| #define DRV_NAME "advansys" | 
 | #define ASC_VERSION "3.4"	/* AdvanSys Driver Version */ | 
 |  | 
 | /* | 
 |  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters | 
 |  * | 
 |  * Copyright (c) 1995-2000 Advanced System Products, Inc. | 
 |  * Copyright (c) 2000-2001 ConnectCom Solutions, Inc. | 
 |  * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx> | 
 |  * All Rights Reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  */ | 
 |  | 
 | /* | 
 |  * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys) | 
 |  * changed its name to ConnectCom Solutions, Inc. | 
 |  * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/string.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/types.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/init.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/isa.h> | 
 | #include <linux/eisa.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/firmware.h> | 
 |  | 
 | #include <asm/io.h> | 
 | #include <asm/system.h> | 
 | #include <asm/dma.h> | 
 |  | 
 | #include <scsi/scsi_cmnd.h> | 
 | #include <scsi/scsi_device.h> | 
 | #include <scsi/scsi_tcq.h> | 
 | #include <scsi/scsi.h> | 
 | #include <scsi/scsi_host.h> | 
 |  | 
 | /* FIXME: | 
 |  * | 
 |  *  1. Although all of the necessary command mapping places have the | 
 |  *     appropriate dma_map.. APIs, the driver still processes its internal | 
 |  *     queue using bus_to_virt() and virt_to_bus() which are illegal under | 
 |  *     the API.  The entire queue processing structure will need to be | 
 |  *     altered to fix this. | 
 |  *  2. Need to add memory mapping workaround. Test the memory mapping. | 
 |  *     If it doesn't work revert to I/O port access. Can a test be done | 
 |  *     safely? | 
 |  *  3. Handle an interrupt not working. Keep an interrupt counter in | 
 |  *     the interrupt handler. In the timeout function if the interrupt | 
 |  *     has not occurred then print a message and run in polled mode. | 
 |  *  4. Need to add support for target mode commands, cf. CAM XPT. | 
 |  *  5. check DMA mapping functions for failure | 
 |  *  6. Use scsi_transport_spi | 
 |  *  7. advansys_info is not safe against multiple simultaneous callers | 
 |  *  8. Add module_param to override ISA/VLB ioport array | 
 |  */ | 
 | #warning this driver is still not properly converted to the DMA API | 
 |  | 
 | /* Enable driver /proc statistics. */ | 
 | #define ADVANSYS_STATS | 
 |  | 
 | /* Enable driver tracing. */ | 
 | #undef ADVANSYS_DEBUG | 
 |  | 
 | /* | 
 |  * Portable Data Types | 
 |  * | 
 |  * Any instance where a 32-bit long or pointer type is assumed | 
 |  * for precision or HW defined structures, the following define | 
 |  * types must be used. In Linux the char, short, and int types | 
 |  * are all consistent at 8, 16, and 32 bits respectively. Pointers | 
 |  * and long types are 64 bits on Alpha and UltraSPARC. | 
 |  */ | 
 | #define ASC_PADDR __u32		/* Physical/Bus address data type. */ | 
 | #define ASC_VADDR __u32		/* Virtual address data type. */ | 
 | #define ASC_DCNT  __u32		/* Unsigned Data count type. */ | 
 | #define ASC_SDCNT __s32		/* Signed Data count type. */ | 
 |  | 
 | typedef unsigned char uchar; | 
 |  | 
 | #ifndef TRUE | 
 | #define TRUE     (1) | 
 | #endif | 
 | #ifndef FALSE | 
 | #define FALSE    (0) | 
 | #endif | 
 |  | 
 | #define ERR      (-1) | 
 | #define UW_ERR   (uint)(0xFFFF) | 
 | #define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0) | 
 |  | 
 | #define PCI_VENDOR_ID_ASP		0x10cd | 
 | #define PCI_DEVICE_ID_ASP_1200A		0x1100 | 
 | #define PCI_DEVICE_ID_ASP_ABP940	0x1200 | 
 | #define PCI_DEVICE_ID_ASP_ABP940U	0x1300 | 
 | #define PCI_DEVICE_ID_ASP_ABP940UW	0x2300 | 
 | #define PCI_DEVICE_ID_38C0800_REV1	0x2500 | 
 | #define PCI_DEVICE_ID_38C1600_REV1	0x2700 | 
 |  | 
 | /* | 
 |  * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists. | 
 |  * The SRB structure will have to be changed and the ASC_SRB2SCSIQ() | 
 |  * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the | 
 |  * SRB structure. | 
 |  */ | 
 | #define CC_VERY_LONG_SG_LIST 0 | 
 | #define ASC_SRB2SCSIQ(srb_ptr)  (srb_ptr) | 
 |  | 
 | #define PortAddr                 unsigned int	/* port address size  */ | 
 | #define inp(port)                inb(port) | 
 | #define outp(port, byte)         outb((byte), (port)) | 
 |  | 
 | #define inpw(port)               inw(port) | 
 | #define outpw(port, word)        outw((word), (port)) | 
 |  | 
 | #define ASC_MAX_SG_QUEUE    7 | 
 | #define ASC_MAX_SG_LIST     255 | 
 |  | 
 | #define ASC_CS_TYPE  unsigned short | 
 |  | 
 | #define ASC_IS_ISA          (0x0001) | 
 | #define ASC_IS_ISAPNP       (0x0081) | 
 | #define ASC_IS_EISA         (0x0002) | 
 | #define ASC_IS_PCI          (0x0004) | 
 | #define ASC_IS_PCI_ULTRA    (0x0104) | 
 | #define ASC_IS_PCMCIA       (0x0008) | 
 | #define ASC_IS_MCA          (0x0020) | 
 | #define ASC_IS_VL           (0x0040) | 
 | #define ASC_IS_WIDESCSI_16  (0x0100) | 
 | #define ASC_IS_WIDESCSI_32  (0x0200) | 
 | #define ASC_IS_BIG_ENDIAN   (0x8000) | 
 |  | 
 | #define ASC_CHIP_MIN_VER_VL      (0x01) | 
 | #define ASC_CHIP_MAX_VER_VL      (0x07) | 
 | #define ASC_CHIP_MIN_VER_PCI     (0x09) | 
 | #define ASC_CHIP_MAX_VER_PCI     (0x0F) | 
 | #define ASC_CHIP_VER_PCI_BIT     (0x08) | 
 | #define ASC_CHIP_MIN_VER_ISA     (0x11) | 
 | #define ASC_CHIP_MIN_VER_ISA_PNP (0x21) | 
 | #define ASC_CHIP_MAX_VER_ISA     (0x27) | 
 | #define ASC_CHIP_VER_ISA_BIT     (0x30) | 
 | #define ASC_CHIP_VER_ISAPNP_BIT  (0x20) | 
 | #define ASC_CHIP_VER_ASYN_BUG    (0x21) | 
 | #define ASC_CHIP_VER_PCI             0x08 | 
 | #define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02) | 
 | #define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03) | 
 | #define ASC_CHIP_MIN_VER_EISA (0x41) | 
 | #define ASC_CHIP_MAX_VER_EISA (0x47) | 
 | #define ASC_CHIP_VER_EISA_BIT (0x40) | 
 | #define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3) | 
 | #define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL) | 
 | #define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL) | 
 | #define ASC_MAX_ISA_DMA_COUNT   (0x00FFFFFFL) | 
 |  | 
 | #define ASC_SCSI_ID_BITS  3 | 
 | #define ASC_SCSI_TIX_TYPE     uchar | 
 | #define ASC_ALL_DEVICE_BIT_SET  0xFF | 
 | #define ASC_SCSI_BIT_ID_TYPE  uchar | 
 | #define ASC_MAX_TID       7 | 
 | #define ASC_MAX_LUN       7 | 
 | #define ASC_SCSI_WIDTH_BIT_SET  0xFF | 
 | #define ASC_MAX_SENSE_LEN   32 | 
 | #define ASC_MIN_SENSE_LEN   14 | 
 | #define ASC_SCSI_RESET_HOLD_TIME_US  60 | 
 |  | 
 | /* | 
 |  * Narrow boards only support 12-byte commands, while wide boards | 
 |  * extend to 16-byte commands. | 
 |  */ | 
 | #define ASC_MAX_CDB_LEN     12 | 
 | #define ADV_MAX_CDB_LEN     16 | 
 |  | 
 | #define MS_SDTR_LEN    0x03 | 
 | #define MS_WDTR_LEN    0x02 | 
 |  | 
 | #define ASC_SG_LIST_PER_Q   7 | 
 | #define QS_FREE        0x00 | 
 | #define QS_READY       0x01 | 
 | #define QS_DISC1       0x02 | 
 | #define QS_DISC2       0x04 | 
 | #define QS_BUSY        0x08 | 
 | #define QS_ABORTED     0x40 | 
 | #define QS_DONE        0x80 | 
 | #define QC_NO_CALLBACK   0x01 | 
 | #define QC_SG_SWAP_QUEUE 0x02 | 
 | #define QC_SG_HEAD       0x04 | 
 | #define QC_DATA_IN       0x08 | 
 | #define QC_DATA_OUT      0x10 | 
 | #define QC_URGENT        0x20 | 
 | #define QC_MSG_OUT       0x40 | 
 | #define QC_REQ_SENSE     0x80 | 
 | #define QCSG_SG_XFER_LIST  0x02 | 
 | #define QCSG_SG_XFER_MORE  0x04 | 
 | #define QCSG_SG_XFER_END   0x08 | 
 | #define QD_IN_PROGRESS       0x00 | 
 | #define QD_NO_ERROR          0x01 | 
 | #define QD_ABORTED_BY_HOST   0x02 | 
 | #define QD_WITH_ERROR        0x04 | 
 | #define QD_INVALID_REQUEST   0x80 | 
 | #define QD_INVALID_HOST_NUM  0x81 | 
 | #define QD_INVALID_DEVICE    0x82 | 
 | #define QD_ERR_INTERNAL      0xFF | 
 | #define QHSTA_NO_ERROR               0x00 | 
 | #define QHSTA_M_SEL_TIMEOUT          0x11 | 
 | #define QHSTA_M_DATA_OVER_RUN        0x12 | 
 | #define QHSTA_M_DATA_UNDER_RUN       0x12 | 
 | #define QHSTA_M_UNEXPECTED_BUS_FREE  0x13 | 
 | #define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14 | 
 | #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21 | 
 | #define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22 | 
 | #define QHSTA_D_HOST_ABORT_FAILED       0x23 | 
 | #define QHSTA_D_EXE_SCSI_Q_FAILED       0x24 | 
 | #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25 | 
 | #define QHSTA_D_ASPI_NO_BUF_POOL        0x26 | 
 | #define QHSTA_M_WTM_TIMEOUT         0x41 | 
 | #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42 | 
 | #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43 | 
 | #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 | 
 | #define QHSTA_M_TARGET_STATUS_BUSY  0x45 | 
 | #define QHSTA_M_BAD_TAG_CODE        0x46 | 
 | #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47 | 
 | #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48 | 
 | #define QHSTA_D_LRAM_CMP_ERROR        0x81 | 
 | #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1 | 
 | #define ASC_FLAG_SCSIQ_REQ        0x01 | 
 | #define ASC_FLAG_BIOS_SCSIQ_REQ   0x02 | 
