BUG_ON(wret == 1); | 
 | 	} | 
 | 	if (btrfs_header_nritems(mid) == 0) { | 
 | 		/* we've managed to empty the middle node, drop it */ | 
 | 		u64 bytenr = mid->start; | 
 | 		u32 blocksize = mid->len; | 
 |  | 
 | 		clean_tree_block(trans, root, mid); | 
 | 		btrfs_tree_unlock(mid); | 
 | 		free_extent_buffer(mid); | 
 | 		mid = NULL; | 
 | 		wret = del_ptr(trans, root, path, level + 1, pslot); | 
 | 		if (wret) | 
 | 			ret = wret; | 
 | 		wret = btrfs_free_extent(trans, root, bytenr, blocksize, | 
 | 					 0, root->root_key.objectid, | 
 | 					 level, 0); | 
 | 		if (wret) | 
 | 			ret = wret; | 
 | 	} else { | 
 | 		/* update the parent key to reflect our changes */ | 
 | 		struct btrfs_disk_key mid_key; | 
 | 		btrfs_node_key(mid, &mid_key, 0); | 
 | 		btrfs_set_node_key(parent, &mid_key, pslot); | 
 | 		btrfs_mark_buffer_dirty(parent); | 
 | 	} | 
 |  | 
 | 	/* update the path */ | 
 | 	if (left) { | 
 | 		if (btrfs_header_nritems(left) > orig_slot) { | 
 | 			extent_buffer_get(left); | 
 | 			/* left was locked after cow */ | 
 | 			path->nodes[level] = left; | 
 | 			path->slots[level + 1] -= 1; | 
 | 			path->slots[level] = orig_slot; | 
 | 			if (mid) { | 
 | 				btrfs_tree_unlock(mid); | 
 | 				free_extent_buffer(mid); | 
 | 			} | 
 | 		} else { | 
 | 			orig_slot -= btrfs_header_nritems(left); | 
 | 			path->slots[level] = orig_slot; | 
 | 		} | 
 | 	} | 
 | 	/* double check we haven't messed things up */ | 
 | 	check_block(root, path, level); | 
 | 	if (orig_ptr != | 
 | 	    btrfs_node_blockptr(path->nodes[level], path->slots[level])) | 
 | 		BUG(); | 
 | enospc: | 
 | 	if (right) { | 
 | 		btrfs_tree_unlock(right); | 
 | 		free_extent_buffer(right); | 
 | 	} | 
 | 	if (left) { | 
 | 		if (path->nodes[level] != left) | 
 | 			btrfs_tree_unlock(left); | 
 | 		free_extent_buffer(left); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Node balancing for insertion.  Here we only split or push nodes around | 
 |  * when they are completely full.  This is also done top down, so we | 
 |  * have to be pessimistic. | 
 |  */ | 
 | static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, | 
 | 					  struct btrfs_root *root, | 
 | 					  struct btrfs_path *path, int level) | 
 | { | 
 | 	struct extent_buffer *right = NULL; | 
 | 	struct extent_buffer *mid; | 
 | 	struct extent_buffer *left = NULL; | 
 | 	struct extent_buffer *parent = NULL; | 
 | 	int ret = 0; | 
 | 	int wret; | 
 | 	int pslot; | 
 | 	int orig_slot = path->slots[level]; | 
 | 	u64 orig_ptr; | 
 |  | 
 | 	if (level == 0) | 
 | 		return 1; | 
 |  | 
 | 	mid = path->nodes[level]; | 
 | 	WARN_ON(btrfs_header_generation(mid) != trans->transid); | 
 | 	orig_ptr = btrfs_node_blockptr(mid, orig_slot); | 
 |  | 
 | 	if (level < BTRFS_MAX_LEVEL - 1) | 
 | 		parent = path->nodes[level + 1]; | 
 | 	pslot = path->slots[level + 1]; | 
 |  | 
 | 	if (!parent) | 
 | 		return 1; | 
 |  | 
 | 	left = read_node_slot(root, parent, pslot - 1); | 
 |  | 
 | 	/* first, try to make some room in the middle buffer */ | 
 | 	if (left) { | 
 | 		u32 left_nr; | 
 |  | 
 | 		btrfs_tree_lock(left); | 
 | 		btrfs_set_lock_blocking(left); | 
 |  | 
 | 		left_nr = btrfs_header_nritems(left); | 
 | 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { | 
 | 			wret = 1; | 
 | 		} else { | 
 | 			ret = btrfs_cow_block(trans, root, left, parent, | 
 | 					      pslot - 1, &left); | 
 | 			if (ret) | 
 | 				wret = 1; | 
 | 			else { | 
 | 				wret = push_node_left(trans, root, | 
 | 						      left, mid, 0); | 
 | 			} | 
 | 		} | 
 | 		if (wret < 0) | 
 | 			ret = wret; | 
 | 		if (wret == 0) { | 
 | 			struct btrfs_disk_key disk_key; | 
 | 			orig_slot += left_nr; | 
 | 			btrfs_node_key(mid, &disk_key, 0); | 
 | 			btrfs_set_node_key(parent, &disk_key, pslot); | 
 | 			btrfs_mark_buffer_dirty(parent); | 
 | 			if (btrfs_header_nritems(left) > orig_slot) { | 
 | 				path->nodes[level] = left; | 
 | 				path->slots[level + 1] -= 1; | 
 | 				path->slots[level] = orig_slot; | 
 | 				btrfs_tree_unlock(mid); | 
 | 				free_extent_buffer(mid); | 
 | 			} else { | 
 | 				orig_slot -= | 
 | 					btrfs_header_nritems(left); | 
 | 				path->slots[level] = orig_slot; | 
 | 				btrfs_tree_unlock(left); | 
 | 				free_extent_buffer(left); | 
 | 			} | 
 | 			return 0; | 
 | 		} | 
 | 		btrfs_tree_unlock(left); | 
 | 		free_extent_buffer(left); | 
 | 	} | 
 | 	right = read_node_slot(root, parent, pslot + 1); | 
 |  | 
 | 	/* | 
 | 	 * then try to empty the right most buffer into the middle | 
 | 	 */ | 
 | 	if (right) { | 
 | 		u32 right_nr; | 
 |  | 
 | 		btrfs_tree_lock(right); | 
 | 		btrfs_set_lock_blocking(right); | 
 |  | 
 | 		right_nr = btrfs_header_nritems(right); | 
 | 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { | 
 | 			wret = 1; | 
 | 		} else { | 
 | 			ret = btrfs_cow_block(trans, root, right, | 
 | 					      parent, pslot + 1, | 
 | 					      &right); | 
 | 			if (ret) | 
 | 				wret = 1; | 
 | 			else { | 
 | 				wret = balance_node_right(trans, root, | 
 | 							  right, mid); | 
 | 			} | 
 | 		} | 
 | 		if (wret < 0) | 
 | 			ret = wret; | 
 | 		if (wret == 0) { | 
 | 			struct btrfs_disk_key disk_key; | 
 |  | 
 | 			btrfs_node_key(right, &disk_key, 0); | 
 | 			btrfs_set_node_key(parent, &disk_key, pslot + 1); | 
 | 			btrfs_mark_buffer_dirty(parent); | 
 |  | 
 | 			if (btrfs_header_nritems(mid) <= orig_slot) { | 
 | 				path->nodes[level] = right; | 
 | 				path->slots[level + 1] += 1; | 
 | 				path->slots[level] = orig_slot - | 
 | 					btrfs_header_nritems(mid); | 
 | 				btrfs_tree_unlock(mid); | 
 | 				free_extent_buffer(mid); | 
 | 			} else { | 
 | 				btrfs_tree_unlock(right); | 
 | 				free_extent_buffer(right); | 
 | 			} | 
 | 			return 0; | 
 | 		} | 
 | 		btrfs_tree_unlock(right); | 
 | 		free_extent_buffer(right); | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * readahead one full node of leaves, finding things that are close | 
 |  * to the block in 'slot', and triggering ra on them. | 
 |  */ | 
 | static void reada_for_search(struct btrfs_root *root, | 
 | 			     struct btrfs_path *path, | 
 | 			     int level, int slot, u64 objectid) | 
 | { | 
 | 	struct extent_buffer *node; | 
 | 	struct btrfs_disk_key disk_key; | 
 | 	u32 nritems; | 
 | 	u64 search; | 
 | 	u64 target; | 
 | 	u64 nread = 0; | 
 | 	int direction = path->reada; | 
 | 	struct extent_buffer *eb; | 
 | 	u32 nr; | 
 | 	u32 blocksize; | 
 | 	u32 nscan = 0; | 
 |  | 
 | 	if (level != 1) | 
 | 		return; | 
 |  | 
 | 	if (!path->nodes[level]) | 
 | 		return; | 
 |  | 
 | 	node = path->nodes[level]; | 
 |  | 
 | 	search = btrfs_node_blockptr(node, slot); | 
 | 	blocksize = btrfs_level_size(root, level - 1); | 
 | 	eb = btrfs_find_tree_block(root, search, blocksize); | 
 | 	if (eb) { | 
 | 		free_extent_buffer(eb); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	target = search; | 
 |  | 
 | 	nritems = btrfs_header_nritems(node); | 
 | 	nr = slot; | 
 | 	while (1) { | 
 | 		if (direction < 0) { | 
 | 			if (nr == 0) | 
 | 				break; | 
 | 			nr--; | 
 | 		} else if (direction > 0) { | 
 | 			nr++; | 
 | 			if (nr >= nritems) | 
 | 				break; | 
 | 		} | 
 | 		if (path->reada < 0 && objectid) { | 
 | 			btrfs_node_key(node, &disk_key, nr); | 
 | 			if (btrfs_disk_key_objectid(&disk_key) != objectid) | 
 | 				break; | 
 | 		} | 
 | 		search = btrfs_node_blockptr(node, nr); | 
 | 		if ((search <= target && target - search <= 65536) || | 
 | 		    (search > target && search - target <= 65536)) { | 
 | 			readahead_tree_block(root, search, blocksize, | 
 | 				     btrfs_node_ptr_generation(node, nr)); | 
 | 			nread += blocksize; | 
 | 		} | 
 | 		nscan++; | 
 | 		if ((nread > 65536 || nscan > 32)) | 
 | 			break; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * returns -EAGAIN if it had to drop the path, or zero if everything was in | 
 |  * cache | 
 |  */ | 
 | static noinline int reada_for_balance(struct btrfs_root *root, | 
 | 				      struct btrfs_path *path, int level) | 
 | { | 
 | 	int slot; | 
 | 	int nritems; | 
 | 	struct extent_buffer *parent; | 
 | 	struct extent_buffer *eb; | 
 | 	u64 gen; | 
 | 	u64 block1 = 0; | 
 | 	u64 block2 = 0; | 
 | 	int ret = 0; | 
 | 	int blocksize; | 
 |  | 
 | 	parent = path->nodes[level + 1]; | 
 | 	if (!parent) | 
 | 		return 0; | 
 |  | 
 | 	nritems = btrfs_header_nritems(parent); | 
 | 	slot = path->slots[level + 1]; | 
 | 	blocksize = btrfs_level_size(root, level); | 
 |  | 
 | 	if (slot > 0) { | 
 | 		block1 = btrfs_node_blockptr(parent, slot - 1); | 
 | 		gen = btrfs_node_ptr_generation(parent, slot - 1); | 
 | 		eb = btrfs_find_tree_block(root, block1, blocksize); | 
 | 		if (eb && btrfs_buffer_uptodate(eb, gen)) | 
 | 			block1 = 0; | 
 | 		free_extent_buffer(eb); | 
 | 	} | 
 | 	if (slot + 1 < nritems) { | 
 | 		block2 = btrfs_node_blockptr(parent, slot + 1); | 
 | 		gen = btrfs_node_ptr_generation(parent, slot + 1); | 
 | 		eb = btrfs_find_tree_block(root, block2, blocksize); | 
 | 		if (eb && btrfs_buffer_uptodate(eb, gen)) | 
 | 			block2 = 0; | 
 | 		free_extent_buffer(eb); | 
 | 	} | 
 | 	if (block1 || block2) { | 
 | 		ret = -EAGAIN; | 
 |  | 
 | 		/* release the whole path */ | 
 | 		btrfs_release_path(root, path); | 
 |  | 
 | 		/* read the blocks */ | 
 | 		if (block1) | 
 | 			readahead_tree_block(root, block1, blocksize, 0); | 
 | 		if (block2) | 
 | 			readahead_tree_block(root, block2, blocksize, 0); | 
 |  | 
 | 		if (block1) { | 
 | 			eb = read_tree_block(root, block1, blocksize, 0); | 
 | 			free_extent_buffer(eb); | 
 | 		} | 
 | 		if (block2) { | 
 | 			eb = read_tree_block(root, block2, blocksize, 0); | 
 | 			free_extent_buffer(eb); | 
 | 		} | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * when we walk down the tree, it is usually safe to unlock the higher layers | 
 |  * in the tree.  The exceptions are when our path goes through slot 0, because | 
 |  * operations on the tree might require changing key pointers higher up in the | 
 |  * tree. | 
 |  * | 
 |  * callers might also have set path->keep_locks, which tells this code to keep | 
 |  * the lock if the path points to the last slot in the block.  This is part of | 
 |  * walking through the tree, and selecting the next slot in the higher block. | 
 |  * | 
 |  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so | 
 |  * if lowest_unlock is 1, level 0 won't be unlocked | 
 |  */ | 
 | static noinline void unlock_up(struct btrfs_path *path, int level, | 
 | 			       int lowest_unlock) | 
 | { | 
 | 	int i; | 
 | 	int skip_level = level; | 
 | 	int no_skips = 0; | 
 | 	struct extent_buffer *t; | 
 |  | 
 | 	for (i = level; i < BTRFS_MAX_LEVEL; i++) { | 
 | 		if (!path->nodes[i]) | 
 | 			break; | 
 | 		if (!path->locks[i]) | 
 | 			break; | 
 | 		if (!no_skips && path->slots[i] == 0) { | 
 | 			skip_level = i + 1; | 
 | 			continue; | 
 | 		} | 
 | 		if (!no_skips && path->keep_locks) { | 
 | 			u32 nritems; | 
 | 			t = path->nodes[i]; | 
 | 			nritems = btrfs_header_nritems(t); | 
 | 			if (nritems < 1 || path->slots[i] >= nritems - 1) { | 
 | 				skip_level = i + 1; | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 | 		if (skip_level < i && i >= lowest_unlock) | 
 | 			no_skips = 1; | 
 |  | 
 | 		t = path->nodes[i]; | 
 | 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) { | 
 | 			btrfs_tree_unlock(t); | 
 | 			path->locks[i] = 0; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This releases any locks held in the path starting at level and | 
 |  * going all the way up to the root. | 
 |  * | 
 |  * btrfs_search_slot will keep the lock held on higher nodes in a few | 
 |  * corner cases, such as COW of the block at slot zero in the node.  This | 
 |  * ignores those rules, and it should only be called when there are no | 
 |  * more updates to be done higher up in the tree. | 
 |  */ | 
 | noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (path->keep_locks) | 
 | 		return; | 
 |  | 
 | 	for (i = level; i < BTRFS_MAX_LEVEL; i++) { | 
 | 		if (!path->nodes[i]) | 
 | 			continue; | 
 | 		if (!path->locks[i]) | 
 | 			continue; | 
 | 		btrfs_tree_unlock(path->nodes[i]); | 
 | 		path->locks[i] = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * helper function for btrfs_search_slot.  The goal is to find a block | 
 |  * in cache without setting the path to blocking.  If we find the block | 
