|  | /* | 
|  | * Performance events core code: | 
|  | * | 
|  | *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | 
|  | *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | 
|  | *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | 
|  | *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | 
|  | * | 
|  | * For licensing details see kernel-base/COPYING | 
|  | */ | 
|  |  | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/idr.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/poll.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/sysfs.h> | 
|  | #include <linux/dcache.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/vmstat.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/rculist.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/anon_inodes.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/ftrace_event.h> | 
|  | #include <linux/hw_breakpoint.h> | 
|  |  | 
|  | #include <asm/irq_regs.h> | 
|  |  | 
|  | struct remote_function_call { | 
|  | struct task_struct *p; | 
|  | int (*func)(void *info); | 
|  | void *info; | 
|  | int ret; | 
|  | }; | 
|  |  | 
|  | static void remote_function(void *data) | 
|  | { | 
|  | struct remote_function_call *tfc = data; | 
|  | struct task_struct *p = tfc->p; | 
|  |  | 
|  | if (p) { | 
|  | tfc->ret = -EAGAIN; | 
|  | if (task_cpu(p) != smp_processor_id() || !task_curr(p)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | tfc->ret = tfc->func(tfc->info); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * task_function_call - call a function on the cpu on which a task runs | 
|  | * @p:		the task to evaluate | 
|  | * @func:	the function to be called | 
|  | * @info:	the function call argument | 
|  | * | 
|  | * Calls the function @func when the task is currently running. This might | 
|  | * be on the current CPU, which just calls the function directly | 
|  | * | 
|  | * returns: @func return value, or | 
|  | *	    -ESRCH  - when the process isn't running | 
|  | *	    -EAGAIN - when the process moved away | 
|  | */ | 
|  | static int | 
|  | task_function_call(struct task_struct *p, int (*func) (void *info), void *info) | 
|  | { | 
|  | struct remote_function_call data = { | 
|  | .p = p, | 
|  | .func = func, | 
|  | .info = info, | 
|  | .ret = -ESRCH, /* No such (running) process */ | 
|  | }; | 
|  |  | 
|  | if (task_curr(p)) | 
|  | smp_call_function_single(task_cpu(p), remote_function, &data, 1); | 
|  |  | 
|  | return data.ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpu_function_call - call a function on the cpu | 
|  | * @func:	the function to be called | 
|  | * @info:	the function call argument | 
|  | * | 
|  | * Calls the function @func on the remote cpu. | 
|  | * | 
|  | * returns: @func return value or -ENXIO when the cpu is offline | 
|  | */ | 
|  | static int cpu_function_call(int cpu, int (*func) (void *info), void *info) | 
|  | { | 
|  | struct remote_function_call data = { | 
|  | .p = NULL, | 
|  | .func = func, | 
|  | .info = info, | 
|  | .ret = -ENXIO, /* No such CPU */ | 
|  | }; | 
|  |  | 
|  | smp_call_function_single(cpu, remote_function, &data, 1); | 
|  |  | 
|  | return data.ret; | 
|  | } | 
|  |  | 
|  | #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ | 
|  | PERF_FLAG_FD_OUTPUT  |\ | 
|  | PERF_FLAG_PID_CGROUP) | 
|  |  | 
|  | enum event_type_t { | 
|  | EVENT_FLEXIBLE = 0x1, | 
|  | EVENT_PINNED = 0x2, | 
|  | EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * perf_sched_events : >0 events exist | 
|  | * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu | 
|  | */ | 
|  | atomic_t perf_sched_events __read_mostly; | 
|  | static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); | 
|  |  | 
|  | static atomic_t nr_mmap_events __read_mostly; | 
|  | static atomic_t nr_comm_events __read_mostly; | 
|  | static atomic_t nr_task_events __read_mostly; | 
|  |  | 
|  | static LIST_HEAD(pmus); | 
|  | static DEFINE_MUTEX(pmus_lock); | 
|  | static struct srcu_struct pmus_srcu; | 
|  |  | 
|  | /* | 
|  | * perf event paranoia level: | 
|  | *  -1 - not paranoid at all | 
|  | *   0 - disallow raw tracepoint access for unpriv | 
|  | *   1 - disallow cpu events for unpriv | 
|  | *   2 - disallow kernel profiling for unpriv | 
|  | */ | 
|  | int sysctl_perf_event_paranoid __read_mostly = 1; | 
|  |  | 
|  | /* Minimum for 512 kiB + 1 user control page */ | 
|  | int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ | 
|  |  | 
|  | /* | 
|  | * max perf event sample rate | 
|  | */ | 
|  | #define DEFAULT_MAX_SAMPLE_RATE 100000 | 
|  | int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; | 
|  | static int max_samples_per_tick __read_mostly = | 
|  | DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); | 
|  |  | 
|  | int perf_proc_update_handler(struct ctl_table *table, int write, | 
|  | void __user *buffer, size_t *lenp, | 
|  | loff_t *ppos) | 
|  | { | 
|  | int ret = proc_dointvec(table, write, buffer, lenp, ppos); | 
|  |  | 
|  | if (ret || !write) | 
|  | return ret; | 
|  |  | 
|  | max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static atomic64_t perf_event_id; | 
|  |  | 
|  | static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, | 
|  | enum event_type_t event_type); | 
|  |  | 
|  | static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, | 
|  | enum event_type_t event_type, | 
|  | struct task_struct *task); | 
|  |  | 
|  | static void update_context_time(struct perf_event_context *ctx); | 
|  | static u64 perf_event_time(struct perf_event *event); | 
|  |  | 
|  | void __weak perf_event_print_debug(void)	{ } | 
|  |  | 
|  | extern __weak const char *perf_pmu_name(void) | 
|  | { | 
|  | return "pmu"; | 
|  | } | 
|  |  | 
|  | static inline u64 perf_clock(void) | 
|  | { | 
|  | return local_clock(); | 
|  | } | 
|  |  | 
|  | static inline struct perf_cpu_context * | 
|  | __get_cpu_context(struct perf_event_context *ctx) | 
|  | { | 
|  | return this_cpu_ptr(ctx->pmu->pmu_cpu_context); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_PERF | 
|  |  | 
|  | /* | 
|  | * Must ensure cgroup is pinned (css_get) before calling | 
|  | * this function. In other words, we cannot call this function | 
|  | * if there is no cgroup event for the current CPU context. | 
|  | */ | 
|  | static inline struct perf_cgroup * | 
|  | perf_cgroup_from_task(struct task_struct *task) | 
|  | { | 
|  | return container_of(task_subsys_state(task, perf_subsys_id), | 
|  | struct perf_cgroup, css); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | perf_cgroup_match(struct perf_event *event) | 
|  | { | 
|  | struct perf_event_context *ctx = event->ctx; | 
|  | struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | 
|  |  | 
|  | return !event->cgrp || event->cgrp == cpuctx->cgrp; | 
|  | } | 
|  |  | 
|  | static inline void perf_get_cgroup(struct perf_event *event) | 
|  | { | 
|  | css_get(&event->cgrp->css); | 
|  | } | 
|  |  | 
|  | static inline void perf_put_cgroup(struct perf_event *event) | 
|  | { | 
|  | css_put(&event->cgrp->css); | 
|  | } | 
|  |  | 
|  | static inline void perf_detach_cgroup(struct perf_event *event) | 
|  | { | 
|  | perf_put_cgroup(event); | 
|  | event->cgrp = NULL; | 
|  | } | 
|  |  | 
|  | static inline int is_cgroup_event(struct perf_event *event) | 
|  | { | 
|  | return event->cgrp != NULL; | 
|  | } | 
|  |  | 
|  | static inline u64 perf_cgroup_event_time(struct perf_event *event) | 
|  | { | 
|  | struct perf_cgroup_info *t; | 
|  |  | 
|  | t = per_cpu_ptr(event->cgrp->info, event->cpu); | 
|  | return t->time; | 
|  | } | 
|  |  | 
|  | static inline void __update_cgrp_time(struct perf_cgroup *cgrp) | 
|  | { | 
|  | struct perf_cgroup_info *info; | 
|  | u64 now; | 
|  |  | 
|  | now = perf_clock(); | 
|  |  | 
|  | info = this_cpu_ptr(cgrp->info); | 
|  |  | 
|  | info->time += now - info->timestamp; | 
|  | info->timestamp = now; | 
|  | } | 
|  |  | 
|  | static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) | 
|  | { | 
|  | struct perf_cgroup *cgrp_out = cpuctx->cgrp; | 
|  | if (cgrp_out) | 
|  | __update_cgrp_time(cgrp_out); | 
|  | } | 
|  |  | 
|  | static inline void update_cgrp_time_from_event(struct perf_event *event) | 
|  | { | 
|  | struct perf_cgroup *cgrp; | 
|  |  | 
|  | /* | 
|  | * ensure we access cgroup data only when needed and | 
|  | * when we know the cgroup is pinned (css_get) | 
|  | */ | 
|  | if (!is_cgroup_event(event)) | 
|  | return; | 
|  |  | 
|  | cgrp = perf_cgroup_from_task(current); | 
|  | /* | 
|  | * Do not update time when cgroup is not active | 
|  | */ | 
|  | if (cgrp == event->cgrp) | 
|  | __update_cgrp_time(event->cgrp); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | perf_cgroup_set_timestamp(struct task_struct *task, | 
|  | struct perf_event_context *ctx) | 
|  | { | 
|  | struct perf_cgroup *cgrp; | 
|  | struct perf_cgroup_info *info; | 
|  |  | 
|  | /* | 
|  | * ctx->lock held by caller | 
|  | * ensure we do not access cgroup data | 
|  | * unless we have the cgroup pinned (css_get) | 
|  | */ | 
|  | if (!task || !ctx->nr_cgroups) | 
|  | return; | 
|  |  | 
|  | cgrp = perf_cgroup_from_task(task); | 
|  | info = this_cpu_ptr(cgrp->info); | 
|  | info->timestamp = ctx->timestamp; | 
|  | } | 
|  |  | 
|  | #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */ | 
|  | #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */ | 
|  |  | 
|  | /* | 
|  | * reschedule events based on the cgroup constraint of task. | 
|  | * | 
|  | * mode SWOUT : schedule out everything | 
|  | * mode SWIN : schedule in based on cgroup for next | 
|  | */ | 
|  | void perf_cgroup_switch(struct task_struct *task, int mode) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx; | 
|  | struct pmu *pmu; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * disable interrupts to avoid geting nr_cgroup | 
|  | * changes via __perf_event_disable(). Also | 
|  | * avoids preemption. | 
|  | */ | 
|  | local_irq_save(flags); | 
|  |  | 
|  | /* | 
|  | * we reschedule only in the presence of cgroup | 
|  | * constrained events. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  |  | 
|  | list_for_each_entry_rcu(pmu, &pmus, entry) { | 
|  |  | 
|  | cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); | 
|  |  | 
|  | perf_pmu_disable(cpuctx->ctx.pmu); | 
|  |  | 
|  | /* | 
|  | * perf_cgroup_events says at least one | 
|  | * context on this CPU has cgroup events. | 
|  | * | 
|  | * ctx->nr_cgroups reports the number of cgroup | 
|  | * events for a context. | 
|  | */ | 
|  | if (cpuctx->ctx.nr_cgroups > 0) { | 
|  |  | 
|  | if (mode & PERF_CGROUP_SWOUT) { | 
|  | cpu_ctx_sched_out(cpuctx, EVENT_ALL); | 
|  | /* | 
|  | * must not be done before ctxswout due | 
|  | * to event_filter_match() in event_sched_out() | 
|  | */ | 
|  | cpuctx->cgrp = NULL; | 
|  | } | 
|  |  | 
|  | if (mode & PERF_CGROUP_SWIN) { | 
|  | WARN_ON_ONCE(cpuctx->cgrp); | 
|  | /* set cgrp before ctxsw in to | 
|  | * allow event_filter_match() to not | 
|  | * have to pass task around | 
|  | */ | 
|  | cpuctx->cgrp = perf_cgroup_from_task(task); | 
|  | cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); | 
|  | } | 
|  | } | 
|  |  | 
|  | perf_pmu_enable(cpuctx->ctx.pmu); | 
|  | } | 
|  |  | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static inline void perf_cgroup_sched_out(struct task_struct *task) | 
|  | { | 
|  | perf_cgroup_switch(task, PERF_CGROUP_SWOUT); | 
|  | } | 
|  |  | 
|  | static inline void perf_cgroup_sched_in(struct task_struct *task) | 
|  | { | 
|  | perf_cgroup_switch(task, PERF_CGROUP_SWIN); | 
|  | } | 
|  |  | 
|  | static inline int perf_cgroup_connect(int fd, struct perf_event *event, | 
|  | struct perf_event_attr *attr, | 
|  | struct perf_event *group_leader) | 
|  | { | 
|  | struct perf_cgroup *cgrp; | 
|  | struct cgroup_subsys_state *css; | 
|  | struct file *file; | 
|  | int ret = 0, fput_needed; | 
|  |  | 
|  | file = fget_light(fd, &fput_needed); | 
|  | if (!file) | 
|  | return -EBADF; | 
|  |  | 
|  | css = cgroup_css_from_dir(file, perf_subsys_id); | 
|  | if (IS_ERR(css)) { | 
|  | ret = PTR_ERR(css); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cgrp = container_of(css, struct perf_cgroup, css); | 
|  | event->cgrp = cgrp; | 
|  |  | 
|  | /* must be done before we fput() the file */ | 
|  | perf_get_cgroup(event); | 
|  |  | 
|  | /* | 
|  | * all events in a group must monitor | 
|  | * the same cgroup because a task belongs | 
|  | * to only one perf cgroup at a time | 
|  | */ | 
|  | if (group_leader && group_leader->cgrp != cgrp) { | 
|  | perf_detach_cgroup(event); | 
|  | ret = -EINVAL; | 
|  | } | 
|  | out: | 
|  | fput_light(file, fput_needed); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) | 
|  | { | 
|  | struct perf_cgroup_info *t; | 
|  | t = per_cpu_ptr(event->cgrp->info, event->cpu); | 
|  | event->shadow_ctx_time = now - t->timestamp; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | perf_cgroup_defer_enabled(struct perf_event *event) | 
|  | { | 
|  | /* | 
|  | * when the current task's perf cgroup does not match | 
|  | * the event's, we need to remember to call the | 
|  | * perf_mark_enable() function the first time a task with | 
|  | * a matching perf cgroup is scheduled in. | 
|  | */ | 
|  | if (is_cgroup_event(event) && !perf_cgroup_match(event)) | 
|  | event->cgrp_defer_enabled = 1; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | perf_cgroup_mark_enabled(struct perf_event *event, | 
|  | struct perf_event_context *ctx) | 
|  | { | 
|  | struct perf_event *sub; | 
|  | u64 tstamp = perf_event_time(event); | 
|  |  | 
|  | if (!event->cgrp_defer_enabled) | 
|  | return; | 
|  |  | 
|  | event->cgrp_defer_enabled = 0; | 
|  |  | 
|  | event->tstamp_enabled = tstamp - event->total_time_enabled; | 
|  | list_for_each_entry(sub, &event->sibling_list, group_entry) { | 
|  | if (sub->state >= PERF_EVENT_STATE_INACTIVE) { | 
|  | sub->tstamp_enabled = tstamp - sub->total_time_enabled; | 
|  | sub->cgrp_defer_enabled = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | #else /* !CONFIG_CGROUP_PERF */ | 
|  |  | 
|  | static inline bool | 
|  | perf_cgroup_match(struct perf_event *event) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline void perf_detach_cgroup(struct perf_event *event) | 
|  | {} | 
|  |  | 
|  | static inline int is_cgroup_event(struct perf_event *event) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void update_cgrp_time_from_event(struct perf_event *event) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void perf_cgroup_sched_out(struct task_struct *task) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void perf_cgroup_sched_in(struct task_struct *task) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, | 
|  | struct perf_event_attr *attr, | 
|  | struct perf_event *group_leader) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | perf_cgroup_set_timestamp(struct task_struct *task, | 
|  | struct perf_event_context *ctx) | 
|  | { | 
|  | } | 
|  |  | 
|  | void | 
|  | perf_cgroup_switch(struct task_struct *task, struct task_struct *next) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline u64 perf_cgroup_event_time(struct perf_event *event) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | perf_cgroup_defer_enabled(struct perf_event *event) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | perf_cgroup_mark_enabled(struct perf_event *event, | 
|  | struct perf_event_context *ctx) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void perf_pmu_disable(struct pmu *pmu) | 
|  | { | 
|  | int *count = this_cpu_ptr(pmu->pmu_disable_count); | 
|  | if (!(*count)++) | 
|  | pmu->pmu_disable(pmu); | 
|  | } | 
|  |  | 
|  | void perf_pmu_enable(struct pmu *pmu) | 
|  | { | 
|  | int *count = this_cpu_ptr(pmu->pmu_disable_count); | 
|  | if (!--(*count)) | 
|  | pmu->pmu_enable(pmu); | 
|  | } | 
|  |  | 
|  | static DEFINE_PER_CPU(struct list_head, rotation_list); | 
|  |  | 
|  | /* | 
|  | * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized | 
|  | * because they're strictly cpu affine and rotate_start is called with IRQs | 
|  | * disabled, while rotate_context is called from IRQ context. | 
|  | */ | 
|  | static void perf_pmu_rotate_start(struct pmu *pmu) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); | 
|  | struct list_head *head = &__get_cpu_var(rotation_list); | 
|  |  | 
|  | WARN_ON(!irqs_disabled()); | 
|  |  | 
|  | if (list_empty(&cpuctx->rotation_list)) | 
|  | list_add(&cpuctx->rotation_list, head); | 
|  | } | 
|  |  | 
|  | static void get_ctx(struct perf_event_context *ctx) | 
|  | { | 
|  | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | 
|  | } | 
|  |  | 
|  | static void free_ctx(struct rcu_head *head) | 
|  | { | 
|  | struct perf_event_context *ctx; | 
|  |  | 
|  | ctx = container_of(head, struct perf_event_context, rcu_head); | 
|  | kfree(ctx); | 
|  | } | 
|  |  | 
|  | static void put_ctx(struct perf_event_context *ctx) | 
|  | { | 
|  | if (atomic_dec_and_test(&ctx->refcount)) { | 
|  | if (ctx->parent_ctx) | 
|  | put_ctx(ctx->parent_ctx); | 
|  | if (ctx->task) | 
|  | put_task_struct(ctx->task); | 
|  | call_rcu(&ctx->rcu_head, free_ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void unclone_ctx(struct perf_event_context *ctx) | 
|  | { | 
|  | if (ctx->parent_ctx) { | 
|  | put_ctx(ctx->parent_ctx); | 
|  | ctx->parent_ctx = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * only top level events have the pid namespace they were created in | 
|  | */ | 
|  | if (event->parent) | 
|  | event = event->parent; | 
|  |  | 
|  | return task_tgid_nr_ns(p, event->ns); | 
|  | } | 
|  |  | 
|  | static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * only top level events have the pid namespace they were created in | 
|  | */ | 
|  | if (event->parent) | 
|  | event = event->parent; | 
|  |  | 
|  | return task_pid_nr_ns(p, event->ns); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we inherit events we want to return the parent event id | 
|  | * to userspace. | 
|  | */ | 
|  | static u64 primary_event_id(struct perf_event *event) | 
|  | { | 
|  | u64 id = event->id; | 
|  |  | 
|  | if (event->parent) | 
|  | id = event->parent->id; | 
|  |  | 
|  | return id; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the perf_event_context for a task and lock it. | 
|  | * This has to cope with with the fact that until it is locked, | 
|  | * the context could get moved to another task. | 
|  | */ | 
|  | static struct perf_event_context * | 
|  | perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) | 
|  | { | 
|  | struct perf_event_context *ctx; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | retry: | 
|  | ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); | 
|  | if (ctx) { | 
|  | /* | 
|  | * If this context is a clone of another, it might | 
|  | * get swapped for another underneath us by | 
|  | * perf_event_task_sched_out, though the | 
|  | * rcu_read_lock() protects us from any context | 
|  | * getting freed.  Lock the context and check if it | 
|  | * got swapped before we could get the lock, and retry | 
|  | * if so.  If we locked the right context, then it | 
|  | * can't get swapped on us any more. | 
|  | */ | 
|  | raw_spin_lock_irqsave(&ctx->lock, *flags); | 
|  | if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { | 
|  | raw_spin_unlock_irqrestore(&ctx->lock, *flags); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (!atomic_inc_not_zero(&ctx->refcount)) { | 
|  | raw_spin_unlock_irqrestore(&ctx->lock, *flags); | 
|  | ctx = NULL; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the context for a task and increment its pin_count so it | 
|  | * can't get swapped to another task.  This also increments its | 
|  | * reference count so that the context can't get freed. | 
|  | */ | 
|  | static struct perf_event_context * | 
|  | perf_pin_task_context(struct task_struct *task, int ctxn) | 
|  | { | 
|  | struct perf_event_context *ctx; | 
|  | unsigned long flags; | 
|  |  | 
|  | ctx = perf_lock_task_context(task, ctxn, &flags); | 
|  | if (ctx) { | 
|  | ++ctx->pin_count; | 
|  | raw_spin_unlock_irqrestore(&ctx->lock, flags); | 
|  | } | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | static void perf_unpin_context(struct perf_event_context *ctx) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&ctx->lock, flags); | 
|  | --ctx->pin_count; | 
|  | raw_spin_unlock_irqrestore(&ctx->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the record of the current time in a context. | 
|  | */ | 
|  | static void update_context_time(struct perf_event_context *ctx) | 
|  | { | 
|  | u64 now = perf_clock(); | 
|  |  | 
|  | ctx->time += now - ctx->timestamp; | 
|  | ctx->timestamp = now; | 
|  | } | 
|  |  | 
|  | static u64 perf_event_time(struct perf_event *event) | 
|  | { | 
|  | struct perf_event_context *ctx = event->ctx; | 
|  |  | 
|  | if (is_cgroup_event(event)) | 
|  | return perf_cgroup_event_time(event); | 
|  |  | 
|  | return ctx ? ctx->time : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the total_time_enabled and total_time_running fields for a event. | 
|  | */ | 
|  | static void update_event_times(struct perf_event *event) | 
|  | { | 
|  | struct perf_event_context *ctx = event->ctx; | 
|  | u64 run_end; | 
|  |  | 
|  | if (event->state < PERF_EVENT_STATE_INACTIVE || | 
|  | event->group_leader->state < PERF_EVENT_STATE_INACTIVE) | 
|  | return; | 
|  | /* | 
|  | * in cgroup mode, time_enabled represents | 
|  | * the time the event was enabled AND active | 
|  | * tasks were in the monitored cgroup. This is | 
|  | * independent of the activity of the context as | 
|  | * there may be a mix of cgroup and non-cgroup events. | 
|  | * | 
|  | * That is why we treat cgroup events differently | 
|  | * here. | 
|  | */ | 
|  | if (is_cgroup_event(event)) | 
|  | run_end = perf_event_time(event); | 
|  | else if (ctx->is_active) | 
|  | run_end = ctx->time; | 
|  | else | 
|  | run_end = event->tstamp_stopped; | 
|  |  | 
|  | event->total_time_enabled = run_end - event->tstamp_enabled; | 
|  |  | 
|  | if (event->state == PERF_EVENT_STATE_INACTIVE) | 
|  | run_end = event->tstamp_stopped; | 
|  | else | 
|  | run_end = perf_event_time(event); | 
|  |  | 
|  | event->total_time_running = run_end - event->tstamp_running; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update total_time_enabled and total_time_running for all events in a group. | 
|  | */ | 
|  | static void update_group_times(struct perf_event *leader) | 
|  | { | 
|  | struct perf_event *event; | 
|  |  | 
|  | update_event_times(leader); | 
|  | list_for_each_entry(event, &leader->sibling_list, group_entry) | 
|  | update_event_times(event); | 
|  | } | 
|  |  | 
|  | static struct list_head * | 
|  | ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) | 
|  | { | 
|  | if (event->attr.pinned) | 
|  | return &ctx->pinned_groups; | 
|  | else | 
|  | return &ctx->flexible_groups; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a event from the lists for its context. | 
|  | * Must be called with ctx->mutex and ctx->lock held. | 
|  | */ | 
|  | static void | 
|  | list_add_event(struct perf_event *event, struct perf_event_context *ctx) | 
|  | { | 
|  | WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); | 
|  | event->attach_state |= PERF_ATTACH_CONTEXT; | 
|  |  | 
|  | /* | 
|  | * If we're a stand alone event or group leader, we go to the context | 
|  | * list, group events are kept attached to the group so that | 
|  | * perf_group_detach can, at all times, locate all siblings. | 
|  | */ | 
|  | if (event->group_leader == event) { | 
|  | struct list_head *list; | 
|  |  | 
|  | if (is_software_event(event)) | 
|  | event->group_flags |= PERF_GROUP_SOFTWARE; | 
|  |  | 
|  | list = ctx_group_list(event, ctx); | 
|  | list_add_tail(&event->group_entry, list); | 
|  | } | 
|  |  | 
|  | if (is_cgroup_event(event)) | 
|  | ctx->nr_cgroups++; | 
|  |  | 
|  | list_add_rcu(&event->event_entry, &ctx->event_list); | 
|  | if (!ctx->nr_events) | 
|  | perf_pmu_rotate_start(ctx->pmu); | 
|  | ctx->nr_events++; | 
|  | if (event->attr.inherit_stat) | 
|  | ctx->nr_stat++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called at perf_event creation and when events are attached/detached from a | 
|  | * group. | 
|  | */ | 
|  | static void perf_event__read_size(struct perf_event *event) | 
|  | { | 
|  | int entry = sizeof(u64); /* value */ | 
|  | int size = 0; | 
|  | int nr = 1; | 
|  |  | 
|  | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | 
|  | size += sizeof(u64); | 
|  |  | 
|  | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | 
|  | size += sizeof(u64); | 
|  |  | 
|  | if (event->attr.read_format & PERF_FORMAT_ID) | 
|  | entry += sizeof(u64); | 
|  |  | 
|  | if (event->attr.read_format & PERF_FORMAT_GROUP) { | 
|  | nr += event->group_leader->nr_siblings; | 
|  | size += sizeof(u64); | 
|  | } | 
|  |  | 
|  | size += entry * nr; | 
|  | event->read_size = size; | 
|  | } | 
|  |  | 
|  | static void perf_event__header_size(struct perf_event *event) | 
|  | { | 
|  | struct perf_sample_data *data; | 
|  | u64 sample_type = event->attr.sample_type; | 
|  | u16 size = 0; | 
|  |  | 
|  | perf_event__read_size(event); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_IP) | 
|  | size += sizeof(data->ip); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_ADDR) | 
|  | size += sizeof(data->addr); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_PERIOD) | 
|  | size += sizeof(data->period); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_READ) | 
|  | size += event->read_size; | 
|  |  | 
|  | event->header_size = size; | 
|  | } | 
|  |  | 
|  | static void perf_event__id_header_size(struct perf_event *event) | 
|  | { | 
|  | struct perf_sample_data *data; | 
|  | u64 sample_type = event->attr.sample_type; | 
|  | u16 size = 0; | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_TID) | 
|  | size += sizeof(data->tid_entry); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_TIME) | 
|  | size += sizeof(data->time); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_ID) | 
|  | size += sizeof(data->id); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_STREAM_ID) | 
|  | size += sizeof(data->stream_id); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_CPU) | 
|  | size += sizeof(data->cpu_entry); | 
|  |  | 
|  | event->id_header_size = size; | 
|  | } | 
|  |  | 
|  | static void perf_group_attach(struct perf_event *event) | 
|  | { | 
|  | struct perf_event *group_leader = event->group_leader, *pos; | 
|  |  | 
|  | /* | 
|  | * We can have double attach due to group movement in perf_event_open. | 
|  | */ | 
|  | if (event->attach_state & PERF_ATTACH_GROUP) | 
|  | return; | 
|  |  | 
|  | event->attach_state |= PERF_ATTACH_GROUP; | 
|  |  | 
|  | if (group_leader == event) | 
|  | return; | 
|  |  | 
|  | if (group_leader->group_flags & PERF_GROUP_SOFTWARE && | 
|  | !is_software_event(event)) | 
|  | group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; | 
|  |  | 
|  | list_add_tail(&event->group_entry, &group_leader->sibling_list); | 
|  | group_leader->nr_siblings++; | 
|  |  | 
|  | perf_event__header_size(group_leader); | 
|  |  | 
|  | list_for_each_entry(pos, &group_leader->sibling_list, group_entry) | 