 | #define ASC_FLAG_BIOS_ASYNC_IO    0x04 | 
 | #define ASC_FLAG_SRB_LINEAR_ADDR  0x08 | 
 | #define ASC_FLAG_WIN16            0x10 | 
 | #define ASC_FLAG_WIN32            0x20 | 
 | #define ASC_FLAG_ISA_OVER_16MB    0x40 | 
 | #define ASC_FLAG_DOS_VM_CALLBACK  0x80 | 
 | #define ASC_TAG_FLAG_EXTRA_BYTES               0x10 | 
 | #define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04 | 
 | #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08 | 
 | #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40 | 
 | #define ASC_SCSIQ_CPY_BEG              4 | 
 | #define ASC_SCSIQ_SGHD_CPY_BEG         2 | 
 | #define ASC_SCSIQ_B_FWD                0 | 
 | #define ASC_SCSIQ_B_BWD                1 | 
 | #define ASC_SCSIQ_B_STATUS             2 | 
 | #define ASC_SCSIQ_B_QNO                3 | 
 | #define ASC_SCSIQ_B_CNTL               4 | 
 | #define ASC_SCSIQ_B_SG_QUEUE_CNT       5 | 
 | #define ASC_SCSIQ_D_DATA_ADDR          8 | 
 | #define ASC_SCSIQ_D_DATA_CNT          12 | 
 | #define ASC_SCSIQ_B_SENSE_LEN         20 | 
 | #define ASC_SCSIQ_DONE_INFO_BEG       22 | 
 | #define ASC_SCSIQ_D_SRBPTR            22 | 
 | #define ASC_SCSIQ_B_TARGET_IX         26 | 
 | #define ASC_SCSIQ_B_CDB_LEN           28 | 
 | #define ASC_SCSIQ_B_TAG_CODE          29 | 
 | #define ASC_SCSIQ_W_VM_ID             30 | 
 | #define ASC_SCSIQ_DONE_STATUS         32 | 
 | #define ASC_SCSIQ_HOST_STATUS         33 | 
 | #define ASC_SCSIQ_SCSI_STATUS         34 | 
 | #define ASC_SCSIQ_CDB_BEG             36 | 
 | #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56 | 
 | #define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60 | 
 | #define ASC_SCSIQ_B_FIRST_SG_WK_QP    48 | 
 | #define ASC_SCSIQ_B_SG_WK_QP          49 | 
 | #define ASC_SCSIQ_B_SG_WK_IX          50 | 
 | #define ASC_SCSIQ_W_ALT_DC1           52 | 
 | #define ASC_SCSIQ_B_LIST_CNT          6 | 
 | #define ASC_SCSIQ_B_CUR_LIST_CNT      7 | 
 | #define ASC_SGQ_B_SG_CNTL             4 | 
 | #define ASC_SGQ_B_SG_HEAD_QP          5 | 
 | #define ASC_SGQ_B_SG_LIST_CNT         6 | 
 | #define ASC_SGQ_B_SG_CUR_LIST_CNT     7 | 
 | #define ASC_SGQ_LIST_BEG              8 | 
 | #define ASC_DEF_SCSI1_QNG    4 | 
 | #define ASC_MAX_SCSI1_QNG    4 | 
 | #define ASC_DEF_SCSI2_QNG    16 | 
 | #define ASC_MAX_SCSI2_QNG    32 | 
 | #define ASC_TAG_CODE_MASK    0x23 | 
 | #define ASC_STOP_REQ_RISC_STOP      0x01 | 
 | #define ASC_STOP_ACK_RISC_STOP      0x03 | 
 | #define ASC_STOP_CLEAN_UP_BUSY_Q    0x10 | 
 | #define ASC_STOP_CLEAN_UP_DISC_Q    0x20 | 
 | #define ASC_STOP_HOST_REQ_RISC_HALT 0x40 | 
 | #define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS)) | 
 | #define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid)) | 
 | #define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID)) | 
 | #define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID) | 
 | #define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID) | 
 | #define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN) | 
 | #define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6)) | 
 |  | 
 | typedef struct asc_scsiq_1 { | 
 | 	uchar status; | 
 | 	uchar q_no; | 
 | 	uchar cntl; | 
 | 	uchar sg_queue_cnt; | 
 | 	uchar target_id; | 
 | 	uchar target_lun; | 
 | 	ASC_PADDR data_addr; | 
 | 	ASC_DCNT data_cnt; | 
 | 	ASC_PADDR sense_addr; | 
 | 	uchar sense_len; | 
 | 	uchar extra_bytes; | 
 | } ASC_SCSIQ_1; | 
 |  | 
 | typedef struct asc_scsiq_2 { | 
 | 	ASC_VADDR srb_ptr; | 
 | 	uchar target_ix; | 
 | 	uchar flag; | 
 | 	uchar cdb_len; | 
 | 	uchar tag_code; | 
 | 	ushort vm_id; | 
 | } ASC_SCSIQ_2; | 
 |  | 
 | typedef struct asc_scsiq_3 { | 
 | 	uchar done_stat; | 
 | 	uchar host_stat; | 
 | 	uchar scsi_stat; | 
 | 	uchar scsi_msg; | 
 | } ASC_SCSIQ_3; | 
 |  | 
 | typedef struct asc_scsiq_4 { | 
 | 	uchar cdb[ASC_MAX_CDB_LEN]; | 
 | 	uchar y_first_sg_list_qp; | 
 | 	uchar y_working_sg_qp; | 
 | 	uchar y_working_sg_ix; | 
 | 	uchar y_res; | 
 | 	ushort x_req_count; | 
 | 	ushort x_reconnect_rtn; | 
 | 	ASC_PADDR x_saved_data_addr; | 
 | 	ASC_DCNT x_saved_data_cnt; | 
 | } ASC_SCSIQ_4; | 
 |  | 
 | typedef struct asc_q_done_info { | 
 | 	ASC_SCSIQ_2 d2; | 
 | 	ASC_SCSIQ_3 d3; | 
 | 	uchar q_status; | 
 | 	uchar q_no; | 
 | 	uchar cntl; | 
 | 	uchar sense_len; | 
 | 	uchar extra_bytes; | 
 | 	uchar res; | 
 | 	ASC_DCNT remain_bytes; | 
 | } ASC_QDONE_INFO; | 
 |  | 
 | typedef struct asc_sg_list { | 
 | 	ASC_PADDR addr; | 
 | 	ASC_DCNT bytes; | 
 | } ASC_SG_LIST; | 
 |  | 
 | typedef struct asc_sg_head { | 
 | 	ushort entry_cnt; | 
 | 	ushort queue_cnt; | 
 | 	ushort entry_to_copy; | 
 | 	ushort res; | 
 | 	ASC_SG_LIST sg_list[0]; | 
 | } ASC_SG_HEAD; | 
 |  | 
 | typedef struct asc_scsi_q { | 
 | 	ASC_SCSIQ_1 q1; | 
 | 	ASC_SCSIQ_2 q2; | 
 | 	uchar *cdbptr; | 
 | 	ASC_SG_HEAD *sg_head; | 
 | 	ushort remain_sg_entry_cnt; | 
 | 	ushort next_sg_index; | 
 | } ASC_SCSI_Q; | 
 |  | 
 | typedef struct asc_scsi_req_q { | 
 | 	ASC_SCSIQ_1 r1; | 
 | 	ASC_SCSIQ_2 r2; | 
 | 	uchar *cdbptr; | 
 | 	ASC_SG_HEAD *sg_head; | 
 | 	uchar *sense_ptr; | 
 | 	ASC_SCSIQ_3 r3; | 
 | 	uchar cdb[ASC_MAX_CDB_LEN]; | 
 | 	uchar sense[ASC_MIN_SENSE_LEN]; | 
 | } ASC_SCSI_REQ_Q; | 
 |  | 
 | typedef struct asc_scsi_bios_req_q { | 
 | 	ASC_SCSIQ_1 r1; | 
 | 	ASC_SCSIQ_2 r2; | 
 | 	uchar *cdbptr; | 
 | 	ASC_SG_HEAD *sg_head; | 
 | 	uchar *sense_ptr; | 
 | 	ASC_SCSIQ_3 r3; | 
 | 	uchar cdb[ASC_MAX_CDB_LEN]; | 
 | 	uchar sense[ASC_MIN_SENSE_LEN]; | 
 | } ASC_SCSI_BIOS_REQ_Q; | 
 |  | 
 | typedef struct asc_risc_q { | 
 | 	uchar fwd; | 
 | 	uchar bwd; | 
 | 	ASC_SCSIQ_1 i1; | 
 | 	ASC_SCSIQ_2 i2; | 
 | 	ASC_SCSIQ_3 i3; | 
 | 	ASC_SCSIQ_4 i4; | 
 | } ASC_RISC_Q; | 
 |  | 
 | typedef struct asc_sg_list_q { | 
 | 	uchar seq_no; | 
 | 	uchar q_no; | 
 | 	uchar cntl; | 
 | 	uchar sg_head_qp; | 
 | 	uchar sg_list_cnt; | 
 | 	uchar sg_cur_list_cnt; | 
 | } ASC_SG_LIST_Q; | 
 |  | 
 | typedef struct asc_risc_sg_list_q { | 
 | 	uchar fwd; | 
 | 	uchar bwd; | 
 | 	ASC_SG_LIST_Q sg; | 
 | 	ASC_SG_LIST sg_list[7]; | 
 | } ASC_RISC_SG_LIST_Q; | 
 |  | 
 | #define ASCQ_ERR_Q_STATUS             0x0D | 
 | #define ASCQ_ERR_CUR_QNG              0x17 | 
 | #define ASCQ_ERR_SG_Q_LINKS           0x18 | 
 | #define ASCQ_ERR_ISR_RE_ENTRY         0x1A | 
 | #define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B | 
 | #define ASCQ_ERR_ISR_ON_CRITICAL      0x1C | 
 |  | 
 | /* | 
 |  * Warning code values are set in ASC_DVC_VAR  'warn_code'. | 
 |  */ | 
 | #define ASC_WARN_NO_ERROR             0x0000 | 
 | #define ASC_WARN_IO_PORT_ROTATE       0x0001 | 
 | #define ASC_WARN_EEPROM_CHKSUM        0x0002 | 
 | #define ASC_WARN_IRQ_MODIFIED         0x0004 | 
 | #define ASC_WARN_AUTO_CONFIG          0x0008 | 
 | #define ASC_WARN_CMD_QNG_CONFLICT     0x0010 | 
 | #define ASC_WARN_EEPROM_RECOVER       0x0020 | 
 | #define ASC_WARN_CFG_MSW_RECOVER      0x0040 | 
 |  | 
 | /* | 
 |  * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'. | 
 |  */ | 
 | #define ASC_IERR_NO_CARRIER		0x0001	/* No more carrier memory */ | 
 | #define ASC_IERR_MCODE_CHKSUM		0x0002	/* micro code check sum error */ | 
 | #define ASC_IERR_SET_PC_ADDR		0x0004 | 
 | #define ASC_IERR_START_STOP_CHIP	0x0008	/* start/stop chip failed */ | 
 | #define ASC_IERR_ILLEGAL_CONNECTION	0x0010	/* Illegal cable connection */ | 
 | #define ASC_IERR_SINGLE_END_DEVICE	0x0020	/* SE device on DIFF bus */ | 
 | #define ASC_IERR_REVERSED_CABLE		0x0040	/* Narrow flat cable reversed */ | 
 | #define ASC_IERR_SET_SCSI_ID		0x0080	/* set SCSI ID failed */ | 
 | #define ASC_IERR_HVD_DEVICE		0x0100	/* HVD device on LVD port */ | 
 | #define ASC_IERR_BAD_SIGNATURE		0x0200	/* signature not found */ | 
 | #define ASC_IERR_NO_BUS_TYPE		0x0400 | 
 | #define ASC_IERR_BIST_PRE_TEST		0x0800	/* BIST pre-test error */ | 
 | #define ASC_IERR_BIST_RAM_TEST		0x1000	/* BIST RAM test error */ | 
 | #define ASC_IERR_BAD_CHIPTYPE		0x2000	/* Invalid chip_type setting */ | 
 |  | 
 | #define ASC_DEF_MAX_TOTAL_QNG   (0xF0) | 
 | #define ASC_MIN_TAG_Q_PER_DVC   (0x04) | 
 | #define ASC_MIN_FREE_Q        (0x02) | 
 | #define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q)) | 
 | #define ASC_MAX_TOTAL_QNG 240 | 
 | #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16 | 
 | #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8 | 
 | #define ASC_MAX_PCI_INRAM_TOTAL_QNG  20 | 
 | #define ASC_MAX_INRAM_TAG_QNG   16 | 
 | #define ASC_IOADR_GAP   0x10 | 
 | #define ASC_SYN_MAX_OFFSET         0x0F | 
 | #define ASC_DEF_SDTR_OFFSET        0x0F | 
 | #define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02 | 
 | #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41 | 
 |  | 
 | /* The narrow chip only supports a limited selection of transfer rates. | 
 |  * These are encoded in the range 0..7 or 0..15 depending whether the chip | 
 |  * is Ultra-capable or not.  These tables let us convert from one to the other. | 
 |  */ | 
 | static const unsigned char asc_syn_xfer_period[8] = { | 
 | 	25, 30, 35, 40, 50, 60, 70, 85 | 
 | }; | 
 |  | 
 | static const unsigned char asc_syn_ultra_xfer_period[16] = { | 
 | 	12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107 | 