 |  * we return zero and the path is unchanged. | 
 |  * | 
 |  * If we can't find the block, we set the path blocking and do some | 
 |  * reada.  -EAGAIN is returned and the search must be repeated. | 
 |  */ | 
 | static int | 
 | read_block_for_search(struct btrfs_trans_handle *trans, | 
 | 		       struct btrfs_root *root, struct btrfs_path *p, | 
 | 		       struct extent_buffer **eb_ret, int level, int slot, | 
 | 		       struct btrfs_key *key) | 
 | { | 
 | 	u64 blocknr; | 
 | 	u64 gen; | 
 | 	u32 blocksize; | 
 | 	struct extent_buffer *b = *eb_ret; | 
 | 	struct extent_buffer *tmp; | 
 | 	int ret; | 
 |  | 
 | 	blocknr = btrfs_node_blockptr(b, slot); | 
 | 	gen = btrfs_node_ptr_generation(b, slot); | 
 | 	blocksize = btrfs_level_size(root, level - 1); | 
 |  | 
 | 	tmp = btrfs_find_tree_block(root, blocknr, blocksize); | 
 | 	if (tmp && btrfs_buffer_uptodate(tmp, gen)) { | 
 | 		/* | 
 | 		 * we found an up to date block without sleeping, return | 
 | 		 * right away | 
 | 		 */ | 
 | 		*eb_ret = tmp; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * reduce lock contention at high levels | 
 | 	 * of the btree by dropping locks before | 
 | 	 * we read.  Don't release the lock on the current | 
 | 	 * level because we need to walk this node to figure | 
 | 	 * out which blocks to read. | 
 | 	 */ | 
 | 	btrfs_unlock_up_safe(p, level + 1); | 
 | 	btrfs_set_path_blocking(p); | 
 |  | 
 | 	if (tmp) | 
 | 		free_extent_buffer(tmp); | 
 | 	if (p->reada) | 
 | 		reada_for_search(root, p, level, slot, key->objectid); | 
 |  | 
 | 	btrfs_release_path(NULL, p); | 
 |  | 
 | 	ret = -EAGAIN; | 
 | 	tmp = read_tree_block(root, blocknr, blocksize, gen); | 
 | 	if (tmp) { | 
 | 		/* | 
 | 		 * If the read above didn't mark this buffer up to date, | 
 | 		 * it will never end up being up to date.  Set ret to EIO now | 
 | 		 * and give up so that our caller doesn't loop forever | 
 | 		 * on our EAGAINs. | 
 | 		 */ | 
 | 		if (!btrfs_buffer_uptodate(tmp, 0)) | 
 | 			ret = -EIO; | 
 | 		free_extent_buffer(tmp); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function for btrfs_search_slot.  This does all of the checks | 
 |  * for node-level blocks and does any balancing required based on | 
 |  * the ins_len. | 
 |  * | 
 |  * If no extra work was required, zero is returned.  If we had to | 
 |  * drop the path, -EAGAIN is returned and btrfs_search_slot must | 
 |  * start over | 
 |  */ | 
 | static int | 
 | setup_nodes_for_search(struct btrfs_trans_handle *trans, | 
 | 		       struct btrfs_root *root, struct btrfs_path *p, | 
 | 		       struct extent_buffer *b, int level, int ins_len) | 
 | { | 
 | 	int ret; | 
 | 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= | 
 | 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { | 
 | 		int sret; | 
 |  | 
 | 		sret = reada_for_balance(root, p, level); | 
 | 		if (sret) | 
 | 			goto again; | 
 |  | 
 | 		btrfs_set_path_blocking(p); | 
 | 		sret = split_node(trans, root, p, level); | 
 | 		btrfs_clear_path_blocking(p, NULL); | 
 |  | 
 | 		BUG_ON(sret > 0); | 
 | 		if (sret) { | 
 | 			ret = sret; | 
 | 			goto done; | 
 | 		} | 
 | 		b = p->nodes[level]; | 
 | 	} else if (ins_len < 0 && btrfs_header_nritems(b) < | 
 | 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { | 
 | 		int sret; | 
 |  | 
 | 		sret = reada_for_balance(root, p, level); | 
 | 		if (sret) | 
 | 			goto again; | 
 |  | 
 | 		btrfs_set_path_blocking(p); | 
 | 		sret = balance_level(trans, root, p, level); | 
 | 		btrfs_clear_path_blocking(p, NULL); | 
 |  | 
 | 		if (sret) { | 
 | 			ret = sret; | 
 | 			goto done; | 
 | 		} | 
 | 		b = p->nodes[level]; | 
 | 		if (!b) { | 
 | 			btrfs_release_path(NULL, p); | 
 | 			goto again; | 
 | 		} | 
 | 		BUG_ON(btrfs_header_nritems(b) == 1); | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | again: | 
 | 	ret = -EAGAIN; | 
 | done: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * look for key in the tree.  path is filled in with nodes along the way | 
 |  * if key is found, we return zero and you can find the item in the leaf | 
 |  * level of the path (level 0) | 
 |  * | 
 |  * If the key isn't found, the path points to the slot where it should | 
 |  * be inserted, and 1 is returned.  If there are other errors during the | 
 |  * search a negative error number is returned. | 
 |  * | 
 |  * if ins_len > 0, nodes and leaves will be split as we walk down the | 
 |  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if | 
 |  * possible) | 
 |  */ | 
 | int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root | 
 | 		      *root, struct btrfs_key *key, struct btrfs_path *p, int | 
 | 		      ins_len, int cow) | 
 | { | 
 | 	struct extent_buffer *b; | 
 | 	int slot; | 
 | 	int ret; | 
 | 	int err; | 
 | 	int level; | 
 | 	int lowest_unlock = 1; | 
 | 	u8 lowest_level = 0; | 
 |  | 
 | 	lowest_level = p->lowest_level; | 
 | 	WARN_ON(lowest_level && ins_len > 0); | 
 | 	WARN_ON(p->nodes[0] != NULL); | 
 |  | 
 | 	if (ins_len < 0) | 
 | 		lowest_unlock = 2; | 
 |  | 
 | again: | 
 | 	if (p->search_commit_root) { | 
 | 		b = root->commit_root; | 
 | 		extent_buffer_get(b); | 
 | 		if (!p->skip_locking) | 
 | 			btrfs_tree_lock(b); | 
 | 	} else { | 
 | 		if (p->skip_locking) | 
 | 			b = btrfs_root_node(root); | 
 | 		else | 
 | 			b = btrfs_lock_root_node(root); | 
 | 	} | 
 |  | 
 | 	while (b) { | 
 | 		level = btrfs_header_level(b); | 
 |  | 
 | 		/* | 
 | 		 * setup the path here so we can release it under lock | 
 | 		 * contention with the cow code | 
 | 		 */ | 
 | 		p->nodes[level] = b; | 
 | 		if (!p->skip_locking) | 
 | 			p->locks[level] = 1; | 
 |  | 
 | 		if (cow) { | 
 | 			/* | 
 | 			 * if we don't really need to cow this block | 
 | 			 * then we don't want to set the path blocking, | 
 | 			 * so we test it here | 
 | 			 */ | 
 | 			if (!should_cow_block(trans, root, b)) | 
 | 				goto cow_done; | 
 |  | 
 | 			btrfs_set_path_blocking(p); | 
 |  | 
 | 			err = btrfs_cow_block(trans, root, b, | 
 | 					      p->nodes[level + 1], | 
 | 					      p->slots[level + 1], &b); | 
 | 			if (err) { | 
 | 				free_extent_buffer(b); | 
 | 				ret = err; | 
 | 				goto done; | 
 | 			} | 
 | 		} | 
 | cow_done: | 
 | 		BUG_ON(!cow && ins_len); | 
 | 		if (level != btrfs_header_level(b)) | 
 | 			WARN_ON(1); | 
 | 		level = btrfs_header_level(b); | 
 |  | 
 | 		p->nodes[level] = b; | 
 | 		if (!p->skip_locking) | 
 | 			p->locks[level] = 1; | 
 |  | 
 | 		btrfs_clear_path_blocking(p, NULL); | 
 |  | 
 | 		/* | 
 | 		 * we have a lock on b and as long as we aren't changing | 
 | 		 * the tree, there is no way to for the items in b to change. | 
 | 		 * It is safe to drop the lock on our parent before we | 
 | 		 * go through the expensive btree search on b. | 
 | 		 * | 
 | 		 * If cow is true, then we might be changing slot zero, | 
 | 		 * which may require changing the parent.  So, we can't | 
 | 		 * drop the lock until after we know which slot we're | 
 | 		 * operating on. | 
 | 		 */ | 
 | 		if (!cow) | 
 | 			btrfs_unlock_up_safe(p, level + 1); | 
 |  | 
 | 		ret = check_block(root, p, level); | 
 | 		if (ret) { | 
 | 			ret = -1; | 
 | 			goto done; | 
 | 		} | 
 |  | 
 | 		ret = bin_search(b, key, level, &slot); | 
 |  | 
 | 		if (level != 0) { | 
 | 			int dec = 0; | 
 | 			if (ret && slot > 0) { | 
 | 				dec = 1; | 
 | 				slot -= 1; | 
 | 			} | 
 | 			p->slots[level] = slot; | 
 | 			err = setup_nodes_for_search(trans, root, p, b, level, | 
 | 						     ins_len); | 
 | 			if (err == -EAGAIN) | 
 | 				goto again; | 
 | 			if (err) { | 
 | 				ret = err; | 
 | 				goto done; | 
 | 			} | 
 | 			b = p->nodes[level]; | 
 | 			slot = p->slots[level]; | 
 |  | 
 | 			unlock_up(p, level, lowest_unlock); | 
 |  | 
 | 			if (level == lowest_level) { | 
 | 				if (dec) | 
 | 					p->slots[level]++; | 
 | 				goto done; | 
 | 			} | 
 |  | 
 | 			err = read_block_for_search(trans, root, p, | 
 | 						    &b, level, slot, key); | 
 | 			if (err == -EAGAIN) | 
 | 				goto again; | 
 | 			if (err) { | 
 | 				ret = err; | 
 | 				goto done; | 
 | 			} | 
 |  | 
 | 			if (!p->skip_locking) { | 
 | 				btrfs_clear_path_blocking(p, NULL); | 
 | 				err = btrfs_try_spin_lock(b); | 
 |  | 
 | 				if (!err) { | 
 | 					btrfs_set_path_blocking(p); | 
 | 					btrfs_tree_lock(b); | 
 | 					btrfs_clear_path_blocking(p, b); | 
 | 				} | 
 | 			} | 
 | 		} else { | 
 | 			p->slots[level] = slot; | 
 | 			if (ins_len > 0 && | 
 | 			    btrfs_leaf_free_space(root, b) < ins_len) { | 
 | 				btrfs_set_path_blocking(p); | 
 | 				err = split_leaf(trans, root, key, | 
 | 						 p, ins_len, ret == 0); | 
 | 				btrfs_clear_path_blocking(p, NULL); | 
 |  | 
 | 				BUG_ON(err > 0); | 
 | 				if (err) { | 
 | 					ret = err; | 
 | 					goto done; | 
 | 				} | 
 | 			} | 
 | 			if (!p->search_for_split) | 
 | 				unlock_up(p, level, lowest_unlock); | 
 | 			goto done; | 
 | 		} | 
 | 	} | 
 | 	ret = 1; | 
 | done: | 
 | 	/* | 
 | 	 * we don't really know what they plan on doing with the path | 
 | 	 * from here on, so for now just mark it as blocking | 
 | 	 */ | 
 | 	if (!p->leave_spinning) | 
 | 		btrfs_set_path_blocking(p); | 
 | 	if (ret < 0) | 
 | 		btrfs_release_path(root, p); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * adjust the pointers going up the tree, starting at level | 
 |  * making sure the right key of each node is points to 'key'. | 
 |  * This is used after shifting pointers to the left, so it stops | 
 |  * fixing up pointers when a given leaf/node is not in slot 0 of the | 
 |  * higher levels | 
 |  * | 
 |  * If this fails to write a tree block, it returns -1, but continues | 
 |  * fixing up the blocks in ram so the tree is consistent. | 
 |  */ | 
 | static int fixup_low_keys(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_root *root, struct btrfs_path *path, | 
 | 			  struct btrfs_disk_key *key, int level) | 
 | { | 
 | 	int i; | 
 | 	int ret = 0; | 
 | 	struct extent_buffer *t; | 
 |  | 
 | 	for (i = level; i < BTRFS_MAX_LEVEL; i++) { | 
 | 		int tslot = path->slots[i]; | 
 | 		if (!path->nodes[i]) | 
 | 			break; | 
 | 		t = path->nodes[i]; | 
 | 		btrfs_set_node_key(t, key, tslot); | 
 | 		btrfs_mark_buffer_dirty(path->nodes[i]); | 
 | 		if (tslot != 0) | 
 | 			break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * update item key. | 
 |  * | 
 |  * This function isn't completely safe. It's the caller's responsibility | 
 |  * that the new key won't break the order | 
 |  */ | 
 | int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, | 
 | 			    struct btrfs_root *root, struct btrfs_path *path, | 
 | 			    struct btrfs_key *new_key) | 
 | { | 
 | 	struct btrfs_disk_key disk_key; | 
 | 	struct extent_buffer *eb; | 
 | 	int slot; | 
 |  | 
 | 	eb = path->nodes[0]; | 
 | 	slot = path->slots[0]; | 
 | 	if (slot > 0) { | 
 | 		btrfs_item_key(eb, &disk_key, slot - 1); | 
 | 		if (comp_keys(&disk_key, new_key) >= 0) | 
 | 			return -1; | 
 | 	} | 
 | 	if (slot < btrfs_header_nritems(eb) - 1) { | 
 | 		btrfs_item_key(eb, &disk_key, slot + 1); | 
 | 		if (comp_keys(&disk_key, new_key) <= 0) | 
 | 			return -1; | 
 | 	} | 
 |  | 
 | 	btrfs_cpu_key_to_disk(&disk_key, new_key); | 
 | 	btrfs_set_item_key(eb, &disk_key, slot); | 
 | 	btrfs_mark_buffer_dirty(eb); | 
 | 	if (slot == 0) | 
 | 		fixup_low_keys(trans, root, path, &disk_key, 1); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * try to push data from one node into the next node left in the | 
 |  * tree. | 
 |  * | 
 |  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible | 
 |  * error, and > 0 if there was no room in the left hand block. | 
 |  */ | 
 | static int push_node_left(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_root *root, struct extent_buffer *dst, | 
 | 			  struct extent_buffer *src, int empty) | 
 | { | 
 | 	int push_items = 0; | 
 | 	int src_nritems; | 
 | 	int dst_nritems; | 
 | 	int ret = 0; | 
 |  | 
 | 	src_nritems = btrfs_header_nritems(src); | 
 | 	dst_nritems = btrfs_header_nritems(dst); | 
 | 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; | 
 | 	WARN_ON(btrfs_header_generation(src) != trans->transid); | 
 | 	WARN_ON(btrfs_header_generation(dst) != trans->transid); | 
 |  | 
 | 	if (!empty && src_nritems <= 8) | 
 | 		return 1; | 
 |  | 
 | 	if (push_items <= 0) | 
 | 		return 1; | 
 |  | 
 | 	if (empty) { | 
 | 		push_items = min(src_nritems, push_items); | 