|  | perf_event__header_size(pos); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove a event from the lists for its context. | 
|  | * Must be called with ctx->mutex and ctx->lock held. | 
|  | */ | 
|  | static void | 
|  | list_del_event(struct perf_event *event, struct perf_event_context *ctx) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx; | 
|  | /* | 
|  | * We can have double detach due to exit/hot-unplug + close. | 
|  | */ | 
|  | if (!(event->attach_state & PERF_ATTACH_CONTEXT)) | 
|  | return; | 
|  |  | 
|  | event->attach_state &= ~PERF_ATTACH_CONTEXT; | 
|  |  | 
|  | if (is_cgroup_event(event)) { | 
|  | ctx->nr_cgroups--; | 
|  | cpuctx = __get_cpu_context(ctx); | 
|  | /* | 
|  | * if there are no more cgroup events | 
|  | * then cler cgrp to avoid stale pointer | 
|  | * in update_cgrp_time_from_cpuctx() | 
|  | */ | 
|  | if (!ctx->nr_cgroups) | 
|  | cpuctx->cgrp = NULL; | 
|  | } | 
|  |  | 
|  | ctx->nr_events--; | 
|  | if (event->attr.inherit_stat) | 
|  | ctx->nr_stat--; | 
|  |  | 
|  | list_del_rcu(&event->event_entry); | 
|  |  | 
|  | if (event->group_leader == event) | 
|  | list_del_init(&event->group_entry); | 
|  |  | 
|  | update_group_times(event); | 
|  |  | 
|  | /* | 
|  | * If event was in error state, then keep it | 
|  | * that way, otherwise bogus counts will be | 
|  | * returned on read(). The only way to get out | 
|  | * of error state is by explicit re-enabling | 
|  | * of the event | 
|  | */ | 
|  | if (event->state > PERF_EVENT_STATE_OFF) | 
|  | event->state = PERF_EVENT_STATE_OFF; | 
|  | } | 
|  |  | 
|  | static void perf_group_detach(struct perf_event *event) | 
|  | { | 
|  | struct perf_event *sibling, *tmp; | 
|  | struct list_head *list = NULL; | 
|  |  | 
|  | /* | 
|  | * We can have double detach due to exit/hot-unplug + close. | 
|  | */ | 
|  | if (!(event->attach_state & PERF_ATTACH_GROUP)) | 
|  | return; | 
|  |  | 
|  | event->attach_state &= ~PERF_ATTACH_GROUP; | 
|  |  | 
|  | /* | 
|  | * If this is a sibling, remove it from its group. | 
|  | */ | 
|  | if (event->group_leader != event) { | 
|  | list_del_init(&event->group_entry); | 
|  | event->group_leader->nr_siblings--; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!list_empty(&event->group_entry)) | 
|  | list = &event->group_entry; | 
|  |  | 
|  | /* | 
|  | * If this was a group event with sibling events then | 
|  | * upgrade the siblings to singleton events by adding them | 
|  | * to whatever list we are on. | 
|  | */ | 
|  | list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { | 
|  | if (list) | 
|  | list_move_tail(&sibling->group_entry, list); | 
|  | sibling->group_leader = sibling; | 
|  |  | 
|  | /* Inherit group flags from the previous leader */ | 
|  | sibling->group_flags = event->group_flags; | 
|  | } | 
|  |  | 
|  | out: | 
|  | perf_event__header_size(event->group_leader); | 
|  |  | 
|  | list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) | 
|  | perf_event__header_size(tmp); | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | event_filter_match(struct perf_event *event) | 
|  | { | 
|  | return (event->cpu == -1 || event->cpu == smp_processor_id()) | 
|  | && perf_cgroup_match(event); | 
|  | } | 
|  |  | 
|  | static void | 
|  | event_sched_out(struct perf_event *event, | 
|  | struct perf_cpu_context *cpuctx, | 
|  | struct perf_event_context *ctx) | 
|  | { | 
|  | u64 tstamp = perf_event_time(event); | 
|  | u64 delta; | 
|  | /* | 
|  | * An event which could not be activated because of | 
|  | * filter mismatch still needs to have its timings | 
|  | * maintained, otherwise bogus information is return | 
|  | * via read() for time_enabled, time_running: | 
|  | */ | 
|  | if (event->state == PERF_EVENT_STATE_INACTIVE | 
|  | && !event_filter_match(event)) { | 
|  | delta = tstamp - event->tstamp_stopped; | 
|  | event->tstamp_running += delta; | 
|  | event->tstamp_stopped = tstamp; | 
|  | } | 
|  |  | 
|  | if (event->state != PERF_EVENT_STATE_ACTIVE) | 
|  | return; | 
|  |  | 
|  | event->state = PERF_EVENT_STATE_INACTIVE; | 
|  | if (event->pending_disable) { | 
|  | event->pending_disable = 0; | 
|  | event->state = PERF_EVENT_STATE_OFF; | 
|  | } | 
|  | event->tstamp_stopped = tstamp; | 
|  | event->pmu->del(event, 0); | 
|  | event->oncpu = -1; | 
|  |  | 
|  | if (!is_software_event(event)) | 
|  | cpuctx->active_oncpu--; | 
|  | ctx->nr_active--; | 
|  | if (event->attr.exclusive || !cpuctx->active_oncpu) | 
|  | cpuctx->exclusive = 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | group_sched_out(struct perf_event *group_event, | 
|  | struct perf_cpu_context *cpuctx, | 
|  | struct perf_event_context *ctx) | 
|  | { | 
|  | struct perf_event *event; | 
|  | int state = group_event->state; | 
|  |  | 
|  | event_sched_out(group_event, cpuctx, ctx); | 
|  |  | 
|  | /* | 
|  | * Schedule out siblings (if any): | 
|  | */ | 
|  | list_for_each_entry(event, &group_event->sibling_list, group_entry) | 
|  | event_sched_out(event, cpuctx, ctx); | 
|  |  | 
|  | if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) | 
|  | cpuctx->exclusive = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cross CPU call to remove a performance event | 
|  | * | 
|  | * We disable the event on the hardware level first. After that we | 
|  | * remove it from the context list. | 
|  | */ | 
|  | static int __perf_remove_from_context(void *info) | 
|  | { | 
|  | struct perf_event *event = info; | 
|  | struct perf_event_context *ctx = event->ctx; | 
|  | struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | 
|  |  | 
|  | raw_spin_lock(&ctx->lock); | 
|  | event_sched_out(event, cpuctx, ctx); | 
|  | list_del_event(event, ctx); | 
|  | raw_spin_unlock(&ctx->lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Remove the event from a task's (or a CPU's) list of events. | 
|  | * | 
|  | * CPU events are removed with a smp call. For task events we only | 
|  | * call when the task is on a CPU. | 
|  | * | 
|  | * If event->ctx is a cloned context, callers must make sure that | 
|  | * every task struct that event->ctx->task could possibly point to | 
|  | * remains valid.  This is OK when called from perf_release since | 
|  | * that only calls us on the top-level context, which can't be a clone. | 
|  | * When called from perf_event_exit_task, it's OK because the | 
|  | * context has been detached from its task. | 
|  | */ | 
|  | static void perf_remove_from_context(struct perf_event *event) | 
|  | { | 
|  | struct perf_event_context *ctx = event->ctx; | 
|  | struct task_struct *task = ctx->task; | 
|  |  | 
|  | lockdep_assert_held(&ctx->mutex); | 
|  |  | 
|  | if (!task) { | 
|  | /* | 
|  | * Per cpu events are removed via an smp call and | 
|  | * the removal is always successful. | 
|  | */ | 
|  | cpu_function_call(event->cpu, __perf_remove_from_context, event); | 
|  | return; | 
|  | } | 
|  |  | 
|  | retry: | 
|  | if (!task_function_call(task, __perf_remove_from_context, event)) | 
|  | return; | 
|  |  | 
|  | raw_spin_lock_irq(&ctx->lock); | 
|  | /* | 
|  | * If we failed to find a running task, but find the context active now | 
|  | * that we've acquired the ctx->lock, retry. | 
|  | */ | 
|  | if (ctx->is_active) { | 
|  | raw_spin_unlock_irq(&ctx->lock); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since the task isn't running, its safe to remove the event, us | 
|  | * holding the ctx->lock ensures the task won't get scheduled in. | 
|  | */ | 
|  | list_del_event(event, ctx); | 
|  | raw_spin_unlock_irq(&ctx->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cross CPU call to disable a performance event | 
|  | */ | 
|  | static int __perf_event_disable(void *info) | 
|  | { | 
|  | struct perf_event *event = info; | 
|  | struct perf_event_context *ctx = event->ctx; | 
|  | struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | 
|  |  | 
|  | /* | 
|  | * If this is a per-task event, need to check whether this | 
|  | * event's task is the current task on this cpu. | 
|  | * | 
|  | * Can trigger due to concurrent perf_event_context_sched_out() | 
|  | * flipping contexts around. | 
|  | */ | 
|  | if (ctx->task && cpuctx->task_ctx != ctx) | 
|  | return -EINVAL; | 
|  |  | 
|  | raw_spin_lock(&ctx->lock); | 
|  |  | 
|  | /* | 
|  | * If the event is on, turn it off. | 
|  | * If it is in error state, leave it in error state. | 
|  | */ | 
|  | if (event->state >= PERF_EVENT_STATE_INACTIVE) { | 
|  | update_context_time(ctx); | 
|  | update_cgrp_time_from_event(event); | 
|  | update_group_times(event); | 
|  | if (event == event->group_leader) | 
|  | group_sched_out(event, cpuctx, ctx); | 
|  | else | 
|  | event_sched_out(event, cpuctx, ctx); | 
|  | event->state = PERF_EVENT_STATE_OFF; | 
|  | } | 
|  |  | 
|  | raw_spin_unlock(&ctx->lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disable a event. | 
|  | * | 
|  | * If event->ctx is a cloned context, callers must make sure that | 
|  | * every task struct that event->ctx->task could possibly point to | 
|  | * remains valid.  This condition is satisifed when called through | 
|  | * perf_event_for_each_child or perf_event_for_each because they | 
|  | * hold the top-level event's child_mutex, so any descendant that | 
|  | * goes to exit will block in sync_child_event. | 
|  | * When called from perf_pending_event it's OK because event->ctx | 
|  | * is the current context on this CPU and preemption is disabled, | 
|  | * hence we can't get into perf_event_task_sched_out for this context. | 
|  | */ | 
|  | void perf_event_disable(struct perf_event *event) | 
|  | { | 
|  | struct perf_event_context *ctx = event->ctx; | 
|  | struct task_struct *task = ctx->task; | 
|  |  | 
|  | if (!task) { | 
|  | /* | 
|  | * Disable the event on the cpu that it's on | 
|  | */ | 
|  | cpu_function_call(event->cpu, __perf_event_disable, event); | 
|  | return; | 
|  | } | 
|  |  | 
|  | retry: | 
|  | if (!task_function_call(task, __perf_event_disable, event)) | 
|  | return; | 
|  |  | 
|  | raw_spin_lock_irq(&ctx->lock); | 
|  | /* | 
|  | * If the event is still active, we need to retry the cross-call. | 
|  | */ | 
|  | if (event->state == PERF_EVENT_STATE_ACTIVE) { | 
|  | raw_spin_unlock_irq(&ctx->lock); | 
|  | /* | 
|  | * Reload the task pointer, it might have been changed by | 
|  | * a concurrent perf_event_context_sched_out(). | 
|  | */ | 
|  | task = ctx->task; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since we have the lock this context can't be scheduled | 
|  | * in, so we can change the state safely. | 
|  | */ | 
|  | if (event->state == PERF_EVENT_STATE_INACTIVE) { | 
|  | update_group_times(event); | 
|  | event->state = PERF_EVENT_STATE_OFF; | 
|  | } | 
|  | raw_spin_unlock_irq(&ctx->lock); | 
|  | } | 
|  |  | 
|  | static void perf_set_shadow_time(struct perf_event *event, | 
|  | struct perf_event_context *ctx, | 
|  | u64 tstamp) | 
|  | { | 
|  | /* | 
|  | * use the correct time source for the time snapshot | 
|  | * | 
|  | * We could get by without this by leveraging the | 
|  | * fact that to get to this function, the caller | 
|  | * has most likely already called update_context_time() | 
|  | * and update_cgrp_time_xx() and thus both timestamp | 
|  | * are identical (or very close). Given that tstamp is, | 
|  | * already adjusted for cgroup, we could say that: | 
|  | *    tstamp - ctx->timestamp | 
|  | * is equivalent to | 
|  | *    tstamp - cgrp->timestamp. | 
|  | * | 
|  | * Then, in perf_output_read(), the calculation would | 
|  | * work with no changes because: | 
|  | * - event is guaranteed scheduled in | 
|  | * - no scheduled out in between | 
|  | * - thus the timestamp would be the same | 
|  | * | 
|  | * But this is a bit hairy. | 
|  | * | 
|  | * So instead, we have an explicit cgroup call to remain | 
|  | * within the time time source all along. We believe it | 
|  | * is cleaner and simpler to understand. | 
|  | */ | 
|  | if (is_cgroup_event(event)) | 
|  | perf_cgroup_set_shadow_time(event, tstamp); | 
|  | else | 
|  | event->shadow_ctx_time = tstamp - ctx->timestamp; | 
|  | } | 
|  |  | 
|  | #define MAX_INTERRUPTS (~0ULL) | 
|  |  | 
|  | static void perf_log_throttle(struct perf_event *event, int enable); | 
|  |  | 
|  | static int | 
|  | event_sched_in(struct perf_event *event, | 
|  | struct perf_cpu_context *cpuctx, | 
|  | struct perf_event_context *ctx) | 
|  | { | 
|  | u64 tstamp = perf_event_time(event); | 
|  |  | 
|  | if (event->state <= PERF_EVENT_STATE_OFF) | 
|  | return 0; | 
|  |  | 
|  | event->state = PERF_EVENT_STATE_ACTIVE; | 
|  | event->oncpu = smp_processor_id(); | 
|  |  | 
|  | /* | 
|  | * Unthrottle events, since we scheduled we might have missed several | 
|  | * ticks already, also for a heavily scheduling task there is little | 
|  | * guarantee it'll get a tick in a timely manner. | 
|  | */ | 
|  | if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { | 
|  | perf_log_throttle(event, 1); | 
|  | event->hw.interrupts = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The new state must be visible before we turn it on in the hardware: | 
|  | */ | 
|  | smp_wmb(); | 
|  |  | 
|  | if (event->pmu->add(event, PERF_EF_START)) { | 
|  | event->state = PERF_EVENT_STATE_INACTIVE; | 
|  | event->oncpu = -1; | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | event->tstamp_running += tstamp - event->tstamp_stopped; | 
|  |  | 
|  | perf_set_shadow_time(event, ctx, tstamp); | 
|  |  | 
|  | if (!is_software_event(event)) | 
|  | cpuctx->active_oncpu++; | 
|  | ctx->nr_active++; | 
|  |  | 
|  | if (event->attr.exclusive) | 
|  | cpuctx->exclusive = 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | group_sched_in(struct perf_event *group_event, | 
|  | struct perf_cpu_context *cpuctx, | 
|  | struct perf_event_context *ctx) | 
|  | { | 
|  | struct perf_event *event, *partial_group = NULL; | 
|  | struct pmu *pmu = group_event->pmu; | 
|  | u64 now = ctx->time; | 
|  | bool simulate = false; | 
|  |  | 
|  | if (group_event->state == PERF_EVENT_STATE_OFF) | 
|  | return 0; | 
|  |  | 
|  | pmu->start_txn(pmu); | 
|  |  | 
|  | if (event_sched_in(group_event, cpuctx, ctx)) { | 
|  | pmu->cancel_txn(pmu); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Schedule in siblings as one group (if any): | 
|  | */ | 
|  | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | 
|  | if (event_sched_in(event, cpuctx, ctx)) { | 
|  | partial_group = event; | 
|  | goto group_error; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!pmu->commit_txn(pmu)) | 
|  | return 0; | 
|  |  | 
|  | group_error: | 
|  | /* | 
|  | * Groups can be scheduled in as one unit only, so undo any | 
|  | * partial group before returning: | 
|  | * The events up to the failed event are scheduled out normally, | 
|  | * tstamp_stopped will be updated. | 
|  | * | 
|  | * The failed events and the remaining siblings need to have | 
|  | * their timings updated as if they had gone thru event_sched_in() | 
|  | * and event_sched_out(). This is required to get consistent timings | 
|  | * across the group. This also takes care of the case where the group | 
|  | * could never be scheduled by ensuring tstamp_stopped is set to mark | 
|  | * the time the event was actually stopped, such that time delta | 
|  | * calculation in update_event_times() is correct. | 
|  | */ | 
|  | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | 
|  | if (event == partial_group) | 
|  | simulate = true; | 
|  |  | 
|  | if (simulate) { | 
|  | event->tstamp_running += now - event->tstamp_stopped; | 
|  | event->tstamp_stopped = now; | 
|  | } else { | 
|  | event_sched_out(event, cpuctx, ctx); | 
|  | } | 
|  | } | 
|  | event_sched_out(group_event, cpuctx, ctx); | 
|  |  | 
|  | pmu->cancel_txn(pmu); | 
|  |  | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Work out whether we can put this event group on the CPU now. | 
|  | */ | 
|  | static int group_can_go_on(struct perf_event *event, | 
|  | struct perf_cpu_context *cpuctx, | 
|  | int can_add_hw) | 
|  | { | 
|  | /* | 
|  | * Groups consisting entirely of software events can always go on. | 
|  | */ | 
|  | if (event->group_flags & PERF_GROUP_SOFTWARE) | 
|  | return 1; | 
|  | /* | 
|  | * If an exclusive group is already on, no other hardware | 
|  | * events can go on. | 
|  | */ | 
|  | if (cpuctx->exclusive) | 
|  | return 0; | 
|  | /* | 
|  | * If this group is exclusive and there are already | 
|  | * events on the CPU, it can't go on. | 
|  | */ | 
|  | if (event->attr.exclusive && cpuctx->active_oncpu) | 
|  | return 0; | 
|  | /* | 
|  | * Otherwise, try to add it if all previous groups were able | 
|  | * to go on. | 
|  | */ | 
|  | return can_add_hw; | 
|  | } | 
|  |  | 
|  | static void add_event_to_ctx(struct perf_event *event, | 
|  | struct perf_event_context *ctx) | 
|  | { | 
|  | u64 tstamp = perf_event_time(event); | 
|  |  | 
|  | list_add_event(event, ctx); | 
|  | perf_group_attach(event); | 
|  | event->tstamp_enabled = tstamp; | 
|  | event->tstamp_running = tstamp; | 
|  | event->tstamp_stopped = tstamp; | 
|  | } | 
|  |  | 
|  | static void perf_event_context_sched_in(struct perf_event_context *ctx, | 
|  | struct task_struct *tsk); | 
|  |  | 
|  | /* | 
|  | * Cross CPU call to install and enable a performance event | 
|  | * | 
|  | * Must be called with ctx->mutex held | 
|  | */ | 
|  | static int  __perf_install_in_context(void *info) | 
|  | { | 
|  | struct perf_event *event = info; | 
|  | struct perf_event_context *ctx = event->ctx; | 
|  | struct perf_event *leader = event->group_leader; | 
|  | struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * In case we're installing a new context to an already running task, | 
|  | * could also happen before perf_event_task_sched_in() on architectures | 
|  | * which do context switches with IRQs enabled. | 
|  | */ | 
|  | if (ctx->task && !cpuctx->task_ctx) | 
|  | perf_event_context_sched_in(ctx, ctx->task); | 
|  |  | 
|  | raw_spin_lock(&ctx->lock); | 
|  | ctx->is_active = 1; | 
|  | update_context_time(ctx); | 
|  | /* | 
|  | * update cgrp time only if current cgrp | 
|  | * matches event->cgrp. Must be done before | 
|  | * calling add_event_to_ctx() | 
|  | */ | 
|  | update_cgrp_time_from_event(event); | 
|  |  | 
|  | add_event_to_ctx(event, ctx); | 
|  |  | 
|  | if (!event_filter_match(event)) | 
|  | goto unlock; | 
|  |  | 
|  | /* | 
|  | * Don't put the event on if it is disabled or if | 
|  | * it is in a group and the group isn't on. | 
|  | */ | 
|  | if (event->state != PERF_EVENT_STATE_INACTIVE || | 
|  | (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)) | 
|  | goto unlock; | 
|  |  | 
|  | /* | 
|  | * An exclusive event can't go on if there are already active | 
|  | * hardware events, and no hardware event can go on if there | 
|  | * is already an exclusive event on. | 
|  | */ | 
|  | if (!group_can_go_on(event, cpuctx, 1)) | 
|  | err = -EEXIST; | 
|  | else | 
|  | err = event_sched_in(event, cpuctx, ctx); | 
|  |  | 
|  | if (err) { | 
|  | /* | 
|  | * This event couldn't go on.  If it is in a group | 
|  | * then we have to pull the whole group off. | 
|  | * If the event group is pinned then put it in error state. | 
|  | */ | 
|  | if (leader != event) | 
|  | group_sched_out(leader, cpuctx, ctx); | 
|  | if (leader->attr.pinned) { | 
|  | update_group_times(leader); | 
|  | leader->state = PERF_EVENT_STATE_ERROR; | 
|  | } | 
|  | } | 
|  |  | 
|  | unlock: | 
|  | raw_spin_unlock(&ctx->lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attach a performance event to a context | 
|  | * | 
|  | * First we add the event to the list with the hardware enable bit | 
|  | * in event->hw_config cleared. | 
|  | * | 
|  | * If the event is attached to a task which is on a CPU we use a smp | 
|  | * call to enable it in the task context. The task might have been | 
|  | * scheduled away, but we check this in the smp call again. | 
|  | */ | 
|  | static void | 
|  | perf_install_in_context(struct perf_event_context *ctx, | 
|  | struct perf_event *event, | 
|  | int cpu) | 
|  | { | 
|  | struct task_struct *task = ctx->task; | 
|  |  | 
|  | lockdep_assert_held(&ctx->mutex); | 
|  |  | 
|  | event->ctx = ctx; | 
|  |  | 
|  | if (!task) { | 
|  | /* | 
|  | * Per cpu events are installed via an smp call and | 
|  | * the install is always successful. | 
|  | */ | 
|  | cpu_function_call(cpu, __perf_install_in_context, event); | 
|  | return; | 
|  | } | 
|  |  | 
|  | retry: | 
|  | if (!task_function_call(task, __perf_install_in_context, event)) | 
|  | return; | 
|  |  | 
|  | raw_spin_lock_irq(&ctx->lock); | 
|  | /* | 
|  | * If we failed to find a running task, but find the context active now | 
|  | * that we've acquired the ctx->lock, retry. | 
|  | */ | 
|  | if (ctx->is_active) { | 
|  | raw_spin_unlock_irq(&ctx->lock); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since the task isn't running, its safe to add the event, us holding | 
|  | * the ctx->lock ensures the task won't get scheduled in. | 
|  | */ | 
|  | add_event_to_ctx(event, ctx); | 
|  | raw_spin_unlock_irq(&ctx->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put a event into inactive state and update time fields. | 
|  | * Enabling the leader of a group effectively enables all | 
|  | * the group members that aren't explicitly disabled, so we | 
|  | * have to update their ->tstamp_enabled also. | 
|  | * Note: this works for group members as well as group leaders | 
|  | * since the non-leader members' sibling_lists will be empty. | 
|  | */ | 
|  | static void __perf_event_mark_enabled(struct perf_event *event, | 
|  | struct perf_event_context *ctx) | 
|  | { | 
|  | struct perf_event *sub; | 
|  | u64 tstamp = perf_event_time(event); | 
|  |  | 
|  | event->state = PERF_EVENT_STATE_INACTIVE; | 
|  | event->tstamp_enabled = tstamp - event->total_time_enabled; | 
|  | list_for_each_entry(sub, &event->sibling_list, group_entry) { | 
|  | if (sub->state >= PERF_EVENT_STATE_INACTIVE) | 
|  | sub->tstamp_enabled = tstamp - sub->total_time_enabled; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cross CPU call to enable a performance event | 
|  | */ | 
|  | static int __perf_event_enable(void *info) | 
|  | { | 
|  | struct perf_event *event = info; | 
|  | struct perf_event_context *ctx = event->ctx; | 
|  | struct perf_event *leader = event->group_leader; | 
|  | struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | 
|  | int err; | 
|  |  | 
|  | if (WARN_ON_ONCE(!ctx->is_active)) | 
|  | return -EINVAL; | 
|  |  | 
|  | raw_spin_lock(&ctx->lock); | 
|  | update_context_time(ctx); | 
|  |  | 
|  | if (event->state >= PERF_EVENT_STATE_INACTIVE) | 
|  | goto unlock; | 
|  |  | 
|  | /* | 
|  | * set current task's cgroup time reference point | 
|  | */ | 
|  | perf_cgroup_set_timestamp(current, ctx); | 
|  |  | 
|  | __perf_event_mark_enabled(event, ctx); | 
|  |  | 
|  | if (!event_filter_match(event)) { | 
|  | if (is_cgroup_event(event)) | 
|  | perf_cgroup_defer_enabled(event); | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the event is in a group and isn't the group leader, | 
|  | * then don't put it on unless the group is on. | 
|  | */ | 
|  | if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) | 
|  | goto unlock; | 
|  |  | 
|  | if (!group_can_go_on(event, cpuctx, 1)) { | 
|  | err = -EEXIST; | 
|  | } else { | 
|  | if (event == leader) | 
|  | err = group_sched_in(event, cpuctx, ctx); | 
|  | else | 
|  | err = event_sched_in(event, cpuctx, ctx); | 
|  | } | 
|  |  | 
|  | if (err) { | 
|  | /* | 
|  | * If this event can't go on and it's part of a | 
|  | * group, then the whole group has to come off. | 
|  | */ | 
|  | if (leader != event) | 
|  | group_sched_out(leader, cpuctx, ctx); | 
|  | if (leader->attr.pinned) { | 
|  | update_group_times(leader); | 
|  | leader->state = PERF_EVENT_STATE_ERROR; | 
|  | } | 
|  | } | 
|  |  | 
|  | unlock: | 
|  | raw_spin_unlock(&ctx->lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable a event. | 
|  | * | 
|  | * If event->ctx is a cloned context, callers must make sure that | 
|  | * every task struct that event->ctx->task could possibly point to | 
|  | * remains valid.  This condition is satisfied when called through | 
|  | * perf_event_for_each_child or perf_event_for_each as described | 
|  | * for perf_event_disable. | 
|  | */ | 
|  | void perf_event_enable(struct perf_event *event) | 
|  | { | 
|  | struct perf_event_context *ctx = event->ctx; | 
|  | struct task_struct *task = ctx->task; | 
|  |  | 
|  | if (!task) { | 
|  | /* | 
|  | * Enable the event on the cpu that it's on | 
|  | */ | 
|  | cpu_function_call(event->cpu, __perf_event_enable, event); | 
|  | return; | 
|  | } | 
|  |  | 
|  | raw_spin_lock_irq(&ctx->lock); | 
|  | if (event->state >= PERF_EVENT_STATE_INACTIVE) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * If the event is in error state, clear that first. | 
|  | * That way, if we see the event in error state below, we | 
|  | * know that it has gone back into error state, as distinct | 
|  | * from the task having been scheduled away before the | 
|  | * cross-call arrived. | 
|  | */ | 
|  | if (event->state == PERF_EVENT_STATE_ERROR) | 
|  | event->state = PERF_EVENT_STATE_OFF; | 
|  |  | 
|  | retry: | 
|  | if (!ctx->is_active) { | 
|  | __perf_event_mark_enabled(event, ctx); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | raw_spin_unlock_irq(&ctx->lock); | 
|  |  | 
|  | if (!task_function_call(task, __perf_event_enable, event)) | 
|  | return; | 
|  |  | 
|  | raw_spin_lock_irq(&ctx->lock); | 
|  |  | 
|  | /* | 
|  | * If the context is active and the event is still off, | 
|  | * we need to retry the cross-call. | 
|  | */ | 
|  | if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { | 
|  | /* | 
|  | * task could have been flipped by a concurrent | 
|  | * perf_event_context_sched_out() | 
|  | */ | 
|  | task = ctx->task; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | out: | 
|  | raw_spin_unlock_irq(&ctx->lock); | 
|  | } | 
|  |  | 
|  | static int perf_event_refresh(struct perf_event *event, int refresh) | 
|  | { | 
|  | /* | 
|  | * not supported on inherited events | 
|  | */ | 
|  | if (event->attr.inherit || !is_sampling_event(event)) | 
|  | return -EINVAL; | 
|  |  | 
|  | atomic_add(refresh, &event->event_limit); | 
|  | perf_event_enable(event); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ctx_sched_out(struct perf_event_context *ctx, | 
|  | struct perf_cpu_context *cpuctx, | 
|  | enum event_type_t event_type) | 
|  | { | 
|  | struct perf_event *event; | 
|  |  | 
|  | raw_spin_lock(&ctx->lock); | 
|  | perf_pmu_disable(ctx->pmu); | 
|  | ctx->is_active = 0; | 
|  | if (likely(!ctx->nr_events)) | 
|  | goto out; | 
|  | update_context_time(ctx); | 
|  | update_cgrp_time_from_cpuctx(cpuctx); | 
|  |  | 
|  | if (!ctx->nr_active) | 
|  | goto out; | 
|  |  | 
|  | if (event_type & EVENT_PINNED) { | 
|  | list_for_each_entry(event, &ctx->pinned_groups, group_entry) | 
|  | group_sched_out(event, cpuctx, ctx); | 
|  | } | 
|  |  | 
|  | if (event_type & EVENT_FLEXIBLE) { | 
|  | list_for_each_entry(event, &ctx->flexible_groups, group_entry) | 
|  | group_sched_out(event, cpuctx, ctx); | 
|  | } | 
|  | out: | 
|  | perf_pmu_enable(ctx->pmu); | 