 | }; | 
 |  | 
 | typedef struct ext_msg { | 
 | 	uchar msg_type; | 
 | 	uchar msg_len; | 
 | 	uchar msg_req; | 
 | 	union { | 
 | 		struct { | 
 | 			uchar sdtr_xfer_period; | 
 | 			uchar sdtr_req_ack_offset; | 
 | 		} sdtr; | 
 | 		struct { | 
 | 			uchar wdtr_width; | 
 | 		} wdtr; | 
 | 		struct { | 
 | 			uchar mdp_b3; | 
 | 			uchar mdp_b2; | 
 | 			uchar mdp_b1; | 
 | 			uchar mdp_b0; | 
 | 		} mdp; | 
 | 	} u_ext_msg; | 
 | 	uchar res; | 
 | } EXT_MSG; | 
 |  | 
 | #define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period | 
 | #define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset | 
 | #define wdtr_width      u_ext_msg.wdtr.wdtr_width | 
 | #define mdp_b3          u_ext_msg.mdp_b3 | 
 | #define mdp_b2          u_ext_msg.mdp_b2 | 
 | #define mdp_b1          u_ext_msg.mdp_b1 | 
 | #define mdp_b0          u_ext_msg.mdp_b0 | 
 |  | 
 | typedef struct asc_dvc_cfg { | 
 | 	ASC_SCSI_BIT_ID_TYPE can_tagged_qng; | 
 | 	ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled; | 
 | 	ASC_SCSI_BIT_ID_TYPE disc_enable; | 
 | 	ASC_SCSI_BIT_ID_TYPE sdtr_enable; | 
 | 	uchar chip_scsi_id; | 
 | 	uchar isa_dma_speed; | 
 | 	uchar isa_dma_channel; | 
 | 	uchar chip_version; | 
 | 	ushort mcode_date; | 
 | 	ushort mcode_version; | 
 | 	uchar max_tag_qng[ASC_MAX_TID + 1]; | 
 | 	uchar sdtr_period_offset[ASC_MAX_TID + 1]; | 
 | 	uchar adapter_info[6]; | 
 | } ASC_DVC_CFG; | 
 |  | 
 | #define ASC_DEF_DVC_CNTL       0xFFFF | 
 | #define ASC_DEF_CHIP_SCSI_ID   7 | 
 | #define ASC_DEF_ISA_DMA_SPEED  4 | 
 | #define ASC_INIT_STATE_BEG_GET_CFG   0x0001 | 
 | #define ASC_INIT_STATE_END_GET_CFG   0x0002 | 
 | #define ASC_INIT_STATE_BEG_SET_CFG   0x0004 | 
 | #define ASC_INIT_STATE_END_SET_CFG   0x0008 | 
 | #define ASC_INIT_STATE_BEG_LOAD_MC   0x0010 | 
 | #define ASC_INIT_STATE_END_LOAD_MC   0x0020 | 
 | #define ASC_INIT_STATE_BEG_INQUIRY   0x0040 | 
 | #define ASC_INIT_STATE_END_INQUIRY   0x0080 | 
 | #define ASC_INIT_RESET_SCSI_DONE     0x0100 | 
 | #define ASC_INIT_STATE_WITHOUT_EEP   0x8000 | 
 | #define ASC_BUG_FIX_IF_NOT_DWB       0x0001 | 
 | #define ASC_BUG_FIX_ASYN_USE_SYN     0x0002 | 
 | #define ASC_MIN_TAGGED_CMD  7 | 
 | #define ASC_MAX_SCSI_RESET_WAIT      30 | 
 | #define ASC_OVERRUN_BSIZE		64 | 
 |  | 
 | struct asc_dvc_var;		/* Forward Declaration. */ | 
 |  | 
 | typedef struct asc_dvc_var { | 
 | 	PortAddr iop_base; | 
 | 	ushort err_code; | 
 | 	ushort dvc_cntl; | 
 | 	ushort bug_fix_cntl; | 
 | 	ushort bus_type; | 
 | 	ASC_SCSI_BIT_ID_TYPE init_sdtr; | 
 | 	ASC_SCSI_BIT_ID_TYPE sdtr_done; | 
 | 	ASC_SCSI_BIT_ID_TYPE use_tagged_qng; | 
 | 	ASC_SCSI_BIT_ID_TYPE unit_not_ready; | 
 | 	ASC_SCSI_BIT_ID_TYPE queue_full_or_busy; | 
 | 	ASC_SCSI_BIT_ID_TYPE start_motor; | 
 | 	uchar *overrun_buf; | 
 | 	dma_addr_t overrun_dma; | 
 | 	uchar scsi_reset_wait; | 
 | 	uchar chip_no; | 
 | 	char is_in_int; | 
 | 	uchar max_total_qng; | 
 | 	uchar cur_total_qng; | 
 | 	uchar in_critical_cnt; | 
 | 	uchar last_q_shortage; | 
 | 	ushort init_state; | 
 | 	uchar cur_dvc_qng[ASC_MAX_TID + 1]; | 
 | 	uchar max_dvc_qng[ASC_MAX_TID + 1]; | 
 | 	ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1]; | 
 | 	ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1]; | 
 | 	const uchar *sdtr_period_tbl; | 
 | 	ASC_DVC_CFG *cfg; | 
 | 	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always; | 
 | 	char redo_scam; | 
 | 	ushort res2; | 
 | 	uchar dos_int13_table[ASC_MAX_TID + 1]; | 
 | 	ASC_DCNT max_dma_count; | 
 | 	ASC_SCSI_BIT_ID_TYPE no_scam; | 
 | 	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer; | 
 | 	uchar min_sdtr_index; | 
 | 	uchar max_sdtr_index; | 
 | 	struct asc_board *drv_ptr; | 
 | 	int ptr_map_count; | 
 | 	void **ptr_map; | 
 | 	ASC_DCNT uc_break; | 
 | } ASC_DVC_VAR; | 
 |  | 
 | typedef struct asc_dvc_inq_info { | 
 | 	uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; | 
 | } ASC_DVC_INQ_INFO; | 
 |  | 
 | typedef struct asc_cap_info { | 
 | 	ASC_DCNT lba; | 
 | 	ASC_DCNT blk_size; | 
 | } ASC_CAP_INFO; | 
 |  | 
 | typedef struct asc_cap_info_array { | 
 | 	ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; | 
 | } ASC_CAP_INFO_ARRAY; | 
 |  | 
 | #define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001 | 
 | #define ASC_MCNTL_NULL_TARGET     (ushort)0x0002 | 
 | #define ASC_CNTL_INITIATOR         (ushort)0x0001 | 
 | #define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002 | 
 | #define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004 | 
 | #define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008 | 
 | #define ASC_CNTL_NO_SCAM           (ushort)0x0010 | 
 | #define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080 | 
 | #define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040 | 
 | #define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100 | 
 | #define ASC_CNTL_RESET_SCSI        (ushort)0x0200 | 
 | #define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400 | 
 | #define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800 | 
 | #define ASC_CNTL_SCSI_PARITY       (ushort)0x1000 | 
 | #define ASC_CNTL_BURST_MODE        (ushort)0x2000 | 
 | #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000 | 
 | #define ASC_EEP_DVC_CFG_BEG_VL    2 | 
 | #define ASC_EEP_MAX_DVC_ADDR_VL   15 | 
 | #define ASC_EEP_DVC_CFG_BEG      32 | 
 | #define ASC_EEP_MAX_DVC_ADDR     45 | 
 | #define ASC_EEP_MAX_RETRY        20 | 
 |  | 
 | /* | 
 |  * These macros keep the chip SCSI id and ISA DMA speed | 
 |  * bitfields in board order. C bitfields aren't portable | 
 |  * between big and little-endian platforms so they are | 
 |  * not used. | 
 |  */ | 
 |  | 
 | #define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f) | 
 | #define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4) | 
 | #define ASC_EEP_SET_CHIP_ID(cfg, sid) \ | 
 |    ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID)) | 
 | #define ASC_EEP_SET_DMA_SPD(cfg, spd) \ | 
 |    ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4) | 
 |  | 
 | typedef struct asceep_config { | 
 | 	ushort cfg_lsw; | 
 | 	ushort cfg_msw; | 
 | 	uchar init_sdtr; | 
 | 	uchar disc_enable; | 
 | 	uchar use_cmd_qng; | 
 | 	uchar start_motor; | 
 | 	uchar max_total_qng; | 
 | 	uchar max_tag_qng; | 
 | 	uchar bios_scan; | 
 | 	uchar power_up_wait; | 
 | 	uchar no_scam; | 
 | 	uchar id_speed;		/* low order 4 bits is chip scsi id */ | 
 | 	/* high order 4 bits is isa dma speed */ | 
 | 	uchar dos_int13_table[ASC_MAX_TID + 1]; | 
 | 	uchar adapter_info[6]; | 
 | 	ushort cntl; | 
 | 	ushort chksum; | 
 | } ASCEEP_CONFIG; | 
 |  | 
 | #define ASC_EEP_CMD_READ          0x80 | 
 | #define ASC_EEP_CMD_WRITE         0x40 | 
 | #define ASC_EEP_CMD_WRITE_ABLE    0x30 | 
 | #define ASC_EEP_CMD_WRITE_DISABLE 0x00 | 
 | #define ASCV_MSGOUT_BEG         0x0000 | 
 | #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3) | 
 | #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4) | 
 | #define ASCV_BREAK_SAVED_CODE   (ushort)0x0006 | 
 | #define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8) | 
 | #define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3) | 
 | #define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4) | 
 | #define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8) | 
 | #define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8) | 
 | #define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020 | 
 | #define ASCV_BREAK_ADDR           (ushort)0x0028 | 
 | #define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A | 
 | #define ASCV_BREAK_CONTROL        (ushort)0x002C | 
 | #define ASCV_BREAK_HIT_COUNT      (ushort)0x002E | 
 |  | 
 | #define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030 | 
 | #define ASCV_MCODE_CHKSUM_W   (ushort)0x0032 | 
 | #define ASCV_MCODE_SIZE_W     (ushort)0x0034 | 
 | #define ASCV_STOP_CODE_B      (ushort)0x0036 | 
 | #define ASCV_DVC_ERR_CODE_B   (ushort)0x0037 | 
 | #define ASCV_OVERRUN_PADDR_D  (ushort)0x0038 | 
 | #define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C | 
 | #define ASCV_HALTCODE_W       (ushort)0x0040 | 
 | #define ASCV_CHKSUM_W         (ushort)0x0042 | 
 | #define ASCV_MC_DATE_W        (ushort)0x0044 | 
 | #define ASCV_MC_VER_W         (ushort)0x0046 | 
 | #define ASCV_NEXTRDY_B        (ushort)0x0048 | 
 | #define ASCV_DONENEXT_B       (ushort)0x0049 | 
 | #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A | 
 | #define ASCV_SCSIBUSY_B       (ushort)0x004B | 
 | #define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C | 
 | #define ASCV_CURCDB_B         (ushort)0x004D | 
 | #define ASCV_RCLUN_B          (ushort)0x004E | 
 | #define ASCV_BUSY_QHEAD_B     (ushort)0x004F | 
 | #define ASCV_DISC1_QHEAD_B    (ushort)0x0050 | 
 | #define ASCV_DISC_ENABLE_B    (ushort)0x0052 | 
 | #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053 | 
 | #define ASCV_HOSTSCSI_ID_B    (ushort)0x0055 | 
 | #define ASCV_MCODE_CNTL_B     (ushort)0x0056 | 
 | #define ASCV_NULL_TARGET_B    (ushort)0x0057 | 
 | #define ASCV_FREE_Q_HEAD_W    (ushort)0x0058 | 
 | #define ASCV_DONE_Q_TAIL_W    (ushort)0x005A | 
 | #define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1) | 