 | 		if (push_items < src_nritems) { | 
 | 			/* leave at least 8 pointers in the node if | 
 | 			 * we aren't going to empty it | 
 | 			 */ | 
 | 			if (src_nritems - push_items < 8) { | 
 | 				if (push_items <= 8) | 
 | 					return 1; | 
 | 				push_items -= 8; | 
 | 			} | 
 | 		} | 
 | 	} else | 
 | 		push_items = min(src_nritems - 8, push_items); | 
 |  | 
 | 	copy_extent_buffer(dst, src, | 
 | 			   btrfs_node_key_ptr_offset(dst_nritems), | 
 | 			   btrfs_node_key_ptr_offset(0), | 
 | 			   push_items * sizeof(struct btrfs_key_ptr)); | 
 |  | 
 | 	if (push_items < src_nritems) { | 
 | 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), | 
 | 				      btrfs_node_key_ptr_offset(push_items), | 
 | 				      (src_nritems - push_items) * | 
 | 				      sizeof(struct btrfs_key_ptr)); | 
 | 	} | 
 | 	btrfs_set_header_nritems(src, src_nritems - push_items); | 
 | 	btrfs_set_header_nritems(dst, dst_nritems + push_items); | 
 | 	btrfs_mark_buffer_dirty(src); | 
 | 	btrfs_mark_buffer_dirty(dst); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * try to push data from one node into the next node right in the | 
 |  * tree. | 
 |  * | 
 |  * returns 0 if some ptrs were pushed, < 0 if there was some horrible | 
 |  * error, and > 0 if there was no room in the right hand block. | 
 |  * | 
 |  * this will  only push up to 1/2 the contents of the left node over | 
 |  */ | 
 | static int balance_node_right(struct btrfs_trans_handle *trans, | 
 | 			      struct btrfs_root *root, | 
 | 			      struct extent_buffer *dst, | 
 | 			      struct extent_buffer *src) | 
 | { | 
 | 	int push_items = 0; | 
 | 	int max_push; | 
 | 	int src_nritems; | 
 | 	int dst_nritems; | 
 | 	int ret = 0; | 
 |  | 
 | 	WARN_ON(btrfs_header_generation(src) != trans->transid); | 
 | 	WARN_ON(btrfs_header_generation(dst) != trans->transid); | 
 |  | 
 | 	src_nritems = btrfs_header_nritems(src); | 
 | 	dst_nritems = btrfs_header_nritems(dst); | 
 | 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; | 
 | 	if (push_items <= 0) | 
 | 		return 1; | 
 |  | 
 | 	if (src_nritems < 4) | 
 | 		return 1; | 
 |  | 
 | 	max_push = src_nritems / 2 + 1; | 
 | 	/* don't try to empty the node */ | 
 | 	if (max_push >= src_nritems) | 
 | 		return 1; | 
 |  | 
 | 	if (max_push < push_items) | 
 | 		push_items = max_push; | 
 |  | 
 | 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), | 
 | 				      btrfs_node_key_ptr_offset(0), | 
 | 				      (dst_nritems) * | 
 | 				      sizeof(struct btrfs_key_ptr)); | 
 |  | 
 | 	copy_extent_buffer(dst, src, | 
 | 			   btrfs_node_key_ptr_offset(0), | 
 | 			   btrfs_node_key_ptr_offset(src_nritems - push_items), | 
 | 			   push_items * sizeof(struct btrfs_key_ptr)); | 
 |  | 
 | 	btrfs_set_header_nritems(src, src_nritems - push_items); | 
 | 	btrfs_set_header_nritems(dst, dst_nritems + push_items); | 
 |  | 
 | 	btrfs_mark_buffer_dirty(src); | 
 | 	btrfs_mark_buffer_dirty(dst); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to insert a new root level in the tree. | 
 |  * A new node is allocated, and a single item is inserted to | 
 |  * point to the existing root | 
 |  * | 
 |  * returns zero on success or < 0 on failure. | 
 |  */ | 
 | static noinline int insert_new_root(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_root *root, | 
 | 			   struct btrfs_path *path, int level) | 
 | { | 
 | 	u64 lower_gen; | 
 | 	struct extent_buffer *lower; | 
 | 	struct extent_buffer *c; | 
 | 	struct extent_buffer *old; | 
 | 	struct btrfs_disk_key lower_key; | 
 |  | 
 | 	BUG_ON(path->nodes[level]); | 
 | 	BUG_ON(path->nodes[level-1] != root->node); | 
 |  | 
 | 	lower = path->nodes[level-1]; | 
 | 	if (level == 1) | 
 | 		btrfs_item_key(lower, &lower_key, 0); | 
 | 	else | 
 | 		btrfs_node_key(lower, &lower_key, 0); | 
 |  | 
 | 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, | 
 | 				   root->root_key.objectid, &lower_key, | 
 | 				   level, root->node->start, 0); | 
 | 	if (IS_ERR(c)) | 
 | 		return PTR_ERR(c); | 
 |  | 
 | 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); | 
 | 	btrfs_set_header_nritems(c, 1); | 
 | 	btrfs_set_header_level(c, level); | 
 | 	btrfs_set_header_bytenr(c, c->start); | 
 | 	btrfs_set_header_generation(c, trans->transid); | 
 | 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); | 
 | 	btrfs_set_header_owner(c, root->root_key.objectid); | 
 |  | 
 | 	write_extent_buffer(c, root->fs_info->fsid, | 
 | 			    (unsigned long)btrfs_header_fsid(c), | 
 | 			    BTRFS_FSID_SIZE); | 
 |  | 
 | 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid, | 
 | 			    (unsigned long)btrfs_header_chunk_tree_uuid(c), | 
 | 			    BTRFS_UUID_SIZE); | 
 |  | 
 | 	btrfs_set_node_key(c, &lower_key, 0); | 
 | 	btrfs_set_node_blockptr(c, 0, lower->start); | 
 | 	lower_gen = btrfs_header_generation(lower); | 
 | 	WARN_ON(lower_gen != trans->transid); | 
 |  | 
 | 	btrfs_set_node_ptr_generation(c, 0, lower_gen); | 
 |  | 
 | 	btrfs_mark_buffer_dirty(c); | 
 |  | 
 | 	spin_lock(&root->node_lock); | 
 | 	old = root->node; | 
 | 	root->node = c; | 
 | 	spin_unlock(&root->node_lock); | 
 |  | 
 | 	/* the super has an extra ref to root->node */ | 
 | 	free_extent_buffer(old); | 
 |  | 
 | 	add_root_to_dirty_list(root); | 
 | 	extent_buffer_get(c); | 
 | 	path->nodes[level] = c; | 
 | 	path->locks[level] = 1; | 
 | 	path->slots[level] = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * worker function to insert a single pointer in a node. | 
 |  * the node should have enough room for the pointer already | 
 |  * | 
 |  * slot and level indicate where you want the key to go, and | 
 |  * blocknr is the block the key points to. | 
 |  * | 
 |  * returns zero on success and < 0 on any error | 
 |  */ | 
 | static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root | 
 | 		      *root, struct btrfs_path *path, struct btrfs_disk_key | 
 | 		      *key, u64 bytenr, int slot, int level) | 
 | { | 
 | 	struct extent_buffer *lower; | 
 | 	int nritems; | 
 |  | 
 | 	BUG_ON(!path->nodes[level]); | 
 | 	lower = path->nodes[level]; | 
 | 	nritems = btrfs_header_nritems(lower); | 
 | 	BUG_ON(slot > nritems); | 
 | 	if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root)) | 
 | 		BUG(); | 
 | 	if (slot != nritems) { | 
 | 		memmove_extent_buffer(lower, | 
 | 			      btrfs_node_key_ptr_offset(slot + 1), | 
 | 			      btrfs_node_key_ptr_offset(slot), | 
 | 			      (nritems - slot) * sizeof(struct btrfs_key_ptr)); | 
 | 	} | 
 | 	btrfs_set_node_key(lower, key, slot); | 
 | 	btrfs_set_node_blockptr(lower, slot, bytenr); | 
 | 	WARN_ON(trans->transid == 0); | 
 | 	btrfs_set_node_ptr_generation(lower, slot, trans->transid); | 
 | 	btrfs_set_header_nritems(lower, nritems + 1); | 
 | 	btrfs_mark_buffer_dirty(lower); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * split the node at the specified level in path in two. | 
 |  * The path is corrected to point to the appropriate node after the split | 
 |  * | 
 |  * Before splitting this tries to make some room in the node by pushing | 
 |  * left and right, if either one works, it returns right away. | 
 |  * | 
 |  * returns 0 on success and < 0 on failure | 
 |  */ | 
 | static noinline int split_node(struct btrfs_trans_handle *trans, | 
 | 			       struct btrfs_root *root, | 
 | 			       struct btrfs_path *path, int level) | 
 | { | 
 | 	struct extent_buffer *c; | 
 | 	struct extent_buffer *split; | 
 | 	struct btrfs_disk_key disk_key; | 
 | 	int mid; | 
 | 	int ret; | 
 | 	int wret; | 
 | 	u32 c_nritems; | 
 |  | 
 | 	c = path->nodes[level]; | 
 | 	WARN_ON(btrfs_header_generation(c) != trans->transid); | 
 | 	if (c == root->node) { | 
 | 		/* trying to split the root, lets make a new one */ | 
 | 		ret = insert_new_root(trans, root, path, level + 1); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} else { | 
 | 		ret = push_nodes_for_insert(trans, root, path, level); | 
 | 		c = path->nodes[level]; | 
 | 		if (!ret && btrfs_header_nritems(c) < | 
 | 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) | 
 | 			return 0; | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	c_nritems = btrfs_header_nritems(c); | 
 | 	mid = (c_nritems + 1) / 2; | 
 | 	btrfs_node_key(c, &disk_key, mid); | 
 |  | 
 | 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, | 
 | 					root->root_key.objectid, | 
 | 					&disk_key, level, c->start, 0); | 
 | 	if (IS_ERR(split)) | 
 | 		return PTR_ERR(split); | 
 |  | 
 | 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); | 
 | 	btrfs_set_header_level(split, btrfs_header_level(c)); | 
 | 	btrfs_set_header_bytenr(split, split->start); | 
 | 	btrfs_set_header_generation(split, trans->transid); | 
 | 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); | 
 | 	btrfs_set_header_owner(split, root->root_key.objectid); | 
 | 	write_extent_buffer(split, root->fs_info->fsid, | 
 | 			    (unsigned long)btrfs_header_fsid(split), | 
 | 			    BTRFS_FSID_SIZE); | 
 | 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid, | 
 | 			    (unsigned long)btrfs_header_chunk_tree_uuid(split), | 
 | 			    BTRFS_UUID_SIZE); | 
 |  | 
 |  | 
 | 	copy_extent_buffer(split, c, | 
 | 			   btrfs_node_key_ptr_offset(0), | 
 | 			   btrfs_node_key_ptr_offset(mid), | 
 | 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); | 
 | 	btrfs_set_header_nritems(split, c_nritems - mid); | 
 | 	btrfs_set_header_nritems(c, mid); | 
 | 	ret = 0; | 
 |  | 
 | 	btrfs_mark_buffer_dirty(c); | 
 | 	btrfs_mark_buffer_dirty(split); | 
 |  | 
 | 	wret = insert_ptr(trans, root, path, &disk_key, split->start, | 
 | 			  path->slots[level + 1] + 1, | 
 | 			  level + 1); | 
 | 	if (wret) | 
 | 		ret = wret; | 
 |  | 
 | 	if (path->slots[level] >= mid) { | 
 | 		path->slots[level] -= mid; | 
 | 		btrfs_tree_unlock(c); | 
 | 		free_extent_buffer(c); | 
 | 		path->nodes[level] = split; | 
 | 		path->slots[level + 1] += 1; | 
 | 	} else { | 
 | 		btrfs_tree_unlock(split); | 
 | 		free_extent_buffer(split); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * how many bytes are required to store the items in a leaf.  start | 
 |  * and nr indicate which items in the leaf to check.  This totals up the | 
 |  * space used both by the item structs and the item data | 
 |  */ | 
 | static int leaf_space_used(struct extent_buffer *l, int start, int nr) | 
 | { | 
 | 	int data_len; | 
 | 	int nritems = btrfs_header_nritems(l); | 
 | 	int end = min(nritems, start + nr) - 1; | 
 |  | 
 | 	if (!nr) | 
 | 		return 0; | 
 | 	data_len = btrfs_item_end_nr(l, start); | 
 | 	data_len = data_len - btrfs_item_offset_nr(l, end); | 
 | 	data_len += sizeof(struct btrfs_item) * nr; | 
 | 	WARN_ON(data_len < 0); | 
 | 	return data_len; | 
 | } | 
 |  | 
 | /* | 
 |  * The space between the end of the leaf items and | 
 |  * the start of the leaf data.  IOW, how much room | 
 |  * the leaf has left for both items and data | 
 |  */ | 
 | noinline int btrfs_leaf_free_space(struct btrfs_root *root, | 
 | 				   struct extent_buffer *leaf) | 
 | { | 
 | 	int nritems = btrfs_header_nritems(leaf); | 
 | 	int ret; | 
 | 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); | 
 | 	if (ret < 0) { | 
 | 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " | 
 | 		       "used %d nritems %d\n", | 
 | 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), | 
 | 		       leaf_space_used(leaf, 0, nritems), nritems); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_root *root, | 
 | 				      struct btrfs_path *path, | 
 | 				      int data_size, int empty, | 
 | 				      struct extent_buffer *right, | 
 | 				      int free_space, u32 left_nritems) | 
 | { | 
 | 	struct extent_buffer *left = path->nodes[0]; | 
 | 	struct extent_buffer *upper = path->nodes[1]; | 
 | 	struct btrfs_disk_key disk_key; | 
 | 	int slot; | 
 | 	u32 i; | 
 | 	int push_space = 0; | 
 | 	int push_items = 0; | 
 | 	struct btrfs_item *item; | 
 | 	u32 nr; | 
 | 	u32 right_nritems; | 
 | 	u32 data_end; | 
 | 	u32 this_item_size; | 
 |  | 
 | 	if (empty) | 
 | 		nr = 0; | 
 | 	else | 
 | 		nr = 1; | 
 |  | 
 | 	if (path->slots[0] >= left_nritems) | 
 | 		push_space += data_size; | 
 |  | 
 | 	slot = path->slots[1]; | 
 | 	i = left_nritems - 1; | 
 | 	while (i >= nr) { | 
 | 		item = btrfs_item_nr(left, i); | 
 |  | 
 | 		if (!empty && push_items > 0) { | 
 | 			if (path->slots[0] > i) | 
 | 				break; | 