|  | raw_spin_unlock(&ctx->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Test whether two contexts are equivalent, i.e. whether they | 
|  | * have both been cloned from the same version of the same context | 
|  | * and they both have the same number of enabled events. | 
|  | * If the number of enabled events is the same, then the set | 
|  | * of enabled events should be the same, because these are both | 
|  | * inherited contexts, therefore we can't access individual events | 
|  | * in them directly with an fd; we can only enable/disable all | 
|  | * events via prctl, or enable/disable all events in a family | 
|  | * via ioctl, which will have the same effect on both contexts. | 
|  | */ | 
|  | static int context_equiv(struct perf_event_context *ctx1, | 
|  | struct perf_event_context *ctx2) | 
|  | { | 
|  | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | 
|  | && ctx1->parent_gen == ctx2->parent_gen | 
|  | && !ctx1->pin_count && !ctx2->pin_count; | 
|  | } | 
|  |  | 
|  | static void __perf_event_sync_stat(struct perf_event *event, | 
|  | struct perf_event *next_event) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | if (!event->attr.inherit_stat) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Update the event value, we cannot use perf_event_read() | 
|  | * because we're in the middle of a context switch and have IRQs | 
|  | * disabled, which upsets smp_call_function_single(), however | 
|  | * we know the event must be on the current CPU, therefore we | 
|  | * don't need to use it. | 
|  | */ | 
|  | switch (event->state) { | 
|  | case PERF_EVENT_STATE_ACTIVE: | 
|  | event->pmu->read(event); | 
|  | /* fall-through */ | 
|  |  | 
|  | case PERF_EVENT_STATE_INACTIVE: | 
|  | update_event_times(event); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In order to keep per-task stats reliable we need to flip the event | 
|  | * values when we flip the contexts. | 
|  | */ | 
|  | value = local64_read(&next_event->count); | 
|  | value = local64_xchg(&event->count, value); | 
|  | local64_set(&next_event->count, value); | 
|  |  | 
|  | swap(event->total_time_enabled, next_event->total_time_enabled); | 
|  | swap(event->total_time_running, next_event->total_time_running); | 
|  |  | 
|  | /* | 
|  | * Since we swizzled the values, update the user visible data too. | 
|  | */ | 
|  | perf_event_update_userpage(event); | 
|  | perf_event_update_userpage(next_event); | 
|  | } | 
|  |  | 
|  | #define list_next_entry(pos, member) \ | 
|  | list_entry(pos->member.next, typeof(*pos), member) | 
|  |  | 
|  | static void perf_event_sync_stat(struct perf_event_context *ctx, | 
|  | struct perf_event_context *next_ctx) | 
|  | { | 
|  | struct perf_event *event, *next_event; | 
|  |  | 
|  | if (!ctx->nr_stat) | 
|  | return; | 
|  |  | 
|  | update_context_time(ctx); | 
|  |  | 
|  | event = list_first_entry(&ctx->event_list, | 
|  | struct perf_event, event_entry); | 
|  |  | 
|  | next_event = list_first_entry(&next_ctx->event_list, | 
|  | struct perf_event, event_entry); | 
|  |  | 
|  | while (&event->event_entry != &ctx->event_list && | 
|  | &next_event->event_entry != &next_ctx->event_list) { | 
|  |  | 
|  | __perf_event_sync_stat(event, next_event); | 
|  |  | 
|  | event = list_next_entry(event, event_entry); | 
|  | next_event = list_next_entry(next_event, event_entry); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void perf_event_context_sched_out(struct task_struct *task, int ctxn, | 
|  | struct task_struct *next) | 
|  | { | 
|  | struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; | 
|  | struct perf_event_context *next_ctx; | 
|  | struct perf_event_context *parent; | 
|  | struct perf_cpu_context *cpuctx; | 
|  | int do_switch = 1; | 
|  |  | 
|  | if (likely(!ctx)) | 
|  | return; | 
|  |  | 
|  | cpuctx = __get_cpu_context(ctx); | 
|  | if (!cpuctx->task_ctx) | 
|  | return; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | parent = rcu_dereference(ctx->parent_ctx); | 
|  | next_ctx = next->perf_event_ctxp[ctxn]; | 
|  | if (parent && next_ctx && | 
|  | rcu_dereference(next_ctx->parent_ctx) == parent) { | 
|  | /* | 
|  | * Looks like the two contexts are clones, so we might be | 
|  | * able to optimize the context switch.  We lock both | 
|  | * contexts and check that they are clones under the | 
|  | * lock (including re-checking that neither has been | 
|  | * uncloned in the meantime).  It doesn't matter which | 
|  | * order we take the locks because no other cpu could | 
|  | * be trying to lock both of these tasks. | 
|  | */ | 
|  | raw_spin_lock(&ctx->lock); | 
|  | raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | 
|  | if (context_equiv(ctx, next_ctx)) { | 
|  | /* | 
|  | * XXX do we need a memory barrier of sorts | 
|  | * wrt to rcu_dereference() of perf_event_ctxp | 
|  | */ | 
|  | task->perf_event_ctxp[ctxn] = next_ctx; | 
|  | next->perf_event_ctxp[ctxn] = ctx; | 
|  | ctx->task = next; | 
|  | next_ctx->task = task; | 
|  | do_switch = 0; | 
|  |  | 
|  | perf_event_sync_stat(ctx, next_ctx); | 
|  | } | 
|  | raw_spin_unlock(&next_ctx->lock); | 
|  | raw_spin_unlock(&ctx->lock); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (do_switch) { | 
|  | ctx_sched_out(ctx, cpuctx, EVENT_ALL); | 
|  | cpuctx->task_ctx = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define for_each_task_context_nr(ctxn)					\ | 
|  | for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) | 
|  |  | 
|  | /* | 
|  | * Called from scheduler to remove the events of the current task, | 
|  | * with interrupts disabled. | 
|  | * | 
|  | * We stop each event and update the event value in event->count. | 
|  | * | 
|  | * This does not protect us against NMI, but disable() | 
|  | * sets the disabled bit in the control field of event _before_ | 
|  | * accessing the event control register. If a NMI hits, then it will | 
|  | * not restart the event. | 
|  | */ | 
|  | void __perf_event_task_sched_out(struct task_struct *task, | 
|  | struct task_struct *next) | 
|  | { | 
|  | int ctxn; | 
|  |  | 
|  | for_each_task_context_nr(ctxn) | 
|  | perf_event_context_sched_out(task, ctxn, next); | 
|  |  | 
|  | /* | 
|  | * if cgroup events exist on this CPU, then we need | 
|  | * to check if we have to switch out PMU state. | 
|  | * cgroup event are system-wide mode only | 
|  | */ | 
|  | if (atomic_read(&__get_cpu_var(perf_cgroup_events))) | 
|  | perf_cgroup_sched_out(task); | 
|  | } | 
|  |  | 
|  | static void task_ctx_sched_out(struct perf_event_context *ctx, | 
|  | enum event_type_t event_type) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | 
|  |  | 
|  | if (!cpuctx->task_ctx) | 
|  | return; | 
|  |  | 
|  | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | 
|  | return; | 
|  |  | 
|  | ctx_sched_out(ctx, cpuctx, event_type); | 
|  | cpuctx->task_ctx = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called with IRQs disabled | 
|  | */ | 
|  | static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, | 
|  | enum event_type_t event_type) | 
|  | { | 
|  | ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); | 
|  | } | 
|  |  | 
|  | static void | 
|  | ctx_pinned_sched_in(struct perf_event_context *ctx, | 
|  | struct perf_cpu_context *cpuctx) | 
|  | { | 
|  | struct perf_event *event; | 
|  |  | 
|  | list_for_each_entry(event, &ctx->pinned_groups, group_entry) { | 
|  | if (event->state <= PERF_EVENT_STATE_OFF) | 
|  | continue; | 
|  | if (!event_filter_match(event)) | 
|  | continue; | 
|  |  | 
|  | /* may need to reset tstamp_enabled */ | 
|  | if (is_cgroup_event(event)) | 
|  | perf_cgroup_mark_enabled(event, ctx); | 
|  |  | 
|  | if (group_can_go_on(event, cpuctx, 1)) | 
|  | group_sched_in(event, cpuctx, ctx); | 
|  |  | 
|  | /* | 
|  | * If this pinned group hasn't been scheduled, | 
|  | * put it in error state. | 
|  | */ | 
|  | if (event->state == PERF_EVENT_STATE_INACTIVE) { | 
|  | update_group_times(event); | 
|  | event->state = PERF_EVENT_STATE_ERROR; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | ctx_flexible_sched_in(struct perf_event_context *ctx, | 
|  | struct perf_cpu_context *cpuctx) | 
|  | { | 
|  | struct perf_event *event; | 
|  | int can_add_hw = 1; | 
|  |  | 
|  | list_for_each_entry(event, &ctx->flexible_groups, group_entry) { | 
|  | /* Ignore events in OFF or ERROR state */ | 
|  | if (event->state <= PERF_EVENT_STATE_OFF) | 
|  | continue; | 
|  | /* | 
|  | * Listen to the 'cpu' scheduling filter constraint | 
|  | * of events: | 
|  | */ | 
|  | if (!event_filter_match(event)) | 
|  | continue; | 
|  |  | 
|  | /* may need to reset tstamp_enabled */ | 
|  | if (is_cgroup_event(event)) | 
|  | perf_cgroup_mark_enabled(event, ctx); | 
|  |  | 
|  | if (group_can_go_on(event, cpuctx, can_add_hw)) { | 
|  | if (group_sched_in(event, cpuctx, ctx)) | 
|  | can_add_hw = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | ctx_sched_in(struct perf_event_context *ctx, | 
|  | struct perf_cpu_context *cpuctx, | 
|  | enum event_type_t event_type, | 
|  | struct task_struct *task) | 
|  | { | 
|  | u64 now; | 
|  |  | 
|  | raw_spin_lock(&ctx->lock); | 
|  | ctx->is_active = 1; | 
|  | if (likely(!ctx->nr_events)) | 
|  | goto out; | 
|  |  | 
|  | now = perf_clock(); | 
|  | ctx->timestamp = now; | 
|  | perf_cgroup_set_timestamp(task, ctx); | 
|  | /* | 
|  | * First go through the list and put on any pinned groups | 
|  | * in order to give them the best chance of going on. | 
|  | */ | 
|  | if (event_type & EVENT_PINNED) | 
|  | ctx_pinned_sched_in(ctx, cpuctx); | 
|  |  | 
|  | /* Then walk through the lower prio flexible groups */ | 
|  | if (event_type & EVENT_FLEXIBLE) | 
|  | ctx_flexible_sched_in(ctx, cpuctx); | 
|  |  | 
|  | out: | 
|  | raw_spin_unlock(&ctx->lock); | 
|  | } | 
|  |  | 
|  | static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, | 
|  | enum event_type_t event_type, | 
|  | struct task_struct *task) | 
|  | { | 
|  | struct perf_event_context *ctx = &cpuctx->ctx; | 
|  |  | 
|  | ctx_sched_in(ctx, cpuctx, event_type, task); | 
|  | } | 
|  |  | 
|  | static void task_ctx_sched_in(struct perf_event_context *ctx, | 
|  | enum event_type_t event_type) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx; | 
|  |  | 
|  | cpuctx = __get_cpu_context(ctx); | 
|  | if (cpuctx->task_ctx == ctx) | 
|  | return; | 
|  |  | 
|  | ctx_sched_in(ctx, cpuctx, event_type, NULL); | 
|  | cpuctx->task_ctx = ctx; | 
|  | } | 
|  |  | 
|  | static void perf_event_context_sched_in(struct perf_event_context *ctx, | 
|  | struct task_struct *task) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx; | 
|  |  | 
|  | cpuctx = __get_cpu_context(ctx); | 
|  | if (cpuctx->task_ctx == ctx) | 
|  | return; | 
|  |  | 
|  | perf_pmu_disable(ctx->pmu); | 
|  | /* | 
|  | * We want to keep the following priority order: | 
|  | * cpu pinned (that don't need to move), task pinned, | 
|  | * cpu flexible, task flexible. | 
|  | */ | 
|  | cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); | 
|  |  | 
|  | ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); | 
|  | cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); | 
|  | ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); | 
|  |  | 
|  | cpuctx->task_ctx = ctx; | 
|  |  | 
|  | /* | 
|  | * Since these rotations are per-cpu, we need to ensure the | 
|  | * cpu-context we got scheduled on is actually rotating. | 
|  | */ | 
|  | perf_pmu_rotate_start(ctx->pmu); | 
|  | perf_pmu_enable(ctx->pmu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from scheduler to add the events of the current task | 
|  | * with interrupts disabled. | 
|  | * | 
|  | * We restore the event value and then enable it. | 
|  | * | 
|  | * This does not protect us against NMI, but enable() | 
|  | * sets the enabled bit in the control field of event _before_ | 
|  | * accessing the event control register. If a NMI hits, then it will | 
|  | * keep the event running. | 
|  | */ | 
|  | void __perf_event_task_sched_in(struct task_struct *task) | 
|  | { | 
|  | struct perf_event_context *ctx; | 
|  | int ctxn; | 
|  |  | 
|  | for_each_task_context_nr(ctxn) { | 
|  | ctx = task->perf_event_ctxp[ctxn]; | 
|  | if (likely(!ctx)) | 
|  | continue; | 
|  |  | 
|  | perf_event_context_sched_in(ctx, task); | 
|  | } | 
|  | /* | 
|  | * if cgroup events exist on this CPU, then we need | 
|  | * to check if we have to switch in PMU state. | 
|  | * cgroup event are system-wide mode only | 
|  | */ | 
|  | if (atomic_read(&__get_cpu_var(perf_cgroup_events))) | 
|  | perf_cgroup_sched_in(task); | 
|  | } | 
|  |  | 
|  | static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) | 
|  | { | 
|  | u64 frequency = event->attr.sample_freq; | 
|  | u64 sec = NSEC_PER_SEC; | 
|  | u64 divisor, dividend; | 
|  |  | 
|  | int count_fls, nsec_fls, frequency_fls, sec_fls; | 
|  |  | 
|  | count_fls = fls64(count); | 
|  | nsec_fls = fls64(nsec); | 
|  | frequency_fls = fls64(frequency); | 
|  | sec_fls = 30; | 
|  |  | 
|  | /* | 
|  | * We got @count in @nsec, with a target of sample_freq HZ | 
|  | * the target period becomes: | 
|  | * | 
|  | *             @count * 10^9 | 
|  | * period = ------------------- | 
|  | *          @nsec * sample_freq | 
|  | * | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Reduce accuracy by one bit such that @a and @b converge | 
|  | * to a similar magnitude. | 
|  | */ | 
|  | #define REDUCE_FLS(a, b)		\ | 
|  | do {					\ | 
|  | if (a##_fls > b##_fls) {	\ | 
|  | a >>= 1;		\ | 
|  | a##_fls--;		\ | 
|  | } else {			\ | 
|  | b >>= 1;		\ | 
|  | b##_fls--;		\ | 
|  | }				\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * Reduce accuracy until either term fits in a u64, then proceed with | 
|  | * the other, so that finally we can do a u64/u64 division. | 
|  | */ | 
|  | while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { | 
|  | REDUCE_FLS(nsec, frequency); | 
|  | REDUCE_FLS(sec, count); | 
|  | } | 
|  |  | 
|  | if (count_fls + sec_fls > 64) { | 
|  | divisor = nsec * frequency; | 
|  |  | 
|  | while (count_fls + sec_fls > 64) { | 
|  | REDUCE_FLS(count, sec); | 
|  | divisor >>= 1; | 
|  | } | 
|  |  | 
|  | dividend = count * sec; | 
|  | } else { | 
|  | dividend = count * sec; | 
|  |  | 
|  | while (nsec_fls + frequency_fls > 64) { | 
|  | REDUCE_FLS(nsec, frequency); | 
|  | dividend >>= 1; | 
|  | } | 
|  |  | 
|  | divisor = nsec * frequency; | 
|  | } | 
|  |  | 
|  | if (!divisor) | 
|  | return dividend; | 
|  |  | 
|  | return div64_u64(dividend, divisor); | 
|  | } | 
|  |  | 
|  | static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count) | 
|  | { | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | s64 period, sample_period; | 
|  | s64 delta; | 
|  |  | 
|  | period = perf_calculate_period(event, nsec, count); | 
|  |  | 
|  | delta = (s64)(period - hwc->sample_period); | 
|  | delta = (delta + 7) / 8; /* low pass filter */ | 
|  |  | 
|  | sample_period = hwc->sample_period + delta; | 
|  |  | 
|  | if (!sample_period) | 
|  | sample_period = 1; | 
|  |  | 
|  | hwc->sample_period = sample_period; | 
|  |  | 
|  | if (local64_read(&hwc->period_left) > 8*sample_period) { | 
|  | event->pmu->stop(event, PERF_EF_UPDATE); | 
|  | local64_set(&hwc->period_left, 0); | 
|  | event->pmu->start(event, PERF_EF_RELOAD); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period) | 
|  | { | 
|  | struct perf_event *event; | 
|  | struct hw_perf_event *hwc; | 
|  | u64 interrupts, now; | 
|  | s64 delta; | 
|  |  | 
|  | raw_spin_lock(&ctx->lock); | 
|  | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | 
|  | if (event->state != PERF_EVENT_STATE_ACTIVE) | 
|  | continue; | 
|  |  | 
|  | if (!event_filter_match(event)) | 
|  | continue; | 
|  |  | 
|  | hwc = &event->hw; | 
|  |  | 
|  | interrupts = hwc->interrupts; | 
|  | hwc->interrupts = 0; | 
|  |  | 
|  | /* | 
|  | * unthrottle events on the tick | 
|  | */ | 
|  | if (interrupts == MAX_INTERRUPTS) { | 
|  | perf_log_throttle(event, 1); | 
|  | event->pmu->start(event, 0); | 
|  | } | 
|  |  | 
|  | if (!event->attr.freq || !event->attr.sample_freq) | 
|  | continue; | 
|  |  | 
|  | event->pmu->read(event); | 
|  | now = local64_read(&event->count); | 
|  | delta = now - hwc->freq_count_stamp; | 
|  | hwc->freq_count_stamp = now; | 
|  |  | 
|  | if (delta > 0) | 
|  | perf_adjust_period(event, period, delta); | 
|  | } | 
|  | raw_spin_unlock(&ctx->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Round-robin a context's events: | 
|  | */ | 
|  | static void rotate_ctx(struct perf_event_context *ctx) | 
|  | { | 
|  | raw_spin_lock(&ctx->lock); | 
|  |  | 
|  | /* | 
|  | * Rotate the first entry last of non-pinned groups. Rotation might be | 
|  | * disabled by the inheritance code. | 
|  | */ | 
|  | if (!ctx->rotate_disable) | 
|  | list_rotate_left(&ctx->flexible_groups); | 
|  |  | 
|  | raw_spin_unlock(&ctx->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized | 
|  | * because they're strictly cpu affine and rotate_start is called with IRQs | 
|  | * disabled, while rotate_context is called from IRQ context. | 
|  | */ | 
|  | static void perf_rotate_context(struct perf_cpu_context *cpuctx) | 
|  | { | 
|  | u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC; | 
|  | struct perf_event_context *ctx = NULL; | 
|  | int rotate = 0, remove = 1; | 
|  |  | 
|  | if (cpuctx->ctx.nr_events) { | 
|  | remove = 0; | 
|  | if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) | 
|  | rotate = 1; | 
|  | } | 
|  |  | 
|  | ctx = cpuctx->task_ctx; | 
|  | if (ctx && ctx->nr_events) { | 
|  | remove = 0; | 
|  | if (ctx->nr_events != ctx->nr_active) | 
|  | rotate = 1; | 
|  | } | 
|  |  | 
|  | perf_pmu_disable(cpuctx->ctx.pmu); | 
|  | perf_ctx_adjust_freq(&cpuctx->ctx, interval); | 
|  | if (ctx) | 
|  | perf_ctx_adjust_freq(ctx, interval); | 
|  |  | 
|  | if (!rotate) | 
|  | goto done; | 
|  |  | 
|  | cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); | 
|  | if (ctx) | 
|  | task_ctx_sched_out(ctx, EVENT_FLEXIBLE); | 
|  |  | 
|  | rotate_ctx(&cpuctx->ctx); | 
|  | if (ctx) | 
|  | rotate_ctx(ctx); | 
|  |  | 
|  | cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, current); | 
|  | if (ctx) | 
|  | task_ctx_sched_in(ctx, EVENT_FLEXIBLE); | 
|  |  | 
|  | done: | 
|  | if (remove) | 
|  | list_del_init(&cpuctx->rotation_list); | 
|  |  | 
|  | perf_pmu_enable(cpuctx->ctx.pmu); | 
|  | } | 
|  |  | 
|  | void perf_event_task_tick(void) | 
|  | { | 
|  | struct list_head *head = &__get_cpu_var(rotation_list); | 
|  | struct perf_cpu_context *cpuctx, *tmp; | 
|  |  | 
|  | WARN_ON(!irqs_disabled()); | 
|  |  | 
|  | list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { | 
|  | if (cpuctx->jiffies_interval == 1 || | 
|  | !(jiffies % cpuctx->jiffies_interval)) | 
|  | perf_rotate_context(cpuctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int event_enable_on_exec(struct perf_event *event, | 
|  | struct perf_event_context *ctx) | 
|  | { | 
|  | if (!event->attr.enable_on_exec) | 
|  | return 0; | 
|  |  | 
|  | event->attr.enable_on_exec = 0; | 
|  | if (event->state >= PERF_EVENT_STATE_INACTIVE) | 
|  | return 0; | 
|  |  | 
|  | __perf_event_mark_enabled(event, ctx); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable all of a task's events that have been marked enable-on-exec. | 
|  | * This expects task == current. | 
|  | */ | 
|  | static void perf_event_enable_on_exec(struct perf_event_context *ctx) | 
|  | { | 
|  | struct perf_event *event; | 
|  | unsigned long flags; | 
|  | int enabled = 0; | 
|  | int ret; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | if (!ctx || !ctx->nr_events) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * We must ctxsw out cgroup events to avoid conflict | 
|  | * when invoking perf_task_event_sched_in() later on | 
|  | * in this function. Otherwise we end up trying to | 
|  | * ctxswin cgroup events which are already scheduled | 
|  | * in. | 
|  | */ | 
|  | perf_cgroup_sched_out(current); | 
|  | task_ctx_sched_out(ctx, EVENT_ALL); | 
|  |  | 
|  | raw_spin_lock(&ctx->lock); | 
|  |  | 
|  | list_for_each_entry(event, &ctx->pinned_groups, group_entry) { | 
|  | ret = event_enable_on_exec(event, ctx); | 
|  | if (ret) | 
|  | enabled = 1; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(event, &ctx->flexible_groups, group_entry) { | 
|  | ret = event_enable_on_exec(event, ctx); | 
|  | if (ret) | 
|  | enabled = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unclone this context if we enabled any event. | 
|  | */ | 
|  | if (enabled) | 
|  | unclone_ctx(ctx); | 
|  |  | 
|  | raw_spin_unlock(&ctx->lock); | 
|  |  | 
|  | /* | 
|  | * Also calls ctxswin for cgroup events, if any: | 
|  | */ | 
|  | perf_event_context_sched_in(ctx, ctx->task); | 
|  | out: | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cross CPU call to read the hardware event | 
|  | */ | 
|  | static void __perf_event_read(void *info) | 
|  | { | 
|  | struct perf_event *event = info; | 
|  | struct perf_event_context *ctx = event->ctx; | 
|  | struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | 
|  |  | 
|  | /* | 
|  | * If this is a task context, we need to check whether it is | 
|  | * the current task context of this cpu.  If not it has been | 
|  | * scheduled out before the smp call arrived.  In that case | 
|  | * event->count would have been updated to a recent sample | 
|  | * when the event was scheduled out. | 
|  | */ | 
|  | if (ctx->task && cpuctx->task_ctx != ctx) | 
|  | return; | 
|  |  | 
|  | raw_spin_lock(&ctx->lock); | 
|  | if (ctx->is_active) { | 
|  | update_context_time(ctx); | 
|  | update_cgrp_time_from_event(event); | 
|  | } | 
|  | update_event_times(event); | 
|  | if (event->state == PERF_EVENT_STATE_ACTIVE) | 
|  | event->pmu->read(event); | 
|  | raw_spin_unlock(&ctx->lock); | 
|  | } | 
|  |  | 
|  | static inline u64 perf_event_count(struct perf_event *event) | 
|  | { | 
|  | return local64_read(&event->count) + atomic64_read(&event->child_count); | 
|  | } | 
|  |  | 
|  | static u64 perf_event_read(struct perf_event *event) | 
|  | { | 
|  | /* | 
|  | * If event is enabled and currently active on a CPU, update the | 
|  | * value in the event structure: | 
|  | */ | 
|  | if (event->state == PERF_EVENT_STATE_ACTIVE) { | 
|  | smp_call_function_single(event->oncpu, | 
|  | __perf_event_read, event, 1); | 
|  | } else if (event->state == PERF_EVENT_STATE_INACTIVE) { | 
|  | struct perf_event_context *ctx = event->ctx; | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&ctx->lock, flags); | 
|  | /* | 
|  | * may read while context is not active | 
|  | * (e.g., thread is blocked), in that case | 
|  | * we cannot update context time | 
|  | */ | 
|  | if (ctx->is_active) { | 
|  | update_context_time(ctx); | 
|  | update_cgrp_time_from_event(event); | 
|  | } | 
|  | update_event_times(event); | 
|  | raw_spin_unlock_irqrestore(&ctx->lock, flags); | 
|  | } | 
|  |  | 
|  | return perf_event_count(event); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Callchain support | 
|  | */ | 
|  |  | 
|  | struct callchain_cpus_entries { | 
|  | struct rcu_head			rcu_head; | 
|  | struct perf_callchain_entry	*cpu_entries[0]; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]); | 
|  | static atomic_t nr_callchain_events; | 
|  | static DEFINE_MUTEX(callchain_mutex); | 
|  | struct callchain_cpus_entries *callchain_cpus_entries; | 
|  |  | 
|  |  | 
|  | __weak void perf_callchain_kernel(struct perf_callchain_entry *entry, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | } | 
|  |  | 
|  | __weak void perf_callchain_user(struct perf_callchain_entry *entry, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void release_callchain_buffers_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct callchain_cpus_entries *entries; | 
|  | int cpu; | 
|  |  | 
|  | entries = container_of(head, struct callchain_cpus_entries, rcu_head); | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | kfree(entries->cpu_entries[cpu]); | 
|  |  | 
|  | kfree(entries); | 
|  | } | 
|  |  | 
|  | static void release_callchain_buffers(void) | 
|  | { | 
|  | struct callchain_cpus_entries *entries; | 
|  |  | 
|  | entries = callchain_cpus_entries; | 
|  | rcu_assign_pointer(callchain_cpus_entries, NULL); | 
|  | call_rcu(&entries->rcu_head, release_callchain_buffers_rcu); | 
|  | } | 
|  |  | 
|  | static int alloc_callchain_buffers(void) | 
|  | { | 
|  | int cpu; | 
|  | int size; | 
|  | struct callchain_cpus_entries *entries; | 
|  |  | 
|  | /* | 
|  | * We can't use the percpu allocation API for data that can be | 
|  | * accessed from NMI. Use a temporary manual per cpu allocation | 
|  | * until that gets sorted out. | 
|  | */ | 
|  | size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]); | 
|  |  | 
|  | entries = kzalloc(size, GFP_KERNEL); | 
|  | if (!entries) | 
|  | return -ENOMEM; | 
|  |  | 
|  | size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL, | 
|  | cpu_to_node(cpu)); | 
|  | if (!entries->cpu_entries[cpu]) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | rcu_assign_pointer(callchain_cpus_entries, entries); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | for_each_possible_cpu(cpu) | 
|  | kfree(entries->cpu_entries[cpu]); | 
|  | kfree(entries); | 
|  |  | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int get_callchain_buffers(void) | 
|  | { | 
|  | int err = 0; | 
|  | int count; | 
|  |  | 
|  | mutex_lock(&callchain_mutex); | 
|  |  | 
|  | count = atomic_inc_return(&nr_callchain_events); | 
|  | if (WARN_ON_ONCE(count < 1)) { | 
|  | err = -EINVAL; | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | if (count > 1) { | 
|  | /* If the allocation failed, give up */ | 
|  | if (!callchain_cpus_entries) | 
|  | err = -ENOMEM; | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | err = alloc_callchain_buffers(); | 
|  | if (err) | 
|  | release_callchain_buffers(); | 
|  | exit: | 
|  | mutex_unlock(&callchain_mutex); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void put_callchain_buffers(void) | 
|  | { | 
|  | if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) { | 
|  | release_callchain_buffers(); | 
|  | mutex_unlock(&callchain_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int get_recursion_context(int *recursion) | 
|  | { | 
|  | int rctx; | 
|  |  | 
|  | if (in_nmi()) | 
|  | rctx = 3; | 
|  | else if (in_irq()) | 
|  | rctx = 2; | 
|  | else if (in_softirq()) | 
|  | rctx = 1; | 
|  | else | 
|  | rctx = 0; | 
|  |  | 
|  | if (recursion[rctx]) | 
|  | return -1; | 
|  |  | 
|  | recursion[rctx]++; | 
|  | barrier(); | 
|  |  | 
|  | return rctx; | 
|  | } | 
|  |  | 
|  | static inline void put_recursion_context(int *recursion, int rctx) | 
|  | { | 
|  | barrier(); | 
|  | recursion[rctx]--; | 
|  | } | 
|  |  | 
|  | static struct perf_callchain_entry *get_callchain_entry(int *rctx) | 
|  | { | 
|  | int cpu; | 
|  | struct callchain_cpus_entries *entries; | 
|  |  | 
|  | *rctx = get_recursion_context(__get_cpu_var(callchain_recursion)); | 
|  | if (*rctx == -1) | 
|  | return NULL; | 
|  |  | 
|  | entries = rcu_dereference(callchain_cpus_entries); | 
|  | if (!entries) | 
|  | return NULL; | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  |  | 
|  | return &entries->cpu_entries[cpu][*rctx]; | 
|  | } | 
|  |  | 
|  | static void | 
|  | put_callchain_entry(int rctx) | 
|  | { | 