 | #define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1) | 
 | #define ASCV_HOST_FLAG_B      (ushort)0x005D | 
 | #define ASCV_TOTAL_READY_Q_B  (ushort)0x0064 | 
 | #define ASCV_VER_SERIAL_B     (ushort)0x0065 | 
 | #define ASCV_HALTCODE_SAVED_W (ushort)0x0066 | 
 | #define ASCV_WTM_FLAG_B       (ushort)0x0068 | 
 | #define ASCV_RISC_FLAG_B      (ushort)0x006A | 
 | #define ASCV_REQ_SG_LIST_QP   (ushort)0x006B | 
 | #define ASC_HOST_FLAG_IN_ISR        0x01 | 
 | #define ASC_HOST_FLAG_ACK_INT       0x02 | 
 | #define ASC_RISC_FLAG_GEN_INT      0x01 | 
 | #define ASC_RISC_FLAG_REQ_SG_LIST  0x02 | 
 | #define IOP_CTRL         (0x0F) | 
 | #define IOP_STATUS       (0x0E) | 
 | #define IOP_INT_ACK      IOP_STATUS | 
 | #define IOP_REG_IFC      (0x0D) | 
 | #define IOP_SYN_OFFSET    (0x0B) | 
 | #define IOP_EXTRA_CONTROL (0x0D) | 
 | #define IOP_REG_PC        (0x0C) | 
 | #define IOP_RAM_ADDR      (0x0A) | 
 | #define IOP_RAM_DATA      (0x08) | 
 | #define IOP_EEP_DATA      (0x06) | 
 | #define IOP_EEP_CMD       (0x07) | 
 | #define IOP_VERSION       (0x03) | 
 | #define IOP_CONFIG_HIGH   (0x04) | 
 | #define IOP_CONFIG_LOW    (0x02) | 
 | #define IOP_SIG_BYTE      (0x01) | 
 | #define IOP_SIG_WORD      (0x00) | 
 | #define IOP_REG_DC1      (0x0E) | 
 | #define IOP_REG_DC0      (0x0C) | 
 | #define IOP_REG_SB       (0x0B) | 
 | #define IOP_REG_DA1      (0x0A) | 
 | #define IOP_REG_DA0      (0x08) | 
 | #define IOP_REG_SC       (0x09) | 
 | #define IOP_DMA_SPEED    (0x07) | 
 | #define IOP_REG_FLAG     (0x07) | 
 | #define IOP_FIFO_H       (0x06) | 
 | #define IOP_FIFO_L       (0x04) | 
 | #define IOP_REG_ID       (0x05) | 
 | #define IOP_REG_QP       (0x03) | 
 | #define IOP_REG_IH       (0x02) | 
 | #define IOP_REG_IX       (0x01) | 
 | #define IOP_REG_AX       (0x00) | 
 | #define IFC_REG_LOCK      (0x00) | 
 | #define IFC_REG_UNLOCK    (0x09) | 
 | #define IFC_WR_EN_FILTER  (0x10) | 
 | #define IFC_RD_NO_EEPROM  (0x10) | 
 | #define IFC_SLEW_RATE     (0x20) | 
 | #define IFC_ACT_NEG       (0x40) | 
 | #define IFC_INP_FILTER    (0x80) | 
 | #define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK) | 
 | #define SC_SEL   (uchar)(0x80) | 
 | #define SC_BSY   (uchar)(0x40) | 
 | #define SC_ACK   (uchar)(0x20) | 
 | #define SC_REQ   (uchar)(0x10) | 
 | #define SC_ATN   (uchar)(0x08) | 
 | #define SC_IO    (uchar)(0x04) | 
 | #define SC_CD    (uchar)(0x02) | 
 | #define SC_MSG   (uchar)(0x01) | 
 | #define SEC_SCSI_CTL         (uchar)(0x80) | 
 | #define SEC_ACTIVE_NEGATE    (uchar)(0x40) | 
 | #define SEC_SLEW_RATE        (uchar)(0x20) | 
 | #define SEC_ENABLE_FILTER    (uchar)(0x10) | 
 | #define ASC_HALT_EXTMSG_IN     (ushort)0x8000 | 
 | #define ASC_HALT_CHK_CONDITION (ushort)0x8100 | 
 | #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200 | 
 | #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300 | 
 | #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400 | 
 | #define ASC_HALT_SDTR_REJECTED (ushort)0x4000 | 
 | #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000 | 
 | #define ASC_MAX_QNO        0xF8 | 
 | #define ASC_DATA_SEC_BEG   (ushort)0x0080 | 
 | #define ASC_DATA_SEC_END   (ushort)0x0080 | 
 | #define ASC_CODE_SEC_BEG   (ushort)0x0080 | 
 | #define ASC_CODE_SEC_END   (ushort)0x0080 | 
 | #define ASC_QADR_BEG       (0x4000) | 
 | #define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64) | 
 | #define ASC_QADR_END       (ushort)0x7FFF | 
 | #define ASC_QLAST_ADR      (ushort)0x7FC0 | 
 | #define ASC_QBLK_SIZE      0x40 | 
 | #define ASC_BIOS_DATA_QBEG 0xF8 | 
 | #define ASC_MIN_ACTIVE_QNO 0x01 | 
 | #define ASC_QLINK_END      0xFF | 
 | #define ASC_EEPROM_WORDS   0x10 | 
 | #define ASC_MAX_MGS_LEN    0x10 | 
 | #define ASC_BIOS_ADDR_DEF  0xDC00 | 
 | #define ASC_BIOS_SIZE      0x3800 | 
 | #define ASC_BIOS_RAM_OFF   0x3800 | 
 | #define ASC_BIOS_RAM_SIZE  0x800 | 
 | #define ASC_BIOS_MIN_ADDR  0xC000 | 
 | #define ASC_BIOS_MAX_ADDR  0xEC00 | 
 | #define ASC_BIOS_BANK_SIZE 0x0400 | 
 | #define ASC_MCODE_START_ADDR  0x0080 | 
 | #define ASC_CFG0_HOST_INT_ON    0x0020 | 
 | #define ASC_CFG0_BIOS_ON        0x0040 | 
 | #define ASC_CFG0_VERA_BURST_ON  0x0080 | 
 | #define ASC_CFG0_SCSI_PARITY_ON 0x0800 | 
 | #define ASC_CFG1_SCSI_TARGET_ON 0x0080 | 
 | #define ASC_CFG1_LRAM_8BITS_ON  0x0800 | 
 | #define ASC_CFG_MSW_CLR_MASK    0x3080 | 
 | #define CSW_TEST1             (ASC_CS_TYPE)0x8000 | 
 | #define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000 | 
 | #define CSW_RESERVED1         (ASC_CS_TYPE)0x2000 | 
 | #define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000 | 
 | #define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800 | 
 | #define CSW_TEST2             (ASC_CS_TYPE)0x0400 | 
 | #define CSW_TEST3             (ASC_CS_TYPE)0x0200 | 
 | #define CSW_RESERVED2         (ASC_CS_TYPE)0x0100 | 
 | #define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080 | 
 | #define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040 | 
 | #define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020 | 
 | #define CSW_HALTED            (ASC_CS_TYPE)0x0010 | 
 | #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008 | 
 | #define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004 | 
 | #define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002 | 
 | #define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001 | 
 | #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000 | 
 | #define CIW_INT_ACK      (ASC_CS_TYPE)0x0100 | 
 | #define CIW_TEST1        (ASC_CS_TYPE)0x0200 | 
 | #define CIW_TEST2        (ASC_CS_TYPE)0x0400 | 
 | #define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800 | 
 | #define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000 | 
 | #define CC_CHIP_RESET   (uchar)0x80 | 
 | #define CC_SCSI_RESET   (uchar)0x40 | 
 | #define CC_HALT         (uchar)0x20 | 
 | #define CC_SINGLE_STEP  (uchar)0x10 | 
 | #define CC_DMA_ABLE     (uchar)0x08 | 
 | #define CC_TEST         (uchar)0x04 | 
 | #define CC_BANK_ONE     (uchar)0x02 | 
 | #define CC_DIAG         (uchar)0x01 | 
 | #define ASC_1000_ID0W      0x04C1 | 
 | #define ASC_1000_ID0W_FIX  0x00C1 | 
 | #define ASC_1000_ID1B      0x25 | 
 | #define ASC_EISA_REV_IOP_MASK  (0x0C83) | 
 | #define ASC_EISA_CFG_IOP_MASK  (0x0C86) | 
 | #define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000) | 
 | #define INS_HALTINT        (ushort)0x6281 | 
 | #define INS_HALT           (ushort)0x6280 | 
 | #define INS_SINT           (ushort)0x6200 | 
 | #define INS_RFLAG_WTM      (ushort)0x7380 | 
 | #define ASC_MC_SAVE_CODE_WSIZE  0x500 | 
 | #define ASC_MC_SAVE_DATA_WSIZE  0x40 | 
 |  | 
 | typedef struct asc_mc_saved { | 
 | 	ushort data[ASC_MC_SAVE_DATA_WSIZE]; | 
 | 	ushort code[ASC_MC_SAVE_CODE_WSIZE]; | 
 | } ASC_MC_SAVED; | 
 |  | 
 | #define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B) | 
 | #define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val) | 
 | #define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W) | 
 | #define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W) | 
 | #define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val) | 
 | #define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val) | 
 | #define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B) | 
 | #define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B) | 
 | #define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val) | 
 | #define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val) | 
 | #define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data)) | 
 | #define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id)) | 
 | #define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data) | 
 | #define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id)) | 
 | #define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE) | 
 | #define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD) | 
 | #define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION) | 
 | #define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW) | 
 | #define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH) | 
 | #define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data) | 
 | #define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data) | 
 | #define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD) | 
 | #define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data) | 
 | #define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA) | 
 | #define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data) | 
 | #define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR)) | 
 | #define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr) | 
 | #define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA) | 
 | #define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data) | 
 | #define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC) | 
 | #define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data) | 
 | #define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS) | 
 | #define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val) | 