 | 			if (path->slots[0] == i) { | 
 | 				int space = btrfs_leaf_free_space(root, left); | 
 | 				if (space + push_space * 2 > free_space) | 
 | 					break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (path->slots[0] == i) | 
 | 			push_space += data_size; | 
 |  | 
 | 		if (!left->map_token) { | 
 | 			map_extent_buffer(left, (unsigned long)item, | 
 | 					sizeof(struct btrfs_item), | 
 | 					&left->map_token, &left->kaddr, | 
 | 					&left->map_start, &left->map_len, | 
 | 					KM_USER1); | 
 | 		} | 
 |  | 
 | 		this_item_size = btrfs_item_size(left, item); | 
 | 		if (this_item_size + sizeof(*item) + push_space > free_space) | 
 | 			break; | 
 |  | 
 | 		push_items++; | 
 | 		push_space += this_item_size + sizeof(*item); | 
 | 		if (i == 0) | 
 | 			break; | 
 | 		i--; | 
 | 	} | 
 | 	if (left->map_token) { | 
 | 		unmap_extent_buffer(left, left->map_token, KM_USER1); | 
 | 		left->map_token = NULL; | 
 | 	} | 
 |  | 
 | 	if (push_items == 0) | 
 | 		goto out_unlock; | 
 |  | 
 | 	if (!empty && push_items == left_nritems) | 
 | 		WARN_ON(1); | 
 |  | 
 | 	/* push left to right */ | 
 | 	right_nritems = btrfs_header_nritems(right); | 
 |  | 
 | 	push_space = btrfs_item_end_nr(left, left_nritems - push_items); | 
 | 	push_space -= leaf_data_end(root, left); | 
 |  | 
 | 	/* make room in the right data area */ | 
 | 	data_end = leaf_data_end(root, right); | 
 | 	memmove_extent_buffer(right, | 
 | 			      btrfs_leaf_data(right) + data_end - push_space, | 
 | 			      btrfs_leaf_data(right) + data_end, | 
 | 			      BTRFS_LEAF_DATA_SIZE(root) - data_end); | 
 |  | 
 | 	/* copy from the left data area */ | 
 | 	copy_extent_buffer(right, left, btrfs_leaf_data(right) + | 
 | 		     BTRFS_LEAF_DATA_SIZE(root) - push_space, | 
 | 		     btrfs_leaf_data(left) + leaf_data_end(root, left), | 
 | 		     push_space); | 
 |  | 
 | 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), | 
 | 			      btrfs_item_nr_offset(0), | 
 | 			      right_nritems * sizeof(struct btrfs_item)); | 
 |  | 
 | 	/* copy the items from left to right */ | 
 | 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0), | 
 | 		   btrfs_item_nr_offset(left_nritems - push_items), | 
 | 		   push_items * sizeof(struct btrfs_item)); | 
 |  | 
 | 	/* update the item pointers */ | 
 | 	right_nritems += push_items; | 
 | 	btrfs_set_header_nritems(right, right_nritems); | 
 | 	push_space = BTRFS_LEAF_DATA_SIZE(root); | 
 | 	for (i = 0; i < right_nritems; i++) { | 
 | 		item = btrfs_item_nr(right, i); | 
 | 		if (!right->map_token) { | 
 | 			map_extent_buffer(right, (unsigned long)item, | 
 | 					sizeof(struct btrfs_item), | 
 | 					&right->map_token, &right->kaddr, | 
 | 					&right->map_start, &right->map_len, | 
 | 					KM_USER1); | 
 | 		} | 
 | 		push_space -= btrfs_item_size(right, item); | 
 | 		btrfs_set_item_offset(right, item, push_space); | 
 | 	} | 
 |  | 
 | 	if (right->map_token) { | 
 | 		unmap_extent_buffer(right, right->map_token, KM_USER1); | 
 | 		right->map_token = NULL; | 
 | 	} | 
 | 	left_nritems -= push_items; | 
 | 	btrfs_set_header_nritems(left, left_nritems); | 
 |  | 
 | 	if (left_nritems) | 
 | 		btrfs_mark_buffer_dirty(left); | 
 | 	btrfs_mark_buffer_dirty(right); | 
 |  | 
 | 	btrfs_item_key(right, &disk_key, 0); | 
 | 	btrfs_set_node_key(upper, &disk_key, slot + 1); | 
 | 	btrfs_mark_buffer_dirty(upper); | 
 |  | 
 | 	/* then fixup the leaf pointer in the path */ | 
 | 	if (path->slots[0] >= left_nritems) { | 
 | 		path->slots[0] -= left_nritems; | 
 | 		if (btrfs_header_nritems(path->nodes[0]) == 0) | 
 | 			clean_tree_block(trans, root, path->nodes[0]); | 
 | 		btrfs_tree_unlock(path->nodes[0]); | 
 | 		free_extent_buffer(path->nodes[0]); | 
 | 		path->nodes[0] = right; | 
 | 		path->slots[1] += 1; | 
 | 	} else { | 
 | 		btrfs_tree_unlock(right); | 
 | 		free_extent_buffer(right); | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | out_unlock: | 
 | 	btrfs_tree_unlock(right); | 
 | 	free_extent_buffer(right); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * push some data in the path leaf to the right, trying to free up at | 
 |  * least data_size bytes.  returns zero if the push worked, nonzero otherwise | 
 |  * | 
 |  * returns 1 if the push failed because the other node didn't have enough | 
 |  * room, 0 if everything worked out and < 0 if there were major errors. | 
 |  */ | 
 | static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root | 
 | 			   *root, struct btrfs_path *path, int data_size, | 
 | 			   int empty) | 
 | { | 
 | 	struct extent_buffer *left = path->nodes[0]; | 
 | 	struct extent_buffer *right; | 
 | 	struct extent_buffer *upper; | 
 | 	int slot; | 
 | 	int free_space; | 
 | 	u32 left_nritems; | 
 | 	int ret; | 
 |  | 
 | 	if (!path->nodes[1]) | 
 | 		return 1; | 
 |  | 
 | 	slot = path->slots[1]; | 
 | 	upper = path->nodes[1]; | 
 | 	if (slot >= btrfs_header_nritems(upper) - 1) | 
 | 		return 1; | 
 |  | 
 | 	btrfs_assert_tree_locked(path->nodes[1]); | 
 |  | 
 | 	right = read_node_slot(root, upper, slot + 1); | 
 | 	btrfs_tree_lock(right); | 
 | 	btrfs_set_lock_blocking(right); | 
 |  | 
 | 	free_space = btrfs_leaf_free_space(root, right); | 
 | 	if (free_space < data_size) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* cow and double check */ | 
 | 	ret = btrfs_cow_block(trans, root, right, upper, | 
 | 			      slot + 1, &right); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	free_space = btrfs_leaf_free_space(root, right); | 
 | 	if (free_space < data_size) | 
 | 		goto out_unlock; | 
 |  | 
 | 	left_nritems = btrfs_header_nritems(left); | 
 | 	if (left_nritems == 0) | 
 | 		goto out_unlock; | 
 |  | 
 | 	return __push_leaf_right(trans, root, path, data_size, empty, | 
 | 				right, free_space, left_nritems); | 
 | out_unlock: | 
 | 	btrfs_tree_unlock(right); | 
 | 	free_extent_buffer(right); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * push some data in the path leaf to the left, trying to free up at | 
 |  * least data_size bytes.  returns zero if the push worked, nonzero otherwise | 
 |  */ | 
 | static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, | 
 | 				     struct btrfs_root *root, | 
 | 				     struct btrfs_path *path, int data_size, | 
 | 				     int empty, struct extent_buffer *left, | 
 | 				     int free_space, int right_nritems) | 
 | { | 
 | 	struct btrfs_disk_key disk_key; | 
 | 	struct extent_buffer *right = path->nodes[0]; | 
 | 	int slot; | 
 | 	int i; | 
 | 	int push_space = 0; | 
 | 	int push_items = 0; | 
 | 	struct btrfs_item *item; | 
 | 	u32 old_left_nritems; | 
 | 	u32 nr; | 
 | 	int ret = 0; | 
 | 	int wret; | 
 | 	u32 this_item_size; | 
 | 	u32 old_left_item_size; | 
 |  | 
 | 	slot = path->slots[1]; | 
 |  | 
 | 	if (empty) | 
 | 		nr = right_nritems; | 
 | 	else | 
 | 		nr = right_nritems - 1; | 
 |  | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		item = btrfs_item_nr(right, i); | 
 | 		if (!right->map_token) { | 
 | 			map_extent_buffer(right, (unsigned long)item, | 
 | 					sizeof(struct btrfs_item), | 
 | 					&right->map_token, &right->kaddr, | 
 | 					&right->map_start, &right->map_len, | 
 | 					KM_USER1); | 
 | 		} | 
 |  | 
 | 		if (!empty && push_items > 0) { | 
 | 			if (path->slots[0] < i) | 
 | 				break; | 
 | 			if (path->slots[0] == i) { | 
 | 				int space = btrfs_leaf_free_space(root, right); | 
 | 				if (space + push_space * 2 > free_space) | 
 | 					break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (path->slots[0] == i) | 
 | 			push_space += data_size; | 
 |  | 
 | 		this_item_size = btrfs_item_size(right, item); | 
 | 		if (this_item_size + sizeof(*item) + push_space > free_space) | 
 | 			break; | 
 |  | 
 | 		push_items++; | 
 | 		push_space += this_item_size + sizeof(*item); | 
 | 	} | 
 |  | 
 | 	if (right->map_token) { | 
 | 		unmap_extent_buffer(right, right->map_token, KM_USER1); | 
 | 		right->map_token = NULL; | 
 | 	} | 
 |  | 
 | 	if (push_items == 0) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 | 	if (!empty && push_items == btrfs_header_nritems(right)) | 
 | 		WARN_ON(1); | 
 |  | 
 | 	/* push data from right to left */ | 
 | 	copy_extent_buffer(left, right, | 
 | 			   btrfs_item_nr_offset(btrfs_header_nritems(left)), | 
 | 			   btrfs_item_nr_offset(0), | 
 | 			   push_items * sizeof(struct btrfs_item)); | 
 |  | 
 | 	push_space = BTRFS_LEAF_DATA_SIZE(root) - | 
 | 		     btrfs_item_offset_nr(right, push_items - 1); | 
 |  | 
 | 	copy_extent_buffer(left, right, btrfs_leaf_data(left) + | 
 | 		     leaf_data_end(root, left) - push_space, | 
 | 		     btrfs_leaf_data(right) + | 
 | 		     btrfs_item_offset_nr(right, push_items - 1), | 
 | 		     push_space); | 
 | 	old_left_nritems = btrfs_header_nritems(left); | 
 | 	BUG_ON(old_left_nritems <= 0); | 
 |  | 
 | 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); | 
 | 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { | 
 | 		u32 ioff; | 
 |  | 
 | 		item = btrfs_item_nr(left, i); | 
 | 		if (!left->map_token) { | 
 | 			map_extent_buffer(left, (unsigned long)item, | 
 | 					sizeof(struct btrfs_item), | 
 | 					&left->map_token, &left->kaddr, | 
 | 					&left->map_start, &left->map_len, | 
 | 					KM_USER1); | 
 | 		} | 
 |  | 
 | 		ioff = btrfs_item_offset(left, item); | 
 | 		btrfs_set_item_offset(left, item, | 
 | 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size)); | 
 | 	} | 
 | 	btrfs_set_header_nritems(left, old_left_nritems + push_items); | 
 | 	if (left->map_token) { | 
 | 		unmap_extent_buffer(left, left->map_token, KM_USER1); | 
 | 		left->map_token = NULL; | 
 | 	} | 
 |  | 
 | 	/* fixup right node */ | 
 | 	if (push_items > right_nritems) { | 
 | 		printk(KERN_CRIT "push items %d nr %u\n", push_items, | 
 | 		       right_nritems); | 
 | 		WARN_ON(1); | 
 | 	} | 
 |  | 
 | 	if (push_items < right_nritems) { | 
 | 		push_space = btrfs_item_offset_nr(right, push_items - 1) - | 
 | 						  leaf_data_end(root, right); | 
 | 		memmove_extent_buffer(right, btrfs_leaf_data(right) + | 
 | 				      BTRFS_LEAF_DATA_SIZE(root) - push_space, | 
 | 				      btrfs_leaf_data(right) + | 
 | 				      leaf_data_end(root, right), push_space); | 
 |  | 
 | 		memmove_extent_buffer(right, btrfs_item_nr_offset(0), | 
 | 			      btrfs_item_nr_offset(push_items), | 
 | 			     (btrfs_header_nritems(right) - push_items) * | 
 | 			     sizeof(struct btrfs_item)); | 
 | 	} | 
 | 	right_nritems -= push_items; | 
 | 	btrfs_set_header_nritems(right, right_nritems); | 
 | 	push_space = BTRFS_LEAF_DATA_SIZE(root); | 
 | 	for (i = 0; i < right_nritems; i++) { | 
 | 		item = btrfs_item_nr(right, i); | 
 |  | 
 | 		if (!right->map_token) { | 
 | 			map_extent_buffer(right, (unsigned long)item, | 
 | 					sizeof(struct btrfs_item), | 
 | 					&right->map_token, &right->kaddr, | 
 | 					&right->map_start, &right->map_len, | 
 | 					KM_USER1); | 
 | 		} | 
 |  | 
 | 		push_space = push_space - btrfs_item_size(right, item); | 
 | 		btrfs_set_item_offset(right, item, push_space); | 
 | 	} | 
 | 	if (right->map_token) { | 
 | 		unmap_extent_buffer(right, right->map_token, KM_USER1); | 
 | 		right->map_token = NULL; | 
 | 	} | 
 |  | 
 | 	btrfs_mark_buffer_dirty(left); | 
 | 	if (right_nritems) | 
 | 		btrfs_mark_buffer_dirty(right); | 
 |  | 
 | 	btrfs_item_key(right, &disk_key, 0); | 
 | 	wret = fixup_low_keys(trans, root, path, &disk_key, 1); | 
 | 	if (wret) | 
 | 		ret = wret; | 
 |  | 
 | 	/* then fixup the leaf pointer in the path */ | 
 | 	if (path->slots[0] < push_items) { | 
 | 		path->slots[0] += old_left_nritems; | 
 | 		if (btrfs_header_nritems(path->nodes[0]) == 0) | 
 | 			clean_tree_block(trans, root, path->nodes[0]); | 
 | 		btrfs_tree_unlock(path->nodes[0]); | 
 | 		free_extent_buffer(path->nodes[0]); | 
 | 		path->nodes[0] = left; | 
 | 		path->slots[1] -= 1; | 
 | 	} else { | 
 | 		btrfs_tree_unlock(left); | 
 | 		free_extent_buffer(left); | 
 | 		path->slots[0] -= push_items; | 
 | 	} | 
 | 	BUG_ON(path->slots[0] < 0); | 
 | 	return ret; | 
 | out: | 
 | 	btrfs_tree_unlock(left); | 
 | 	free_extent_buffer(left); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * push some data in the path leaf to the left, trying to free up at | 
 |  * least data_size bytes.  returns zero if the push worked, nonzero otherwise | 
 |  */ | 
 | static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root | 