|  | put_recursion_context(__get_cpu_var(callchain_recursion), rctx); | 
|  | } | 
|  |  | 
|  | static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | 
|  | { | 
|  | int rctx; | 
|  | struct perf_callchain_entry *entry; | 
|  |  | 
|  |  | 
|  | entry = get_callchain_entry(&rctx); | 
|  | if (rctx == -1) | 
|  | return NULL; | 
|  |  | 
|  | if (!entry) | 
|  | goto exit_put; | 
|  |  | 
|  | entry->nr = 0; | 
|  |  | 
|  | if (!user_mode(regs)) { | 
|  | perf_callchain_store(entry, PERF_CONTEXT_KERNEL); | 
|  | perf_callchain_kernel(entry, regs); | 
|  | if (current->mm) | 
|  | regs = task_pt_regs(current); | 
|  | else | 
|  | regs = NULL; | 
|  | } | 
|  |  | 
|  | if (regs) { | 
|  | perf_callchain_store(entry, PERF_CONTEXT_USER); | 
|  | perf_callchain_user(entry, regs); | 
|  | } | 
|  |  | 
|  | exit_put: | 
|  | put_callchain_entry(rctx); | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the perf_event context in a task_struct: | 
|  | */ | 
|  | static void __perf_event_init_context(struct perf_event_context *ctx) | 
|  | { | 
|  | raw_spin_lock_init(&ctx->lock); | 
|  | mutex_init(&ctx->mutex); | 
|  | INIT_LIST_HEAD(&ctx->pinned_groups); | 
|  | INIT_LIST_HEAD(&ctx->flexible_groups); | 
|  | INIT_LIST_HEAD(&ctx->event_list); | 
|  | atomic_set(&ctx->refcount, 1); | 
|  | } | 
|  |  | 
|  | static struct perf_event_context * | 
|  | alloc_perf_context(struct pmu *pmu, struct task_struct *task) | 
|  | { | 
|  | struct perf_event_context *ctx; | 
|  |  | 
|  | ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); | 
|  | if (!ctx) | 
|  | return NULL; | 
|  |  | 
|  | __perf_event_init_context(ctx); | 
|  | if (task) { | 
|  | ctx->task = task; | 
|  | get_task_struct(task); | 
|  | } | 
|  | ctx->pmu = pmu; | 
|  |  | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | static struct task_struct * | 
|  | find_lively_task_by_vpid(pid_t vpid) | 
|  | { | 
|  | struct task_struct *task; | 
|  | int err; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (!vpid) | 
|  | task = current; | 
|  | else | 
|  | task = find_task_by_vpid(vpid); | 
|  | if (task) | 
|  | get_task_struct(task); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (!task) | 
|  | return ERR_PTR(-ESRCH); | 
|  |  | 
|  | /* Reuse ptrace permission checks for now. */ | 
|  | err = -EACCES; | 
|  | if (!ptrace_may_access(task, PTRACE_MODE_READ)) | 
|  | goto errout; | 
|  |  | 
|  | return task; | 
|  | errout: | 
|  | put_task_struct(task); | 
|  | return ERR_PTR(err); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns a matching context with refcount and pincount. | 
|  | */ | 
|  | static struct perf_event_context * | 
|  | find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) | 
|  | { | 
|  | struct perf_event_context *ctx; | 
|  | struct perf_cpu_context *cpuctx; | 
|  | unsigned long flags; | 
|  | int ctxn, err; | 
|  |  | 
|  | if (!task) { | 
|  | /* Must be root to operate on a CPU event: */ | 
|  | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | 
|  | return ERR_PTR(-EACCES); | 
|  |  | 
|  | /* | 
|  | * We could be clever and allow to attach a event to an | 
|  | * offline CPU and activate it when the CPU comes up, but | 
|  | * that's for later. | 
|  | */ | 
|  | if (!cpu_online(cpu)) | 
|  | return ERR_PTR(-ENODEV); | 
|  |  | 
|  | cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); | 
|  | ctx = &cpuctx->ctx; | 
|  | get_ctx(ctx); | 
|  | ++ctx->pin_count; | 
|  |  | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | err = -EINVAL; | 
|  | ctxn = pmu->task_ctx_nr; | 
|  | if (ctxn < 0) | 
|  | goto errout; | 
|  |  | 
|  | retry: | 
|  | ctx = perf_lock_task_context(task, ctxn, &flags); | 
|  | if (ctx) { | 
|  | unclone_ctx(ctx); | 
|  | ++ctx->pin_count; | 
|  | raw_spin_unlock_irqrestore(&ctx->lock, flags); | 
|  | } | 
|  |  | 
|  | if (!ctx) { | 
|  | ctx = alloc_perf_context(pmu, task); | 
|  | err = -ENOMEM; | 
|  | if (!ctx) | 
|  | goto errout; | 
|  |  | 
|  | get_ctx(ctx); | 
|  |  | 
|  | err = 0; | 
|  | mutex_lock(&task->perf_event_mutex); | 
|  | /* | 
|  | * If it has already passed perf_event_exit_task(). | 
|  | * we must see PF_EXITING, it takes this mutex too. | 
|  | */ | 
|  | if (task->flags & PF_EXITING) | 
|  | err = -ESRCH; | 
|  | else if (task->perf_event_ctxp[ctxn]) | 
|  | err = -EAGAIN; | 
|  | else { | 
|  | ++ctx->pin_count; | 
|  | rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); | 
|  | } | 
|  | mutex_unlock(&task->perf_event_mutex); | 
|  |  | 
|  | if (unlikely(err)) { | 
|  | put_task_struct(task); | 
|  | kfree(ctx); | 
|  |  | 
|  | if (err == -EAGAIN) | 
|  | goto retry; | 
|  | goto errout; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ctx; | 
|  |  | 
|  | errout: | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | static void perf_event_free_filter(struct perf_event *event); | 
|  |  | 
|  | static void free_event_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct perf_event *event; | 
|  |  | 
|  | event = container_of(head, struct perf_event, rcu_head); | 
|  | if (event->ns) | 
|  | put_pid_ns(event->ns); | 
|  | perf_event_free_filter(event); | 
|  | kfree(event); | 
|  | } | 
|  |  | 
|  | static void perf_buffer_put(struct perf_buffer *buffer); | 
|  |  | 
|  | static void free_event(struct perf_event *event) | 
|  | { | 
|  | irq_work_sync(&event->pending); | 
|  |  | 
|  | if (!event->parent) { | 
|  | if (event->attach_state & PERF_ATTACH_TASK) | 
|  | jump_label_dec(&perf_sched_events); | 
|  | if (event->attr.mmap || event->attr.mmap_data) | 
|  | atomic_dec(&nr_mmap_events); | 
|  | if (event->attr.comm) | 
|  | atomic_dec(&nr_comm_events); | 
|  | if (event->attr.task) | 
|  | atomic_dec(&nr_task_events); | 
|  | if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) | 
|  | put_callchain_buffers(); | 
|  | if (is_cgroup_event(event)) { | 
|  | atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); | 
|  | jump_label_dec(&perf_sched_events); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (event->buffer) { | 
|  | perf_buffer_put(event->buffer); | 
|  | event->buffer = NULL; | 
|  | } | 
|  |  | 
|  | if (is_cgroup_event(event)) | 
|  | perf_detach_cgroup(event); | 
|  |  | 
|  | if (event->destroy) | 
|  | event->destroy(event); | 
|  |  | 
|  | if (event->ctx) | 
|  | put_ctx(event->ctx); | 
|  |  | 
|  | call_rcu(&event->rcu_head, free_event_rcu); | 
|  | } | 
|  |  | 
|  | int perf_event_release_kernel(struct perf_event *event) | 
|  | { | 
|  | struct perf_event_context *ctx = event->ctx; | 
|  |  | 
|  | /* | 
|  | * Remove from the PMU, can't get re-enabled since we got | 
|  | * here because the last ref went. | 
|  | */ | 
|  | perf_event_disable(event); | 
|  |  | 
|  | WARN_ON_ONCE(ctx->parent_ctx); | 
|  | /* | 
|  | * There are two ways this annotation is useful: | 
|  | * | 
|  | *  1) there is a lock recursion from perf_event_exit_task | 
|  | *     see the comment there. | 
|  | * | 
|  | *  2) there is a lock-inversion with mmap_sem through | 
|  | *     perf_event_read_group(), which takes faults while | 
|  | *     holding ctx->mutex, however this is called after | 
|  | *     the last filedesc died, so there is no possibility | 
|  | *     to trigger the AB-BA case. | 
|  | */ | 
|  | mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); | 
|  | raw_spin_lock_irq(&ctx->lock); | 
|  | perf_group_detach(event); | 
|  | list_del_event(event, ctx); | 
|  | raw_spin_unlock_irq(&ctx->lock); | 
|  | mutex_unlock(&ctx->mutex); | 
|  |  | 
|  | free_event(event); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(perf_event_release_kernel); | 
|  |  | 
|  | /* | 
|  | * Called when the last reference to the file is gone. | 
|  | */ | 
|  | static int perf_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct perf_event *event = file->private_data; | 
|  | struct task_struct *owner; | 
|  |  | 
|  | file->private_data = NULL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | owner = ACCESS_ONCE(event->owner); | 
|  | /* | 
|  | * Matches the smp_wmb() in perf_event_exit_task(). If we observe | 
|  | * !owner it means the list deletion is complete and we can indeed | 
|  | * free this event, otherwise we need to serialize on | 
|  | * owner->perf_event_mutex. | 
|  | */ | 
|  | smp_read_barrier_depends(); | 
|  | if (owner) { | 
|  | /* | 
|  | * Since delayed_put_task_struct() also drops the last | 
|  | * task reference we can safely take a new reference | 
|  | * while holding the rcu_read_lock(). | 
|  | */ | 
|  | get_task_struct(owner); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (owner) { | 
|  | mutex_lock(&owner->perf_event_mutex); | 
|  | /* | 
|  | * We have to re-check the event->owner field, if it is cleared | 
|  | * we raced with perf_event_exit_task(), acquiring the mutex | 
|  | * ensured they're done, and we can proceed with freeing the | 
|  | * event. | 
|  | */ | 
|  | if (event->owner) | 
|  | list_del_init(&event->owner_entry); | 
|  | mutex_unlock(&owner->perf_event_mutex); | 
|  | put_task_struct(owner); | 
|  | } | 
|  |  | 
|  | return perf_event_release_kernel(event); | 
|  | } | 
|  |  | 
|  | u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) | 
|  | { | 
|  | struct perf_event *child; | 
|  | u64 total = 0; | 
|  |  | 
|  | *enabled = 0; | 
|  | *running = 0; | 
|  |  | 
|  | mutex_lock(&event->child_mutex); | 
|  | total += perf_event_read(event); | 
|  | *enabled += event->total_time_enabled + | 
|  | atomic64_read(&event->child_total_time_enabled); | 
|  | *running += event->total_time_running + | 
|  | atomic64_read(&event->child_total_time_running); | 
|  |  | 
|  | list_for_each_entry(child, &event->child_list, child_list) { | 
|  | total += perf_event_read(child); | 
|  | *enabled += child->total_time_enabled; | 
|  | *running += child->total_time_running; | 
|  | } | 
|  | mutex_unlock(&event->child_mutex); | 
|  |  | 
|  | return total; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(perf_event_read_value); | 
|  |  | 
|  | static int perf_event_read_group(struct perf_event *event, | 
|  | u64 read_format, char __user *buf) | 
|  | { | 
|  | struct perf_event *leader = event->group_leader, *sub; | 
|  | int n = 0, size = 0, ret = -EFAULT; | 
|  | struct perf_event_context *ctx = leader->ctx; | 
|  | u64 values[5]; | 
|  | u64 count, enabled, running; | 
|  |  | 
|  | mutex_lock(&ctx->mutex); | 
|  | count = perf_event_read_value(leader, &enabled, &running); | 
|  |  | 
|  | values[n++] = 1 + leader->nr_siblings; | 
|  | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | 
|  | values[n++] = enabled; | 
|  | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | 
|  | values[n++] = running; | 
|  | values[n++] = count; | 
|  | if (read_format & PERF_FORMAT_ID) | 
|  | values[n++] = primary_event_id(leader); | 
|  |  | 
|  | size = n * sizeof(u64); | 
|  |  | 
|  | if (copy_to_user(buf, values, size)) | 
|  | goto unlock; | 
|  |  | 
|  | ret = size; | 
|  |  | 
|  | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | 
|  | n = 0; | 
|  |  | 
|  | values[n++] = perf_event_read_value(sub, &enabled, &running); | 
|  | if (read_format & PERF_FORMAT_ID) | 
|  | values[n++] = primary_event_id(sub); | 
|  |  | 
|  | size = n * sizeof(u64); | 
|  |  | 
|  | if (copy_to_user(buf + ret, values, size)) { | 
|  | ret = -EFAULT; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | ret += size; | 
|  | } | 
|  | unlock: | 
|  | mutex_unlock(&ctx->mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int perf_event_read_one(struct perf_event *event, | 
|  | u64 read_format, char __user *buf) | 
|  | { | 
|  | u64 enabled, running; | 
|  | u64 values[4]; | 
|  | int n = 0; | 
|  |  | 
|  | values[n++] = perf_event_read_value(event, &enabled, &running); | 
|  | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | 
|  | values[n++] = enabled; | 
|  | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | 
|  | values[n++] = running; | 
|  | if (read_format & PERF_FORMAT_ID) | 
|  | values[n++] = primary_event_id(event); | 
|  |  | 
|  | if (copy_to_user(buf, values, n * sizeof(u64))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return n * sizeof(u64); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the performance event - simple non blocking version for now | 
|  | */ | 
|  | static ssize_t | 
|  | perf_read_hw(struct perf_event *event, char __user *buf, size_t count) | 
|  | { | 
|  | u64 read_format = event->attr.read_format; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Return end-of-file for a read on a event that is in | 
|  | * error state (i.e. because it was pinned but it couldn't be | 
|  | * scheduled on to the CPU at some point). | 
|  | */ | 
|  | if (event->state == PERF_EVENT_STATE_ERROR) | 
|  | return 0; | 
|  |  | 
|  | if (count < event->read_size) | 
|  | return -ENOSPC; | 
|  |  | 
|  | WARN_ON_ONCE(event->ctx->parent_ctx); | 
|  | if (read_format & PERF_FORMAT_GROUP) | 
|  | ret = perf_event_read_group(event, read_format, buf); | 
|  | else | 
|  | ret = perf_event_read_one(event, read_format, buf); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | 
|  | { | 
|  | struct perf_event *event = file->private_data; | 
|  |  | 
|  | return perf_read_hw(event, buf, count); | 
|  | } | 
|  |  | 
|  | static unsigned int perf_poll(struct file *file, poll_table *wait) | 
|  | { | 
|  | struct perf_event *event = file->private_data; | 
|  | struct perf_buffer *buffer; | 
|  | unsigned int events = POLL_HUP; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | buffer = rcu_dereference(event->buffer); | 
|  | if (buffer) | 
|  | events = atomic_xchg(&buffer->poll, 0); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | poll_wait(file, &event->waitq, wait); | 
|  |  | 
|  | return events; | 
|  | } | 
|  |  | 
|  | static void perf_event_reset(struct perf_event *event) | 
|  | { | 
|  | (void)perf_event_read(event); | 
|  | local64_set(&event->count, 0); | 
|  | perf_event_update_userpage(event); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Holding the top-level event's child_mutex means that any | 
|  | * descendant process that has inherited this event will block | 
|  | * in sync_child_event if it goes to exit, thus satisfying the | 
|  | * task existence requirements of perf_event_enable/disable. | 
|  | */ | 
|  | static void perf_event_for_each_child(struct perf_event *event, | 
|  | void (*func)(struct perf_event *)) | 
|  | { | 
|  | struct perf_event *child; | 
|  |  | 
|  | WARN_ON_ONCE(event->ctx->parent_ctx); | 
|  | mutex_lock(&event->child_mutex); | 
|  | func(event); | 
|  | list_for_each_entry(child, &event->child_list, child_list) | 
|  | func(child); | 
|  | mutex_unlock(&event->child_mutex); | 
|  | } | 
|  |  | 
|  | static void perf_event_for_each(struct perf_event *event, | 
|  | void (*func)(struct perf_event *)) | 
|  | { | 
|  | struct perf_event_context *ctx = event->ctx; | 
|  | struct perf_event *sibling; | 
|  |  | 
|  | WARN_ON_ONCE(ctx->parent_ctx); | 
|  | mutex_lock(&ctx->mutex); | 
|  | event = event->group_leader; | 
|  |  | 
|  | perf_event_for_each_child(event, func); | 
|  | func(event); | 
|  | list_for_each_entry(sibling, &event->sibling_list, group_entry) | 
|  | perf_event_for_each_child(event, func); | 
|  | mutex_unlock(&ctx->mutex); | 
|  | } | 
|  |  | 
|  | static int perf_event_period(struct perf_event *event, u64 __user *arg) | 
|  | { | 
|  | struct perf_event_context *ctx = event->ctx; | 
|  | int ret = 0; | 
|  | u64 value; | 
|  |  | 
|  | if (!is_sampling_event(event)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_user(&value, arg, sizeof(value))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (!value) | 
|  | return -EINVAL; | 
|  |  | 
|  | raw_spin_lock_irq(&ctx->lock); | 
|  | if (event->attr.freq) { | 
|  | if (value > sysctl_perf_event_sample_rate) { | 
|  | ret = -EINVAL; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | event->attr.sample_freq = value; | 
|  | } else { | 
|  | event->attr.sample_period = value; | 
|  | event->hw.sample_period = value; | 
|  | } | 
|  | unlock: | 
|  | raw_spin_unlock_irq(&ctx->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct file_operations perf_fops; | 
|  |  | 
|  | static struct perf_event *perf_fget_light(int fd, int *fput_needed) | 
|  | { | 
|  | struct file *file; | 
|  |  | 
|  | file = fget_light(fd, fput_needed); | 
|  | if (!file) | 
|  | return ERR_PTR(-EBADF); | 
|  |  | 
|  | if (file->f_op != &perf_fops) { | 
|  | fput_light(file, *fput_needed); | 
|  | *fput_needed = 0; | 
|  | return ERR_PTR(-EBADF); | 
|  | } | 
|  |  | 
|  | return file->private_data; | 
|  | } | 
|  |  | 
|  | static int perf_event_set_output(struct perf_event *event, | 
|  | struct perf_event *output_event); | 
|  | static int perf_event_set_filter(struct perf_event *event, void __user *arg); | 
|  |  | 
|  | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | 
|  | { | 
|  | struct perf_event *event = file->private_data; | 
|  | void (*func)(struct perf_event *); | 
|  | u32 flags = arg; | 
|  |  | 
|  | switch (cmd) { | 
|  | case PERF_EVENT_IOC_ENABLE: | 
|  | func = perf_event_enable; | 
|  | break; | 
|  | case PERF_EVENT_IOC_DISABLE: | 
|  | func = perf_event_disable; | 
|  | break; | 
|  | case PERF_EVENT_IOC_RESET: | 
|  | func = perf_event_reset; | 
|  | break; | 
|  |  | 
|  | case PERF_EVENT_IOC_REFRESH: | 
|  | return perf_event_refresh(event, arg); | 
|  |  | 
|  | case PERF_EVENT_IOC_PERIOD: | 
|  | return perf_event_period(event, (u64 __user *)arg); | 
|  |  | 
|  | case PERF_EVENT_IOC_SET_OUTPUT: | 
|  | { | 
|  | struct perf_event *output_event = NULL; | 
|  | int fput_needed = 0; | 
|  | int ret; | 
|  |  | 
|  | if (arg != -1) { | 
|  | output_event = perf_fget_light(arg, &fput_needed); | 
|  | if (IS_ERR(output_event)) | 
|  | return PTR_ERR(output_event); | 
|  | } | 
|  |  | 
|  | ret = perf_event_set_output(event, output_event); | 
|  | if (output_event) | 
|  | fput_light(output_event->filp, fput_needed); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | case PERF_EVENT_IOC_SET_FILTER: | 
|  | return perf_event_set_filter(event, (void __user *)arg); | 
|  |  | 
|  | default: | 
|  | return -ENOTTY; | 
|  | } | 
|  |  | 
|  | if (flags & PERF_IOC_FLAG_GROUP) | 
|  | perf_event_for_each(event, func); | 
|  | else | 
|  | perf_event_for_each_child(event, func); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int perf_event_task_enable(void) | 
|  | { | 
|  | struct perf_event *event; | 
|  |  | 
|  | mutex_lock(¤t->perf_event_mutex); | 
|  | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | 
|  | perf_event_for_each_child(event, perf_event_enable); | 
|  | mutex_unlock(¤t->perf_event_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int perf_event_task_disable(void) | 
|  | { | 
|  | struct perf_event *event; | 
|  |  | 
|  | mutex_lock(¤t->perf_event_mutex); | 
|  | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | 
|  | perf_event_for_each_child(event, perf_event_disable); | 
|  | mutex_unlock(¤t->perf_event_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifndef PERF_EVENT_INDEX_OFFSET | 
|  | # define PERF_EVENT_INDEX_OFFSET 0 | 
|  | #endif | 
|  |  | 
|  | static int perf_event_index(struct perf_event *event) | 
|  | { | 
|  | if (event->hw.state & PERF_HES_STOPPED) | 
|  | return 0; | 
|  |  | 
|  | if (event->state != PERF_EVENT_STATE_ACTIVE) | 
|  | return 0; | 
|  |  | 
|  | return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Callers need to ensure there can be no nesting of this function, otherwise | 
|  | * the seqlock logic goes bad. We can not serialize this because the arch | 
|  | * code calls this from NMI context. | 
|  | */ | 
|  | void perf_event_update_userpage(struct perf_event *event) | 
|  | { | 
|  | struct perf_event_mmap_page *userpg; | 
|  | struct perf_buffer *buffer; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | buffer = rcu_dereference(event->buffer); | 
|  | if (!buffer) | 
|  | goto unlock; | 
|  |  | 
|  | userpg = buffer->user_page; | 
|  |  | 
|  | /* | 
|  | * Disable preemption so as to not let the corresponding user-space | 
|  | * spin too long if we get preempted. | 
|  | */ | 
|  | preempt_disable(); | 
|  | ++userpg->lock; | 
|  | barrier(); | 
|  | userpg->index = perf_event_index(event); | 
|  | userpg->offset = perf_event_count(event); | 
|  | if (event->state == PERF_EVENT_STATE_ACTIVE) | 
|  | userpg->offset -= local64_read(&event->hw.prev_count); | 
|  |  | 
|  | userpg->time_enabled = event->total_time_enabled + | 
|  | atomic64_read(&event->child_total_time_enabled); | 
|  |  | 
|  | userpg->time_running = event->total_time_running + | 
|  | atomic64_read(&event->child_total_time_running); | 
|  |  | 
|  | barrier(); | 
|  | ++userpg->lock; | 
|  | preempt_enable(); | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static unsigned long perf_data_size(struct perf_buffer *buffer); | 
|  |  | 
|  | static void | 
|  | perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags) | 
|  | { | 
|  | long max_size = perf_data_size(buffer); | 
|  |  | 
|  | if (watermark) | 
|  | buffer->watermark = min(max_size, watermark); | 
|  |  | 
|  | if (!buffer->watermark) | 
|  | buffer->watermark = max_size / 2; | 
|  |  | 
|  | if (flags & PERF_BUFFER_WRITABLE) | 
|  | buffer->writable = 1; | 
|  |  | 
|  | atomic_set(&buffer->refcount, 1); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_PERF_USE_VMALLOC | 
|  |  | 
|  | /* | 
|  | * Back perf_mmap() with regular GFP_KERNEL-0 pages. | 
|  | */ | 
|  |  | 
|  | static struct page * | 
|  | perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff) | 
|  | { | 
|  | if (pgoff > buffer->nr_pages) | 
|  | return NULL; | 
|  |  | 
|  | if (pgoff == 0) | 
|  | return virt_to_page(buffer->user_page); | 
|  |  | 
|  | return virt_to_page(buffer->data_pages[pgoff - 1]); | 
|  | } | 
|  |  | 
|  | static void *perf_mmap_alloc_page(int cpu) | 
|  | { | 
|  | struct page *page; | 
|  | int node; | 
|  |  | 
|  | node = (cpu == -1) ? cpu : cpu_to_node(cpu); | 
|  | page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | return page_address(page); | 
|  | } | 
|  |  | 
|  | static struct perf_buffer * | 
|  | perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags) | 
|  | { | 
|  | struct perf_buffer *buffer; | 
|  | unsigned long size; | 
|  | int i; | 
|  |  | 
|  | size = sizeof(struct perf_buffer); | 
|  | size += nr_pages * sizeof(void *); | 
|  |  | 
|  | buffer = kzalloc(size, GFP_KERNEL); | 
|  | if (!buffer) | 
|  | goto fail; | 
|  |  | 
|  | buffer->user_page = perf_mmap_alloc_page(cpu); | 
|  | if (!buffer->user_page) | 
|  | goto fail_user_page; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | buffer->data_pages[i] = perf_mmap_alloc_page(cpu); | 
|  | if (!buffer->data_pages[i]) | 
|  | goto fail_data_pages; | 
|  | } | 
|  |  | 
|  | buffer->nr_pages = nr_pages; | 
|  |  | 
|  | perf_buffer_init(buffer, watermark, flags); | 
|  |  | 
|  | return buffer; | 
|  |  | 
|  | fail_data_pages: | 
|  | for (i--; i >= 0; i--) | 
|  | free_page((unsigned long)buffer->data_pages[i]); | 
|  |  | 
|  | free_page((unsigned long)buffer->user_page); | 
|  |  | 
|  | fail_user_page: | 
|  | kfree(buffer); | 
|  |  | 
|  | fail: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void perf_mmap_free_page(unsigned long addr) | 
|  | { | 
|  | struct page *page = virt_to_page((void *)addr); | 
|  |  | 
|  | page->mapping = NULL; | 
|  | __free_page(page); | 
|  | } | 
|  |  | 
|  | static void perf_buffer_free(struct perf_buffer *buffer) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | perf_mmap_free_page((unsigned long)buffer->user_page); | 
|  | for (i = 0; i < buffer->nr_pages; i++) | 
|  | perf_mmap_free_page((unsigned long)buffer->data_pages[i]); | 
|  | kfree(buffer); | 
|  | } | 
|  |  | 
|  | static inline int page_order(struct perf_buffer *buffer) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | /* | 
|  | * Back perf_mmap() with vmalloc memory. | 
|  | * | 
|  | * Required for architectures that have d-cache aliasing issues. | 
|  | */ | 
|  |  | 
|  | static inline int page_order(struct perf_buffer *buffer) | 
|  | { | 
|  | return buffer->page_order; | 
|  | } | 
|  |  | 
|  | static struct page * | 
|  | perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff) | 
|  | { | 
|  | if (pgoff > (1UL << page_order(buffer))) | 
|  | return NULL; | 
|  |  | 
|  | return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | static void perf_mmap_unmark_page(void *addr) | 
|  | { | 
|  | struct page *page = vmalloc_to_page(addr); | 
|  |  | 
|  | page->mapping = NULL; | 
|  | } | 
|  |  | 
|  | static void perf_buffer_free_work(struct work_struct *work) | 
|  | { | 
|  | struct perf_buffer *buffer; | 
|  | void *base; | 
|  | int i, nr; | 
|  |  | 
|  | buffer = container_of(work, struct perf_buffer, work); | 
|  | nr = 1 << page_order(buffer); | 
|  |  | 
|  | base = buffer->user_page; | 
|  | for (i = 0; i < nr + 1; i++) | 
|  | perf_mmap_unmark_page(base + (i * PAGE_SIZE)); | 
|  |  | 
|  | vfree(base); | 
|  | kfree(buffer); | 
|  | } | 
|  |  | 
|  | static void perf_buffer_free(struct perf_buffer *buffer) | 
|  | { | 
|  | schedule_work(&buffer->work); | 
|  | } | 
|  |  | 
|  | static struct perf_buffer * | 
|  | perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags) | 
|  | { | 
|  | struct perf_buffer *buffer; | 
|  | unsigned long size; | 
|  | void *all_buf; | 
|  |  | 
|  | size = sizeof(struct perf_buffer); | 
|  | size += sizeof(void *); | 
|  |  | 
|  | buffer = kzalloc(size, GFP_KERNEL); | 
|  | if (!buffer) | 
|  | goto fail; | 
|  |  | 
|  | INIT_WORK(&buffer->work, perf_buffer_free_work); | 
|  |  | 
|  | all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); | 
|  | if (!all_buf) | 
|  | goto fail_all_buf; | 
|  |  | 
|  | buffer->user_page = all_buf; | 
|  | buffer->data_pages[0] = all_buf + PAGE_SIZE; | 
|  | buffer->page_order = ilog2(nr_pages); | 
|  | buffer->nr_pages = 1; | 
|  |  | 
|  | perf_buffer_init(buffer, watermark, flags); | 
|  |  | 
|  | return buffer; | 
|  |  | 
|  | fail_all_buf: | 
|  | kfree(buffer); | 
|  |  | 
|  | fail: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static unsigned long perf_data_size(struct perf_buffer *buffer) | 
|  | { | 
|  | return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer)); | 
|  | } | 
|  |  | 
|  | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | 
|  | { | 
|  | struct perf_event *event = vma->vm_file->private_data; | 
|  | struct perf_buffer *buffer; | 
|  | int ret = VM_FAULT_SIGBUS; | 
|  |  | 
|  | if (vmf->flags & FAULT_FLAG_MKWRITE) { | 
|  | if (vmf->pgoff == 0) | 
|  | ret = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  | buffer = rcu_dereference(event->buffer); | 
|  | if (!buffer) | 
|  | goto unlock; | 
|  |  | 
|  | if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) | 
|  | goto unlock; | 
|  |  | 
|  | vmf->page = perf_mmap_to_page(buffer, vmf->pgoff); | 
|  | if (!vmf->page) | 
|  | goto unlock; | 
|  |  | 
|  | get_page(vmf->page); | 
|  | vmf->page->mapping = vma->vm_file->f_mapping; | 
|  | vmf->page->index   = vmf->pgoff; | 
|  |  | 
|  | ret = 0; | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void perf_buffer_free_rcu(struct rcu_head *rcu_head) | 
|  | { | 
|  | struct perf_buffer *buffer; | 
|  |  | 
|  | buffer = container_of(rcu_head, struct perf_buffer, rcu_head); | 
|  | perf_buffer_free(buffer); | 
|  | } | 
|  |  | 