 | #define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL) | 
 | #define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val) | 
 | #define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET) | 
 | #define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data) | 
 | #define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data) | 
 | #define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC) | 
 | #define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH)) | 
 | #define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID) | 
 | #define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL) | 
 | #define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data) | 
 | #define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX) | 
 | #define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data) | 
 | #define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX) | 
 | #define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data) | 
 | #define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH) | 
 | #define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data) | 
 | #define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP) | 
 | #define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data) | 
 | #define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L) | 
 | #define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data) | 
 | #define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H) | 
 | #define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data) | 
 | #define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED) | 
 | #define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data) | 
 | #define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0) | 
 | #define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data) | 
 | #define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1) | 
 | #define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data) | 
 | #define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0) | 
 | #define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data) | 
 | #define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1) | 
 | #define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data) | 
 | #define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID) | 
 | #define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data) | 
 |  | 
 | /* | 
 |  * Portable Data Types | 
 |  * | 
 |  * Any instance where a 32-bit long or pointer type is assumed | 
 |  * for precision or HW defined structures, the following define | 
 |  * types must be used. In Linux the char, short, and int types | 
 |  * are all consistent at 8, 16, and 32 bits respectively. Pointers | 
 |  * and long types are 64 bits on Alpha and UltraSPARC. | 
 |  */ | 
 | #define ADV_PADDR __u32		/* Physical address data type. */ | 
 | #define ADV_VADDR __u32		/* Virtual address data type. */ | 
 | #define ADV_DCNT  __u32		/* Unsigned Data count type. */ | 
 | #define ADV_SDCNT __s32		/* Signed Data count type. */ | 
 |  | 
 | /* | 
 |  * These macros are used to convert a virtual address to a | 
 |  * 32-bit value. This currently can be used on Linux Alpha | 
 |  * which uses 64-bit virtual address but a 32-bit bus address. | 
 |  * This is likely to break in the future, but doing this now | 
 |  * will give us time to change the HW and FW to handle 64-bit | 
 |  * addresses. | 
 |  */ | 
 | #define ADV_VADDR_TO_U32   virt_to_bus | 
 | #define ADV_U32_TO_VADDR   bus_to_virt | 
 |  | 
 | #define AdvPortAddr  void __iomem *	/* Virtual memory address size */ | 
 |  | 
 | /* | 
 |  * Define Adv Library required memory access macros. | 
 |  */ | 
 | #define ADV_MEM_READB(addr) readb(addr) | 
 | #define ADV_MEM_READW(addr) readw(addr) | 
 | #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr) | 
 | #define ADV_MEM_WRITEW(addr, word) writew(word, addr) | 
 | #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr) | 
 |  | 
 | #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15) | 
 |  | 
 | /* | 
 |  * Define total number of simultaneous maximum element scatter-gather | 
 |  * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the | 
 |  * maximum number of outstanding commands per wide host adapter. Each | 
 |  * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather | 
 |  * elements. Allow each command to have at least one ADV_SG_BLOCK structure. | 
 |  * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK | 
 |  * structures or 255 scatter-gather elements. | 
 |  */ | 
 | #define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG | 
 |  | 
 | /* | 
 |  * Define maximum number of scatter-gather elements per request. | 
 |  */ | 
 | #define ADV_MAX_SG_LIST         255 | 
 | #define NO_OF_SG_PER_BLOCK              15 | 
 |  | 
 | #define ADV_EEP_DVC_CFG_BEGIN           (0x00) | 
 | #define ADV_EEP_DVC_CFG_END             (0x15) | 
 | #define ADV_EEP_DVC_CTL_BEGIN           (0x16)	/* location of OEM name */ | 
 | #define ADV_EEP_MAX_WORD_ADDR           (0x1E) | 
 |  | 
 | #define ADV_EEP_DELAY_MS                100 | 
 |  | 
 | #define ADV_EEPROM_BIG_ENDIAN          0x8000	/* EEPROM Bit 15 */ | 
 | #define ADV_EEPROM_BIOS_ENABLE         0x4000	/* EEPROM Bit 14 */ | 
 | /* | 
 |  * For the ASC3550 Bit 13 is Termination Polarity control bit. | 
 |  * For later ICs Bit 13 controls whether the CIS (Card Information | 
 |  * Service Section) is loaded from EEPROM. | 
 |  */ | 
 | #define ADV_EEPROM_TERM_POL            0x2000	/* EEPROM Bit 13 */ | 
 | #define ADV_EEPROM_CIS_LD              0x2000	/* EEPROM Bit 13 */ | 
 | /* | 
 |  * ASC38C1600 Bit 11 | 
 |  * | 
 |  * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify | 
 |  * INT A in the PCI Configuration Space Int Pin field. If it is 1, then | 
 |  * Function 0 will specify INT B. | 
 |  * | 
 |  * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify | 
 |  * INT B in the PCI Configuration Space Int Pin field. If it is 1, then | 
 |  * Function 1 will specify INT A. | 
 |  */ | 
 | #define ADV_EEPROM_INTAB               0x0800	/* EEPROM Bit 11 */ | 
 |  | 
 | typedef struct adveep_3550_config { | 
 | 	/* Word Offset, Description */ | 
 |  | 
 | 	ushort cfg_lsw;		/* 00 power up initialization */ | 
 | 	/*  bit 13 set - Term Polarity Control */ | 
 | 	/*  bit 14 set - BIOS Enable */ | 
 | 	/*  bit 15 set - Big Endian Mode */ | 
 | 	ushort cfg_msw;		/* 01 unused      */ | 
 | 	ushort disc_enable;	/* 02 disconnect enable */ | 
 | 	ushort wdtr_able;	/* 03 Wide DTR able */ | 
 | 	ushort sdtr_able;	/* 04 Synchronous DTR able */ | 
 | 	ushort start_motor;	/* 05 send start up motor */ | 
 | 	ushort tagqng_able;	/* 06 tag queuing able */ | 
 | 	ushort bios_scan;	/* 07 BIOS device control */ | 
 | 	ushort scam_tolerant;	/* 08 no scam */ | 
 |  | 
 | 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */ | 
 | 	uchar bios_boot_delay;	/*    power up wait */ | 
 |  | 
 | 	uchar scsi_reset_delay;	/* 10 reset delay */ | 
 | 	uchar bios_id_lun;	/*    first boot device scsi id & lun */ | 
 | 	/*    high nibble is lun */ | 
 | 	/*    low nibble is scsi id */ | 
 |  | 
 | 	uchar termination;	/* 11 0 - automatic */ | 
 | 	/*    1 - low off / high off */ | 
 | 	/*    2 - low off / high on */ | 
 | 	/*    3 - low on  / high on */ | 
 | 	/*    There is no low on  / high off */ | 
 |  | 
 | 	uchar reserved1;	/*    reserved byte (not used) */ | 
 |  | 
 | 	ushort bios_ctrl;	/* 12 BIOS control bits */ | 
 | 	/*  bit 0  BIOS don't act as initiator. */ | 
 | 	/*  bit 1  BIOS > 1 GB support */ | 
 | 	/*  bit 2  BIOS > 2 Disk Support */ | 
 | 	/*  bit 3  BIOS don't support removables */ | 
 | 	/*  bit 4  BIOS support bootable CD */ | 
 | 	/*  bit 5  BIOS scan enabled */ | 
 | 	/*  bit 6  BIOS support multiple LUNs */ | 
 | 	/*  bit 7  BIOS display of message */ | 
 | 	/*  bit 8  SCAM disabled */ | 
 | 	/*  bit 9  Reset SCSI bus during init. */ | 
 | 	/*  bit 10 */ | 
 | 	/*  bit 11 No verbose initialization. */ | 
 | 	/*  bit 12 SCSI parity enabled */ | 
 | 	/*  bit 13 */ | 
 | 	/*  bit 14 */ | 
 | 	/*  bit 15 */ | 
 | 	ushort ultra_able;	/* 13 ULTRA speed able */ | 
 | 	ushort reserved2;	/* 14 reserved */ | 
 | 	uchar max_host_qng;	/* 15 maximum host queuing */ | 
 | 	uchar max_dvc_qng;	/*    maximum per device queuing */ | 
 | 	ushort dvc_cntl;	/* 16 control bit for driver */ | 
 | 	ushort bug_fix;		/* 17 control bit for bug fix */ | 
 | 	ushort serial_number_word1;	/* 18 Board serial number word 1 */ | 
 | 	ushort serial_number_word2;	/* 19 Board serial number word 2 */ | 
 | 	ushort serial_number_word3;	/* 20 Board serial number word 3 */ | 
 | 	ushort check_sum;	/* 21 EEP check sum */ | 
 | 	uchar oem_name[16];	/* 22 OEM name */ | 
 | 	ushort dvc_err_code;	/* 30 last device driver error code */ | 
 | 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */ | 
 | 	ushort adv_err_addr;	/* 32 last uc error address */ | 
 | 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */ | 
 | 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */ | 
 | 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */ | 
 | 	ushort num_of_err;	/* 36 number of error */ | 
 | } ADVEEP_3550_CONFIG; | 