 | 			  *root, struct btrfs_path *path, int data_size, | 
 | 			  int empty) | 
 | { | 
 | 	struct extent_buffer *right = path->nodes[0]; | 
 | 	struct extent_buffer *left; | 
 | 	int slot; | 
 | 	int free_space; | 
 | 	u32 right_nritems; | 
 | 	int ret = 0; | 
 |  | 
 | 	slot = path->slots[1]; | 
 | 	if (slot == 0) | 
 | 		return 1; | 
 | 	if (!path->nodes[1]) | 
 | 		return 1; | 
 |  | 
 | 	right_nritems = btrfs_header_nritems(right); | 
 | 	if (right_nritems == 0) | 
 | 		return 1; | 
 |  | 
 | 	btrfs_assert_tree_locked(path->nodes[1]); | 
 |  | 
 | 	left = read_node_slot(root, path->nodes[1], slot - 1); | 
 | 	btrfs_tree_lock(left); | 
 | 	btrfs_set_lock_blocking(left); | 
 |  | 
 | 	free_space = btrfs_leaf_free_space(root, left); | 
 | 	if (free_space < data_size) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* cow and double check */ | 
 | 	ret = btrfs_cow_block(trans, root, left, | 
 | 			      path->nodes[1], slot - 1, &left); | 
 | 	if (ret) { | 
 | 		/* we hit -ENOSPC, but it isn't fatal here */ | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	free_space = btrfs_leaf_free_space(root, left); | 
 | 	if (free_space < data_size) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	return __push_leaf_left(trans, root, path, data_size, | 
 | 			       empty, left, free_space, right_nritems); | 
 | out: | 
 | 	btrfs_tree_unlock(left); | 
 | 	free_extent_buffer(left); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * split the path's leaf in two, making sure there is at least data_size | 
 |  * available for the resulting leaf level of the path. | 
 |  * | 
 |  * returns 0 if all went well and < 0 on failure. | 
 |  */ | 
 | static noinline int copy_for_split(struct btrfs_trans_handle *trans, | 
 | 			       struct btrfs_root *root, | 
 | 			       struct btrfs_path *path, | 
 | 			       struct extent_buffer *l, | 
 | 			       struct extent_buffer *right, | 
 | 			       int slot, int mid, int nritems) | 
 | { | 
 | 	int data_copy_size; | 
 | 	int rt_data_off; | 
 | 	int i; | 
 | 	int ret = 0; | 
 | 	int wret; | 
 | 	struct btrfs_disk_key disk_key; | 
 |  | 
 | 	nritems = nritems - mid; | 
 | 	btrfs_set_header_nritems(right, nritems); | 
 | 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); | 
 |  | 
 | 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0), | 
 | 			   btrfs_item_nr_offset(mid), | 
 | 			   nritems * sizeof(struct btrfs_item)); | 
 |  | 
 | 	copy_extent_buffer(right, l, | 
 | 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - | 
 | 		     data_copy_size, btrfs_leaf_data(l) + | 
 | 		     leaf_data_end(root, l), data_copy_size); | 
 |  | 
 | 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - | 
 | 		      btrfs_item_end_nr(l, mid); | 
 |  | 
 | 	for (i = 0; i < nritems; i++) { | 
 | 		struct btrfs_item *item = btrfs_item_nr(right, i); | 
 | 		u32 ioff; | 
 |  | 
 | 		if (!right->map_token) { | 
 | 			map_extent_buffer(right, (unsigned long)item, | 
 | 					sizeof(struct btrfs_item), | 
 | 					&right->map_token, &right->kaddr, | 
 | 					&right->map_start, &right->map_len, | 
 | 					KM_USER1); | 
 | 		} | 
 |  | 
 | 		ioff = btrfs_item_offset(right, item); | 
 | 		btrfs_set_item_offset(right, item, ioff + rt_data_off); | 
 | 	} | 
 |  | 
 | 	if (right->map_token) { | 
 | 		unmap_extent_buffer(right, right->map_token, KM_USER1); | 
 | 		right->map_token = NULL; | 
 | 	} | 
 |  | 
 | 	btrfs_set_header_nritems(l, mid); | 
 | 	ret = 0; | 
 | 	btrfs_item_key(right, &disk_key, 0); | 
 | 	wret = insert_ptr(trans, root, path, &disk_key, right->start, | 
 | 			  path->slots[1] + 1, 1); | 
 | 	if (wret) | 
 | 		ret = wret; | 
 |  | 
 | 	btrfs_mark_buffer_dirty(right); | 
 | 	btrfs_mark_buffer_dirty(l); | 
 | 	BUG_ON(path->slots[0] != slot); | 
 |  | 
 | 	if (mid <= slot) { | 
 | 		btrfs_tree_unlock(path->nodes[0]); | 
 | 		free_extent_buffer(path->nodes[0]); | 
 | 		path->nodes[0] = right; | 
 | 		path->slots[0] -= mid; | 
 | 		path->slots[1] += 1; | 
 | 	} else { | 
 | 		btrfs_tree_unlock(right); | 
 | 		free_extent_buffer(right); | 
 | 	} | 
 |  | 
 | 	BUG_ON(path->slots[0] < 0); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * split the path's leaf in two, making sure there is at least data_size | 
 |  * available for the resulting leaf level of the path. | 
 |  * | 
 |  * returns 0 if all went well and < 0 on failure. | 
 |  */ | 
 | static noinline int split_leaf(struct btrfs_trans_handle *trans, | 
 | 			       struct btrfs_root *root, | 
 | 			       struct btrfs_key *ins_key, | 
 | 			       struct btrfs_path *path, int data_size, | 
 | 			       int extend) | 
 | { | 
 | 	struct btrfs_disk_key disk_key; | 
 | 	struct extent_buffer *l; | 
 | 	u32 nritems; | 
 | 	int mid; | 
 | 	int slot; | 
 | 	struct extent_buffer *right; | 
 | 	int ret = 0; | 
 | 	int wret; | 
 | 	int split; | 
 | 	int num_doubles = 0; | 
 |  | 
 | 	l = path->nodes[0]; | 
 | 	slot = path->slots[0]; | 
 | 	if (extend && data_size + btrfs_item_size_nr(l, slot) + | 
 | 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) | 
 | 		return -EOVERFLOW; | 
 |  | 
 | 	/* first try to make some room by pushing left and right */ | 
 | 	if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) { | 
 | 		wret = push_leaf_right(trans, root, path, data_size, 0); | 
 | 		if (wret < 0) | 
 | 			return wret; | 
 | 		if (wret) { | 
 | 			wret = push_leaf_left(trans, root, path, data_size, 0); | 
 | 			if (wret < 0) | 
 | 				return wret; | 
 | 		} | 
 | 		l = path->nodes[0]; | 
 |  | 
 | 		/* did the pushes work? */ | 
 | 		if (btrfs_leaf_free_space(root, l) >= data_size) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	if (!path->nodes[1]) { | 
 | 		ret = insert_new_root(trans, root, path, 1); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 | again: | 
 | 	split = 1; | 
 | 	l = path->nodes[0]; | 
 | 	slot = path->slots[0]; | 
 | 	nritems = btrfs_header_nritems(l); | 
 | 	mid = (nritems + 1) / 2; | 
 |  | 
 | 	if (mid <= slot) { | 
 | 		if (nritems == 1 || | 
 | 		    leaf_space_used(l, mid, nritems - mid) + data_size > | 
 | 			BTRFS_LEAF_DATA_SIZE(root)) { | 
 | 			if (slot >= nritems) { | 
 | 				split = 0; | 
 | 			} else { | 
 | 				mid = slot; | 
 | 				if (mid != nritems && | 
 | 				    leaf_space_used(l, mid, nritems - mid) + | 
 | 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) { | 
 | 					split = 2; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		if (leaf_space_used(l, 0, mid) + data_size > | 
 | 			BTRFS_LEAF_DATA_SIZE(root)) { | 
 | 			if (!extend && data_size && slot == 0) { | 
 | 				split = 0; | 
 | 			} else if ((extend || !data_size) && slot == 0) { | 
 | 				mid = 1; | 
 | 			} else { | 
 | 				mid = slot; | 
 | 				if (mid != nritems && | 
 | 				    leaf_space_used(l, mid, nritems - mid) + | 
 | 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) { | 
 | 					split = 2 ; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (split == 0) | 
 | 		btrfs_cpu_key_to_disk(&disk_key, ins_key); | 
 | 	else | 
 | 		btrfs_item_key(l, &disk_key, mid); | 
 |  | 
 | 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, | 
 | 					root->root_key.objectid, | 
 | 					&disk_key, 0, l->start, 0); | 
 | 	if (IS_ERR(right)) { | 
 | 		BUG_ON(1); | 
 | 		return PTR_ERR(right); | 
 | 	} | 
 |  | 
 | 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); | 
 | 	btrfs_set_header_bytenr(right, right->start); | 
 | 	btrfs_set_header_generation(right, trans->transid); | 
 | 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); | 
 | 	btrfs_set_header_owner(right, root->root_key.objectid); | 
 | 	btrfs_set_header_level(right, 0); | 
 | 	write_extent_buffer(right, root->fs_info->fsid, | 
 | 			    (unsigned long)btrfs_header_fsid(right), | 
 | 			    BTRFS_FSID_SIZE); | 
 |  | 
 | 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid, | 
 | 			    (unsigned long)btrfs_header_chunk_tree_uuid(right), | 
 | 			    BTRFS_UUID_SIZE); | 
 |  | 
 | 	if (split == 0) { | 
 | 		if (mid <= slot) { | 
 | 			btrfs_set_header_nritems(right, 0); | 
 | 			wret = insert_ptr(trans, root, path, | 
 | 					  &disk_key, right->start, | 
 | 					  path->slots[1] + 1, 1); | 
 | 			if (wret) | 
 | 				ret = wret; | 
 |  | 
 | 			btrfs_tree_unlock(path->nodes[0]); | 
 | 			free_extent_buffer(path->nodes[0]); | 
 | 			path->nodes[0] = right; | 
 | 			path->slots[0] = 0; | 
 | 			path->slots[1] += 1; | 
 | 		} else { | 
 | 			btrfs_set_header_nritems(right, 0); | 
 | 			wret = insert_ptr(trans, root, path, | 
 | 					  &disk_key, | 
 | 					  right->start, | 
 | 					  path->slots[1], 1); | 
 | 			if (wret) | 
 | 				ret = wret; | 
 | 			btrfs_tree_unlock(path->nodes[0]); | 
 | 			free_extent_buffer(path->nodes[0]); | 
 | 			path->nodes[0] = right; | 
 | 			path->slots[0] = 0; | 
 | 			if (path->slots[1] == 0) { | 
 | 				wret = fixup_low_keys(trans, root, | 
 | 						path, &disk_key, 1); | 
 | 				if (wret) | 
 | 					ret = wret; | 
 | 			} | 
 | 		} | 
 | 		btrfs_mark_buffer_dirty(right); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	if (split == 2) { | 
 | 		BUG_ON(num_doubles != 0); | 
 | 		num_doubles++; | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This function splits a single item into two items, | 
 |  * giving 'new_key' to the new item and splitting the | 
 |  * old one at split_offset (from the start of the item). | 
 |  * | 
 |  * The path may be released by this operation.  After | 
 |  * the split, the path is pointing to the old item.  The | 
 |  * new item is going to be in the same node as the old one. | 
 |  * | 
 |  * Note, the item being split must be smaller enough to live alone on | 
 |  * a tree block with room for one extra struct btrfs_item | 
 |  * | 
 |  * This allows us to split the item in place, keeping a lock on the | 
 |  * leaf the entire time. | 
 |  */ | 
 | int btrfs_split_item(struct btrfs_trans_handle *trans, | 
 | 		     struct btrfs_root *root, | 
 | 		     struct btrfs_path *path, | 
 | 		     struct btrfs_key *new_key, | 
 | 		     unsigned long split_offset) | 
 | { | 
 | 	u32 item_size; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key orig_key; | 
 | 	struct btrfs_item *item; | 
 | 	struct btrfs_item *new_item; | 
 | 	int ret = 0; | 
 | 	int slot; | 
 | 	u32 nritems; | 
 | 	u32 orig_offset; | 
 | 	struct btrfs_disk_key disk_key; | 
 | 	char *buf; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]); | 
 | 	if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item)) | 
 | 		goto split; | 
 |  | 
 | 	item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
 | 	btrfs_release_path(root, path); | 
 |  | 
 | 	path->search_for_split = 1; | 
 | 	path->keep_locks = 1; | 
 |  | 
 | 	ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1); | 
 | 	path->search_for_split = 0; | 
 |  | 
 | 	/* if our item isn't there or got smaller, return now */ | 
 | 	if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0], | 
 | 							path->slots[0])) { | 
 | 		path->keep_locks = 0; | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	btrfs_set_path_blocking(path); | 
 | 	ret = split_leaf(trans, root, &orig_key, path, | 
 | 			 sizeof(struct btrfs_item), 1); | 
 | 	path->keep_locks = 0; | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	btrfs_unlock_up_safe(path, 1); | 
 | 	leaf = path->nodes[0]; | 
 | 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); | 
 |  | 
 | split: | 
 | 	/* | 
 | 	 * make sure any changes to the path from split_leaf leave it | 
 | 	 * in a blocking state | 
 | 	 */ | 
 | 	btrfs_set_path_blocking(path); | 
 |  | 
 | 	item = btrfs_item_nr(leaf, path->slots[0]); | 
 | 	orig_offset = btrfs_item_offset(leaf, item); | 
 | 	item_size = btrfs_item_size(leaf, item); | 
 |  | 
 | 	buf = kmalloc(item_size, GFP_NOFS); | 
 | 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, | 
 | 			    path->slots[0]), item_size); | 
 | 	slot = path->slots[0] + 1; | 
 | 	leaf = path->nodes[0]; | 
 |  | 
 | 	nritems = btrfs_header_nritems(leaf); | 
 |  | 
 | 	if (slot != nritems) { | 
 | 		/* shift the items */ | 
 | 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), | 
 | 			      btrfs_item_nr_offset(slot), | 
 | 			      (nritems - slot) * sizeof(struct btrfs_item)); | 
 |  | 
 | 	} | 
 |  | 
 | 	btrfs_cpu_key_to_disk(&disk_key, new_key); | 
 | 	btrfs_set_item_key(leaf, &disk_key, slot); | 
 |  | 
 | 	new_item = btrfs_item_nr(leaf, slot); | 
 |  | 
 | 	btrfs_set_item_offset(leaf, new_item, orig_offset); | 