|  | static struct perf_buffer *perf_buffer_get(struct perf_event *event) | 
|  | { | 
|  | struct perf_buffer *buffer; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | buffer = rcu_dereference(event->buffer); | 
|  | if (buffer) { | 
|  | if (!atomic_inc_not_zero(&buffer->refcount)) | 
|  | buffer = NULL; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return buffer; | 
|  | } | 
|  |  | 
|  | static void perf_buffer_put(struct perf_buffer *buffer) | 
|  | { | 
|  | if (!atomic_dec_and_test(&buffer->refcount)) | 
|  | return; | 
|  |  | 
|  | call_rcu(&buffer->rcu_head, perf_buffer_free_rcu); | 
|  | } | 
|  |  | 
|  | static void perf_mmap_open(struct vm_area_struct *vma) | 
|  | { | 
|  | struct perf_event *event = vma->vm_file->private_data; | 
|  |  | 
|  | atomic_inc(&event->mmap_count); | 
|  | } | 
|  |  | 
|  | static void perf_mmap_close(struct vm_area_struct *vma) | 
|  | { | 
|  | struct perf_event *event = vma->vm_file->private_data; | 
|  |  | 
|  | if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { | 
|  | unsigned long size = perf_data_size(event->buffer); | 
|  | struct user_struct *user = event->mmap_user; | 
|  | struct perf_buffer *buffer = event->buffer; | 
|  |  | 
|  | atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); | 
|  | vma->vm_mm->locked_vm -= event->mmap_locked; | 
|  | rcu_assign_pointer(event->buffer, NULL); | 
|  | mutex_unlock(&event->mmap_mutex); | 
|  |  | 
|  | perf_buffer_put(buffer); | 
|  | free_uid(user); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct vm_operations_struct perf_mmap_vmops = { | 
|  | .open		= perf_mmap_open, | 
|  | .close		= perf_mmap_close, | 
|  | .fault		= perf_mmap_fault, | 
|  | .page_mkwrite	= perf_mmap_fault, | 
|  | }; | 
|  |  | 
|  | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | 
|  | { | 
|  | struct perf_event *event = file->private_data; | 
|  | unsigned long user_locked, user_lock_limit; | 
|  | struct user_struct *user = current_user(); | 
|  | unsigned long locked, lock_limit; | 
|  | struct perf_buffer *buffer; | 
|  | unsigned long vma_size; | 
|  | unsigned long nr_pages; | 
|  | long user_extra, extra; | 
|  | int ret = 0, flags = 0; | 
|  |  | 
|  | /* | 
|  | * Don't allow mmap() of inherited per-task counters. This would | 
|  | * create a performance issue due to all children writing to the | 
|  | * same buffer. | 
|  | */ | 
|  | if (event->cpu == -1 && event->attr.inherit) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!(vma->vm_flags & VM_SHARED)) | 
|  | return -EINVAL; | 
|  |  | 
|  | vma_size = vma->vm_end - vma->vm_start; | 
|  | nr_pages = (vma_size / PAGE_SIZE) - 1; | 
|  |  | 
|  | /* | 
|  | * If we have buffer pages ensure they're a power-of-two number, so we | 
|  | * can do bitmasks instead of modulo. | 
|  | */ | 
|  | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (vma->vm_pgoff != 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | WARN_ON_ONCE(event->ctx->parent_ctx); | 
|  | mutex_lock(&event->mmap_mutex); | 
|  | if (event->buffer) { | 
|  | if (event->buffer->nr_pages == nr_pages) | 
|  | atomic_inc(&event->buffer->refcount); | 
|  | else | 
|  | ret = -EINVAL; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | user_extra = nr_pages + 1; | 
|  | user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); | 
|  |  | 
|  | /* | 
|  | * Increase the limit linearly with more CPUs: | 
|  | */ | 
|  | user_lock_limit *= num_online_cpus(); | 
|  |  | 
|  | user_locked = atomic_long_read(&user->locked_vm) + user_extra; | 
|  |  | 
|  | extra = 0; | 
|  | if (user_locked > user_lock_limit) | 
|  | extra = user_locked - user_lock_limit; | 
|  |  | 
|  | lock_limit = rlimit(RLIMIT_MEMLOCK); | 
|  | lock_limit >>= PAGE_SHIFT; | 
|  | locked = vma->vm_mm->locked_vm + extra; | 
|  |  | 
|  | if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && | 
|  | !capable(CAP_IPC_LOCK)) { | 
|  | ret = -EPERM; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | WARN_ON(event->buffer); | 
|  |  | 
|  | if (vma->vm_flags & VM_WRITE) | 
|  | flags |= PERF_BUFFER_WRITABLE; | 
|  |  | 
|  | buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark, | 
|  | event->cpu, flags); | 
|  | if (!buffer) { | 
|  | ret = -ENOMEM; | 
|  | goto unlock; | 
|  | } | 
|  | rcu_assign_pointer(event->buffer, buffer); | 
|  |  | 
|  | atomic_long_add(user_extra, &user->locked_vm); | 
|  | event->mmap_locked = extra; | 
|  | event->mmap_user = get_current_user(); | 
|  | vma->vm_mm->locked_vm += event->mmap_locked; | 
|  |  | 
|  | unlock: | 
|  | if (!ret) | 
|  | atomic_inc(&event->mmap_count); | 
|  | mutex_unlock(&event->mmap_mutex); | 
|  |  | 
|  | vma->vm_flags |= VM_RESERVED; | 
|  | vma->vm_ops = &perf_mmap_vmops; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int perf_fasync(int fd, struct file *filp, int on) | 
|  | { | 
|  | struct inode *inode = filp->f_path.dentry->d_inode; | 
|  | struct perf_event *event = filp->private_data; | 
|  | int retval; | 
|  |  | 
|  | mutex_lock(&inode->i_mutex); | 
|  | retval = fasync_helper(fd, filp, on, &event->fasync); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  |  | 
|  | if (retval < 0) | 
|  | return retval; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct file_operations perf_fops = { | 
|  | .llseek			= no_llseek, | 
|  | .release		= perf_release, | 
|  | .read			= perf_read, | 
|  | .poll			= perf_poll, | 
|  | .unlocked_ioctl		= perf_ioctl, | 
|  | .compat_ioctl		= perf_ioctl, | 
|  | .mmap			= perf_mmap, | 
|  | .fasync			= perf_fasync, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Perf event wakeup | 
|  | * | 
|  | * If there's data, ensure we set the poll() state and publish everything | 
|  | * to user-space before waking everybody up. | 
|  | */ | 
|  |  | 
|  | void perf_event_wakeup(struct perf_event *event) | 
|  | { | 
|  | wake_up_all(&event->waitq); | 
|  |  | 
|  | if (event->pending_kill) { | 
|  | kill_fasync(&event->fasync, SIGIO, event->pending_kill); | 
|  | event->pending_kill = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void perf_pending_event(struct irq_work *entry) | 
|  | { | 
|  | struct perf_event *event = container_of(entry, | 
|  | struct perf_event, pending); | 
|  |  | 
|  | if (event->pending_disable) { | 
|  | event->pending_disable = 0; | 
|  | __perf_event_disable(event); | 
|  | } | 
|  |  | 
|  | if (event->pending_wakeup) { | 
|  | event->pending_wakeup = 0; | 
|  | perf_event_wakeup(event); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We assume there is only KVM supporting the callbacks. | 
|  | * Later on, we might change it to a list if there is | 
|  | * another virtualization implementation supporting the callbacks. | 
|  | */ | 
|  | struct perf_guest_info_callbacks *perf_guest_cbs; | 
|  |  | 
|  | int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) | 
|  | { | 
|  | perf_guest_cbs = cbs; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); | 
|  |  | 
|  | int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) | 
|  | { | 
|  | perf_guest_cbs = NULL; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); | 
|  |  | 
|  | /* | 
|  | * Output | 
|  | */ | 
|  | static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail, | 
|  | unsigned long offset, unsigned long head) | 
|  | { | 
|  | unsigned long mask; | 
|  |  | 
|  | if (!buffer->writable) | 
|  | return true; | 
|  |  | 
|  | mask = perf_data_size(buffer) - 1; | 
|  |  | 
|  | offset = (offset - tail) & mask; | 
|  | head   = (head   - tail) & mask; | 
|  |  | 
|  | if ((int)(head - offset) < 0) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void perf_output_wakeup(struct perf_output_handle *handle) | 
|  | { | 
|  | atomic_set(&handle->buffer->poll, POLL_IN); | 
|  |  | 
|  | if (handle->nmi) { | 
|  | handle->event->pending_wakeup = 1; | 
|  | irq_work_queue(&handle->event->pending); | 
|  | } else | 
|  | perf_event_wakeup(handle->event); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to ensure a later event_id doesn't publish a head when a former | 
|  | * event isn't done writing. However since we need to deal with NMIs we | 
|  | * cannot fully serialize things. | 
|  | * | 
|  | * We only publish the head (and generate a wakeup) when the outer-most | 
|  | * event completes. | 
|  | */ | 
|  | static void perf_output_get_handle(struct perf_output_handle *handle) | 
|  | { | 
|  | struct perf_buffer *buffer = handle->buffer; | 
|  |  | 
|  | preempt_disable(); | 
|  | local_inc(&buffer->nest); | 
|  | handle->wakeup = local_read(&buffer->wakeup); | 
|  | } | 
|  |  | 
|  | static void perf_output_put_handle(struct perf_output_handle *handle) | 
|  | { | 
|  | struct perf_buffer *buffer = handle->buffer; | 
|  | unsigned long head; | 
|  |  | 
|  | again: | 
|  | head = local_read(&buffer->head); | 
|  |  | 
|  | /* | 
|  | * IRQ/NMI can happen here, which means we can miss a head update. | 
|  | */ | 
|  |  | 
|  | if (!local_dec_and_test(&buffer->nest)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Publish the known good head. Rely on the full barrier implied | 
|  | * by atomic_dec_and_test() order the buffer->head read and this | 
|  | * write. | 
|  | */ | 
|  | buffer->user_page->data_head = head; | 
|  |  | 
|  | /* | 
|  | * Now check if we missed an update, rely on the (compiler) | 
|  | * barrier in atomic_dec_and_test() to re-read buffer->head. | 
|  | */ | 
|  | if (unlikely(head != local_read(&buffer->head))) { | 
|  | local_inc(&buffer->nest); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | if (handle->wakeup != local_read(&buffer->wakeup)) | 
|  | perf_output_wakeup(handle); | 
|  |  | 
|  | out: | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | __always_inline void perf_output_copy(struct perf_output_handle *handle, | 
|  | const void *buf, unsigned int len) | 
|  | { | 
|  | do { | 
|  | unsigned long size = min_t(unsigned long, handle->size, len); | 
|  |  | 
|  | memcpy(handle->addr, buf, size); | 
|  |  | 
|  | len -= size; | 
|  | handle->addr += size; | 
|  | buf += size; | 
|  | handle->size -= size; | 
|  | if (!handle->size) { | 
|  | struct perf_buffer *buffer = handle->buffer; | 
|  |  | 
|  | handle->page++; | 
|  | handle->page &= buffer->nr_pages - 1; | 
|  | handle->addr = buffer->data_pages[handle->page]; | 
|  | handle->size = PAGE_SIZE << page_order(buffer); | 
|  | } | 
|  | } while (len); | 
|  | } | 
|  |  | 
|  | static void __perf_event_header__init_id(struct perf_event_header *header, | 
|  | struct perf_sample_data *data, | 
|  | struct perf_event *event) | 
|  | { | 
|  | u64 sample_type = event->attr.sample_type; | 
|  |  | 
|  | data->type = sample_type; | 
|  | header->size += event->id_header_size; | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_TID) { | 
|  | /* namespace issues */ | 
|  | data->tid_entry.pid = perf_event_pid(event, current); | 
|  | data->tid_entry.tid = perf_event_tid(event, current); | 
|  | } | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_TIME) | 
|  | data->time = perf_clock(); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_ID) | 
|  | data->id = primary_event_id(event); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_STREAM_ID) | 
|  | data->stream_id = event->id; | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_CPU) { | 
|  | data->cpu_entry.cpu	 = raw_smp_processor_id(); | 
|  | data->cpu_entry.reserved = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void perf_event_header__init_id(struct perf_event_header *header, | 
|  | struct perf_sample_data *data, | 
|  | struct perf_event *event) | 
|  | { | 
|  | if (event->attr.sample_id_all) | 
|  | __perf_event_header__init_id(header, data, event); | 
|  | } | 
|  |  | 
|  | static void __perf_event__output_id_sample(struct perf_output_handle *handle, | 
|  | struct perf_sample_data *data) | 
|  | { | 
|  | u64 sample_type = data->type; | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_TID) | 
|  | perf_output_put(handle, data->tid_entry); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_TIME) | 
|  | perf_output_put(handle, data->time); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_ID) | 
|  | perf_output_put(handle, data->id); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_STREAM_ID) | 
|  | perf_output_put(handle, data->stream_id); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_CPU) | 
|  | perf_output_put(handle, data->cpu_entry); | 
|  | } | 
|  |  | 
|  | static void perf_event__output_id_sample(struct perf_event *event, | 
|  | struct perf_output_handle *handle, | 
|  | struct perf_sample_data *sample) | 
|  | { | 
|  | if (event->attr.sample_id_all) | 
|  | __perf_event__output_id_sample(handle, sample); | 
|  | } | 
|  |  | 
|  | int perf_output_begin(struct perf_output_handle *handle, | 
|  | struct perf_event *event, unsigned int size, | 
|  | int nmi, int sample) | 
|  | { | 
|  | struct perf_buffer *buffer; | 
|  | unsigned long tail, offset, head; | 
|  | int have_lost; | 
|  | struct perf_sample_data sample_data; | 
|  | struct { | 
|  | struct perf_event_header header; | 
|  | u64			 id; | 
|  | u64			 lost; | 
|  | } lost_event; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | /* | 
|  | * For inherited events we send all the output towards the parent. | 
|  | */ | 
|  | if (event->parent) | 
|  | event = event->parent; | 
|  |  | 
|  | buffer = rcu_dereference(event->buffer); | 
|  | if (!buffer) | 
|  | goto out; | 
|  |  | 
|  | handle->buffer	= buffer; | 
|  | handle->event	= event; | 
|  | handle->nmi	= nmi; | 
|  | handle->sample	= sample; | 
|  |  | 
|  | if (!buffer->nr_pages) | 
|  | goto out; | 
|  |  | 
|  | have_lost = local_read(&buffer->lost); | 
|  | if (have_lost) { | 
|  | lost_event.header.size = sizeof(lost_event); | 
|  | perf_event_header__init_id(&lost_event.header, &sample_data, | 
|  | event); | 
|  | size += lost_event.header.size; | 
|  | } | 
|  |  | 
|  | perf_output_get_handle(handle); | 
|  |  | 
|  | do { | 
|  | /* | 
|  | * Userspace could choose to issue a mb() before updating the | 
|  | * tail pointer. So that all reads will be completed before the | 
|  | * write is issued. | 
|  | */ | 
|  | tail = ACCESS_ONCE(buffer->user_page->data_tail); | 
|  | smp_rmb(); | 
|  | offset = head = local_read(&buffer->head); | 
|  | head += size; | 
|  | if (unlikely(!perf_output_space(buffer, tail, offset, head))) | 
|  | goto fail; | 
|  | } while (local_cmpxchg(&buffer->head, offset, head) != offset); | 
|  |  | 
|  | if (head - local_read(&buffer->wakeup) > buffer->watermark) | 
|  | local_add(buffer->watermark, &buffer->wakeup); | 
|  |  | 
|  | handle->page = offset >> (PAGE_SHIFT + page_order(buffer)); | 
|  | handle->page &= buffer->nr_pages - 1; | 
|  | handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1); | 
|  | handle->addr = buffer->data_pages[handle->page]; | 
|  | handle->addr += handle->size; | 
|  | handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size; | 
|  |  | 
|  | if (have_lost) { | 
|  | lost_event.header.type = PERF_RECORD_LOST; | 
|  | lost_event.header.misc = 0; | 
|  | lost_event.id          = event->id; | 
|  | lost_event.lost        = local_xchg(&buffer->lost, 0); | 
|  |  | 
|  | perf_output_put(handle, lost_event); | 
|  | perf_event__output_id_sample(event, handle, &sample_data); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | local_inc(&buffer->lost); | 
|  | perf_output_put_handle(handle); | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | void perf_output_end(struct perf_output_handle *handle) | 
|  | { | 
|  | struct perf_event *event = handle->event; | 
|  | struct perf_buffer *buffer = handle->buffer; | 
|  |  | 
|  | int wakeup_events = event->attr.wakeup_events; | 
|  |  | 
|  | if (handle->sample && wakeup_events) { | 
|  | int events = local_inc_return(&buffer->events); | 
|  | if (events >= wakeup_events) { | 
|  | local_sub(wakeup_events, &buffer->events); | 
|  | local_inc(&buffer->wakeup); | 
|  | } | 
|  | } | 
|  |  | 
|  | perf_output_put_handle(handle); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void perf_output_read_one(struct perf_output_handle *handle, | 
|  | struct perf_event *event, | 
|  | u64 enabled, u64 running) | 
|  | { | 
|  | u64 read_format = event->attr.read_format; | 
|  | u64 values[4]; | 
|  | int n = 0; | 
|  |  | 
|  | values[n++] = perf_event_count(event); | 
|  | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | 
|  | values[n++] = enabled + | 
|  | atomic64_read(&event->child_total_time_enabled); | 
|  | } | 
|  | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | 
|  | values[n++] = running + | 
|  | atomic64_read(&event->child_total_time_running); | 
|  | } | 
|  | if (read_format & PERF_FORMAT_ID) | 
|  | values[n++] = primary_event_id(event); | 
|  |  | 
|  | perf_output_copy(handle, values, n * sizeof(u64)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. | 
|  | */ | 
|  | static void perf_output_read_group(struct perf_output_handle *handle, | 
|  | struct perf_event *event, | 
|  | u64 enabled, u64 running) | 
|  | { | 
|  | struct perf_event *leader = event->group_leader, *sub; | 
|  | u64 read_format = event->attr.read_format; | 
|  | u64 values[5]; | 
|  | int n = 0; | 
|  |  | 
|  | values[n++] = 1 + leader->nr_siblings; | 
|  |  | 
|  | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | 
|  | values[n++] = enabled; | 
|  |  | 
|  | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | 
|  | values[n++] = running; | 
|  |  | 
|  | if (leader != event) | 
|  | leader->pmu->read(leader); | 
|  |  | 
|  | values[n++] = perf_event_count(leader); | 
|  | if (read_format & PERF_FORMAT_ID) | 
|  | values[n++] = primary_event_id(leader); | 
|  |  | 
|  | perf_output_copy(handle, values, n * sizeof(u64)); | 
|  |  | 
|  | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | 
|  | n = 0; | 
|  |  | 
|  | if (sub != event) | 
|  | sub->pmu->read(sub); | 
|  |  | 
|  | values[n++] = perf_event_count(sub); | 
|  | if (read_format & PERF_FORMAT_ID) | 
|  | values[n++] = primary_event_id(sub); | 
|  |  | 
|  | perf_output_copy(handle, values, n * sizeof(u64)); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ | 
|  | PERF_FORMAT_TOTAL_TIME_RUNNING) | 
|  |  | 
|  | static void perf_output_read(struct perf_output_handle *handle, | 
|  | struct perf_event *event) | 
|  | { | 
|  | u64 enabled = 0, running = 0, now, ctx_time; | 
|  | u64 read_format = event->attr.read_format; | 
|  |  | 
|  | /* | 
|  | * compute total_time_enabled, total_time_running | 
|  | * based on snapshot values taken when the event | 
|  | * was last scheduled in. | 
|  | * | 
|  | * we cannot simply called update_context_time() | 
|  | * because of locking issue as we are called in | 
|  | * NMI context | 
|  | */ | 
|  | if (read_format & PERF_FORMAT_TOTAL_TIMES) { | 
|  | now = perf_clock(); | 
|  | ctx_time = event->shadow_ctx_time + now; | 
|  | enabled = ctx_time - event->tstamp_enabled; | 
|  | running = ctx_time - event->tstamp_running; | 
|  | } | 
|  |  | 
|  | if (event->attr.read_format & PERF_FORMAT_GROUP) | 
|  | perf_output_read_group(handle, event, enabled, running); | 
|  | else | 
|  | perf_output_read_one(handle, event, enabled, running); | 
|  | } | 
|  |  | 
|  | void perf_output_sample(struct perf_output_handle *handle, | 
|  | struct perf_event_header *header, | 
|  | struct perf_sample_data *data, | 
|  | struct perf_event *event) | 
|  | { | 
|  | u64 sample_type = data->type; | 
|  |  | 
|  | perf_output_put(handle, *header); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_IP) | 
|  | perf_output_put(handle, data->ip); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_TID) | 
|  | perf_output_put(handle, data->tid_entry); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_TIME) | 
|  | perf_output_put(handle, data->time); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_ADDR) | 
|  | perf_output_put(handle, data->addr); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_ID) | 
|  | perf_output_put(handle, data->id); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_STREAM_ID) | 
|  | perf_output_put(handle, data->stream_id); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_CPU) | 
|  | perf_output_put(handle, data->cpu_entry); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_PERIOD) | 
|  | perf_output_put(handle, data->period); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_READ) | 
|  | perf_output_read(handle, event); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | 
|  | if (data->callchain) { | 
|  | int size = 1; | 
|  |  | 
|  | if (data->callchain) | 
|  | size += data->callchain->nr; | 
|  |  | 
|  | size *= sizeof(u64); | 
|  |  | 
|  | perf_output_copy(handle, data->callchain, size); | 
|  | } else { | 
|  | u64 nr = 0; | 
|  | perf_output_put(handle, nr); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_RAW) { | 
|  | if (data->raw) { | 
|  | perf_output_put(handle, data->raw->size); | 
|  | perf_output_copy(handle, data->raw->data, | 
|  | data->raw->size); | 
|  | } else { | 
|  | struct { | 
|  | u32	size; | 
|  | u32	data; | 
|  | } raw = { | 
|  | .size = sizeof(u32), | 
|  | .data = 0, | 
|  | }; | 
|  | perf_output_put(handle, raw); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void perf_prepare_sample(struct perf_event_header *header, | 
|  | struct perf_sample_data *data, | 
|  | struct perf_event *event, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | u64 sample_type = event->attr.sample_type; | 
|  |  | 
|  | header->type = PERF_RECORD_SAMPLE; | 
|  | header->size = sizeof(*header) + event->header_size; | 
|  |  | 
|  | header->misc = 0; | 
|  | header->misc |= perf_misc_flags(regs); | 
|  |  | 
|  | __perf_event_header__init_id(header, data, event); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_IP) | 
|  | data->ip = perf_instruction_pointer(regs); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | 
|  | int size = 1; | 
|  |  | 
|  | data->callchain = perf_callchain(regs); | 
|  |  | 
|  | if (data->callchain) | 
|  | size += data->callchain->nr; | 
|  |  | 
|  | header->size += size * sizeof(u64); | 
|  | } | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_RAW) { | 
|  | int size = sizeof(u32); | 
|  |  | 
|  | if (data->raw) | 
|  | size += data->raw->size; | 
|  | else | 
|  | size += sizeof(u32); | 
|  |  | 
|  | WARN_ON_ONCE(size & (sizeof(u64)-1)); | 
|  | header->size += size; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void perf_event_output(struct perf_event *event, int nmi, | 
|  | struct perf_sample_data *data, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | struct perf_output_handle handle; | 
|  | struct perf_event_header header; | 
|  |  | 
|  | /* protect the callchain buffers */ | 
|  | rcu_read_lock(); | 
|  |  | 
|  | perf_prepare_sample(&header, data, event, regs); | 
|  |  | 
|  | if (perf_output_begin(&handle, event, header.size, nmi, 1)) | 
|  | goto exit; | 
|  |  | 
|  | perf_output_sample(&handle, &header, data, event); | 
|  |  | 
|  | perf_output_end(&handle); | 
|  |  | 
|  | exit: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * read event_id | 
|  | */ | 
|  |  | 
|  | struct perf_read_event { | 
|  | struct perf_event_header	header; | 
|  |  | 
|  | u32				pid; | 
|  | u32				tid; | 
|  | }; | 
|  |  | 
|  | static void | 
|  | perf_event_read_event(struct perf_event *event, | 
|  | struct task_struct *task) | 
|  | { | 
|  | struct perf_output_handle handle; | 
|  | struct perf_sample_data sample; | 
|  | struct perf_read_event read_event = { | 
|  | .header = { | 
|  | .type = PERF_RECORD_READ, | 
|  | .misc = 0, | 
|  | .size = sizeof(read_event) + event->read_size, | 
|  | }, | 
|  | .pid = perf_event_pid(event, task), | 
|  | .tid = perf_event_tid(event, task), | 
|  | }; | 
|  | int ret; | 
|  |  | 
|  | perf_event_header__init_id(&read_event.header, &sample, event); | 
|  | ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | perf_output_put(&handle, read_event); | 
|  | perf_output_read(&handle, event); | 
|  | perf_event__output_id_sample(event, &handle, &sample); | 
|  |  | 
|  | perf_output_end(&handle); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * task tracking -- fork/exit | 
|  | * | 
|  | * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task | 
|  | */ | 
|  |  | 
|  | struct perf_task_event { | 
|  | struct task_struct		*task; | 
|  | struct perf_event_context	*task_ctx; | 
|  |  | 
|  | struct { | 
|  | struct perf_event_header	header; | 
|  |  | 
|  | u32				pid; | 
|  | u32				ppid; | 
|  | u32				tid; | 
|  | u32				ptid; | 
|  | u64				time; | 
|  | } event_id; | 
|  | }; | 
|  |  | 
|  | static void perf_event_task_output(struct perf_event *event, | 
|  | struct perf_task_event *task_event) | 
|  | { | 
|  | struct perf_output_handle handle; | 
|  | struct perf_sample_data	sample; | 
|  | struct task_struct *task = task_event->task; | 
|  | int ret, size = task_event->event_id.header.size; | 
|  |  | 
|  | perf_event_header__init_id(&task_event->event_id.header, &sample, event); | 
|  |  | 
|  | ret = perf_output_begin(&handle, event, | 
|  | task_event->event_id.header.size, 0, 0); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | task_event->event_id.pid = perf_event_pid(event, task); | 
|  | task_event->event_id.ppid = perf_event_pid(event, current); | 
|  |  | 
|  | task_event->event_id.tid = perf_event_tid(event, task); | 
|  | task_event->event_id.ptid = perf_event_tid(event, current); | 
|  |  | 
|  | perf_output_put(&handle, task_event->event_id); | 
|  |  | 
|  | perf_event__output_id_sample(event, &handle, &sample); | 
|  |  | 
|  | perf_output_end(&handle); | 
|  | out: | 
|  | task_event->event_id.header.size = size; | 
|  | } | 
|  |  | 
|  | static int perf_event_task_match(struct perf_event *event) | 
|  | { | 
|  | if (event->state < PERF_EVENT_STATE_INACTIVE) | 
|  | return 0; | 
|  |  | 
|  | if (!event_filter_match(event)) | 
|  | return 0; | 
|  |  | 
|  | if (event->attr.comm || event->attr.mmap || | 
|  | event->attr.mmap_data || event->attr.task) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void perf_event_task_ctx(struct perf_event_context *ctx, | 
|  | struct perf_task_event *task_event) | 
|  | { | 
|  | struct perf_event *event; | 
|  |  | 
|  | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | 
|  | if (perf_event_task_match(event)) | 
|  | perf_event_task_output(event, task_event); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void perf_event_task_event(struct perf_task_event *task_event) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx; | 
|  | struct perf_event_context *ctx; | 
|  | struct pmu *pmu; | 
|  | int ctxn; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(pmu, &pmus, entry) { | 
|  | cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); | 
|  | if (cpuctx->active_pmu != pmu) | 
|  | goto next; | 
|  | perf_event_task_ctx(&cpuctx->ctx, task_event); | 
|  |  | 
|  | ctx = task_event->task_ctx; | 
|  | if (!ctx) { | 
|  | ctxn = pmu->task_ctx_nr; | 
|  | if (ctxn < 0) | 
|  | goto next; | 
|  | ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); | 
|  | } | 
|  | if (ctx) | 
|  | perf_event_task_ctx(ctx, task_event); | 
|  | next: | 
|  | put_cpu_ptr(pmu->pmu_cpu_context); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void perf_event_task(struct task_struct *task, | 
|  | struct perf_event_context *task_ctx, | 
|  | int new) | 
|  | { | 
|  | struct perf_task_event task_event; | 
|  |  | 