 |  | 
 | typedef struct adveep_38C0800_config { | 
 | 	/* Word Offset, Description */ | 
 |  | 
 | 	ushort cfg_lsw;		/* 00 power up initialization */ | 
 | 	/*  bit 13 set - Load CIS */ | 
 | 	/*  bit 14 set - BIOS Enable */ | 
 | 	/*  bit 15 set - Big Endian Mode */ | 
 | 	ushort cfg_msw;		/* 01 unused      */ | 
 | 	ushort disc_enable;	/* 02 disconnect enable */ | 
 | 	ushort wdtr_able;	/* 03 Wide DTR able */ | 
 | 	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */ | 
 | 	ushort start_motor;	/* 05 send start up motor */ | 
 | 	ushort tagqng_able;	/* 06 tag queuing able */ | 
 | 	ushort bios_scan;	/* 07 BIOS device control */ | 
 | 	ushort scam_tolerant;	/* 08 no scam */ | 
 |  | 
 | 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */ | 
 | 	uchar bios_boot_delay;	/*    power up wait */ | 
 |  | 
 | 	uchar scsi_reset_delay;	/* 10 reset delay */ | 
 | 	uchar bios_id_lun;	/*    first boot device scsi id & lun */ | 
 | 	/*    high nibble is lun */ | 
 | 	/*    low nibble is scsi id */ | 
 |  | 
 | 	uchar termination_se;	/* 11 0 - automatic */ | 
 | 	/*    1 - low off / high off */ | 
 | 	/*    2 - low off / high on */ | 
 | 	/*    3 - low on  / high on */ | 
 | 	/*    There is no low on  / high off */ | 
 |  | 
 | 	uchar termination_lvd;	/* 11 0 - automatic */ | 
 | 	/*    1 - low off / high off */ | 
 | 	/*    2 - low off / high on */ | 
 | 	/*    3 - low on  / high on */ | 
 | 	/*    There is no low on  / high off */ | 
 |  | 
 | 	ushort bios_ctrl;	/* 12 BIOS control bits */ | 
 | 	/*  bit 0  BIOS don't act as initiator. */ | 
 | 	/*  bit 1  BIOS > 1 GB support */ | 
 | 	/*  bit 2  BIOS > 2 Disk Support */ | 
 | 	/*  bit 3  BIOS don't support removables */ | 
 | 	/*  bit 4  BIOS support bootable CD */ | 
 | 	/*  bit 5  BIOS scan enabled */ | 
 | 	/*  bit 6  BIOS support multiple LUNs */ | 
 | 	/*  bit 7  BIOS display of message */ | 
 | 	/*  bit 8  SCAM disabled */ | 
 | 	/*  bit 9  Reset SCSI bus during init. */ | 
 | 	/*  bit 10 */ | 
 | 	/*  bit 11 No verbose initialization. */ | 
 | 	/*  bit 12 SCSI parity enabled */ | 
 | 	/*  bit 13 */ | 
 | 	/*  bit 14 */ | 
 | 	/*  bit 15 */ | 
 | 	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */ | 
 | 	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */ | 
 | 	uchar max_host_qng;	/* 15 maximum host queueing */ | 
 | 	uchar max_dvc_qng;	/*    maximum per device queuing */ | 
 | 	ushort dvc_cntl;	/* 16 control bit for driver */ | 
 | 	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */ | 
 | 	ushort serial_number_word1;	/* 18 Board serial number word 1 */ | 
 | 	ushort serial_number_word2;	/* 19 Board serial number word 2 */ | 
 | 	ushort serial_number_word3;	/* 20 Board serial number word 3 */ | 
 | 	ushort check_sum;	/* 21 EEP check sum */ | 
 | 	uchar oem_name[16];	/* 22 OEM name */ | 
 | 	ushort dvc_err_code;	/* 30 last device driver error code */ | 
 | 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */ | 
 | 	ushort adv_err_addr;	/* 32 last uc error address */ | 
 | 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */ | 
 | 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */ | 
 | 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */ | 
 | 	ushort reserved36;	/* 36 reserved */ | 
 | 	ushort reserved37;	/* 37 reserved */ | 
 | 	ushort reserved38;	/* 38 reserved */ | 
 | 	ushort reserved39;	/* 39 reserved */ | 
 | 	ushort reserved40;	/* 40 reserved */ | 
 | 	ushort reserved41;	/* 41 reserved */ | 
 | 	ushort reserved42;	/* 42 reserved */ | 
 | 	ushort reserved43;	/* 43 reserved */ | 
 | 	ushort reserved44;	/* 44 reserved */ | 
 | 	ushort reserved45;	/* 45 reserved */ | 
 | 	ushort reserved46;	/* 46 reserved */ | 
 | 	ushort reserved47;	/* 47 reserved */ | 
 | 	ushort reserved48;	/* 48 reserved */ | 
 | 	ushort reserved49;	/* 49 reserved */ | 
 | 	ushort reserved50;	/* 50 reserved */ | 
 | 	ushort reserved51;	/* 51 reserved */ | 
 | 	ushort reserved52;	/* 52 reserved */ | 
 | 	ushort reserved53;	/* 53 reserved */ | 
 | 	ushort reserved54;	/* 54 reserved */ | 
 | 	ushort reserved55;	/* 55 reserved */ | 
 | 	ushort cisptr_lsw;	/* 56 CIS PTR LSW */ | 
 | 	ushort cisprt_msw;	/* 57 CIS PTR MSW */ | 
 | 	ushort subsysvid;	/* 58 SubSystem Vendor ID */ | 
 | 	ushort subsysid;	/* 59 SubSystem ID */ | 
 | 	ushort reserved60;	/* 60 reserved */ | 
 | 	ushort reserved61;	/* 61 reserved */ | 
 | 	ushort reserved62;	/* 62 reserved */ | 
 | 	ushort reserved63;	/* 63 reserved */ | 
 | } ADVEEP_38C0800_CONFIG; | 
 |  | 
 | typedef struct adveep_38C1600_config { | 
 | 	/* Word Offset, Description */ | 
 |  | 
 | 	ushort cfg_lsw;		/* 00 power up initialization */ | 
 | 	/*  bit 11 set - Func. 0 INTB, Func. 1 INTA */ | 
 | 	/*       clear - Func. 0 INTA, Func. 1 INTB */ | 
 | 	/*  bit 13 set - Load CIS */ | 
 | 	/*  bit 14 set - BIOS Enable */ | 
 | 	/*  bit 15 set - Big Endian Mode */ | 
 | 	ushort cfg_msw;		/* 01 unused */ | 
 | 	ushort disc_enable;	/* 02 disconnect enable */ | 
 | 	ushort wdtr_able;	/* 03 Wide DTR able */ | 
 | 	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */ | 
 | 	ushort start_motor;	/* 05 send start up motor */ | 
 | 	ushort tagqng_able;	/* 06 tag queuing able */ | 
 | 	ushort bios_scan;	/* 07 BIOS device control */ | 
 | 	ushort scam_tolerant;	/* 08 no scam */ | 
 |  | 
 | 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */ | 
 | 	uchar bios_boot_delay;	/*    power up wait */ | 
 |  | 
 | 	uchar scsi_reset_delay;	/* 10 reset delay */ | 
 | 	uchar bios_id_lun;	/*    first boot device scsi id & lun */ | 
 | 	/*    high nibble is lun */ | 
 | 	/*    low nibble is scsi id */ | 
 |  | 
 | 	uchar termination_se;	/* 11 0 - automatic */ | 
 | 	/*    1 - low off / high off */ | 
 | 	/*    2 - low off / high on */ | 
 | 	/*    3 - low on  / high on */ | 
 | 	/*    There is no low on  / high off */ | 
 |  | 
 | 	uchar termination_lvd;	/* 11 0 - automatic */ | 
 | 	/*    1 - low off / high off */ | 
 | 	/*    2 - low off / high on */ | 
 | 	/*    3 - low on  / high on */ | 
 | 	/*    There is no low on  / high off */ | 
 |  | 
 | 	ushort bios_ctrl;	/* 12 BIOS control bits */ | 
 | 	/*  bit 0  BIOS don't act as initiator. */ | 
 | 	/*  bit 1  BIOS > 1 GB support */ | 
 | 	/*  bit 2  BIOS > 2 Disk Support */ | 
 | 	/*  bit 3  BIOS don't support removables */ | 
 | 	/*  bit 4  BIOS support bootable CD */ | 
 | 	/*  bit 5  BIOS scan enabled */ | 
 | 	/*  bit 6  BIOS support multiple LUNs */ | 
 | 	/*  bit 7  BIOS display of message */ | 
 | 	/*  bit 8  SCAM disabled */ | 
 | 	/*  bit 9  Reset SCSI bus during init. */ | 
 | 	/*  bit 10 Basic Integrity Checking disabled */ | 
 | 	/*  bit 11 No verbose initialization. */ | 
 | 	/*  bit 12 SCSI parity enabled */ | 
 | 	/*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */ | 
 | 	/*  bit 14 */ | 
 | 	/*  bit 15 */ | 
 | 	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */ | 
 | 	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */ | 
 | 	uchar max_host_qng;	/* 15 maximum host queueing */ | 
 | 	uchar max_dvc_qng;	/*    maximum per device queuing */ | 
 | 	ushort dvc_cntl;	/* 16 control bit for driver */ | 
 | 	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */ | 
 | 	ushort serial_number_word1;	/* 18 Board serial number word 1 */ | 
 | 	ushort serial_number_word2;	/* 19 Board serial number word 2 */ | 
 | 	ushort serial_number_word3;	/* 20 Board serial number word 3 */ | 
 | 	ushort check_sum;	/* 21 EEP check sum */ | 
 | 	uchar oem_name[16];	/* 22 OEM name */ | 
 | 	ushort dvc_err_code;	/* 30 last device driver error code */ | 
 | 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */ | 
 | 	ushort adv_err_addr;	/* 32 last uc error address */ | 
 | 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */ | 
 | 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */ | 
 | 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */ | 
 | 	ushort reserved36;	/* 36 reserved */ | 
 | 	ushort reserved37;	/* 37 reserved */ | 
 | 	ushort reserved38;	/* 38 reserved */ | 
 | 	ushort reserved39;	/* 39 reserved */ | 
 | 	ushort reserved40;	/* 40 reserved */ | 
 | 	ushort reserved41;	/* 41 reserved */ | 
 | 	ushort reserved42;	/* 42 reserved */ | 
 | 	ushort reserved43;	/* 43 reserved */ | 
 | 	ushort reserved44;	/* 44 reserved */ | 
 | 	ushort reserved45;	/* 45 reserved */ | 
 | 	ushort reserved46;	/* 46 reserved */ | 
 | 	ushort reserved47;	/* 47 reserved */ | 
 | 	ushort reserved48;	/* 48 reserved */ | 
 | 	ushort reserved49;	/* 49 reserved */ | 
 | 	ushort reserved50;	/* 50 reserved */ | 
 | 	ushort reserved51;	/* 51 reserved */ | 
 | 	ushort reserved52;	/* 52 reserved */ | 
 | 	ushort reserved53;	/* 53 reserved */ | 
 | 	ushort reserved54;	/* 54 reserved */ | 
 | 	ushort reserved55;	/* 55 reserved */ | 
 | 	ushort cisptr_lsw;	/* 56 CIS PTR LSW */ | 
 | 	ushort cisprt_msw;	/* 57 CIS PTR MSW */ | 
 | 	ushort subsysvid;	/* 58 SubSystem Vendor ID */ | 
 | 	ushort subsysid;	/* 59 SubSystem ID */ | 
 | 	ushort reserved60;	/* 60 reserved */ | 
 | 	ushort reserved61;	/* 61 reserved */ | 
 | 	ushort reserved62;	/* 62 reserved */ | 
 | 	ushort reserved63;	/* 63 reserved */ | 
 | } ADVEEP_38C1600_CONFIG; | 
 |  | 
 | /* | 
 |  * EEPROM Commands | 