 | 	btrfs_set_item_size(leaf, new_item, item_size - split_offset); | 
 |  | 
 | 	btrfs_set_item_offset(leaf, item, | 
 | 			      orig_offset + item_size - split_offset); | 
 | 	btrfs_set_item_size(leaf, item, split_offset); | 
 |  | 
 | 	btrfs_set_header_nritems(leaf, nritems + 1); | 
 |  | 
 | 	/* write the data for the start of the original item */ | 
 | 	write_extent_buffer(leaf, buf, | 
 | 			    btrfs_item_ptr_offset(leaf, path->slots[0]), | 
 | 			    split_offset); | 
 |  | 
 | 	/* write the data for the new item */ | 
 | 	write_extent_buffer(leaf, buf + split_offset, | 
 | 			    btrfs_item_ptr_offset(leaf, slot), | 
 | 			    item_size - split_offset); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 |  | 
 | 	ret = 0; | 
 | 	if (btrfs_leaf_free_space(root, leaf) < 0) { | 
 | 		btrfs_print_leaf(root, leaf); | 
 | 		BUG(); | 
 | 	} | 
 | 	kfree(buf); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * make the item pointed to by the path smaller.  new_size indicates | 
 |  * how small to make it, and from_end tells us if we just chop bytes | 
 |  * off the end of the item or if we shift the item to chop bytes off | 
 |  * the front. | 
 |  */ | 
 | int btrfs_truncate_item(struct btrfs_trans_handle *trans, | 
 | 			struct btrfs_root *root, | 
 | 			struct btrfs_path *path, | 
 | 			u32 new_size, int from_end) | 
 | { | 
 | 	int ret = 0; | 
 | 	int slot; | 
 | 	int slot_orig; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_item *item; | 
 | 	u32 nritems; | 
 | 	unsigned int data_end; | 
 | 	unsigned int old_data_start; | 
 | 	unsigned int old_size; | 
 | 	unsigned int size_diff; | 
 | 	int i; | 
 |  | 
 | 	slot_orig = path->slots[0]; | 
 | 	leaf = path->nodes[0]; | 
 | 	slot = path->slots[0]; | 
 |  | 
 | 	old_size = btrfs_item_size_nr(leaf, slot); | 
 | 	if (old_size == new_size) | 
 | 		return 0; | 
 |  | 
 | 	nritems = btrfs_header_nritems(leaf); | 
 | 	data_end = leaf_data_end(root, leaf); | 
 |  | 
 | 	old_data_start = btrfs_item_offset_nr(leaf, slot); | 
 |  | 
 | 	size_diff = old_size - new_size; | 
 |  | 
 | 	BUG_ON(slot < 0); | 
 | 	BUG_ON(slot >= nritems); | 
 |  | 
 | 	/* | 
 | 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size | 
 | 	 */ | 
 | 	/* first correct the data pointers */ | 
 | 	for (i = slot; i < nritems; i++) { | 
 | 		u32 ioff; | 
 | 		item = btrfs_item_nr(leaf, i); | 
 |  | 
 | 		if (!leaf->map_token) { | 
 | 			map_extent_buffer(leaf, (unsigned long)item, | 
 | 					sizeof(struct btrfs_item), | 
 | 					&leaf->map_token, &leaf->kaddr, | 
 | 					&leaf->map_start, &leaf->map_len, | 
 | 					KM_USER1); | 
 | 		} | 
 |  | 
 | 		ioff = btrfs_item_offset(leaf, item); | 
 | 		btrfs_set_item_offset(leaf, item, ioff + size_diff); | 
 | 	} | 
 |  | 
 | 	if (leaf->map_token) { | 
 | 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); | 
 | 		leaf->map_token = NULL; | 
 | 	} | 
 |  | 
 | 	/* shift the data */ | 
 | 	if (from_end) { | 
 | 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + | 
 | 			      data_end + size_diff, btrfs_leaf_data(leaf) + | 
 | 			      data_end, old_data_start + new_size - data_end); | 
 | 	} else { | 
 | 		struct btrfs_disk_key disk_key; | 
 | 		u64 offset; | 
 |  | 
 | 		btrfs_item_key(leaf, &disk_key, slot); | 
 |  | 
 | 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { | 
 | 			unsigned long ptr; | 
 | 			struct btrfs_file_extent_item *fi; | 
 |  | 
 | 			fi = btrfs_item_ptr(leaf, slot, | 
 | 					    struct btrfs_file_extent_item); | 
 | 			fi = (struct btrfs_file_extent_item *)( | 
 | 			     (unsigned long)fi - size_diff); | 
 |  | 
 | 			if (btrfs_file_extent_type(leaf, fi) == | 
 | 			    BTRFS_FILE_EXTENT_INLINE) { | 
 | 				ptr = btrfs_item_ptr_offset(leaf, slot); | 
 | 				memmove_extent_buffer(leaf, ptr, | 
 | 				      (unsigned long)fi, | 
 | 				      offsetof(struct btrfs_file_extent_item, | 
 | 						 disk_bytenr)); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + | 
 | 			      data_end + size_diff, btrfs_leaf_data(leaf) + | 
 | 			      data_end, old_data_start - data_end); | 
 |  | 
 | 		offset = btrfs_disk_key_offset(&disk_key); | 
 | 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff); | 
 | 		btrfs_set_item_key(leaf, &disk_key, slot); | 
 | 		if (slot == 0) | 
 | 			fixup_low_keys(trans, root, path, &disk_key, 1); | 
 | 	} | 
 |  | 
 | 	item = btrfs_item_nr(leaf, slot); | 
 | 	btrfs_set_item_size(leaf, item, new_size); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 |  | 
 | 	ret = 0; | 
 | 	if (btrfs_leaf_free_space(root, leaf) < 0) { | 
 | 		btrfs_print_leaf(root, leaf); | 
 | 		BUG(); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * make the item pointed to by the path bigger, data_size is the new size. | 
 |  */ | 
 | int btrfs_extend_item(struct btrfs_trans_handle *trans, | 
 | 		      struct btrfs_root *root, struct btrfs_path *path, | 
 | 		      u32 data_size) | 
 | { | 
 | 	int ret = 0; | 
 | 	int slot; | 
 | 	int slot_orig; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_item *item; | 
 | 	u32 nritems; | 
 | 	unsigned int data_end; | 
 | 	unsigned int old_data; | 
 | 	unsigned int old_size; | 
 | 	int i; | 
 |  | 
 | 	slot_orig = path->slots[0]; | 
 | 	leaf = path->nodes[0]; | 
 |  | 
 | 	nritems = btrfs_header_nritems(leaf); | 
 | 	data_end = leaf_data_end(root, leaf); | 
 |  | 
 | 	if (btrfs_leaf_free_space(root, leaf) < data_size) { | 
 | 		btrfs_print_leaf(root, leaf); | 
 | 		BUG(); | 
 | 	} | 
 | 	slot = path->slots[0]; | 
 | 	old_data = btrfs_item_end_nr(leaf, slot); | 
 |  | 
 | 	BUG_ON(slot < 0); | 
 | 	if (slot >= nritems) { | 
 | 		btrfs_print_leaf(root, leaf); | 
 | 		printk(KERN_CRIT "slot %d too large, nritems %d\n", | 
 | 		       slot, nritems); | 
 | 		BUG_ON(1); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size | 
 | 	 */ | 
 | 	/* first correct the data pointers */ | 
 | 	for (i = slot; i < nritems; i++) { | 
 | 		u32 ioff; | 
 | 		item = btrfs_item_nr(leaf, i); | 
 |  | 
 | 		if (!leaf->map_token) { | 
 | 			map_extent_buffer(leaf, (unsigned long)item, | 
 | 					sizeof(struct btrfs_item), | 
 | 					&leaf->map_token, &leaf->kaddr, | 
 | 					&leaf->map_start, &leaf->map_len, | 
 | 					KM_USER1); | 
 | 		} | 
 | 		ioff = btrfs_item_offset(leaf, item); | 
 | 		btrfs_set_item_offset(leaf, item, ioff - data_size); | 
 | 	} | 
 |  | 
 | 	if (leaf->map_token) { | 
 | 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); | 
 | 		leaf->map_token = NULL; | 
 | 	} | 
 |  | 
 | 	/* shift the data */ | 
 | 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + | 
 | 		      data_end - data_size, btrfs_leaf_data(leaf) + | 
 | 		      data_end, old_data - data_end); | 
 |  | 
 | 	data_end = old_data; | 
 | 	old_size = btrfs_item_size_nr(leaf, slot); | 
 | 	item = btrfs_item_nr(leaf, slot); | 
 | 	btrfs_set_item_size(leaf, item, old_size + data_size); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 |  | 
 | 	ret = 0; | 
 | 	if (btrfs_leaf_free_space(root, leaf) < 0) { | 
 | 		btrfs_print_leaf(root, leaf); | 
 | 		BUG(); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Given a key and some data, insert items into the tree. | 
 |  * This does all the path init required, making room in the tree if needed. | 
 |  * Returns the number of keys that were inserted. | 
 |  */ | 
 | int btrfs_insert_some_items(struct btrfs_trans_handle *trans, | 
 | 			    struct btrfs_root *root, | 
 | 			    struct btrfs_path *path, | 
 | 			    struct btrfs_key *cpu_key, u32 *data_size, | 
 | 			    int nr) | 
 | { | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_item *item; | 
 | 	int ret = 0; | 
 | 	int slot; | 
 | 	int i; | 
 | 	u32 nritems; | 
 | 	u32 total_data = 0; | 
 | 	u32 total_size = 0; | 
 | 	unsigned int data_end; | 
 | 	struct btrfs_disk_key disk_key; | 
 | 	struct btrfs_key found_key; | 
 |  | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		if (total_size + data_size[i] + sizeof(struct btrfs_item) > | 
 | 		    BTRFS_LEAF_DATA_SIZE(root)) { | 
 | 			break; | 
 | 			nr = i; | 
 | 		} | 
 | 		total_data += data_size[i]; | 
 | 		total_size += data_size[i] + sizeof(struct btrfs_item); | 
 | 	} | 
 | 	BUG_ON(nr == 0); | 
 |  | 
 | 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); | 
 | 	if (ret == 0) | 
 | 		return -EEXIST; | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 |  | 
 | 	nritems = btrfs_header_nritems(leaf); | 
 | 	data_end = leaf_data_end(root, leaf); | 
 |  | 
 | 	if (btrfs_leaf_free_space(root, leaf) < total_size) { | 
 | 		for (i = nr; i >= 0; i--) { | 
 | 			total_data -= data_size[i]; | 
 | 			total_size -= data_size[i] + sizeof(struct btrfs_item); | 
 | 			if (total_size < btrfs_leaf_free_space(root, leaf)) | 
 | 				break; | 
 | 		} | 
 | 		nr = i; | 
 | 	} | 
 |  | 
 | 	slot = path->slots[0]; | 
 | 	BUG_ON(slot < 0); | 
 |  | 
 | 	if (slot != nritems) { | 
 | 		unsigned int old_data = btrfs_item_end_nr(leaf, slot); | 
 |  | 
 | 		item = btrfs_item_nr(leaf, slot); | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
 |  | 
 | 		/* figure out how many keys we can insert in here */ | 
 | 		total_data = data_size[0]; | 
 | 		for (i = 1; i < nr; i++) { | 
 | 			if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0) | 
 | 				break; | 
 | 			total_data += data_size[i]; | 
 | 		} | 
 | 		nr = i; | 
 |  | 
 | 		if (old_data < data_end) { | 
 | 			btrfs_print_leaf(root, leaf); | 
 | 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n", | 
 | 			       slot, old_data, data_end); | 
 | 			BUG_ON(1); | 
 | 		} | 
 | 		/* | 
 | 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size | 
 | 		 */ | 
 | 		/* first correct the data pointers */ | 
 | 		WARN_ON(leaf->map_token); | 
 | 		for (i = slot; i < nritems; i++) { | 
 | 			u32 ioff; | 
 |  | 
 | 			item = btrfs_item_nr(leaf, i); | 
 | 			if (!leaf->map_token) { | 
 | 				map_extent_buffer(leaf, (unsigned long)item, | 
 | 					sizeof(struct btrfs_item), | 
 | 					&leaf->map_token, &leaf->kaddr, | 
 | 					&leaf->map_start, &leaf->map_len, | 
 | 					KM_USER1); | 
 | 			} | 
 |  | 
 | 			ioff = btrfs_item_offset(leaf, item); | 
 | 			btrfs_set_item_offset(leaf, item, ioff - total_data); | 
 | 		} | 
 | 		if (leaf->map_token) { | 
 | 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); | 
 | 			leaf->map_token = NULL; | 
 | 		} | 
 |  | 
 | 		/* shift the items */ | 
 | 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), | 
 | 			      btrfs_item_nr_offset(slot), | 
 | 			      (nritems - slot) * sizeof(struct btrfs_item)); | 
 |  | 
 | 		/* shift the data */ | 
 | 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + | 
 | 			      data_end - total_data, btrfs_leaf_data(leaf) + | 
 | 			      data_end, old_data - data_end); | 
 | 		data_end = old_data; | 
 | 	} else { | 
 | 		/* | 
 | 		 * this sucks but it has to be done, if we are inserting at | 
 | 		 * the end of the leaf only insert 1 of the items, since we | 
 | 		 * have no way of knowing whats on the next leaf and we'd have | 
 | 		 * to drop our current locks to figure it out | 
 | 		 */ | 
 | 		nr = 1; | 
 | 	} | 
 |  | 
 | 	/* setup the item for the new data */ | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); | 
 | 		btrfs_set_item_key(leaf, &disk_key, slot + i); | 
 | 		item = btrfs_item_nr(leaf, slot + i); | 
 | 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]); | 
 | 		data_end -= data_size[i]; | 
 | 		btrfs_set_item_size(leaf, item, data_size[i]); | 
 | 	} | 
 | 	btrfs_set_header_nritems(leaf, nritems + nr); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 |  | 
 | 	ret = 0; | 
 | 	if (slot == 0) { | 
 | 		btrfs_cpu_key_to_disk(&disk_key, cpu_key); | 
 | 		ret = fixup_low_keys(trans, root, path, &disk_key, 1); | 
 | 	} | 
 |  | 
 | 	if (btrfs_leaf_free_space(root, leaf) < 0) { | 
 | 		btrfs_print_leaf(root, leaf); | 
 | 		BUG(); | 
 | 	} | 
 | out: | 
 | 	if (!ret) | 
 | 		ret = nr; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * this is a helper for btrfs_insert_empty_items, the main goal here is | 
 |  * to save stack depth by doing the bulk of the work in a function | 
 |  * that doesn't call btrfs_search_slot | 
 |  */ | 
 | static noinline_for_stack int | 
 | setup_items_for_insert(struct btrfs_trans_handle *trans, | 
 | 		      struct btrfs_root *root, struct btrfs_path *path, | 
 | 		      struct btrfs_key *cpu_key, u32 *data_size, | 
 | 		      u32 total_data, u32 total_size, int nr) | 