|  | if (!atomic_read(&nr_comm_events) && | 
|  | !atomic_read(&nr_mmap_events) && | 
|  | !atomic_read(&nr_task_events)) | 
|  | return; | 
|  |  | 
|  | task_event = (struct perf_task_event){ | 
|  | .task	  = task, | 
|  | .task_ctx = task_ctx, | 
|  | .event_id    = { | 
|  | .header = { | 
|  | .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, | 
|  | .misc = 0, | 
|  | .size = sizeof(task_event.event_id), | 
|  | }, | 
|  | /* .pid  */ | 
|  | /* .ppid */ | 
|  | /* .tid  */ | 
|  | /* .ptid */ | 
|  | .time = perf_clock(), | 
|  | }, | 
|  | }; | 
|  |  | 
|  | perf_event_task_event(&task_event); | 
|  | } | 
|  |  | 
|  | void perf_event_fork(struct task_struct *task) | 
|  | { | 
|  | perf_event_task(task, NULL, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * comm tracking | 
|  | */ | 
|  |  | 
|  | struct perf_comm_event { | 
|  | struct task_struct	*task; | 
|  | char			*comm; | 
|  | int			comm_size; | 
|  |  | 
|  | struct { | 
|  | struct perf_event_header	header; | 
|  |  | 
|  | u32				pid; | 
|  | u32				tid; | 
|  | } event_id; | 
|  | }; | 
|  |  | 
|  | static void perf_event_comm_output(struct perf_event *event, | 
|  | struct perf_comm_event *comm_event) | 
|  | { | 
|  | struct perf_output_handle handle; | 
|  | struct perf_sample_data sample; | 
|  | int size = comm_event->event_id.header.size; | 
|  | int ret; | 
|  |  | 
|  | perf_event_header__init_id(&comm_event->event_id.header, &sample, event); | 
|  | ret = perf_output_begin(&handle, event, | 
|  | comm_event->event_id.header.size, 0, 0); | 
|  |  | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | comm_event->event_id.pid = perf_event_pid(event, comm_event->task); | 
|  | comm_event->event_id.tid = perf_event_tid(event, comm_event->task); | 
|  |  | 
|  | perf_output_put(&handle, comm_event->event_id); | 
|  | perf_output_copy(&handle, comm_event->comm, | 
|  | comm_event->comm_size); | 
|  |  | 
|  | perf_event__output_id_sample(event, &handle, &sample); | 
|  |  | 
|  | perf_output_end(&handle); | 
|  | out: | 
|  | comm_event->event_id.header.size = size; | 
|  | } | 
|  |  | 
|  | static int perf_event_comm_match(struct perf_event *event) | 
|  | { | 
|  | if (event->state < PERF_EVENT_STATE_INACTIVE) | 
|  | return 0; | 
|  |  | 
|  | if (!event_filter_match(event)) | 
|  | return 0; | 
|  |  | 
|  | if (event->attr.comm) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void perf_event_comm_ctx(struct perf_event_context *ctx, | 
|  | struct perf_comm_event *comm_event) | 
|  | { | 
|  | struct perf_event *event; | 
|  |  | 
|  | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | 
|  | if (perf_event_comm_match(event)) | 
|  | perf_event_comm_output(event, comm_event); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void perf_event_comm_event(struct perf_comm_event *comm_event) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx; | 
|  | struct perf_event_context *ctx; | 
|  | char comm[TASK_COMM_LEN]; | 
|  | unsigned int size; | 
|  | struct pmu *pmu; | 
|  | int ctxn; | 
|  |  | 
|  | memset(comm, 0, sizeof(comm)); | 
|  | strlcpy(comm, comm_event->task->comm, sizeof(comm)); | 
|  | size = ALIGN(strlen(comm)+1, sizeof(u64)); | 
|  |  | 
|  | comm_event->comm = comm; | 
|  | comm_event->comm_size = size; | 
|  |  | 
|  | comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(pmu, &pmus, entry) { | 
|  | cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); | 
|  | if (cpuctx->active_pmu != pmu) | 
|  | goto next; | 
|  | perf_event_comm_ctx(&cpuctx->ctx, comm_event); | 
|  |  | 
|  | ctxn = pmu->task_ctx_nr; | 
|  | if (ctxn < 0) | 
|  | goto next; | 
|  |  | 
|  | ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); | 
|  | if (ctx) | 
|  | perf_event_comm_ctx(ctx, comm_event); | 
|  | next: | 
|  | put_cpu_ptr(pmu->pmu_cpu_context); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | void perf_event_comm(struct task_struct *task) | 
|  | { | 
|  | struct perf_comm_event comm_event; | 
|  | struct perf_event_context *ctx; | 
|  | int ctxn; | 
|  |  | 
|  | for_each_task_context_nr(ctxn) { | 
|  | ctx = task->perf_event_ctxp[ctxn]; | 
|  | if (!ctx) | 
|  | continue; | 
|  |  | 
|  | perf_event_enable_on_exec(ctx); | 
|  | } | 
|  |  | 
|  | if (!atomic_read(&nr_comm_events)) | 
|  | return; | 
|  |  | 
|  | comm_event = (struct perf_comm_event){ | 
|  | .task	= task, | 
|  | /* .comm      */ | 
|  | /* .comm_size */ | 
|  | .event_id  = { | 
|  | .header = { | 
|  | .type = PERF_RECORD_COMM, | 
|  | .misc = 0, | 
|  | /* .size */ | 
|  | }, | 
|  | /* .pid */ | 
|  | /* .tid */ | 
|  | }, | 
|  | }; | 
|  |  | 
|  | perf_event_comm_event(&comm_event); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mmap tracking | 
|  | */ | 
|  |  | 
|  | struct perf_mmap_event { | 
|  | struct vm_area_struct	*vma; | 
|  |  | 
|  | const char		*file_name; | 
|  | int			file_size; | 
|  |  | 
|  | struct { | 
|  | struct perf_event_header	header; | 
|  |  | 
|  | u32				pid; | 
|  | u32				tid; | 
|  | u64				start; | 
|  | u64				len; | 
|  | u64				pgoff; | 
|  | } event_id; | 
|  | }; | 
|  |  | 
|  | static void perf_event_mmap_output(struct perf_event *event, | 
|  | struct perf_mmap_event *mmap_event) | 
|  | { | 
|  | struct perf_output_handle handle; | 
|  | struct perf_sample_data sample; | 
|  | int size = mmap_event->event_id.header.size; | 
|  | int ret; | 
|  |  | 
|  | perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); | 
|  | ret = perf_output_begin(&handle, event, | 
|  | mmap_event->event_id.header.size, 0, 0); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | mmap_event->event_id.pid = perf_event_pid(event, current); | 
|  | mmap_event->event_id.tid = perf_event_tid(event, current); | 
|  |  | 
|  | perf_output_put(&handle, mmap_event->event_id); | 
|  | perf_output_copy(&handle, mmap_event->file_name, | 
|  | mmap_event->file_size); | 
|  |  | 
|  | perf_event__output_id_sample(event, &handle, &sample); | 
|  |  | 
|  | perf_output_end(&handle); | 
|  | out: | 
|  | mmap_event->event_id.header.size = size; | 
|  | } | 
|  |  | 
|  | static int perf_event_mmap_match(struct perf_event *event, | 
|  | struct perf_mmap_event *mmap_event, | 
|  | int executable) | 
|  | { | 
|  | if (event->state < PERF_EVENT_STATE_INACTIVE) | 
|  | return 0; | 
|  |  | 
|  | if (!event_filter_match(event)) | 
|  | return 0; | 
|  |  | 
|  | if ((!executable && event->attr.mmap_data) || | 
|  | (executable && event->attr.mmap)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void perf_event_mmap_ctx(struct perf_event_context *ctx, | 
|  | struct perf_mmap_event *mmap_event, | 
|  | int executable) | 
|  | { | 
|  | struct perf_event *event; | 
|  |  | 
|  | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | 
|  | if (perf_event_mmap_match(event, mmap_event, executable)) | 
|  | perf_event_mmap_output(event, mmap_event); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx; | 
|  | struct perf_event_context *ctx; | 
|  | struct vm_area_struct *vma = mmap_event->vma; | 
|  | struct file *file = vma->vm_file; | 
|  | unsigned int size; | 
|  | char tmp[16]; | 
|  | char *buf = NULL; | 
|  | const char *name; | 
|  | struct pmu *pmu; | 
|  | int ctxn; | 
|  |  | 
|  | memset(tmp, 0, sizeof(tmp)); | 
|  |  | 
|  | if (file) { | 
|  | /* | 
|  | * d_path works from the end of the buffer backwards, so we | 
|  | * need to add enough zero bytes after the string to handle | 
|  | * the 64bit alignment we do later. | 
|  | */ | 
|  | buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); | 
|  | if (!buf) { | 
|  | name = strncpy(tmp, "//enomem", sizeof(tmp)); | 
|  | goto got_name; | 
|  | } | 
|  | name = d_path(&file->f_path, buf, PATH_MAX); | 
|  | if (IS_ERR(name)) { | 
|  | name = strncpy(tmp, "//toolong", sizeof(tmp)); | 
|  | goto got_name; | 
|  | } | 
|  | } else { | 
|  | if (arch_vma_name(mmap_event->vma)) { | 
|  | name = strncpy(tmp, arch_vma_name(mmap_event->vma), | 
|  | sizeof(tmp)); | 
|  | goto got_name; | 
|  | } | 
|  |  | 
|  | if (!vma->vm_mm) { | 
|  | name = strncpy(tmp, "[vdso]", sizeof(tmp)); | 
|  | goto got_name; | 
|  | } else if (vma->vm_start <= vma->vm_mm->start_brk && | 
|  | vma->vm_end >= vma->vm_mm->brk) { | 
|  | name = strncpy(tmp, "[heap]", sizeof(tmp)); | 
|  | goto got_name; | 
|  | } else if (vma->vm_start <= vma->vm_mm->start_stack && | 
|  | vma->vm_end >= vma->vm_mm->start_stack) { | 
|  | name = strncpy(tmp, "[stack]", sizeof(tmp)); | 
|  | goto got_name; | 
|  | } | 
|  |  | 
|  | name = strncpy(tmp, "//anon", sizeof(tmp)); | 
|  | goto got_name; | 
|  | } | 
|  |  | 
|  | got_name: | 
|  | size = ALIGN(strlen(name)+1, sizeof(u64)); | 
|  |  | 
|  | mmap_event->file_name = name; | 
|  | mmap_event->file_size = size; | 
|  |  | 
|  | mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(pmu, &pmus, entry) { | 
|  | cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); | 
|  | if (cpuctx->active_pmu != pmu) | 
|  | goto next; | 
|  | perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, | 
|  | vma->vm_flags & VM_EXEC); | 
|  |  | 
|  | ctxn = pmu->task_ctx_nr; | 
|  | if (ctxn < 0) | 
|  | goto next; | 
|  |  | 
|  | ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); | 
|  | if (ctx) { | 
|  | perf_event_mmap_ctx(ctx, mmap_event, | 
|  | vma->vm_flags & VM_EXEC); | 
|  | } | 
|  | next: | 
|  | put_cpu_ptr(pmu->pmu_cpu_context); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | kfree(buf); | 
|  | } | 
|  |  | 
|  | void perf_event_mmap(struct vm_area_struct *vma) | 
|  | { | 
|  | struct perf_mmap_event mmap_event; | 
|  |  | 
|  | if (!atomic_read(&nr_mmap_events)) | 
|  | return; | 
|  |  | 
|  | mmap_event = (struct perf_mmap_event){ | 
|  | .vma	= vma, | 
|  | /* .file_name */ | 
|  | /* .file_size */ | 
|  | .event_id  = { | 
|  | .header = { | 
|  | .type = PERF_RECORD_MMAP, | 
|  | .misc = PERF_RECORD_MISC_USER, | 
|  | /* .size */ | 
|  | }, | 
|  | /* .pid */ | 
|  | /* .tid */ | 
|  | .start  = vma->vm_start, | 
|  | .len    = vma->vm_end - vma->vm_start, | 
|  | .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | perf_event_mmap_event(&mmap_event); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IRQ throttle logging | 
|  | */ | 
|  |  | 
|  | static void perf_log_throttle(struct perf_event *event, int enable) | 
|  | { | 
|  | struct perf_output_handle handle; | 
|  | struct perf_sample_data sample; | 
|  | int ret; | 
|  |  | 
|  | struct { | 
|  | struct perf_event_header	header; | 
|  | u64				time; | 
|  | u64				id; | 
|  | u64				stream_id; | 
|  | } throttle_event = { | 
|  | .header = { | 
|  | .type = PERF_RECORD_THROTTLE, | 
|  | .misc = 0, | 
|  | .size = sizeof(throttle_event), | 
|  | }, | 
|  | .time		= perf_clock(), | 
|  | .id		= primary_event_id(event), | 
|  | .stream_id	= event->id, | 
|  | }; | 
|  |  | 
|  | if (enable) | 
|  | throttle_event.header.type = PERF_RECORD_UNTHROTTLE; | 
|  |  | 
|  | perf_event_header__init_id(&throttle_event.header, &sample, event); | 
|  |  | 
|  | ret = perf_output_begin(&handle, event, | 
|  | throttle_event.header.size, 1, 0); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | perf_output_put(&handle, throttle_event); | 
|  | perf_event__output_id_sample(event, &handle, &sample); | 
|  | perf_output_end(&handle); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generic event overflow handling, sampling. | 
|  | */ | 
|  |  | 
|  | static int __perf_event_overflow(struct perf_event *event, int nmi, | 
|  | int throttle, struct perf_sample_data *data, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | int events = atomic_read(&event->event_limit); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * Non-sampling counters might still use the PMI to fold short | 
|  | * hardware counters, ignore those. | 
|  | */ | 
|  | if (unlikely(!is_sampling_event(event))) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(hwc->interrupts >= max_samples_per_tick)) { | 
|  | if (throttle) { | 
|  | hwc->interrupts = MAX_INTERRUPTS; | 
|  | perf_log_throttle(event, 0); | 
|  | ret = 1; | 
|  | } | 
|  | } else | 
|  | hwc->interrupts++; | 
|  |  | 
|  | if (event->attr.freq) { | 
|  | u64 now = perf_clock(); | 
|  | s64 delta = now - hwc->freq_time_stamp; | 
|  |  | 
|  | hwc->freq_time_stamp = now; | 
|  |  | 
|  | if (delta > 0 && delta < 2*TICK_NSEC) | 
|  | perf_adjust_period(event, delta, hwc->last_period); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * XXX event_limit might not quite work as expected on inherited | 
|  | * events | 
|  | */ | 
|  |  | 
|  | event->pending_kill = POLL_IN; | 
|  | if (events && atomic_dec_and_test(&event->event_limit)) { | 
|  | ret = 1; | 
|  | event->pending_kill = POLL_HUP; | 
|  | if (nmi) { | 
|  | event->pending_disable = 1; | 
|  | irq_work_queue(&event->pending); | 
|  | } else | 
|  | perf_event_disable(event); | 
|  | } | 
|  |  | 
|  | if (event->overflow_handler) | 
|  | event->overflow_handler(event, nmi, data, regs); | 
|  | else | 
|  | perf_event_output(event, nmi, data, regs); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int perf_event_overflow(struct perf_event *event, int nmi, | 
|  | struct perf_sample_data *data, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | return __perf_event_overflow(event, nmi, 1, data, regs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generic software event infrastructure | 
|  | */ | 
|  |  | 
|  | struct swevent_htable { | 
|  | struct swevent_hlist		*swevent_hlist; | 
|  | struct mutex			hlist_mutex; | 
|  | int				hlist_refcount; | 
|  |  | 
|  | /* Recursion avoidance in each contexts */ | 
|  | int				recursion[PERF_NR_CONTEXTS]; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); | 
|  |  | 
|  | /* | 
|  | * We directly increment event->count and keep a second value in | 
|  | * event->hw.period_left to count intervals. This period event | 
|  | * is kept in the range [-sample_period, 0] so that we can use the | 
|  | * sign as trigger. | 
|  | */ | 
|  |  | 
|  | static u64 perf_swevent_set_period(struct perf_event *event) | 
|  | { | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | u64 period = hwc->last_period; | 
|  | u64 nr, offset; | 
|  | s64 old, val; | 
|  |  | 
|  | hwc->last_period = hwc->sample_period; | 
|  |  | 
|  | again: | 
|  | old = val = local64_read(&hwc->period_left); | 
|  | if (val < 0) | 
|  | return 0; | 
|  |  | 
|  | nr = div64_u64(period + val, period); | 
|  | offset = nr * period; | 
|  | val -= offset; | 
|  | if (local64_cmpxchg(&hwc->period_left, old, val) != old) | 
|  | goto again; | 
|  |  | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | static void perf_swevent_overflow(struct perf_event *event, u64 overflow, | 
|  | int nmi, struct perf_sample_data *data, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | int throttle = 0; | 
|  |  | 
|  | data->period = event->hw.last_period; | 
|  | if (!overflow) | 
|  | overflow = perf_swevent_set_period(event); | 
|  |  | 
|  | if (hwc->interrupts == MAX_INTERRUPTS) | 
|  | return; | 
|  |  | 
|  | for (; overflow; overflow--) { | 
|  | if (__perf_event_overflow(event, nmi, throttle, | 
|  | data, regs)) { | 
|  | /* | 
|  | * We inhibit the overflow from happening when | 
|  | * hwc->interrupts == MAX_INTERRUPTS. | 
|  | */ | 
|  | break; | 
|  | } | 
|  | throttle = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void perf_swevent_event(struct perf_event *event, u64 nr, | 
|  | int nmi, struct perf_sample_data *data, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  |  | 
|  | local64_add(nr, &event->count); | 
|  |  | 
|  | if (!regs) | 
|  | return; | 
|  |  | 
|  | if (!is_sampling_event(event)) | 
|  | return; | 
|  |  | 
|  | if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) | 
|  | return perf_swevent_overflow(event, 1, nmi, data, regs); | 
|  |  | 
|  | if (local64_add_negative(nr, &hwc->period_left)) | 
|  | return; | 
|  |  | 
|  | perf_swevent_overflow(event, 0, nmi, data, regs); | 
|  | } | 
|  |  | 
|  | static int perf_exclude_event(struct perf_event *event, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | if (event->hw.state & PERF_HES_STOPPED) | 
|  | return 1; | 
|  |  | 
|  | if (regs) { | 
|  | if (event->attr.exclude_user && user_mode(regs)) | 
|  | return 1; | 
|  |  | 
|  | if (event->attr.exclude_kernel && !user_mode(regs)) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int perf_swevent_match(struct perf_event *event, | 
|  | enum perf_type_id type, | 
|  | u32 event_id, | 
|  | struct perf_sample_data *data, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | if (event->attr.type != type) | 
|  | return 0; | 
|  |  | 
|  | if (event->attr.config != event_id) | 
|  | return 0; | 
|  |  | 
|  | if (perf_exclude_event(event, regs)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline u64 swevent_hash(u64 type, u32 event_id) | 
|  | { | 
|  | u64 val = event_id | (type << 32); | 
|  |  | 
|  | return hash_64(val, SWEVENT_HLIST_BITS); | 
|  | } | 
|  |  | 
|  | static inline struct hlist_head * | 
|  | __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) | 
|  | { | 
|  | u64 hash = swevent_hash(type, event_id); | 
|  |  | 
|  | return &hlist->heads[hash]; | 
|  | } | 
|  |  | 
|  | /* For the read side: events when they trigger */ | 
|  | static inline struct hlist_head * | 
|  | find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) | 
|  | { | 
|  | struct swevent_hlist *hlist; | 
|  |  | 
|  | hlist = rcu_dereference(swhash->swevent_hlist); | 
|  | if (!hlist) | 
|  | return NULL; | 
|  |  | 
|  | return __find_swevent_head(hlist, type, event_id); | 
|  | } | 
|  |  | 
|  | /* For the event head insertion and removal in the hlist */ | 
|  | static inline struct hlist_head * | 
|  | find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) | 
|  | { | 
|  | struct swevent_hlist *hlist; | 
|  | u32 event_id = event->attr.config; | 
|  | u64 type = event->attr.type; | 
|  |  | 
|  | /* | 
|  | * Event scheduling is always serialized against hlist allocation | 
|  | * and release. Which makes the protected version suitable here. | 
|  | * The context lock guarantees that. | 
|  | */ | 
|  | hlist = rcu_dereference_protected(swhash->swevent_hlist, | 
|  | lockdep_is_held(&event->ctx->lock)); | 
|  | if (!hlist) | 
|  | return NULL; | 
|  |  | 
|  | return __find_swevent_head(hlist, type, event_id); | 
|  | } | 
|  |  | 
|  | static void do_perf_sw_event(enum perf_type_id type, u32 event_id, | 
|  | u64 nr, int nmi, | 
|  | struct perf_sample_data *data, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); | 
|  | struct perf_event *event; | 
|  | struct hlist_node *node; | 
|  | struct hlist_head *head; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | head = find_swevent_head_rcu(swhash, type, event_id); | 
|  | if (!head) | 
|  | goto end; | 
|  |  | 
|  | hlist_for_each_entry_rcu(event, node, head, hlist_entry) { | 
|  | if (perf_swevent_match(event, type, event_id, data, regs)) | 
|  | perf_swevent_event(event, nr, nmi, data, regs); | 
|  | } | 
|  | end: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | int perf_swevent_get_recursion_context(void) | 
|  | { | 
|  | struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); | 
|  |  | 
|  | return get_recursion_context(swhash->recursion); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); | 
|  |  | 
|  | inline void perf_swevent_put_recursion_context(int rctx) | 
|  | { | 
|  | struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); | 
|  |  | 
|  | put_recursion_context(swhash->recursion, rctx); | 
|  | } | 
|  |  | 
|  | void __perf_sw_event(u32 event_id, u64 nr, int nmi, | 
|  | struct pt_regs *regs, u64 addr) | 
|  | { | 
|  | struct perf_sample_data data; | 
|  | int rctx; | 
|  |  | 
|  | preempt_disable_notrace(); | 
|  | rctx = perf_swevent_get_recursion_context(); | 
|  | if (rctx < 0) | 
|  | return; | 
|  |  | 
|  | perf_sample_data_init(&data, addr); | 
|  |  | 
|  | do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs); | 
|  |  | 
|  | perf_swevent_put_recursion_context(rctx); | 
|  | preempt_enable_notrace(); | 
|  | } | 
|  |  | 
|  | static void perf_swevent_read(struct perf_event *event) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int perf_swevent_add(struct perf_event *event, int flags) | 
|  | { | 
|  | struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | struct hlist_head *head; | 
|  |  | 
|  | if (is_sampling_event(event)) { | 
|  | hwc->last_period = hwc->sample_period; | 
|  | perf_swevent_set_period(event); | 
|  | } | 
|  |  | 
|  | hwc->state = !(flags & PERF_EF_START); | 
|  |  | 
|  | head = find_swevent_head(swhash, event); | 
|  | if (WARN_ON_ONCE(!head)) | 
|  | return -EINVAL; | 
|  |  | 
|  | hlist_add_head_rcu(&event->hlist_entry, head); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void perf_swevent_del(struct perf_event *event, int flags) | 
|  | { | 
|  | hlist_del_rcu(&event->hlist_entry); | 
|  | } | 
|  |  | 
|  | static void perf_swevent_start(struct perf_event *event, int flags) | 
|  | { | 
|  | event->hw.state = 0; | 
|  | } | 
|  |  | 
|  | static void perf_swevent_stop(struct perf_event *event, int flags) | 
|  | { | 
|  | event->hw.state = PERF_HES_STOPPED; | 
|  | } | 
|  |  | 
|  | /* Deref the hlist from the update side */ | 
|  | static inline struct swevent_hlist * | 
|  | swevent_hlist_deref(struct swevent_htable *swhash) | 
|  | { | 
|  | return rcu_dereference_protected(swhash->swevent_hlist, | 
|  | lockdep_is_held(&swhash->hlist_mutex)); | 
|  | } | 
|  |  | 
|  | static void swevent_hlist_release_rcu(struct rcu_head *rcu_head) | 
|  | { | 
|  | struct swevent_hlist *hlist; | 
|  |  | 
|  | hlist = container_of(rcu_head, struct swevent_hlist, rcu_head); | 
|  | kfree(hlist); | 
|  | } | 
|  |  | 
|  | static void swevent_hlist_release(struct swevent_htable *swhash) | 
|  | { | 
|  | struct swevent_hlist *hlist = swevent_hlist_deref(swhash); | 
|  |  | 
|  | if (!hlist) | 
|  | return; | 
|  |  | 
|  | rcu_assign_pointer(swhash->swevent_hlist, NULL); | 
|  | call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu); | 
|  | } | 
|  |  | 
|  | static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) | 
|  | { | 
|  | struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); | 
|  |  | 
|  | mutex_lock(&swhash->hlist_mutex); | 
|  |  | 
|  | if (!--swhash->hlist_refcount) | 
|  | swevent_hlist_release(swhash); | 
|  |  | 
|  | mutex_unlock(&swhash->hlist_mutex); | 
|  | } | 
|  |  | 
|  | static void swevent_hlist_put(struct perf_event *event) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | if (event->cpu != -1) { | 
|  | swevent_hlist_put_cpu(event, event->cpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | swevent_hlist_put_cpu(event, cpu); | 
|  | } | 
|  |  | 
|  | static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) | 
|  | { | 
|  | struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); | 
|  | int err = 0; | 
|  |  | 
|  | mutex_lock(&swhash->hlist_mutex); | 
|  |  | 
|  | if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { | 
|  | struct swevent_hlist *hlist; | 
|  |  | 
|  | hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); | 
|  | if (!hlist) { | 
|  | err = -ENOMEM; | 
|  | goto exit; | 
|  | } | 
|  | rcu_assign_pointer(swhash->swevent_hlist, hlist); | 
|  | } | 
|  | swhash->hlist_refcount++; | 
|  | exit: | 
|  | mutex_unlock(&swhash->hlist_mutex); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int swevent_hlist_get(struct perf_event *event) | 
|  | { | 
|  | int err; | 
|  | int cpu, failed_cpu; | 
|  |  | 
|  | if (event->cpu != -1) | 
|  | return swevent_hlist_get_cpu(event, event->cpu); | 
|  |  | 
|  | get_online_cpus(); | 
|  | for_each_possible_cpu(cpu) { | 
|  | err = swevent_hlist_get_cpu(event, cpu); | 
|  | if (err) { | 
|  | failed_cpu = cpu; | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  | put_online_cpus(); | 
|  |  | 
|  | return 0; | 
|  | fail: | 
|  | for_each_possible_cpu(cpu) { | 
|  | if (cpu == failed_cpu) | 
|  | break; | 
|  | swevent_hlist_put_cpu(event, cpu); | 
|  | } | 
|  |  | 
|  | put_online_cpus(); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; | 
|  |  | 
|  | static void sw_perf_event_destroy(struct perf_event *event) | 
|  | { | 
|  | u64 event_id = event->attr.config; | 
|  |  | 
|  | WARN_ON(event->parent); | 
|  |  | 
|  | jump_label_dec(&perf_swevent_enabled[event_id]); | 
|  | swevent_hlist_put(event); | 
|  | } | 
|  |  | 
|  | static int perf_swevent_init(struct perf_event *event) | 
|  | { | 
|  | int event_id = event->attr.config; | 
|  |  | 
|  | if (event->attr.type != PERF_TYPE_SOFTWARE) | 
|  | return -ENOENT; | 
|  |  | 
|  | switch (event_id) { | 
|  | case PERF_COUNT_SW_CPU_CLOCK: | 
|  | case PERF_COUNT_SW_TASK_CLOCK: | 
|  | return -ENOENT; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (event_id >= PERF_COUNT_SW_MAX) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (!event->parent) { | 
|  | int err; | 
|  |  | 
|  | err = swevent_hlist_get(event); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | jump_label_inc(&perf_swevent_enabled[event_id]); | 
|  | event->destroy = sw_perf_event_destroy; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct pmu perf_swevent = { | 
|  | .task_ctx_nr	= perf_sw_context, | 
|  |  | 
|  | .event_init	= perf_swevent_init, | 
|  | .add		= perf_swevent_add, | 
|  | .del		= perf_swevent_del, | 
|  | .start		= perf_swevent_start, | 
|  | .stop		= perf_swevent_stop, | 
|  | .read		= perf_swevent_read, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_EVENT_TRACING | 
|  |  | 
|  | static int perf_tp_filter_match(struct perf_event *event, | 
|  | struct perf_sample_data *data) | 
|  | { | 
|  | void *record = data->raw->data; | 
|  |  | 
|  | if (likely(!event->filter) || filter_match_preds(event->filter, record)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int perf_tp_event_match(struct perf_event *event, | 
|  | struct perf_sample_data *data, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | if (event->hw.state & PERF_HES_STOPPED) | 
|  | return 0; | 
|  | /* | 
|  | * All tracepoints are from kernel-space. | 
|  | */ | 
|  | if (event->attr.exclude_kernel) | 
|  | return 0; | 
|  |  | 
|  | if (!perf_tp_filter_match(event, data)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, | 
|  | struct pt_regs *regs, struct hlist_head *head, int rctx) | 
|  | { | 
|  | struct perf_sample_data data; | 
|  | struct perf_event *event; | 
|  | struct hlist_node *node; | 
|  |  | 
|  | struct perf_raw_record raw = { | 
|  | .size = entry_size, | 
|  | .data = record, | 
|  | }; | 
|  |  | 
|  | perf_sample_data_init(&data, addr); | 
|  | data.raw = &raw; | 
|  |  | 
|  | hlist_for_each_entry_rcu(event, node, head, hlist_entry) { | 
|  | if (perf_tp_event_match(event, &data, regs)) | 
|  | perf_swevent_event(event, count, 1, &data, regs); | 
|  | } | 
|  |  | 
|  | perf_swevent_put_recursion_context(rctx); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(perf_tp_event); | 
|  |  | 
|  | static void tp_perf_event_destroy(struct perf_event *event) | 
|  | { | 
|  | perf_trace_destroy(event); | 
|  | } | 
|  |  | 
|  | static int perf_tp_event_init(struct perf_event *event) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (event->attr.type != PERF_TYPE_TRACEPOINT) | 
|  | return -ENOENT; | 
|  |  | 
|  | err = perf_trace_init(event); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | event->destroy = tp_perf_event_destroy; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct pmu perf_tracepoint = { | 