 |  */ | 
 | #define ASC_EEP_CMD_DONE             0x0200 | 
 |  | 
 | /* bios_ctrl */ | 
 | #define BIOS_CTRL_BIOS               0x0001 | 
 | #define BIOS_CTRL_EXTENDED_XLAT      0x0002 | 
 | #define BIOS_CTRL_GT_2_DISK          0x0004 | 
 | #define BIOS_CTRL_BIOS_REMOVABLE     0x0008 | 
 | #define BIOS_CTRL_BOOTABLE_CD        0x0010 | 
 | #define BIOS_CTRL_MULTIPLE_LUN       0x0040 | 
 | #define BIOS_CTRL_DISPLAY_MSG        0x0080 | 
 | #define BIOS_CTRL_NO_SCAM            0x0100 | 
 | #define BIOS_CTRL_RESET_SCSI_BUS     0x0200 | 
 | #define BIOS_CTRL_INIT_VERBOSE       0x0800 | 
 | #define BIOS_CTRL_SCSI_PARITY        0x1000 | 
 | #define BIOS_CTRL_AIPP_DIS           0x2000 | 
 |  | 
 | #define ADV_3550_MEMSIZE   0x2000	/* 8 KB Internal Memory */ | 
 |  | 
 | #define ADV_38C0800_MEMSIZE  0x4000	/* 16 KB Internal Memory */ | 
 |  | 
 | /* | 
 |  * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is | 
 |  * a special 16K Adv Library and Microcode version. After the issue is | 
 |  * resolved, should restore 32K support. | 
 |  * | 
 |  * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory * | 
 |  */ | 
 | #define ADV_38C1600_MEMSIZE  0x4000	/* 16 KB Internal Memory */ | 
 |  | 
 | /* | 
 |  * Byte I/O register address from base of 'iop_base'. | 
 |  */ | 
 | #define IOPB_INTR_STATUS_REG    0x00 | 
 | #define IOPB_CHIP_ID_1          0x01 | 
 | #define IOPB_INTR_ENABLES       0x02 | 
 | #define IOPB_CHIP_TYPE_REV      0x03 | 
 | #define IOPB_RES_ADDR_4         0x04 | 
 | #define IOPB_RES_ADDR_5         0x05 | 
 | #define IOPB_RAM_DATA           0x06 | 
 | #define IOPB_RES_ADDR_7         0x07 | 
 | #define IOPB_FLAG_REG           0x08 | 
 | #define IOPB_RES_ADDR_9         0x09 | 
 | #define IOPB_RISC_CSR           0x0A | 
 | #define IOPB_RES_ADDR_B         0x0B | 
 | #define IOPB_RES_ADDR_C         0x0C | 
 | #define IOPB_RES_ADDR_D         0x0D | 
 | #define IOPB_SOFT_OVER_WR       0x0E | 
 | #define IOPB_RES_ADDR_F         0x0F | 
 | #define IOPB_MEM_CFG            0x10 | 
 | #define IOPB_RES_ADDR_11        0x11 | 
 | #define IOPB_GPIO_DATA          0x12 | 
 | #define IOPB_RES_ADDR_13        0x13 | 
 | #define IOPB_FLASH_PAGE         0x14 | 
 | #define IOPB_RES_ADDR_15        0x15 | 
 | #define IOPB_GPIO_CNTL          0x16 | 
 | #define IOPB_RES_ADDR_17        0x17 | 
 | #define IOPB_FLASH_DATA         0x18 | 
 | #define IOPB_RES_ADDR_19        0x19 | 
 | #define IOPB_RES_ADDR_1A        0x1A | 
 | #define IOPB_RES_ADDR_1B        0x1B | 
 | #define IOPB_RES_ADDR_1C        0x1C | 
 | #define IOPB_RES_ADDR_1D        0x1D | 
 | #define IOPB_RES_ADDR_1E        0x1E | 
 | #define IOPB_RES_ADDR_1F        0x1F | 
 | #define IOPB_DMA_CFG0           0x20 | 
 | #define IOPB_DMA_CFG1           0x21 | 
 | #define IOPB_TICKLE             0x22 | 
 | #define IOPB_DMA_REG_WR         0x23 | 
 | #define IOPB_SDMA_STATUS        0x24 | 
 | #define IOPB_SCSI_BYTE_CNT      0x25 | 
 | #define IOPB_HOST_BYTE_CNT      0x26 | 
 | #define IOPB_BYTE_LEFT_TO_XFER  0x27 | 
 | #define IOPB_BYTE_TO_XFER_0     0x28 | 
 | #define IOPB_BYTE_TO_XFER_1     0x29 | 
 | #define IOPB_BYTE_TO_XFER_2     0x2A | 
 | #define IOPB_BYTE_TO_XFER_3     0x2B | 
 | #define IOPB_ACC_GRP            0x2C | 
 | #define IOPB_RES_ADDR_2D        0x2D | 
 | #define IOPB_DEV_ID             0x2E | 
 | #define IOPB_RES_ADDR_2F        0x2F | 
 | #define IOPB_SCSI_DATA          0x30 | 
 | #define IOPB_RES_ADDR_31        0x31 | 
 | #define IOPB_RES_ADDR_32        0x32 | 
 | #define IOPB_SCSI_DATA_HSHK     0x33 | 
 | #define IOPB_SCSI_CTRL          0x34 | 
 | #define IOPB_RES_ADDR_35        0x35 | 
 | #define IOPB_RES_ADDR_36        0x36 | 
 | #define IOPB_RES_ADDR_37        0x37 | 
 | #define IOPB_RAM_BIST           0x38 | 
 | #define IOPB_PLL_TEST           0x39 | 
 | #define IOPB_PCI_INT_CFG        0x3A | 
 | #define IOPB_RES_ADDR_3B        0x3B | 
 | #define IOPB_RFIFO_CNT          0x3C | 
 | #define IOPB_RES_ADDR_3D        0x3D | 
 | #define IOPB_RES_ADDR_3E        0x3E | 
 | #define IOPB_RES_ADDR_3F        0x3F | 
 |  | 
 | /* | 
 |  * Word I/O register address from base of 'iop_base'. | 
 |  */ | 
 | #define IOPW_CHIP_ID_0          0x00	/* CID0  */ | 
 | #define IOPW_CTRL_REG           0x02	/* CC    */ | 
 | #define IOPW_RAM_ADDR           0x04	/* LA    */ | 
 | #define IOPW_RAM_DATA           0x06	/* LD    */ | 
 | #define IOPW_RES_ADDR_08        0x08 | 
 | #define IOPW_RISC_CSR           0x0A	/* CSR   */ | 
 | #define IOPW_SCSI_CFG0          0x0C	/* CFG0  */ | 
 | #define IOPW_SCSI_CFG1          0x0E	/* CFG1  */ | 
 | #define IOPW_RES_ADDR_10        0x10 | 
 | #define IOPW_SEL_MASK           0x12	/* SM    */ | 
 | #define IOPW_RES_ADDR_14        0x14 | 
 | #define IOPW_FLASH_ADDR         0x16	/* FA    */ | 
 | #define IOPW_RES_ADDR_18        0x18 | 
 | #define IOPW_EE_CMD             0x1A	/* EC    */ | 
 | #define IOPW_EE_DATA            0x1C	/* ED    */ | 
 | #define IOPW_SFIFO_CNT          0x1E	/* SFC   */ | 
 | #define IOPW_RES_ADDR_20        0x20 | 
 | #define IOPW_Q_BASE             0x22	/* QB    */ | 
 | #define IOPW_QP                 0x24	/* QP    */ | 
 | #define IOPW_IX                 0x26	/* IX    */ | 
 | #define IOPW_SP                 0x28	/* SP    */ | 
 | #define IOPW_PC                 0x2A	/* PC    */ | 
 | #define IOPW_RES_ADDR_2C        0x2C | 
 | #define IOPW_RES_ADDR_2E        0x2E | 
 | #define IOPW_SCSI_DATA          0x30	/* SD    */ | 
 | #define IOPW_SCSI_DATA_HSHK     0x32	/* SDH   */ | 
 | #define IOPW_SCSI_CTRL          0x34	/* SC    */ | 
 | #define IOPW_HSHK_CFG           0x36	/* HCFG  */ | 
 | #define IOPW_SXFR_STATUS        0x36	/* SXS   */ | 
 | #define IOPW_SXFR_CNTL          0x38	/* SXL   */ | 
 | #define IOPW_SXFR_CNTH          0x3A	/* SXH   */ | 
 | #define IOPW_RES_ADDR_3C        0x3C | 
 | #define IOPW_RFIFO_DATA         0x3E	/* RFD   */ | 
 |  | 
 | /* | 
 |  * Doubleword I/O register address from base of 'iop_base'. | 
 |  */ | 
 | #define IOPDW_RES_ADDR_0         0x00 | 
 | #define IOPDW_RAM_DATA           0x04 | 
 | #define IOPDW_RES_ADDR_8         0x08 | 
 | #define IOPDW_RES_ADDR_C         0x0C | 
 | #define IOPDW_RES_ADDR_10        0x10 | 
 | #define IOPDW_COMMA              0x14 | 
 | #define IOPDW_COMMB              0x18 | 
 | #define IOPDW_RES_ADDR_1C        0x1C | 
 | #define IOPDW_SDMA_ADDR0         0x20 | 
 | #define IOPDW_SDMA_ADDR1         0x24 | 
 | #define IOPDW_SDMA_COUNT         0x28 | 
 | #define IOPDW_SDMA_ERROR         0x2C | 
 | #define IOPDW_RDMA_ADDR0         0x30 | 
 | #define IOPDW_RDMA_ADDR1         0x34 | 
 | #define IOPDW_RDMA_COUNT         0x38 | 
 | #define IOPDW_RDMA_ERROR         0x3C | 
 |  | 
 | #define ADV_CHIP_ID_BYTE         0x25 | 
 | #define ADV_CHIP_ID_WORD         0x04C1 | 
 |  | 
 | #define ADV_INTR_ENABLE_HOST_INTR                   0x01 | 
 | #define ADV_INTR_ENABLE_SEL_INTR                    0x02 | 
 | #define ADV_INTR_ENABLE_DPR_INTR                    0x04 | 
 | #define ADV_INTR_ENABLE_RTA_INTR                    0x08 | 
 | #define ADV_INTR_ENABLE_RMA_INTR                    0x10 | 
 | #define ADV_INTR_ENABLE_RST_INTR                    0x20 | 
 | #define ADV_INTR_ENABLE_DPE_INTR                    0x40 | 
 | #define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80 | 
 |  | 
 | #define ADV_INTR_STATUS_INTRA            0x01 | 
 | #define ADV_INTR_STATUS_INTRB            0x02 | 
 | #define ADV_INTR_STATUS_INTRC            0x04 | 
 |  | 
 | #define ADV_RISC_CSR_STOP           (0x0000) | 
 | #define ADV_RISC_TEST_COND          (0x2000) | 
 | #define ADV_RISC_CSR_RUN            (0x4000) | 
 | #define ADV_RISC_CSR_SINGLE_STEP    (0x8000) | 
 |  | 
 | #define ADV_CTRL_REG_HOST_INTR      0x0100 | 
 | #define ADV_CTRL_REG_SEL_INTR       0x0200 | 
 | #define ADV_CTRL_REG_DPR_INTR       0x0400 | 
 | #define ADV_CTRL_REG_RTA_INTR       0x0800 | 
 | #define ADV_CTRL_REG_RMA_INTR       0x1000 | 
 | #define ADV_CTRL_REG_RES_BIT14      0x2000 | 
 | #define ADV_CTRL_REG_DPE_INTR       0x4000 | 
 | #define ADV_CTRL_REG_POWER_DONE     0x8000 | 
 | #define ADV_CTRL_REG_ANY_INTR       0xFF00 | 
 |  | 
 | #define ADV_CTRL_REG_CMD_RESET             0x00C6 | 
 | #define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5 | 
 | #define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4 | 
 | #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3 | 
 | #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2 | 
 |  | 
 | #define ADV_TICKLE_NOP                      0x00 | 
 | #define ADV_TICKLE_A                        0x01 | 
 | #define ADV_TICKLE_B                        0x02 | 
 | #define ADV_TICKLE_C                        0x03 | 
 |  | 
 | #define AdvIsIntPending(port) \ | 
 |     (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR) | 
 |  | 
 | /* | 
 |  * SCSI_CFG0 Register bit definitions | 
 |  */ | 
 | #define TIMER_MODEAB    0xC000	/* Watchdog, Second, and Select. Timer Ctrl. */ | 
 | #define PARITY_EN       0x2000	/* Enable SCSI Parity Error detection */ | 
 | #define EVEN_PARITY     0x1000	/* Select Even Parity */ | 
 | #define WD_LONG         0x0800	/* Watchdog Interval, 1: 57 min, 0: 13 sec */ | 
 | #define QUEUE_128       0x0400	/* Queue Size, 1: 128 byte, 0: 64 byte */ | 