 | { | 
 | 	struct btrfs_item *item; | 
 | 	int i; | 
 | 	u32 nritems; | 
 | 	unsigned int data_end; | 
 | 	struct btrfs_disk_key disk_key; | 
 | 	int ret; | 
 | 	struct extent_buffer *leaf; | 
 | 	int slot; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	slot = path->slots[0]; | 
 |  | 
 | 	nritems = btrfs_header_nritems(leaf); | 
 | 	data_end = leaf_data_end(root, leaf); | 
 |  | 
 | 	if (btrfs_leaf_free_space(root, leaf) < total_size) { | 
 | 		btrfs_print_leaf(root, leaf); | 
 | 		printk(KERN_CRIT "not enough freespace need %u have %d\n", | 
 | 		       total_size, btrfs_leaf_free_space(root, leaf)); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	if (slot != nritems) { | 
 | 		unsigned int old_data = btrfs_item_end_nr(leaf, slot); | 
 |  | 
 | 		if (old_data < data_end) { | 
 | 			btrfs_print_leaf(root, leaf); | 
 | 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n", | 
 | 			       slot, old_data, data_end); | 
 | 			BUG_ON(1); | 
 | 		} | 
 | 		/* | 
 | 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size | 
 | 		 */ | 
 | 		/* first correct the data pointers */ | 
 | 		WARN_ON(leaf->map_token); | 
 | 		for (i = slot; i < nritems; i++) { | 
 | 			u32 ioff; | 
 |  | 
 | 			item = btrfs_item_nr(leaf, i); | 
 | 			if (!leaf->map_token) { | 
 | 				map_extent_buffer(leaf, (unsigned long)item, | 
 | 					sizeof(struct btrfs_item), | 
 | 					&leaf->map_token, &leaf->kaddr, | 
 | 					&leaf->map_start, &leaf->map_len, | 
 | 					KM_USER1); | 
 | 			} | 
 |  | 
 | 			ioff = btrfs_item_offset(leaf, item); | 
 | 			btrfs_set_item_offset(leaf, item, ioff - total_data); | 
 | 		} | 
 | 		if (leaf->map_token) { | 
 | 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); | 
 | 			leaf->map_token = NULL; | 
 | 		} | 
 |  | 
 | 		/* shift the items */ | 
 | 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), | 
 | 			      btrfs_item_nr_offset(slot), | 
 | 			      (nritems - slot) * sizeof(struct btrfs_item)); | 
 |  | 
 | 		/* shift the data */ | 
 | 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + | 
 | 			      data_end - total_data, btrfs_leaf_data(leaf) + | 
 | 			      data_end, old_data - data_end); | 
 | 		data_end = old_data; | 
 | 	} | 
 |  | 
 | 	/* setup the item for the new data */ | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); | 
 | 		btrfs_set_item_key(leaf, &disk_key, slot + i); | 
 | 		item = btrfs_item_nr(leaf, slot + i); | 
 | 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]); | 
 | 		data_end -= data_size[i]; | 
 | 		btrfs_set_item_size(leaf, item, data_size[i]); | 
 | 	} | 
 |  | 
 | 	btrfs_set_header_nritems(leaf, nritems + nr); | 
 |  | 
 | 	ret = 0; | 
 | 	if (slot == 0) { | 
 | 		struct btrfs_disk_key disk_key; | 
 | 		btrfs_cpu_key_to_disk(&disk_key, cpu_key); | 
 | 		ret = fixup_low_keys(trans, root, path, &disk_key, 1); | 
 | 	} | 
 | 	btrfs_unlock_up_safe(path, 1); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 |  | 
 | 	if (btrfs_leaf_free_space(root, leaf) < 0) { | 
 | 		btrfs_print_leaf(root, leaf); | 
 | 		BUG(); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Given a key and some data, insert items into the tree. | 
 |  * This does all the path init required, making room in the tree if needed. | 
 |  */ | 
 | int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, | 
 | 			    struct btrfs_root *root, | 
 | 			    struct btrfs_path *path, | 
 | 			    struct btrfs_key *cpu_key, u32 *data_size, | 
 | 			    int nr) | 
 | { | 
 | 	struct extent_buffer *leaf; | 
 | 	int ret = 0; | 
 | 	int slot; | 
 | 	int i; | 
 | 	u32 total_size = 0; | 
 | 	u32 total_data = 0; | 
 |  | 
 | 	for (i = 0; i < nr; i++) | 
 | 		total_data += data_size[i]; | 
 |  | 
 | 	total_size = total_data + (nr * sizeof(struct btrfs_item)); | 
 | 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); | 
 | 	if (ret == 0) | 
 | 		return -EEXIST; | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	slot = path->slots[0]; | 
 | 	BUG_ON(slot < 0); | 
 |  | 
 | 	ret = setup_items_for_insert(trans, root, path, cpu_key, data_size, | 
 | 			       total_data, total_size, nr); | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Given a key and some data, insert an item into the tree. | 
 |  * This does all the path init required, making room in the tree if needed. | 
 |  */ | 
 | int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root | 
 | 		      *root, struct btrfs_key *cpu_key, void *data, u32 | 
 | 		      data_size) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *leaf; | 
 | 	unsigned long ptr; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	BUG_ON(!path); | 
 | 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); | 
 | 	if (!ret) { | 
 | 		leaf = path->nodes[0]; | 
 | 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
 | 		write_extent_buffer(leaf, data, ptr, data_size); | 
 | 		btrfs_mark_buffer_dirty(leaf); | 
 | 	} | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * delete the pointer from a given node. | 
 |  * | 
 |  * the tree should have been previously balanced so the deletion does not | 
 |  * empty a node. | 
 |  */ | 
 | static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
 | 		   struct btrfs_path *path, int level, int slot) | 
 | { | 
 | 	struct extent_buffer *parent = path->nodes[level]; | 
 | 	u32 nritems; | 
 | 	int ret = 0; | 
 | 	int wret; | 
 |  | 
 | 	nritems = btrfs_header_nritems(parent); | 
 | 	if (slot != nritems - 1) { | 
 | 		memmove_extent_buffer(parent, | 
 | 			      btrfs_node_key_ptr_offset(slot), | 
 | 			      btrfs_node_key_ptr_offset(slot + 1), | 
 | 			      sizeof(struct btrfs_key_ptr) * | 
 | 			      (nritems - slot - 1)); | 
 | 	} | 
 | 	nritems--; | 
 | 	btrfs_set_header_nritems(parent, nritems); | 
 | 	if (nritems == 0 && parent == root->node) { | 
 | 		BUG_ON(btrfs_header_level(root->node) != 1); | 
 | 		/* just turn the root into a leaf and break */ | 
 | 		btrfs_set_header_level(root->node, 0); | 
 | 	} else if (slot == 0) { | 
 | 		struct btrfs_disk_key disk_key; | 
 |  | 
 | 		btrfs_node_key(parent, &disk_key, 0); | 
 | 		wret = fixup_low_keys(trans, root, path, &disk_key, level + 1); | 
 | 		if (wret) | 
 | 			ret = wret; | 
 | 	} | 
 | 	btrfs_mark_buffer_dirty(parent); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * a helper function to delete the leaf pointed to by path->slots[1] and | 
 |  * path->nodes[1]. | 
 |  * | 
 |  * This deletes the pointer in path->nodes[1] and frees the leaf | 
 |  * block extent.  zero is returned if it all worked out, < 0 otherwise. | 
 |  * | 
 |  * The path must have already been setup for deleting the leaf, including | 
 |  * all the proper balancing.  path->nodes[1] must be locked. | 
 |  */ | 
 | static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans, | 
 | 				   struct btrfs_root *root, | 
 | 				   struct btrfs_path *path, | 
 | 				   struct extent_buffer *leaf) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	WARN_ON(btrfs_header_generation(leaf) != trans->transid); | 
 | 	ret = del_ptr(trans, root, path, 1, path->slots[1]); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * btrfs_free_extent is expensive, we want to make sure we | 
 | 	 * aren't holding any locks when we call it | 
 | 	 */ | 
 | 	btrfs_unlock_up_safe(path, 0); | 
 |  | 
 | 	ret = btrfs_free_extent(trans, root, leaf->start, leaf->len, | 
 | 				0, root->root_key.objectid, 0, 0); | 
 | 	return ret; | 
 | } | 
 | /* | 
 |  * delete the item at the leaf level in path.  If that empties | 
 |  * the leaf, remove it from the tree | 
 |  */ | 
 | int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
 | 		    struct btrfs_path *path, int slot, int nr) | 
 | { | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_item *item; | 
 | 	int last_off; | 
 | 	int dsize = 0; | 
 | 	int ret = 0; | 
 | 	int wret; | 
 | 	int i; | 
 | 	u32 nritems; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); | 
 |  | 
 | 	for (i = 0; i < nr; i++) | 
 | 		dsize += btrfs_item_size_nr(leaf, slot + i); | 
 |  | 
 | 	nritems = btrfs_header_nritems(leaf); | 
 |  | 
 | 	if (slot + nr != nritems) { | 
 | 		int data_end = leaf_data_end(root, leaf); | 
 |  | 
 | 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + | 
 | 			      data_end + dsize, | 
 | 			      btrfs_leaf_data(leaf) + data_end, | 
 | 			      last_off - data_end); | 
 |  | 
 | 		for (i = slot + nr; i < nritems; i++) { | 
 | 			u32 ioff; | 
 |  | 
 | 			item = btrfs_item_nr(leaf, i); | 
 | 			if (!leaf->map_token) { | 
 | 				map_extent_buffer(leaf, (unsigned long)item, | 
 | 					sizeof(struct btrfs_item), | 
 | 					&leaf->map_token, &leaf->kaddr, | 
 | 					&leaf->map_start, &leaf->map_len, | 
 | 					KM_USER1); | 
 | 			} | 
 | 			ioff = btrfs_item_offset(leaf, item); | 
 | 			btrfs_set_item_offset(leaf, item, ioff + dsize); | 
 | 		} | 
 |  | 
 | 		if (leaf->map_token) { | 
 | 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); | 
 | 			leaf->map_token = NULL; | 
 | 		} | 
 |  | 
 | 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), | 
 | 			      btrfs_item_nr_offset(slot + nr), | 
 | 			      sizeof(struct btrfs_item) * | 
 | 			      (nritems - slot - nr)); | 
 | 	} | 
 | 	btrfs_set_header_nritems(leaf, nritems - nr); | 
 | 	nritems -= nr; | 
 |  | 
 | 	/* delete the leaf if we've emptied it */ | 
 | 	if (nritems == 0) { | 
 | 		if (leaf == root->node) { | 
 | 			btrfs_set_header_level(leaf, 0); | 
 | 		} else { | 
 | 			ret = btrfs_del_leaf(trans, root, path, leaf); | 
 | 			BUG_ON(ret); | 
 | 		} | 
 | 	} else { | 
 | 		int used = leaf_space_used(leaf, 0, nritems); | 
 | 		if (slot == 0) { | 
 | 			struct btrfs_disk_key disk_key; | 
 |  | 
 | 			btrfs_item_key(leaf, &disk_key, 0); | 
 | 			wret = fixup_low_keys(trans, root, path, | 
 | 					      &disk_key, 1); | 
 | 			if (wret) | 
 | 				ret = wret; | 
 | 		} | 
 |  | 
 | 		/* delete the leaf if it is mostly empty */ | 
 | 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { | 
 | 			/* push_leaf_left fixes the path. | 
 | 			 * make sure the path still points to our leaf | 
 | 			 * for possible call to del_ptr below | 
 | 			 */ | 
 | 			slot = path->slots[1]; | 
 | 			extent_buffer_get(leaf); | 
 |  | 
 | 			btrfs_set_path_blocking(path); | 
 | 			wret = push_leaf_left(trans, root, path, 1, 1); | 
 | 			if (wret < 0 && wret != -ENOSPC) | 
 | 				ret = wret; | 
 |  | 
 | 			if (path->nodes[0] == leaf && | 
 | 			    btrfs_header_nritems(leaf)) { | 
 | 				wret = push_leaf_right(trans, root, path, 1, 1); | 
 | 				if (wret < 0 && wret != -ENOSPC) | 
 | 					ret = wret; | 
 | 			} | 
 |  | 
 | 			if (btrfs_header_nritems(leaf) == 0) { | 
 | 				path->slots[1] = slot; | 
 | 				ret = btrfs_del_leaf(trans, root, path, leaf); | 
 | 				BUG_ON(ret); | 
 | 				free_extent_buffer(leaf); | 
 | 			} else { | 
 | 				/* if we're still in the path, make sure | 
 | 				 * we're dirty.  Otherwise, one of the | 
 | 				 * push_leaf functions must have already | 
 | 				 * dirtied this buffer | 
 | 				 */ | 
 | 				if (path->nodes[0] == leaf) | 
 | 					btrfs_mark_buffer_dirty(leaf); | 
 | 				free_extent_buffer(leaf); | 
 | 			} | 
 | 		} else { | 
 | 			btrfs_mark_buffer_dirty(leaf); | 
 | 		} | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * search the tree again to find a leaf with lesser keys | 
 |  * returns 0 if it found something or 1 if there are no lesser leaves. | 
 |  * returns < 0 on io errors. | 
 |  * | 
 |  * This may release the path, and so you may lose any locks held at the | 
 |  * time you call it. | 
 |  */ | 
 | int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_disk_key found_key; | 
 | 	int ret; | 
 |  | 
 | 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0); | 
 |  | 
 | 	if (key.offset > 0) | 
 | 		key.offset--; | 
 | 	else if (key.type > 0) | 
 | 		key.type--; | 
 | 	else if (key.objectid > 0) | 
 | 		key.objectid--; | 
 | 	else | 
 | 		return 1; | 
 |  | 
 | 	btrfs_release_path(root, path); | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	btrfs_item_key(path->nodes[0], &found_key, 0); | 
 | 	ret = comp_keys(&found_key, &key); | 
 | 	if (ret < 0) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * A helper function to walk down the tree starting at min_key, and looking | 
 |  * for nodes or leaves that are either in cache or have a minimum | 
 |  * transaction id.  This is used by the btree defrag code, and tree logging | 
 |  * | 