|  | .task_ctx_nr	= perf_sw_context, | 
|  |  | 
|  | .event_init	= perf_tp_event_init, | 
|  | .add		= perf_trace_add, | 
|  | .del		= perf_trace_del, | 
|  | .start		= perf_swevent_start, | 
|  | .stop		= perf_swevent_stop, | 
|  | .read		= perf_swevent_read, | 
|  | }; | 
|  |  | 
|  | static inline void perf_tp_register(void) | 
|  | { | 
|  | perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); | 
|  | } | 
|  |  | 
|  | static int perf_event_set_filter(struct perf_event *event, void __user *arg) | 
|  | { | 
|  | char *filter_str; | 
|  | int ret; | 
|  |  | 
|  | if (event->attr.type != PERF_TYPE_TRACEPOINT) | 
|  | return -EINVAL; | 
|  |  | 
|  | filter_str = strndup_user(arg, PAGE_SIZE); | 
|  | if (IS_ERR(filter_str)) | 
|  | return PTR_ERR(filter_str); | 
|  |  | 
|  | ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); | 
|  |  | 
|  | kfree(filter_str); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void perf_event_free_filter(struct perf_event *event) | 
|  | { | 
|  | ftrace_profile_free_filter(event); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline void perf_tp_register(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int perf_event_set_filter(struct perf_event *event, void __user *arg) | 
|  | { | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | static void perf_event_free_filter(struct perf_event *event) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_EVENT_TRACING */ | 
|  |  | 
|  | #ifdef CONFIG_HAVE_HW_BREAKPOINT | 
|  | void perf_bp_event(struct perf_event *bp, void *data) | 
|  | { | 
|  | struct perf_sample_data sample; | 
|  | struct pt_regs *regs = data; | 
|  |  | 
|  | perf_sample_data_init(&sample, bp->attr.bp_addr); | 
|  |  | 
|  | if (!bp->hw.state && !perf_exclude_event(bp, regs)) | 
|  | perf_swevent_event(bp, 1, 1, &sample, regs); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * hrtimer based swevent callback | 
|  | */ | 
|  |  | 
|  | static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) | 
|  | { | 
|  | enum hrtimer_restart ret = HRTIMER_RESTART; | 
|  | struct perf_sample_data data; | 
|  | struct pt_regs *regs; | 
|  | struct perf_event *event; | 
|  | u64 period; | 
|  |  | 
|  | event = container_of(hrtimer, struct perf_event, hw.hrtimer); | 
|  |  | 
|  | if (event->state != PERF_EVENT_STATE_ACTIVE) | 
|  | return HRTIMER_NORESTART; | 
|  |  | 
|  | event->pmu->read(event); | 
|  |  | 
|  | perf_sample_data_init(&data, 0); | 
|  | data.period = event->hw.last_period; | 
|  | regs = get_irq_regs(); | 
|  |  | 
|  | if (regs && !perf_exclude_event(event, regs)) { | 
|  | if (!(event->attr.exclude_idle && current->pid == 0)) | 
|  | if (perf_event_overflow(event, 0, &data, regs)) | 
|  | ret = HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | period = max_t(u64, 10000, event->hw.sample_period); | 
|  | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void perf_swevent_start_hrtimer(struct perf_event *event) | 
|  | { | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | s64 period; | 
|  |  | 
|  | if (!is_sampling_event(event)) | 
|  | return; | 
|  |  | 
|  | period = local64_read(&hwc->period_left); | 
|  | if (period) { | 
|  | if (period < 0) | 
|  | period = 10000; | 
|  |  | 
|  | local64_set(&hwc->period_left, 0); | 
|  | } else { | 
|  | period = max_t(u64, 10000, hwc->sample_period); | 
|  | } | 
|  | __hrtimer_start_range_ns(&hwc->hrtimer, | 
|  | ns_to_ktime(period), 0, | 
|  | HRTIMER_MODE_REL_PINNED, 0); | 
|  | } | 
|  |  | 
|  | static void perf_swevent_cancel_hrtimer(struct perf_event *event) | 
|  | { | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  |  | 
|  | if (is_sampling_event(event)) { | 
|  | ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); | 
|  | local64_set(&hwc->period_left, ktime_to_ns(remaining)); | 
|  |  | 
|  | hrtimer_cancel(&hwc->hrtimer); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void perf_swevent_init_hrtimer(struct perf_event *event) | 
|  | { | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  |  | 
|  | if (!is_sampling_event(event)) | 
|  | return; | 
|  |  | 
|  | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
|  | hwc->hrtimer.function = perf_swevent_hrtimer; | 
|  |  | 
|  | /* | 
|  | * Since hrtimers have a fixed rate, we can do a static freq->period | 
|  | * mapping and avoid the whole period adjust feedback stuff. | 
|  | */ | 
|  | if (event->attr.freq) { | 
|  | long freq = event->attr.sample_freq; | 
|  |  | 
|  | event->attr.sample_period = NSEC_PER_SEC / freq; | 
|  | hwc->sample_period = event->attr.sample_period; | 
|  | local64_set(&hwc->period_left, hwc->sample_period); | 
|  | event->attr.freq = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Software event: cpu wall time clock | 
|  | */ | 
|  |  | 
|  | static void cpu_clock_event_update(struct perf_event *event) | 
|  | { | 
|  | s64 prev; | 
|  | u64 now; | 
|  |  | 
|  | now = local_clock(); | 
|  | prev = local64_xchg(&event->hw.prev_count, now); | 
|  | local64_add(now - prev, &event->count); | 
|  | } | 
|  |  | 
|  | static void cpu_clock_event_start(struct perf_event *event, int flags) | 
|  | { | 
|  | local64_set(&event->hw.prev_count, local_clock()); | 
|  | perf_swevent_start_hrtimer(event); | 
|  | } | 
|  |  | 
|  | static void cpu_clock_event_stop(struct perf_event *event, int flags) | 
|  | { | 
|  | perf_swevent_cancel_hrtimer(event); | 
|  | cpu_clock_event_update(event); | 
|  | } | 
|  |  | 
|  | static int cpu_clock_event_add(struct perf_event *event, int flags) | 
|  | { | 
|  | if (flags & PERF_EF_START) | 
|  | cpu_clock_event_start(event, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cpu_clock_event_del(struct perf_event *event, int flags) | 
|  | { | 
|  | cpu_clock_event_stop(event, flags); | 
|  | } | 
|  |  | 
|  | static void cpu_clock_event_read(struct perf_event *event) | 
|  | { | 
|  | cpu_clock_event_update(event); | 
|  | } | 
|  |  | 
|  | static int cpu_clock_event_init(struct perf_event *event) | 
|  | { | 
|  | if (event->attr.type != PERF_TYPE_SOFTWARE) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) | 
|  | return -ENOENT; | 
|  |  | 
|  | perf_swevent_init_hrtimer(event); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct pmu perf_cpu_clock = { | 
|  | .task_ctx_nr	= perf_sw_context, | 
|  |  | 
|  | .event_init	= cpu_clock_event_init, | 
|  | .add		= cpu_clock_event_add, | 
|  | .del		= cpu_clock_event_del, | 
|  | .start		= cpu_clock_event_start, | 
|  | .stop		= cpu_clock_event_stop, | 
|  | .read		= cpu_clock_event_read, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Software event: task time clock | 
|  | */ | 
|  |  | 
|  | static void task_clock_event_update(struct perf_event *event, u64 now) | 
|  | { | 
|  | u64 prev; | 
|  | s64 delta; | 
|  |  | 
|  | prev = local64_xchg(&event->hw.prev_count, now); | 
|  | delta = now - prev; | 
|  | local64_add(delta, &event->count); | 
|  | } | 
|  |  | 
|  | static void task_clock_event_start(struct perf_event *event, int flags) | 
|  | { | 
|  | local64_set(&event->hw.prev_count, event->ctx->time); | 
|  | perf_swevent_start_hrtimer(event); | 
|  | } | 
|  |  | 
|  | static void task_clock_event_stop(struct perf_event *event, int flags) | 
|  | { | 
|  | perf_swevent_cancel_hrtimer(event); | 
|  | task_clock_event_update(event, event->ctx->time); | 
|  | } | 
|  |  | 
|  | static int task_clock_event_add(struct perf_event *event, int flags) | 
|  | { | 
|  | if (flags & PERF_EF_START) | 
|  | task_clock_event_start(event, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void task_clock_event_del(struct perf_event *event, int flags) | 
|  | { | 
|  | task_clock_event_stop(event, PERF_EF_UPDATE); | 
|  | } | 
|  |  | 
|  | static void task_clock_event_read(struct perf_event *event) | 
|  | { | 
|  | u64 now = perf_clock(); | 
|  | u64 delta = now - event->ctx->timestamp; | 
|  | u64 time = event->ctx->time + delta; | 
|  |  | 
|  | task_clock_event_update(event, time); | 
|  | } | 
|  |  | 
|  | static int task_clock_event_init(struct perf_event *event) | 
|  | { | 
|  | if (event->attr.type != PERF_TYPE_SOFTWARE) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) | 
|  | return -ENOENT; | 
|  |  | 
|  | perf_swevent_init_hrtimer(event); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct pmu perf_task_clock = { | 
|  | .task_ctx_nr	= perf_sw_context, | 
|  |  | 
|  | .event_init	= task_clock_event_init, | 
|  | .add		= task_clock_event_add, | 
|  | .del		= task_clock_event_del, | 
|  | .start		= task_clock_event_start, | 
|  | .stop		= task_clock_event_stop, | 
|  | .read		= task_clock_event_read, | 
|  | }; | 
|  |  | 
|  | static void perf_pmu_nop_void(struct pmu *pmu) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int perf_pmu_nop_int(struct pmu *pmu) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void perf_pmu_start_txn(struct pmu *pmu) | 
|  | { | 
|  | perf_pmu_disable(pmu); | 
|  | } | 
|  |  | 
|  | static int perf_pmu_commit_txn(struct pmu *pmu) | 
|  | { | 
|  | perf_pmu_enable(pmu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void perf_pmu_cancel_txn(struct pmu *pmu) | 
|  | { | 
|  | perf_pmu_enable(pmu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensures all contexts with the same task_ctx_nr have the same | 
|  | * pmu_cpu_context too. | 
|  | */ | 
|  | static void *find_pmu_context(int ctxn) | 
|  | { | 
|  | struct pmu *pmu; | 
|  |  | 
|  | if (ctxn < 0) | 
|  | return NULL; | 
|  |  | 
|  | list_for_each_entry(pmu, &pmus, entry) { | 
|  | if (pmu->task_ctx_nr == ctxn) | 
|  | return pmu->pmu_cpu_context; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct perf_cpu_context *cpuctx; | 
|  |  | 
|  | cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); | 
|  |  | 
|  | if (cpuctx->active_pmu == old_pmu) | 
|  | cpuctx->active_pmu = pmu; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void free_pmu_context(struct pmu *pmu) | 
|  | { | 
|  | struct pmu *i; | 
|  |  | 
|  | mutex_lock(&pmus_lock); | 
|  | /* | 
|  | * Like a real lame refcount. | 
|  | */ | 
|  | list_for_each_entry(i, &pmus, entry) { | 
|  | if (i->pmu_cpu_context == pmu->pmu_cpu_context) { | 
|  | update_pmu_context(i, pmu); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | free_percpu(pmu->pmu_cpu_context); | 
|  | out: | 
|  | mutex_unlock(&pmus_lock); | 
|  | } | 
|  | static struct idr pmu_idr; | 
|  |  | 
|  | static ssize_t | 
|  | type_show(struct device *dev, struct device_attribute *attr, char *page) | 
|  | { | 
|  | struct pmu *pmu = dev_get_drvdata(dev); | 
|  |  | 
|  | return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); | 
|  | } | 
|  |  | 
|  | static struct device_attribute pmu_dev_attrs[] = { | 
|  | __ATTR_RO(type), | 
|  | __ATTR_NULL, | 
|  | }; | 
|  |  | 
|  | static int pmu_bus_running; | 
|  | static struct bus_type pmu_bus = { | 
|  | .name		= "event_source", | 
|  | .dev_attrs	= pmu_dev_attrs, | 
|  | }; | 
|  |  | 
|  | static void pmu_dev_release(struct device *dev) | 
|  | { | 
|  | kfree(dev); | 
|  | } | 
|  |  | 
|  | static int pmu_dev_alloc(struct pmu *pmu) | 
|  | { | 
|  | int ret = -ENOMEM; | 
|  |  | 
|  | pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); | 
|  | if (!pmu->dev) | 
|  | goto out; | 
|  |  | 
|  | device_initialize(pmu->dev); | 
|  | ret = dev_set_name(pmu->dev, "%s", pmu->name); | 
|  | if (ret) | 
|  | goto free_dev; | 
|  |  | 
|  | dev_set_drvdata(pmu->dev, pmu); | 
|  | pmu->dev->bus = &pmu_bus; | 
|  | pmu->dev->release = pmu_dev_release; | 
|  | ret = device_add(pmu->dev); | 
|  | if (ret) | 
|  | goto free_dev; | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  |  | 
|  | free_dev: | 
|  | put_device(pmu->dev); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | static struct lock_class_key cpuctx_mutex; | 
|  |  | 
|  | int perf_pmu_register(struct pmu *pmu, char *name, int type) | 
|  | { | 
|  | int cpu, ret; | 
|  |  | 
|  | mutex_lock(&pmus_lock); | 
|  | ret = -ENOMEM; | 
|  | pmu->pmu_disable_count = alloc_percpu(int); | 
|  | if (!pmu->pmu_disable_count) | 
|  | goto unlock; | 
|  |  | 
|  | pmu->type = -1; | 
|  | if (!name) | 
|  | goto skip_type; | 
|  | pmu->name = name; | 
|  |  | 
|  | if (type < 0) { | 
|  | int err = idr_pre_get(&pmu_idr, GFP_KERNEL); | 
|  | if (!err) | 
|  | goto free_pdc; | 
|  |  | 
|  | err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type); | 
|  | if (err) { | 
|  | ret = err; | 
|  | goto free_pdc; | 
|  | } | 
|  | } | 
|  | pmu->type = type; | 
|  |  | 
|  | if (pmu_bus_running) { | 
|  | ret = pmu_dev_alloc(pmu); | 
|  | if (ret) | 
|  | goto free_idr; | 
|  | } | 
|  |  | 
|  | skip_type: | 
|  | pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); | 
|  | if (pmu->pmu_cpu_context) | 
|  | goto got_cpu_context; | 
|  |  | 
|  | pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); | 
|  | if (!pmu->pmu_cpu_context) | 
|  | goto free_dev; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct perf_cpu_context *cpuctx; | 
|  |  | 
|  | cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); | 
|  | __perf_event_init_context(&cpuctx->ctx); | 
|  | lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); | 
|  | cpuctx->ctx.type = cpu_context; | 
|  | cpuctx->ctx.pmu = pmu; | 
|  | cpuctx->jiffies_interval = 1; | 
|  | INIT_LIST_HEAD(&cpuctx->rotation_list); | 
|  | cpuctx->active_pmu = pmu; | 
|  | } | 
|  |  | 
|  | got_cpu_context: | 
|  | if (!pmu->start_txn) { | 
|  | if (pmu->pmu_enable) { | 
|  | /* | 
|  | * If we have pmu_enable/pmu_disable calls, install | 
|  | * transaction stubs that use that to try and batch | 
|  | * hardware accesses. | 
|  | */ | 
|  | pmu->start_txn  = perf_pmu_start_txn; | 
|  | pmu->commit_txn = perf_pmu_commit_txn; | 
|  | pmu->cancel_txn = perf_pmu_cancel_txn; | 
|  | } else { | 
|  | pmu->start_txn  = perf_pmu_nop_void; | 
|  | pmu->commit_txn = perf_pmu_nop_int; | 
|  | pmu->cancel_txn = perf_pmu_nop_void; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!pmu->pmu_enable) { | 
|  | pmu->pmu_enable  = perf_pmu_nop_void; | 
|  | pmu->pmu_disable = perf_pmu_nop_void; | 
|  | } | 
|  |  | 
|  | list_add_rcu(&pmu->entry, &pmus); | 
|  | ret = 0; | 
|  | unlock: | 
|  | mutex_unlock(&pmus_lock); | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | free_dev: | 
|  | device_del(pmu->dev); | 
|  | put_device(pmu->dev); | 
|  |  | 
|  | free_idr: | 
|  | if (pmu->type >= PERF_TYPE_MAX) | 
|  | idr_remove(&pmu_idr, pmu->type); | 
|  |  | 
|  | free_pdc: | 
|  | free_percpu(pmu->pmu_disable_count); | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | void perf_pmu_unregister(struct pmu *pmu) | 
|  | { | 
|  | mutex_lock(&pmus_lock); | 
|  | list_del_rcu(&pmu->entry); | 
|  | mutex_unlock(&pmus_lock); | 
|  |  | 
|  | /* | 
|  | * We dereference the pmu list under both SRCU and regular RCU, so | 
|  | * synchronize against both of those. | 
|  | */ | 
|  | synchronize_srcu(&pmus_srcu); | 
|  | synchronize_rcu(); | 
|  |  | 
|  | free_percpu(pmu->pmu_disable_count); | 
|  | if (pmu->type >= PERF_TYPE_MAX) | 
|  | idr_remove(&pmu_idr, pmu->type); | 
|  | device_del(pmu->dev); | 
|  | put_device(pmu->dev); | 
|  | free_pmu_context(pmu); | 
|  | } | 
|  |  | 
|  | struct pmu *perf_init_event(struct perf_event *event) | 
|  | { | 
|  | struct pmu *pmu = NULL; | 
|  | int idx; | 
|  | int ret; | 
|  |  | 
|  | idx = srcu_read_lock(&pmus_srcu); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | pmu = idr_find(&pmu_idr, event->attr.type); | 
|  | rcu_read_unlock(); | 
|  | if (pmu) { | 
|  | ret = pmu->event_init(event); | 
|  | if (ret) | 
|  | pmu = ERR_PTR(ret); | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | list_for_each_entry_rcu(pmu, &pmus, entry) { | 
|  | ret = pmu->event_init(event); | 
|  | if (!ret) | 
|  | goto unlock; | 
|  |  | 
|  | if (ret != -ENOENT) { | 
|  | pmu = ERR_PTR(ret); | 
|  | goto unlock; | 
|  | } | 
|  | } | 
|  | pmu = ERR_PTR(-ENOENT); | 
|  | unlock: | 
|  | srcu_read_unlock(&pmus_srcu, idx); | 
|  |  | 
|  | return pmu; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize a event structure | 
|  | */ | 
|  | static struct perf_event * | 
|  | perf_event_alloc(struct perf_event_attr *attr, int cpu, | 
|  | struct task_struct *task, | 
|  | struct perf_event *group_leader, | 
|  | struct perf_event *parent_event, | 
|  | perf_overflow_handler_t overflow_handler) | 
|  | { | 
|  | struct pmu *pmu; | 
|  | struct perf_event *event; | 
|  | struct hw_perf_event *hwc; | 
|  | long err; | 
|  |  | 
|  | if ((unsigned)cpu >= nr_cpu_ids) { | 
|  | if (!task || cpu != -1) | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | event = kzalloc(sizeof(*event), GFP_KERNEL); | 
|  | if (!event) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* | 
|  | * Single events are their own group leaders, with an | 
|  | * empty sibling list: | 
|  | */ | 
|  | if (!group_leader) | 
|  | group_leader = event; | 
|  |  | 
|  | mutex_init(&event->child_mutex); | 
|  | INIT_LIST_HEAD(&event->child_list); | 
|  |  | 
|  | INIT_LIST_HEAD(&event->group_entry); | 
|  | INIT_LIST_HEAD(&event->event_entry); | 
|  | INIT_LIST_HEAD(&event->sibling_list); | 
|  | init_waitqueue_head(&event->waitq); | 
|  | init_irq_work(&event->pending, perf_pending_event); | 
|  |  | 
|  | mutex_init(&event->mmap_mutex); | 
|  |  | 
|  | event->cpu		= cpu; | 
|  | event->attr		= *attr; | 
|  | event->group_leader	= group_leader; | 
|  | event->pmu		= NULL; | 
|  | event->oncpu		= -1; | 
|  |  | 
|  | event->parent		= parent_event; | 
|  |  | 
|  | event->ns		= get_pid_ns(current->nsproxy->pid_ns); | 
|  | event->id		= atomic64_inc_return(&perf_event_id); | 
|  |  | 
|  | event->state		= PERF_EVENT_STATE_INACTIVE; | 
|  |  | 
|  | if (task) { | 
|  | event->attach_state = PERF_ATTACH_TASK; | 
|  | #ifdef CONFIG_HAVE_HW_BREAKPOINT | 
|  | /* | 
|  | * hw_breakpoint is a bit difficult here.. | 
|  | */ | 
|  | if (attr->type == PERF_TYPE_BREAKPOINT) | 
|  | event->hw.bp_target = task; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (!overflow_handler && parent_event) | 
|  | overflow_handler = parent_event->overflow_handler; | 
|  |  | 
|  | event->overflow_handler	= overflow_handler; | 
|  |  | 
|  | if (attr->disabled) | 
|  | event->state = PERF_EVENT_STATE_OFF; | 
|  |  | 
|  | pmu = NULL; | 
|  |  | 
|  | hwc = &event->hw; | 
|  | hwc->sample_period = attr->sample_period; | 
|  | if (attr->freq && attr->sample_freq) | 
|  | hwc->sample_period = 1; | 
|  | hwc->last_period = hwc->sample_period; | 
|  |  | 
|  | local64_set(&hwc->period_left, hwc->sample_period); | 
|  |  | 
|  | /* | 
|  | * we currently do not support PERF_FORMAT_GROUP on inherited events | 
|  | */ | 
|  | if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) | 
|  | goto done; | 
|  |  | 
|  | pmu = perf_init_event(event); | 
|  |  | 
|  | done: | 
|  | err = 0; | 
|  | if (!pmu) | 
|  | err = -EINVAL; | 
|  | else if (IS_ERR(pmu)) | 
|  | err = PTR_ERR(pmu); | 
|  |  | 
|  | if (err) { | 
|  | if (event->ns) | 
|  | put_pid_ns(event->ns); | 
|  | kfree(event); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | event->pmu = pmu; | 
|  |  | 
|  | if (!event->parent) { | 
|  | if (event->attach_state & PERF_ATTACH_TASK) | 
|  | jump_label_inc(&perf_sched_events); | 
|  | if (event->attr.mmap || event->attr.mmap_data) | 
|  | atomic_inc(&nr_mmap_events); | 
|  | if (event->attr.comm) | 
|  | atomic_inc(&nr_comm_events); | 
|  | if (event->attr.task) | 
|  | atomic_inc(&nr_task_events); | 
|  | if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { | 
|  | err = get_callchain_buffers(); | 
|  | if (err) { | 
|  | free_event(event); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return event; | 
|  | } | 
|  |  | 
|  | static int perf_copy_attr(struct perf_event_attr __user *uattr, | 
|  | struct perf_event_attr *attr) | 
|  | { | 
|  | u32 size; | 
|  | int ret; | 
|  |  | 
|  | if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * zero the full structure, so that a short copy will be nice. | 
|  | */ | 
|  | memset(attr, 0, sizeof(*attr)); | 
|  |  | 
|  | ret = get_user(size, &uattr->size); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (size > PAGE_SIZE)	/* silly large */ | 
|  | goto err_size; | 
|  |  | 
|  | if (!size)		/* abi compat */ | 
|  | size = PERF_ATTR_SIZE_VER0; | 
|  |  | 
|  | if (size < PERF_ATTR_SIZE_VER0) | 
|  | goto err_size; | 
|  |  | 
|  | /* | 
|  | * If we're handed a bigger struct than we know of, | 
|  | * ensure all the unknown bits are 0 - i.e. new | 
|  | * user-space does not rely on any kernel feature | 
|  | * extensions we dont know about yet. | 
|  | */ | 
|  | if (size > sizeof(*attr)) { | 
|  | unsigned char __user *addr; | 
|  | unsigned char __user *end; | 
|  | unsigned char val; | 
|  |  | 
|  | addr = (void __user *)uattr + sizeof(*attr); | 
|  | end  = (void __user *)uattr + size; | 
|  |  | 
|  | for (; addr < end; addr++) { | 
|  | ret = get_user(val, addr); | 
|  | if (ret) | 
|  | return ret; | 
|  | if (val) | 
|  | goto err_size; | 
|  | } | 
|  | size = sizeof(*attr); | 
|  | } | 
|  |  | 
|  | ret = copy_from_user(attr, uattr, size); | 
|  | if (ret) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * If the type exists, the corresponding creation will verify | 
|  | * the attr->config. | 
|  | */ | 
|  | if (attr->type >= PERF_TYPE_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (attr->__reserved_1) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (attr->read_format & ~(PERF_FORMAT_MAX-1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  |  | 
|  | err_size: | 
|  | put_user(sizeof(*attr), &uattr->size); | 
|  | ret = -E2BIG; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | static int | 
|  | perf_event_set_output(struct perf_event *event, struct perf_event *output_event) | 
|  | { | 
|  | struct perf_buffer *buffer = NULL, *old_buffer = NULL; | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | if (!output_event) | 
|  | goto set; | 
|  |  | 
|  | /* don't allow circular references */ | 
|  | if (event == output_event) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Don't allow cross-cpu buffers | 
|  | */ | 
|  | if (output_event->cpu != event->cpu) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * If its not a per-cpu buffer, it must be the same task. | 
|  | */ | 
|  | if (output_event->cpu == -1 && output_event->ctx != event->ctx) | 
|  | goto out; | 
|  |  | 
|  | set: | 
|  | mutex_lock(&event->mmap_mutex); | 
|  | /* Can't redirect output if we've got an active mmap() */ | 
|  | if (atomic_read(&event->mmap_count)) | 
|  | goto unlock; | 
|  |  | 
|  | if (output_event) { | 
|  | /* get the buffer we want to redirect to */ | 
|  | buffer = perf_buffer_get(output_event); | 
|  | if (!buffer) | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | old_buffer = event->buffer; | 
|  | rcu_assign_pointer(event->buffer, buffer); | 
|  | ret = 0; | 
|  | unlock: | 
|  | mutex_unlock(&event->mmap_mutex); | 
|  |  | 
|  | if (old_buffer) | 
|  | perf_buffer_put(old_buffer); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_perf_event_open - open a performance event, associate it to a task/cpu | 
|  | * | 
|  | * @attr_uptr:	event_id type attributes for monitoring/sampling | 
|  | * @pid:		target pid | 
|  | * @cpu:		target cpu | 
|  | * @group_fd:		group leader event fd | 
|  | */ | 
|  | SYSCALL_DEFINE5(perf_event_open, | 
|  | struct perf_event_attr __user *, attr_uptr, | 
|  | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | 
|  | { | 
|  | struct perf_event *group_leader = NULL, *output_event = NULL; | 
|  | struct perf_event *event, *sibling; | 
|  | struct perf_event_attr attr; | 
|  | struct perf_event_context *ctx; | 
|  | struct file *event_file = NULL; | 
|  | struct file *group_file = NULL; | 
|  | struct task_struct *task = NULL; | 
|  | struct pmu *pmu; | 
|  | int event_fd; | 
|  | int move_group = 0; | 
|  | int fput_needed = 0; | 
|  | int err; | 
|  |  | 
|  | /* for future expandability... */ | 
|  | if (flags & ~PERF_FLAG_ALL) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = perf_copy_attr(attr_uptr, &attr); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (!attr.exclude_kernel) { | 
|  | if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (attr.freq) { | 
|  | if (attr.sample_freq > sysctl_perf_event_sample_rate) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In cgroup mode, the pid argument is used to pass the fd | 
|  | * opened to the cgroup directory in cgroupfs. The cpu argument | 
|  | * designates the cpu on which to monitor threads from that | 
|  | * cgroup. | 
|  | */ | 
|  | if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | event_fd = get_unused_fd_flags(O_RDWR); | 
|  | if (event_fd < 0) | 
|  | return event_fd; | 
|  |  | 
|  | if (group_fd != -1) { | 
|  | group_leader = perf_fget_light(group_fd, &fput_needed); | 
|  | if (IS_ERR(group_leader)) { | 
|  | err = PTR_ERR(group_leader); | 
|  | goto err_fd; | 
|  | } | 
|  | group_file = group_leader->filp; | 
|  | if (flags & PERF_FLAG_FD_OUTPUT) | 
|  | output_event = group_leader; | 
|  | if (flags & PERF_FLAG_FD_NO_GROUP) | 
|  | group_leader = NULL; | 
|  | } | 
|  |  | 
|  | if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { | 
|  | task = find_lively_task_by_vpid(pid); | 
|  | if (IS_ERR(task)) { | 
|  | err = PTR_ERR(task); | 
|  | goto err_group_fd; | 
|  | } | 
|  | } | 
|  |  | 
|  | event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL); | 
|  | if (IS_ERR(event)) { | 
|  | err = PTR_ERR(event); | 
|  | goto err_task; | 
|  | } | 
|  |  | 
|  | if (flags & PERF_FLAG_PID_CGROUP) { | 
|  | err = perf_cgroup_connect(pid, event, &attr, group_leader); | 
|  | if (err) | 
|  | goto err_alloc; | 
|  | /* | 
|  | * one more event: | 
|  | * - that has cgroup constraint on event->cpu | 
|  | * - that may need work on context switch | 
|  | */ | 
|  | atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); | 
|  | jump_label_inc(&perf_sched_events); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Special case software events and allow them to be part of | 
|  | * any hardware group. | 
|  | */ | 
|  | pmu = event->pmu; | 
|  |  | 
|  | if (group_leader && | 
|  | (is_software_event(event) != is_software_event(group_leader))) { | 
|  | if (is_software_event(event)) { | 
|  | /* | 
|  | * If event and group_leader are not both a software | 
|  | * event, and event is, then group leader is not. | 
|  | * | 
|  | * Allow the addition of software events to !software | 
|  | * groups, this is safe because software events never | 
|  | * fail to schedule. | 
|  | */ | 
|  | pmu = group_leader->pmu; | 
|  | } else if (is_software_event(group_leader) && | 
|  | (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { | 
|  | /* | 
|  | * In case the group is a pure software group, and we | 
|  | * try to add a hardware event, move the whole group to | 
|  | * the hardware context. | 
|  | */ | 
|  | move_group = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the target context (task or percpu): | 
|  | */ | 
|  | ctx = find_get_context(pmu, task, cpu); | 
|  | if (IS_ERR(ctx)) { | 
|  | err = PTR_ERR(ctx); | 
|  | goto err_alloc; | 
|  | } | 
|  |  | 
|  | if (task) { | 
|  | put_task_struct(task); | 
|  | task = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look up the group leader (we will attach this event to it): | 