 |  * This does not cow, but it does stuff the starting key it finds back | 
 |  * into min_key, so you can call btrfs_search_slot with cow=1 on the | 
 |  * key and get a writable path. | 
 |  * | 
 |  * This does lock as it descends, and path->keep_locks should be set | 
 |  * to 1 by the caller. | 
 |  * | 
 |  * This honors path->lowest_level to prevent descent past a given level | 
 |  * of the tree. | 
 |  * | 
 |  * min_trans indicates the oldest transaction that you are interested | 
 |  * in walking through.  Any nodes or leaves older than min_trans are | 
 |  * skipped over (without reading them). | 
 |  * | 
 |  * returns zero if something useful was found, < 0 on error and 1 if there | 
 |  * was nothing in the tree that matched the search criteria. | 
 |  */ | 
 | int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, | 
 | 			 struct btrfs_key *max_key, | 
 | 			 struct btrfs_path *path, int cache_only, | 
 | 			 u64 min_trans) | 
 | { | 
 | 	struct extent_buffer *cur; | 
 | 	struct btrfs_key found_key; | 
 | 	int slot; | 
 | 	int sret; | 
 | 	u32 nritems; | 
 | 	int level; | 
 | 	int ret = 1; | 
 |  | 
 | 	WARN_ON(!path->keep_locks); | 
 | again: | 
 | 	cur = btrfs_lock_root_node(root); | 
 | 	level = btrfs_header_level(cur); | 
 | 	WARN_ON(path->nodes[level]); | 
 | 	path->nodes[level] = cur; | 
 | 	path->locks[level] = 1; | 
 |  | 
 | 	if (btrfs_header_generation(cur) < min_trans) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 | 	while (1) { | 
 | 		nritems = btrfs_header_nritems(cur); | 
 | 		level = btrfs_header_level(cur); | 
 | 		sret = bin_search(cur, min_key, level, &slot); | 
 |  | 
 | 		/* at the lowest level, we're done, setup the path and exit */ | 
 | 		if (level == path->lowest_level) { | 
 | 			if (slot >= nritems) | 
 | 				goto find_next_key; | 
 | 			ret = 0; | 
 | 			path->slots[level] = slot; | 
 | 			btrfs_item_key_to_cpu(cur, &found_key, slot); | 
 | 			goto out; | 
 | 		} | 
 | 		if (sret && slot > 0) | 
 | 			slot--; | 
 | 		/* | 
 | 		 * check this node pointer against the cache_only and | 
 | 		 * min_trans parameters.  If it isn't in cache or is too | 
 | 		 * old, skip to the next one. | 
 | 		 */ | 
 | 		while (slot < nritems) { | 
 | 			u64 blockptr; | 
 | 			u64 gen; | 
 | 			struct extent_buffer *tmp; | 
 | 			struct btrfs_disk_key disk_key; | 
 |  | 
 | 			blockptr = btrfs_node_blockptr(cur, slot); | 
 | 			gen = btrfs_node_ptr_generation(cur, slot); | 
 | 			if (gen < min_trans) { | 
 | 				slot++; | 
 | 				continue; | 
 | 			} | 
 | 			if (!cache_only) | 
 | 				break; | 
 |  | 
 | 			if (max_key) { | 
 | 				btrfs_node_key(cur, &disk_key, slot); | 
 | 				if (comp_keys(&disk_key, max_key) >= 0) { | 
 | 					ret = 1; | 
 | 					goto out; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			tmp = btrfs_find_tree_block(root, blockptr, | 
 | 					    btrfs_level_size(root, level - 1)); | 
 |  | 
 | 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) { | 
 | 				free_extent_buffer(tmp); | 
 | 				break; | 
 | 			} | 
 | 			if (tmp) | 
 | 				free_extent_buffer(tmp); | 
 | 			slot++; | 
 | 		} | 
 | find_next_key: | 
 | 		/* | 
 | 		 * we didn't find a candidate key in this node, walk forward | 
 | 		 * and find another one | 
 | 		 */ | 
 | 		if (slot >= nritems) { | 
 | 			path->slots[level] = slot; | 
 | 			btrfs_set_path_blocking(path); | 
 | 			sret = btrfs_find_next_key(root, path, min_key, level, | 
 | 						  cache_only, min_trans); | 
 | 			if (sret == 0) { | 
 | 				btrfs_release_path(root, path); | 
 | 				goto again; | 
 | 			} else { | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 		/* save our key for returning back */ | 
 | 		btrfs_node_key_to_cpu(cur, &found_key, slot); | 
 | 		path->slots[level] = slot; | 
 | 		if (level == path->lowest_level) { | 
 | 			ret = 0; | 
 | 			unlock_up(path, level, 1); | 
 | 			goto out; | 
 | 		} | 
 | 		btrfs_set_path_blocking(path); | 
 | 		cur = read_node_slot(root, cur, slot); | 
 |  | 
 | 		btrfs_tree_lock(cur); | 
 |  | 
 | 		path->locks[level - 1] = 1; | 
 | 		path->nodes[level - 1] = cur; | 
 | 		unlock_up(path, level, 1); | 
 | 		btrfs_clear_path_blocking(path, NULL); | 
 | 	} | 
 | out: | 
 | 	if (ret == 0) | 
 | 		memcpy(min_key, &found_key, sizeof(found_key)); | 
 | 	btrfs_set_path_blocking(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * this is similar to btrfs_next_leaf, but does not try to preserve | 
 |  * and fixup the path.  It looks for and returns the next key in the | 
 |  * tree based on the current path and the cache_only and min_trans | 
 |  * parameters. | 
 |  * | 
 |  * 0 is returned if another key is found, < 0 if there are any errors | 
 |  * and 1 is returned if there are no higher keys in the tree | 
 |  * | 
 |  * path->keep_locks should be set to 1 on the search made before | 
 |  * calling this function. | 
 |  */ | 
 | int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, | 
 | 			struct btrfs_key *key, int level, | 
 | 			int cache_only, u64 min_trans) | 
 | { | 
 | 	int slot; | 
 | 	struct extent_buffer *c; | 
 |  | 
 | 	WARN_ON(!path->keep_locks); | 
 | 	while (level < BTRFS_MAX_LEVEL) { | 
 | 		if (!path->nodes[level]) | 
 | 			return 1; | 
 |  | 
 | 		slot = path->slots[level] + 1; | 
 | 		c = path->nodes[level]; | 
 | next: | 
 | 		if (slot >= btrfs_header_nritems(c)) { | 
 | 			int ret; | 
 | 			int orig_lowest; | 
 | 			struct btrfs_key cur_key; | 
 | 			if (level + 1 >= BTRFS_MAX_LEVEL || | 
 | 			    !path->nodes[level + 1]) | 
 | 				return 1; | 
 |  | 
 | 			if (path->locks[level + 1]) { | 
 | 				level++; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			slot = btrfs_header_nritems(c) - 1; | 
 | 			if (level == 0) | 
 | 				btrfs_item_key_to_cpu(c, &cur_key, slot); | 
 | 			else | 
 | 				btrfs_node_key_to_cpu(c, &cur_key, slot); | 
 |  | 
 | 			orig_lowest = path->lowest_level; | 
 | 			btrfs_release_path(root, path); | 
 | 			path->lowest_level = level; | 
 | 			ret = btrfs_search_slot(NULL, root, &cur_key, path, | 
 | 						0, 0); | 
 | 			path->lowest_level = orig_lowest; | 
 | 			if (ret < 0) | 
 | 				return ret; | 
 |  | 
 | 			c = path->nodes[level]; | 
 | 			slot = path->slots[level]; | 
 | 			if (ret == 0) | 
 | 				slot++; | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		if (level == 0) | 
 | 			btrfs_item_key_to_cpu(c, key, slot); | 
 | 		else { | 
 | 			u64 blockptr = btrfs_node_blockptr(c, slot); | 
 | 			u64 gen = btrfs_node_ptr_generation(c, slot); | 
 |  | 
 | 			if (cache_only) { | 
 | 				struct extent_buffer *cur; | 
 | 				cur = btrfs_find_tree_block(root, blockptr, | 
 | 					    btrfs_level_size(root, level - 1)); | 
 | 				if (!cur || !btrfs_buffer_uptodate(cur, gen)) { | 
 | 					slot++; | 
 | 					if (cur) | 
 | 						free_extent_buffer(cur); | 
 | 					goto next; | 
 | 				} | 
 | 				free_extent_buffer(cur); | 
 | 			} | 
 | 			if (gen < min_trans) { | 
 | 				slot++; | 
 | 				goto next; | 
 | 			} | 
 | 			btrfs_node_key_to_cpu(c, key, slot); | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * search the tree again to find a leaf with greater keys | 
 |  * returns 0 if it found something or 1 if there are no greater leaves. | 
 |  * returns < 0 on io errors. | 
 |  */ | 
 | int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) | 
 | { | 
 | 	int slot; | 
 | 	int level; | 
 | 	struct extent_buffer *c; | 
 | 	struct extent_buffer *next; | 
 | 	struct btrfs_key key; | 
 | 	u32 nritems; | 
 | 	int ret; | 
 | 	int old_spinning = path->leave_spinning; | 
 | 	int force_blocking = 0; | 
 |  | 
 | 	nritems = btrfs_header_nritems(path->nodes[0]); | 
 | 	if (nritems == 0) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * we take the blocks in an order that upsets lockdep.  Using | 
 | 	 * blocking mode is the only way around it. | 
 | 	 */ | 
 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
 | 	force_blocking = 1; | 
 | #endif | 
 |  | 
 | 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); | 
 | again: | 
 | 	level = 1; | 
 | 	next = NULL; | 
 | 	btrfs_release_path(root, path); | 
 |  | 
 | 	path->keep_locks = 1; | 
 |  | 
 | 	if (!force_blocking) | 
 | 		path->leave_spinning = 1; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	path->keep_locks = 0; | 
 |  | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	nritems = btrfs_header_nritems(path->nodes[0]); | 
 | 	/* | 
 | 	 * by releasing the path above we dropped all our locks.  A balance | 
 | 	 * could have added more items next to the key that used to be | 
 | 	 * at the very end of the block.  So, check again here and | 
 | 	 * advance the path if there are now more items available. | 
 | 	 */ | 
 | 	if (nritems > 0 && path->slots[0] < nritems - 1) { | 
 | 		if (ret == 0) | 
 | 			path->slots[0]++; | 
 | 		ret = 0; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	while (level < BTRFS_MAX_LEVEL) { | 
 | 		if (!path->nodes[level]) { | 
 | 			ret = 1; | 
 | 			goto done; | 
 | 		} | 
 |  | 
 | 		slot = path->slots[level] + 1; | 
 | 		c = path->nodes[level]; | 
 | 		if (slot >= btrfs_header_nritems(c)) { | 
 | 			level++; | 
 | 			if (level == BTRFS_MAX_LEVEL) { | 
 | 				ret = 1; | 
 | 				goto done; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (next) { | 
 | 			btrfs_tree_unlock(next); | 
 | 			free_extent_buffer(next); | 
 | 		} | 
 |  | 
 | 		next = c; | 
 | 		ret = read_block_for_search(NULL, root, path, &next, level, | 
 | 					    slot, &key); | 
 | 		if (ret == -EAGAIN) | 
 | 			goto again; | 
 |  | 
 | 		if (ret < 0) { | 
 | 			btrfs_release_path(root, path); | 
 | 			goto done; | 
 | 		} | 
 |  | 
 | 		if (!path->skip_locking) { | 
 | 			ret = btrfs_try_spin_lock(next); | 
 | 			if (!ret) { | 
 | 				btrfs_set_path_blocking(path); | 
 | 				btrfs_tree_lock(next); | 
 | 				if (!force_blocking) | 
 | 					btrfs_clear_path_blocking(path, next); | 
 | 			} | 
 | 			if (force_blocking) | 
 | 				btrfs_set_lock_blocking(next); | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | 	path->slots[level] = slot; | 
 | 	while (1) { | 
 | 		level--; | 
 | 		c = path->nodes[level]; | 
 | 		if (path->locks[level]) | 
 | 			btrfs_tree_unlock(c); | 
 |  | 
 | 		free_extent_buffer(c); | 
 | 		path->nodes[level] = next; | 
 | 		path->slots[level] = 0; | 
 | 		if (!path->skip_locking) | 
 | 			path->locks[level] = 1; | 
 |  | 
 | 		if (!level) | 
 | 			break; | 
 |  | 
 | 		ret = read_block_for_search(NULL, root, path, &next, level, | 
 | 					    0, &key); | 
 | 		if (ret == -EAGAIN) | 
 | 			goto again; | 
 |  | 
 | 		if (ret < 0) { | 
 | 			btrfs_release_path(root, path); | 
 | 			goto done; | 
 | 		} | 
 |  | 
 | 		if (!path->skip_locking) { | 
 | 			btrfs_assert_tree_locked(path->nodes[level]); | 
 | 			ret = btrfs_try_spin_lock(next); | 
 | 			if (!ret) { | 
 | 				btrfs_set_path_blocking(path); | 
 | 				btrfs_tree_lock(next); | 
 | 				if (!force_blocking) | 
 | 					btrfs_clear_path_blocking(path, next); | 
 | 			} | 
 | 			if (force_blocking) | 
 | 				btrfs_set_lock_blocking(next); | 
 | 		} | 
 | 	} | 
 | 	ret = 0; | 
 | done: | 
 | 	unlock_up(path, 0, 1); | 
 | 	path->leave_spinning = old_spinning; | 
 | 	if (!old_spinning) | 
 | 		btrfs_set_path_blocking(path); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps | 
 |  * searching until it gets past min_objectid or finds an item of 'type' | 
 |  * | 
 |  * returns 0 if something is found, 1 if nothing was found and < 0 on error | 
 |  */ | 
 | int btrfs_previous_item(struct btrfs_root *root, | 
 | 			struct btrfs_path *path, u64 min_objectid, | 
 | 			int type) | 
 | { | 
 | 	struct btrfs_key found_key; | 
 | 	struct extent_buffer *leaf; | 
 | 	u32 nritems; | 
 | 	int ret; | 
 |  | 
 | 	while (1) { | 
 | 		if (path->slots[0] == 0) { | 
 | 			btrfs_set_path_blocking(path); | 
 | 			ret = btrfs_prev_leaf(root, path); | 
 | 			if (ret != 0) | 
 | 				return ret; | 
 | 		} else { | 
 | 			path->slots[0]--; | 
 | 		} | 
 | 		leaf = path->nodes[0]; | 
 | 		nritems = btrfs_header_nritems(leaf); | 
 | 		if (nritems == 0) | 
 | 			return 1; | 
 | 		if (path->slots[0] == nritems) | 
 | 			path->slots[0]--; | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
 | 		if (found_key.objectid < min_objectid) | 
 | 			break; | 
 | 		if (found_key.type == type) | 
 | 			return 0; | 
 | 		if (found_key.objectid == min_objectid && | 
 | 		    found_key.type < type) | 
 | 			break; | 
 | 	} | 
 | 	return 1; | 
 | } |