|  | */ | 
|  | if (group_leader) { | 
|  | err = -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Do not allow a recursive hierarchy (this new sibling | 
|  | * becoming part of another group-sibling): | 
|  | */ | 
|  | if (group_leader->group_leader != group_leader) | 
|  | goto err_context; | 
|  | /* | 
|  | * Do not allow to attach to a group in a different | 
|  | * task or CPU context: | 
|  | */ | 
|  | if (move_group) { | 
|  | if (group_leader->ctx->type != ctx->type) | 
|  | goto err_context; | 
|  | } else { | 
|  | if (group_leader->ctx != ctx) | 
|  | goto err_context; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only a group leader can be exclusive or pinned | 
|  | */ | 
|  | if (attr.exclusive || attr.pinned) | 
|  | goto err_context; | 
|  | } | 
|  |  | 
|  | if (output_event) { | 
|  | err = perf_event_set_output(event, output_event); | 
|  | if (err) | 
|  | goto err_context; | 
|  | } | 
|  |  | 
|  | event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); | 
|  | if (IS_ERR(event_file)) { | 
|  | err = PTR_ERR(event_file); | 
|  | goto err_context; | 
|  | } | 
|  |  | 
|  | if (move_group) { | 
|  | struct perf_event_context *gctx = group_leader->ctx; | 
|  |  | 
|  | mutex_lock(&gctx->mutex); | 
|  | perf_remove_from_context(group_leader); | 
|  | list_for_each_entry(sibling, &group_leader->sibling_list, | 
|  | group_entry) { | 
|  | perf_remove_from_context(sibling); | 
|  | put_ctx(gctx); | 
|  | } | 
|  | mutex_unlock(&gctx->mutex); | 
|  | put_ctx(gctx); | 
|  | } | 
|  |  | 
|  | event->filp = event_file; | 
|  | WARN_ON_ONCE(ctx->parent_ctx); | 
|  | mutex_lock(&ctx->mutex); | 
|  |  | 
|  | if (move_group) { | 
|  | perf_install_in_context(ctx, group_leader, cpu); | 
|  | get_ctx(ctx); | 
|  | list_for_each_entry(sibling, &group_leader->sibling_list, | 
|  | group_entry) { | 
|  | perf_install_in_context(ctx, sibling, cpu); | 
|  | get_ctx(ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | perf_install_in_context(ctx, event, cpu); | 
|  | ++ctx->generation; | 
|  | perf_unpin_context(ctx); | 
|  | mutex_unlock(&ctx->mutex); | 
|  |  | 
|  | event->owner = current; | 
|  |  | 
|  | mutex_lock(¤t->perf_event_mutex); | 
|  | list_add_tail(&event->owner_entry, ¤t->perf_event_list); | 
|  | mutex_unlock(¤t->perf_event_mutex); | 
|  |  | 
|  | /* | 
|  | * Precalculate sample_data sizes | 
|  | */ | 
|  | perf_event__header_size(event); | 
|  | perf_event__id_header_size(event); | 
|  |  | 
|  | /* | 
|  | * Drop the reference on the group_event after placing the | 
|  | * new event on the sibling_list. This ensures destruction | 
|  | * of the group leader will find the pointer to itself in | 
|  | * perf_group_detach(). | 
|  | */ | 
|  | fput_light(group_file, fput_needed); | 
|  | fd_install(event_fd, event_file); | 
|  | return event_fd; | 
|  |  | 
|  | err_context: | 
|  | perf_unpin_context(ctx); | 
|  | put_ctx(ctx); | 
|  | err_alloc: | 
|  | free_event(event); | 
|  | err_task: | 
|  | if (task) | 
|  | put_task_struct(task); | 
|  | err_group_fd: | 
|  | fput_light(group_file, fput_needed); | 
|  | err_fd: | 
|  | put_unused_fd(event_fd); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * perf_event_create_kernel_counter | 
|  | * | 
|  | * @attr: attributes of the counter to create | 
|  | * @cpu: cpu in which the counter is bound | 
|  | * @task: task to profile (NULL for percpu) | 
|  | */ | 
|  | struct perf_event * | 
|  | perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, | 
|  | struct task_struct *task, | 
|  | perf_overflow_handler_t overflow_handler) | 
|  | { | 
|  | struct perf_event_context *ctx; | 
|  | struct perf_event *event; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * Get the target context (task or percpu): | 
|  | */ | 
|  |  | 
|  | event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler); | 
|  | if (IS_ERR(event)) { | 
|  | err = PTR_ERR(event); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ctx = find_get_context(event->pmu, task, cpu); | 
|  | if (IS_ERR(ctx)) { | 
|  | err = PTR_ERR(ctx); | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | event->filp = NULL; | 
|  | WARN_ON_ONCE(ctx->parent_ctx); | 
|  | mutex_lock(&ctx->mutex); | 
|  | perf_install_in_context(ctx, event, cpu); | 
|  | ++ctx->generation; | 
|  | perf_unpin_context(ctx); | 
|  | mutex_unlock(&ctx->mutex); | 
|  |  | 
|  | return event; | 
|  |  | 
|  | err_free: | 
|  | free_event(event); | 
|  | err: | 
|  | return ERR_PTR(err); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); | 
|  |  | 
|  | static void sync_child_event(struct perf_event *child_event, | 
|  | struct task_struct *child) | 
|  | { | 
|  | struct perf_event *parent_event = child_event->parent; | 
|  | u64 child_val; | 
|  |  | 
|  | if (child_event->attr.inherit_stat) | 
|  | perf_event_read_event(child_event, child); | 
|  |  | 
|  | child_val = perf_event_count(child_event); | 
|  |  | 
|  | /* | 
|  | * Add back the child's count to the parent's count: | 
|  | */ | 
|  | atomic64_add(child_val, &parent_event->child_count); | 
|  | atomic64_add(child_event->total_time_enabled, | 
|  | &parent_event->child_total_time_enabled); | 
|  | atomic64_add(child_event->total_time_running, | 
|  | &parent_event->child_total_time_running); | 
|  |  | 
|  | /* | 
|  | * Remove this event from the parent's list | 
|  | */ | 
|  | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | 
|  | mutex_lock(&parent_event->child_mutex); | 
|  | list_del_init(&child_event->child_list); | 
|  | mutex_unlock(&parent_event->child_mutex); | 
|  |  | 
|  | /* | 
|  | * Release the parent event, if this was the last | 
|  | * reference to it. | 
|  | */ | 
|  | fput(parent_event->filp); | 
|  | } | 
|  |  | 
|  | static void | 
|  | __perf_event_exit_task(struct perf_event *child_event, | 
|  | struct perf_event_context *child_ctx, | 
|  | struct task_struct *child) | 
|  | { | 
|  | if (child_event->parent) { | 
|  | raw_spin_lock_irq(&child_ctx->lock); | 
|  | perf_group_detach(child_event); | 
|  | raw_spin_unlock_irq(&child_ctx->lock); | 
|  | } | 
|  |  | 
|  | perf_remove_from_context(child_event); | 
|  |  | 
|  | /* | 
|  | * It can happen that the parent exits first, and has events | 
|  | * that are still around due to the child reference. These | 
|  | * events need to be zapped. | 
|  | */ | 
|  | if (child_event->parent) { | 
|  | sync_child_event(child_event, child); | 
|  | free_event(child_event); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void perf_event_exit_task_context(struct task_struct *child, int ctxn) | 
|  | { | 
|  | struct perf_event *child_event, *tmp; | 
|  | struct perf_event_context *child_ctx; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (likely(!child->perf_event_ctxp[ctxn])) { | 
|  | perf_event_task(child, NULL, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | local_irq_save(flags); | 
|  | /* | 
|  | * We can't reschedule here because interrupts are disabled, | 
|  | * and either child is current or it is a task that can't be | 
|  | * scheduled, so we are now safe from rescheduling changing | 
|  | * our context. | 
|  | */ | 
|  | child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); | 
|  | task_ctx_sched_out(child_ctx, EVENT_ALL); | 
|  |  | 
|  | /* | 
|  | * Take the context lock here so that if find_get_context is | 
|  | * reading child->perf_event_ctxp, we wait until it has | 
|  | * incremented the context's refcount before we do put_ctx below. | 
|  | */ | 
|  | raw_spin_lock(&child_ctx->lock); | 
|  | child->perf_event_ctxp[ctxn] = NULL; | 
|  | /* | 
|  | * If this context is a clone; unclone it so it can't get | 
|  | * swapped to another process while we're removing all | 
|  | * the events from it. | 
|  | */ | 
|  | unclone_ctx(child_ctx); | 
|  | update_context_time(child_ctx); | 
|  | raw_spin_unlock_irqrestore(&child_ctx->lock, flags); | 
|  |  | 
|  | /* | 
|  | * Report the task dead after unscheduling the events so that we | 
|  | * won't get any samples after PERF_RECORD_EXIT. We can however still | 
|  | * get a few PERF_RECORD_READ events. | 
|  | */ | 
|  | perf_event_task(child, child_ctx, 0); | 
|  |  | 
|  | /* | 
|  | * We can recurse on the same lock type through: | 
|  | * | 
|  | *   __perf_event_exit_task() | 
|  | *     sync_child_event() | 
|  | *       fput(parent_event->filp) | 
|  | *         perf_release() | 
|  | *           mutex_lock(&ctx->mutex) | 
|  | * | 
|  | * But since its the parent context it won't be the same instance. | 
|  | */ | 
|  | mutex_lock(&child_ctx->mutex); | 
|  |  | 
|  | again: | 
|  | list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, | 
|  | group_entry) | 
|  | __perf_event_exit_task(child_event, child_ctx, child); | 
|  |  | 
|  | list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, | 
|  | group_entry) | 
|  | __perf_event_exit_task(child_event, child_ctx, child); | 
|  |  | 
|  | /* | 
|  | * If the last event was a group event, it will have appended all | 
|  | * its siblings to the list, but we obtained 'tmp' before that which | 
|  | * will still point to the list head terminating the iteration. | 
|  | */ | 
|  | if (!list_empty(&child_ctx->pinned_groups) || | 
|  | !list_empty(&child_ctx->flexible_groups)) | 
|  | goto again; | 
|  |  | 
|  | mutex_unlock(&child_ctx->mutex); | 
|  |  | 
|  | put_ctx(child_ctx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When a child task exits, feed back event values to parent events. | 
|  | */ | 
|  | void perf_event_exit_task(struct task_struct *child) | 
|  | { | 
|  | struct perf_event *event, *tmp; | 
|  | int ctxn; | 
|  |  | 
|  | mutex_lock(&child->perf_event_mutex); | 
|  | list_for_each_entry_safe(event, tmp, &child->perf_event_list, | 
|  | owner_entry) { | 
|  | list_del_init(&event->owner_entry); | 
|  |  | 
|  | /* | 
|  | * Ensure the list deletion is visible before we clear | 
|  | * the owner, closes a race against perf_release() where | 
|  | * we need to serialize on the owner->perf_event_mutex. | 
|  | */ | 
|  | smp_wmb(); | 
|  | event->owner = NULL; | 
|  | } | 
|  | mutex_unlock(&child->perf_event_mutex); | 
|  |  | 
|  | for_each_task_context_nr(ctxn) | 
|  | perf_event_exit_task_context(child, ctxn); | 
|  | } | 
|  |  | 
|  | static void perf_free_event(struct perf_event *event, | 
|  | struct perf_event_context *ctx) | 
|  | { | 
|  | struct perf_event *parent = event->parent; | 
|  |  | 
|  | if (WARN_ON_ONCE(!parent)) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&parent->child_mutex); | 
|  | list_del_init(&event->child_list); | 
|  | mutex_unlock(&parent->child_mutex); | 
|  |  | 
|  | fput(parent->filp); | 
|  |  | 
|  | perf_group_detach(event); | 
|  | list_del_event(event, ctx); | 
|  | free_event(event); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * free an unexposed, unused context as created by inheritance by | 
|  | * perf_event_init_task below, used by fork() in case of fail. | 
|  | */ | 
|  | void perf_event_free_task(struct task_struct *task) | 
|  | { | 
|  | struct perf_event_context *ctx; | 
|  | struct perf_event *event, *tmp; | 
|  | int ctxn; | 
|  |  | 
|  | for_each_task_context_nr(ctxn) { | 
|  | ctx = task->perf_event_ctxp[ctxn]; | 
|  | if (!ctx) | 
|  | continue; | 
|  |  | 
|  | mutex_lock(&ctx->mutex); | 
|  | again: | 
|  | list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, | 
|  | group_entry) | 
|  | perf_free_event(event, ctx); | 
|  |  | 
|  | list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, | 
|  | group_entry) | 
|  | perf_free_event(event, ctx); | 
|  |  | 
|  | if (!list_empty(&ctx->pinned_groups) || | 
|  | !list_empty(&ctx->flexible_groups)) | 
|  | goto again; | 
|  |  | 
|  | mutex_unlock(&ctx->mutex); | 
|  |  | 
|  | put_ctx(ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | void perf_event_delayed_put(struct task_struct *task) | 
|  | { | 
|  | int ctxn; | 
|  |  | 
|  | for_each_task_context_nr(ctxn) | 
|  | WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * inherit a event from parent task to child task: | 
|  | */ | 
|  | static struct perf_event * | 
|  | inherit_event(struct perf_event *parent_event, | 
|  | struct task_struct *parent, | 
|  | struct perf_event_context *parent_ctx, | 
|  | struct task_struct *child, | 
|  | struct perf_event *group_leader, | 
|  | struct perf_event_context *child_ctx) | 
|  | { | 
|  | struct perf_event *child_event; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * Instead of creating recursive hierarchies of events, | 
|  | * we link inherited events back to the original parent, | 
|  | * which has a filp for sure, which we use as the reference | 
|  | * count: | 
|  | */ | 
|  | if (parent_event->parent) | 
|  | parent_event = parent_event->parent; | 
|  |  | 
|  | child_event = perf_event_alloc(&parent_event->attr, | 
|  | parent_event->cpu, | 
|  | child, | 
|  | group_leader, parent_event, | 
|  | NULL); | 
|  | if (IS_ERR(child_event)) | 
|  | return child_event; | 
|  | get_ctx(child_ctx); | 
|  |  | 
|  | /* | 
|  | * Make the child state follow the state of the parent event, | 
|  | * not its attr.disabled bit.  We hold the parent's mutex, | 
|  | * so we won't race with perf_event_{en, dis}able_family. | 
|  | */ | 
|  | if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) | 
|  | child_event->state = PERF_EVENT_STATE_INACTIVE; | 
|  | else | 
|  | child_event->state = PERF_EVENT_STATE_OFF; | 
|  |  | 
|  | if (parent_event->attr.freq) { | 
|  | u64 sample_period = parent_event->hw.sample_period; | 
|  | struct hw_perf_event *hwc = &child_event->hw; | 
|  |  | 
|  | hwc->sample_period = sample_period; | 
|  | hwc->last_period   = sample_period; | 
|  |  | 
|  | local64_set(&hwc->period_left, sample_period); | 
|  | } | 
|  |  | 
|  | child_event->ctx = child_ctx; | 
|  | child_event->overflow_handler = parent_event->overflow_handler; | 
|  |  | 
|  | /* | 
|  | * Precalculate sample_data sizes | 
|  | */ | 
|  | perf_event__header_size(child_event); | 
|  | perf_event__id_header_size(child_event); | 
|  |  | 
|  | /* | 
|  | * Link it up in the child's context: | 
|  | */ | 
|  | raw_spin_lock_irqsave(&child_ctx->lock, flags); | 
|  | add_event_to_ctx(child_event, child_ctx); | 
|  | raw_spin_unlock_irqrestore(&child_ctx->lock, flags); | 
|  |  | 
|  | /* | 
|  | * Get a reference to the parent filp - we will fput it | 
|  | * when the child event exits. This is safe to do because | 
|  | * we are in the parent and we know that the filp still | 
|  | * exists and has a nonzero count: | 
|  | */ | 
|  | atomic_long_inc(&parent_event->filp->f_count); | 
|  |  | 
|  | /* | 
|  | * Link this into the parent event's child list | 
|  | */ | 
|  | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | 
|  | mutex_lock(&parent_event->child_mutex); | 
|  | list_add_tail(&child_event->child_list, &parent_event->child_list); | 
|  | mutex_unlock(&parent_event->child_mutex); | 
|  |  | 
|  | return child_event; | 
|  | } | 
|  |  | 
|  | static int inherit_group(struct perf_event *parent_event, | 
|  | struct task_struct *parent, | 
|  | struct perf_event_context *parent_ctx, | 
|  | struct task_struct *child, | 
|  | struct perf_event_context *child_ctx) | 
|  | { | 
|  | struct perf_event *leader; | 
|  | struct perf_event *sub; | 
|  | struct perf_event *child_ctr; | 
|  |  | 
|  | leader = inherit_event(parent_event, parent, parent_ctx, | 
|  | child, NULL, child_ctx); | 
|  | if (IS_ERR(leader)) | 
|  | return PTR_ERR(leader); | 
|  | list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { | 
|  | child_ctr = inherit_event(sub, parent, parent_ctx, | 
|  | child, leader, child_ctx); | 
|  | if (IS_ERR(child_ctr)) | 
|  | return PTR_ERR(child_ctr); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | inherit_task_group(struct perf_event *event, struct task_struct *parent, | 
|  | struct perf_event_context *parent_ctx, | 
|  | struct task_struct *child, int ctxn, | 
|  | int *inherited_all) | 
|  | { | 
|  | int ret; | 
|  | struct perf_event_context *child_ctx; | 
|  |  | 
|  | if (!event->attr.inherit) { | 
|  | *inherited_all = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | child_ctx = child->perf_event_ctxp[ctxn]; | 
|  | if (!child_ctx) { | 
|  | /* | 
|  | * This is executed from the parent task context, so | 
|  | * inherit events that have been marked for cloning. | 
|  | * First allocate and initialize a context for the | 
|  | * child. | 
|  | */ | 
|  |  | 
|  | child_ctx = alloc_perf_context(event->pmu, child); | 
|  | if (!child_ctx) | 
|  | return -ENOMEM; | 
|  |  | 
|  | child->perf_event_ctxp[ctxn] = child_ctx; | 
|  | } | 
|  |  | 
|  | ret = inherit_group(event, parent, parent_ctx, | 
|  | child, child_ctx); | 
|  |  | 
|  | if (ret) | 
|  | *inherited_all = 0; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the perf_event context in task_struct | 
|  | */ | 
|  | int perf_event_init_context(struct task_struct *child, int ctxn) | 
|  | { | 
|  | struct perf_event_context *child_ctx, *parent_ctx; | 
|  | struct perf_event_context *cloned_ctx; | 
|  | struct perf_event *event; | 
|  | struct task_struct *parent = current; | 
|  | int inherited_all = 1; | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  |  | 
|  | if (likely(!parent->perf_event_ctxp[ctxn])) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If the parent's context is a clone, pin it so it won't get | 
|  | * swapped under us. | 
|  | */ | 
|  | parent_ctx = perf_pin_task_context(parent, ctxn); | 
|  |  | 
|  | /* | 
|  | * No need to check if parent_ctx != NULL here; since we saw | 
|  | * it non-NULL earlier, the only reason for it to become NULL | 
|  | * is if we exit, and since we're currently in the middle of | 
|  | * a fork we can't be exiting at the same time. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Lock the parent list. No need to lock the child - not PID | 
|  | * hashed yet and not running, so nobody can access it. | 
|  | */ | 
|  | mutex_lock(&parent_ctx->mutex); | 
|  |  | 
|  | /* | 
|  | * We dont have to disable NMIs - we are only looking at | 
|  | * the list, not manipulating it: | 
|  | */ | 
|  | list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { | 
|  | ret = inherit_task_group(event, parent, parent_ctx, | 
|  | child, ctxn, &inherited_all); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can't hold ctx->lock when iterating the ->flexible_group list due | 
|  | * to allocations, but we need to prevent rotation because | 
|  | * rotate_ctx() will change the list from interrupt context. | 
|  | */ | 
|  | raw_spin_lock_irqsave(&parent_ctx->lock, flags); | 
|  | parent_ctx->rotate_disable = 1; | 
|  | raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); | 
|  |  | 
|  | list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { | 
|  | ret = inherit_task_group(event, parent, parent_ctx, | 
|  | child, ctxn, &inherited_all); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | raw_spin_lock_irqsave(&parent_ctx->lock, flags); | 
|  | parent_ctx->rotate_disable = 0; | 
|  |  | 
|  | child_ctx = child->perf_event_ctxp[ctxn]; | 
|  |  | 
|  | if (child_ctx && inherited_all) { | 
|  | /* | 
|  | * Mark the child context as a clone of the parent | 
|  | * context, or of whatever the parent is a clone of. | 
|  | * | 
|  | * Note that if the parent is a clone, the holding of | 
|  | * parent_ctx->lock avoids it from being uncloned. | 
|  | */ | 
|  | cloned_ctx = parent_ctx->parent_ctx; | 
|  | if (cloned_ctx) { | 
|  | child_ctx->parent_ctx = cloned_ctx; | 
|  | child_ctx->parent_gen = parent_ctx->parent_gen; | 
|  | } else { | 
|  | child_ctx->parent_ctx = parent_ctx; | 
|  | child_ctx->parent_gen = parent_ctx->generation; | 
|  | } | 
|  | get_ctx(child_ctx->parent_ctx); | 
|  | } | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); | 
|  | mutex_unlock(&parent_ctx->mutex); | 
|  |  | 
|  | perf_unpin_context(parent_ctx); | 
|  | put_ctx(parent_ctx); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the perf_event context in task_struct | 
|  | */ | 
|  | int perf_event_init_task(struct task_struct *child) | 
|  | { | 
|  | int ctxn, ret; | 
|  |  | 
|  | memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); | 
|  | mutex_init(&child->perf_event_mutex); | 
|  | INIT_LIST_HEAD(&child->perf_event_list); | 
|  |  | 
|  | for_each_task_context_nr(ctxn) { | 
|  | ret = perf_event_init_context(child, ctxn); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init perf_event_init_all_cpus(void) | 
|  | { | 
|  | struct swevent_htable *swhash; | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | swhash = &per_cpu(swevent_htable, cpu); | 
|  | mutex_init(&swhash->hlist_mutex); | 
|  | INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __cpuinit perf_event_init_cpu(int cpu) | 
|  | { | 
|  | struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); | 
|  |  | 
|  | mutex_lock(&swhash->hlist_mutex); | 
|  | if (swhash->hlist_refcount > 0) { | 
|  | struct swevent_hlist *hlist; | 
|  |  | 
|  | hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); | 
|  | WARN_ON(!hlist); | 
|  | rcu_assign_pointer(swhash->swevent_hlist, hlist); | 
|  | } | 
|  | mutex_unlock(&swhash->hlist_mutex); | 
|  | } | 
|  |  | 
|  | #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC | 
|  | static void perf_pmu_rotate_stop(struct pmu *pmu) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); | 
|  |  | 
|  | WARN_ON(!irqs_disabled()); | 
|  |  | 
|  | list_del_init(&cpuctx->rotation_list); | 
|  | } | 
|  |  | 
|  | static void __perf_event_exit_context(void *__info) | 
|  | { | 
|  | struct perf_event_context *ctx = __info; | 
|  | struct perf_event *event, *tmp; | 
|  |  | 
|  | perf_pmu_rotate_stop(ctx->pmu); | 
|  |  | 
|  | list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) | 
|  | __perf_remove_from_context(event); | 
|  | list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) | 
|  | __perf_remove_from_context(event); | 
|  | } | 
|  |  | 
|  | static void perf_event_exit_cpu_context(int cpu) | 
|  | { | 
|  | struct perf_event_context *ctx; | 
|  | struct pmu *pmu; | 
|  | int idx; | 
|  |  | 
|  | idx = srcu_read_lock(&pmus_srcu); | 
|  | list_for_each_entry_rcu(pmu, &pmus, entry) { | 
|  | ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; | 
|  |  | 
|  | mutex_lock(&ctx->mutex); | 
|  | smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); | 
|  | mutex_unlock(&ctx->mutex); | 
|  | } | 
|  | srcu_read_unlock(&pmus_srcu, idx); | 
|  | } | 
|  |  | 
|  | static void perf_event_exit_cpu(int cpu) | 
|  | { | 
|  | struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); | 
|  |  | 
|  | mutex_lock(&swhash->hlist_mutex); | 
|  | swevent_hlist_release(swhash); | 
|  | mutex_unlock(&swhash->hlist_mutex); | 
|  |  | 
|  | perf_event_exit_cpu_context(cpu); | 
|  | } | 
|  | #else | 
|  | static inline void perf_event_exit_cpu(int cpu) { } | 
|  | #endif | 
|  |  | 
|  | static int | 
|  | perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | perf_event_exit_cpu(cpu); | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Run the perf reboot notifier at the very last possible moment so that | 
|  | * the generic watchdog code runs as long as possible. | 
|  | */ | 
|  | static struct notifier_block perf_reboot_notifier = { | 
|  | .notifier_call = perf_reboot, | 
|  | .priority = INT_MIN, | 
|  | }; | 
|  |  | 
|  | static int __cpuinit | 
|  | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | 
|  | { | 
|  | unsigned int cpu = (long)hcpu; | 
|  |  | 
|  | switch (action & ~CPU_TASKS_FROZEN) { | 
|  |  | 
|  | case CPU_UP_PREPARE: | 
|  | case CPU_DOWN_FAILED: | 
|  | perf_event_init_cpu(cpu); | 
|  | break; | 
|  |  | 
|  | case CPU_UP_CANCELED: | 
|  | case CPU_DOWN_PREPARE: | 
|  | perf_event_exit_cpu(cpu); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | void __init perf_event_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | idr_init(&pmu_idr); | 
|  |  | 
|  | perf_event_init_all_cpus(); | 
|  | init_srcu_struct(&pmus_srcu); | 
|  | perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); | 
|  | perf_pmu_register(&perf_cpu_clock, NULL, -1); | 
|  | perf_pmu_register(&perf_task_clock, NULL, -1); | 
|  | perf_tp_register(); | 
|  | perf_cpu_notifier(perf_cpu_notify); | 
|  | register_reboot_notifier(&perf_reboot_notifier); | 
|  |  | 
|  | ret = init_hw_breakpoint(); | 
|  | WARN(ret, "hw_breakpoint initialization failed with: %d", ret); | 
|  | } | 
|  |  | 
|  | static int __init perf_event_sysfs_init(void) | 
|  | { | 
|  | struct pmu *pmu; | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&pmus_lock); | 
|  |  | 
|  | ret = bus_register(&pmu_bus); | 
|  | if (ret) | 
|  | goto unlock; | 
|  |  | 
|  | list_for_each_entry(pmu, &pmus, entry) { | 
|  | if (!pmu->name || pmu->type < 0) | 
|  | continue; | 
|  |  | 
|  | ret = pmu_dev_alloc(pmu); | 
|  | WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); | 
|  | } | 
|  | pmu_bus_running = 1; | 
|  | ret = 0; | 
|  |  | 
|  | unlock: | 
|  | mutex_unlock(&pmus_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | device_initcall(perf_event_sysfs_init); | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_PERF | 
|  | static struct cgroup_subsys_state *perf_cgroup_create( | 
|  | struct cgroup_subsys *ss, struct cgroup *cont) | 
|  | { | 
|  | struct perf_cgroup *jc; | 
|  |  | 
|  | jc = kzalloc(sizeof(*jc), GFP_KERNEL); | 
|  | if (!jc) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | jc->info = alloc_percpu(struct perf_cgroup_info); | 
|  | if (!jc->info) { | 
|  | kfree(jc); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | return &jc->css; | 
|  | } | 
|  |  | 
|  | static void perf_cgroup_destroy(struct cgroup_subsys *ss, | 
|  | struct cgroup *cont) | 
|  | { | 
|  | struct perf_cgroup *jc; | 
|  | jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), | 
|  | struct perf_cgroup, css); | 
|  | free_percpu(jc->info); | 
|  | kfree(jc); | 
|  | } | 
|  |  | 
|  | static int __perf_cgroup_move(void *info) | 
|  | { | 
|  | struct task_struct *task = info; | 
|  | perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void perf_cgroup_move(struct task_struct *task) | 
|  | { | 
|  | task_function_call(task, __perf_cgroup_move, task); | 
|  | } | 
|  |  | 
|  | static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | 
|  | struct cgroup *old_cgrp, struct task_struct *task, | 
|  | bool threadgroup) | 
|  | { | 
|  | perf_cgroup_move(task); | 
|  | if (threadgroup) { | 
|  | struct task_struct *c; | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(c, &task->thread_group, thread_group) { | 
|  | perf_cgroup_move(c); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp, | 
|  | struct cgroup *old_cgrp, struct task_struct *task) | 
|  | { | 
|  | /* | 
|  | * cgroup_exit() is called in the copy_process() failure path. | 
|  | * Ignore this case since the task hasn't ran yet, this avoids | 
|  | * trying to poke a half freed task state from generic code. | 
|  | */ | 
|  | if (!(task->flags & PF_EXITING)) | 
|  | return; | 
|  |  | 
|  | perf_cgroup_move(task); | 
|  | } | 
|  |  | 
|  | struct cgroup_subsys perf_subsys = { | 
|  | .name = "perf_event", | 
|  | .subsys_id = perf_subsys_id, | 
|  | .create = perf_cgroup_create, | 
|  | .destroy = perf_cgroup_destroy, | 
|  | .exit = perf_cgroup_exit, | 
|  | .attach = perf_cgroup_attach, | 
|  | }; | 
|  | #endif /* CONFIG_CGROUP_PERF */ |