 | #define PRIM_MODE       0x0100	/* Primitive SCSI mode */ | 
 | #define SCAM_EN         0x0080	/* Enable SCAM selection */ | 
 | #define SEL_TMO_LONG    0x0040	/* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */ | 
 | #define CFRM_ID         0x0020	/* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */ | 
 | #define OUR_ID_EN       0x0010	/* Enable OUR_ID bits */ | 
 | #define OUR_ID          0x000F	/* SCSI ID */ | 
 |  | 
 | /* | 
 |  * SCSI_CFG1 Register bit definitions | 
 |  */ | 
 | #define BIG_ENDIAN      0x8000	/* Enable Big Endian Mode MIO:15, EEP:15 */ | 
 | #define TERM_POL        0x2000	/* Terminator Polarity Ctrl. MIO:13, EEP:13 */ | 
 | #define SLEW_RATE       0x1000	/* SCSI output buffer slew rate */ | 
 | #define FILTER_SEL      0x0C00	/* Filter Period Selection */ | 
 | #define  FLTR_DISABLE    0x0000	/* Input Filtering Disabled */ | 
 | #define  FLTR_11_TO_20NS 0x0800	/* Input Filtering 11ns to 20ns */ | 
 | #define  FLTR_21_TO_39NS 0x0C00	/* Input Filtering 21ns to 39ns */ | 
 | #define ACTIVE_DBL      0x0200	/* Disable Active Negation */ | 
 | #define DIFF_MODE       0x0100	/* SCSI differential Mode (Read-Only) */ | 
 | #define DIFF_SENSE      0x0080	/* 1: No SE cables, 0: SE cable (Read-Only) */ | 
 | #define TERM_CTL_SEL    0x0040	/* Enable TERM_CTL_H and TERM_CTL_L */ | 
 | #define TERM_CTL        0x0030	/* External SCSI Termination Bits */ | 
 | #define  TERM_CTL_H      0x0020	/* Enable External SCSI Upper Termination */ | 
 | #define  TERM_CTL_L      0x0010	/* Enable External SCSI Lower Termination */ | 
 | #define CABLE_DETECT    0x000F	/* External SCSI Cable Connection Status */ | 
 |  | 
 | /* | 
 |  * Addendum for ASC-38C0800 Chip | 
 |  * | 
 |  * The ASC-38C1600 Chip uses the same definitions except that the | 
 |  * bus mode override bits [12:10] have been moved to byte register | 
 |  * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in | 
 |  * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV) | 
 |  * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only. | 
 |  * Also each ASC-38C1600 function or channel uses only cable bits [5:4] | 
 |  * and [1:0]. Bits [14], [7:6], [3:2] are unused. | 
 |  */ | 
 | #define DIS_TERM_DRV    0x4000	/* 1: Read c_det[3:0], 0: cannot read */ | 
 | #define HVD_LVD_SE      0x1C00	/* Device Detect Bits */ | 
 | #define  HVD             0x1000	/* HVD Device Detect */ | 
 | #define  LVD             0x0800	/* LVD Device Detect */ | 
 | #define  SE              0x0400	/* SE Device Detect */ | 
 | #define TERM_LVD        0x00C0	/* LVD Termination Bits */ | 
 | #define  TERM_LVD_HI     0x0080	/* Enable LVD Upper Termination */ | 
 | #define  TERM_LVD_LO     0x0040	/* Enable LVD Lower Termination */ | 
 | #define TERM_SE         0x0030	/* SE Termination Bits */ | 
 | #define  TERM_SE_HI      0x0020	/* Enable SE Upper Termination */ | 
 | #define  TERM_SE_LO      0x0010	/* Enable SE Lower Termination */ | 
 | #define C_DET_LVD       0x000C	/* LVD Cable Detect Bits */ | 
 | #define  C_DET3          0x0008	/* Cable Detect for LVD External Wide */ | 
 | #define  C_DET2          0x0004	/* Cable Detect for LVD Internal Wide */ | 
 | #define C_DET_SE        0x0003	/* SE Cable Detect Bits */ | 
 | #define  C_DET1          0x0002	/* Cable Detect for SE Internal Wide */ | 
 | #define  C_DET0          0x0001	/* Cable Detect for SE Internal Narrow */ | 
 |  | 
 | #define CABLE_ILLEGAL_A 0x7 | 
 |     /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */ | 
 |  | 
 | #define CABLE_ILLEGAL_B 0xB | 
 |     /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */ | 
 |  | 
 | /* | 
 |  * MEM_CFG Register bit definitions | 
 |  */ | 
 | #define BIOS_EN         0x40	/* BIOS Enable MIO:14,EEP:14 */ | 
 | #define FAST_EE_CLK     0x20	/* Diagnostic Bit */ | 
 | #define RAM_SZ          0x1C	/* Specify size of RAM to RISC */ | 
 | #define  RAM_SZ_2KB      0x00	/* 2 KB */ | 
 | #define  RAM_SZ_4KB      0x04	/* 4 KB */ | 
 | #define  RAM_SZ_8KB      0x08	/* 8 KB */ | 
 | #define  RAM_SZ_16KB     0x0C	/* 16 KB */ | 
 | #define  RAM_SZ_32KB     0x10	/* 32 KB */ | 
 | #define  RAM_SZ_64KB     0x14	/* 64 KB */ | 
 |  | 
 | /* | 
 |  * DMA_CFG0 Register bit definitions | 
 |  * | 
 |  * This register is only accessible to the host. | 
 |  */ | 
 | #define BC_THRESH_ENB   0x80	/* PCI DMA Start Conditions */ | 
 | #define FIFO_THRESH     0x70	/* PCI DMA FIFO Threshold */ | 
 | #define  FIFO_THRESH_16B  0x00	/* 16 bytes */ | 
 | #define  FIFO_THRESH_32B  0x20	/* 32 bytes */ | 
 | #define  FIFO_THRESH_48B  0x30	/* 48 bytes */ | 
 | #define  FIFO_THRESH_64B  0x40	/* 64 bytes */ | 
 | #define  FIFO_THRESH_80B  0x50	/* 80 bytes (default) */ | 
 | #define  FIFO_THRESH_96B  0x60	/* 96 bytes */ | 
 | #define  FIFO_THRESH_112B 0x70	/* 112 bytes */ | 
 | #define START_CTL       0x0C	/* DMA start conditions */ | 
 | #define  START_CTL_TH    0x00	/* Wait threshold level (default) */ | 
 | #define  START_CTL_ID    0x04	/* Wait SDMA/SBUS idle */ | 
 | #define  START_CTL_THID  0x08	/* Wait threshold and SDMA/SBUS idle */ | 
 | #define  START_CTL_EMFU  0x0C	/* Wait SDMA FIFO empty/full */ | 
 | #define READ_CMD        0x03	/* Memory Read Method */ | 
 | #define  READ_CMD_MR     0x00	/* Memory Read */ | 
 | #define  READ_CMD_MRL    0x02	/* Memory Read Long */ | 
 | #define  READ_CMD_MRM    0x03	/* Memory Read Multiple (default) */ | 
 |  | 
 | /* | 
 |  * ASC-38C0800 RAM BIST Register bit definitions | 
 |  */ | 
 | #define RAM_TEST_MODE         0x80 | 
 | #define PRE_TEST_MODE         0x40 | 
 | #define NORMAL_MODE           0x00 | 
 | #define RAM_TEST_DONE         0x10 | 
 | #define RAM_TEST_STATUS       0x0F | 
 | #define  RAM_TEST_HOST_ERROR   0x08 | 
 | #define  RAM_TEST_INTRAM_ERROR 0x04 | 
 | #define  RAM_TEST_RISC_ERROR   0x02 | 
 | #define  RAM_TEST_SCSI_ERROR   0x01 | 
 | #define  RAM_TEST_SUCCESS      0x00 | 
 | #define PRE_TEST_VALUE        0x05 | 
 | #define NORMAL_VALUE          0x00 | 
 |  | 
 | /* | 
 |  * ASC38C1600 Definitions | 
 |  * | 
 |  * IOPB_PCI_INT_CFG Bit Field Definitions | 
 |  */ | 
 |  | 
 | #define INTAB_LD        0x80	/* Value loaded from EEPROM Bit 11. */ | 
 |  | 
 | /* | 
 |  * Bit 1 can be set to change the interrupt for the Function to operate in | 
 |  * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in | 
 |  * Open Drain mode. Both functions of the ASC38C1600 must be set to the same | 
 |  * mode, otherwise the operating mode is undefined. | 
 |  */ | 
 | #define TOTEMPOLE       0x02 | 
 |  | 
 | /* | 
 |  * Bit 0 can be used to change the Int Pin for the Function. The value is | 
 |  * 0 by default for both Functions with Function 0 using INT A and Function | 
 |  * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set, | 
 |  * INT A is used. | 
 |  * | 
 |  * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin | 
 |  * value specified in the PCI Configuration Space. | 
 |  */ | 
 | #define INTAB           0x01 | 
 |  | 
 | /* | 
 |  * Adv Library Status Definitions | 
 |  */ | 
 | #define ADV_TRUE        1 | 
 | #define ADV_FALSE       0 | 
 | #define ADV_SUCCESS     1 | 
 | #define ADV_BUSY        0 | 
 | #define ADV_ERROR       (-1) | 
 |  | 
 | /* | 
 |  * ADV_DVC_VAR 'warn_code' values | 
 |  */ | 
 | #define ASC_WARN_BUSRESET_ERROR         0x0001	/* SCSI Bus Reset error */ | 
 | #define ASC_WARN_EEPROM_CHKSUM          0x0002	/* EEP check sum error */ | 
 | #define ASC_WARN_EEPROM_TERMINATION     0x0004	/* EEP termination bad field */ | 
 | #define ASC_WARN_ERROR                  0xFFFF	/* ADV_ERROR return */ | 
 |  | 
 | #define ADV_MAX_TID                     15	/* max. target identifier */ | 
 | #define ADV_MAX_LUN                     7	/* max. logical unit number */ | 
 |  | 
 | /* | 
 |  * Fixed locations of microcode operating variables. | 
 |  */ | 
 | #define ASC_MC_CODE_BEGIN_ADDR          0x0028	/* microcode start address */ | 
 | #define ASC_MC_CODE_END_ADDR            0x002A	/* microcode end address */ | 
 | #define ASC_MC_CODE_CHK_SUM             0x002C	/* microcode code checksum */ | 
 | #define ASC_MC_VERSION_DATE             0x0038	/* microcode version */ | 
 | #define ASC_MC_VERSION_NUM              0x003A	/* microcode number */ | 
 | #define ASC_MC_BIOSMEM                  0x0040	/* BIOS RISC Memory Start */ | 
 | #define ASC_MC_BIOSLEN                  0x0050	/* BIOS RISC Memory Length */ | 
 | #define ASC_MC_BIOS_SIGNATURE           0x0058	/* BIOS Signature 0x55AA */ | 
 | #define ASC_MC_BIOS_VERSION             0x005A	/* BIOS Version (2 bytes) */ | 
 | #define ASC_MC_SDTR_SPEED1              0x0090	/* SDTR Speed for TID 0-3 */ | 
 | #define ASC_MC_SDTR_SPEED2              0x0092	/* SDTR Speed for TID 4-7 */ | 
 | #define ASC_MC_SDTR_SPEED3              0x0094	/* SDTR Speed for TID 8-11 */ | 
 | #define ASC_MC_SDTR_SPEED4              0x0096	/* SDTR Speed for TID 12-15 */ | 
 | #define ASC_MC_CHIP_TYPE                0x009A | 
 | #define ASC_MC_INTRB_CODE               0x009B | 
 | #define ASC_MC_WDTR_ABLE                0x009C | 
 | #define ASC_MC_SDTR_ABLE                0x009E | 
 | #define ASC_MC_TAGQNG_ABLE              0x00A0 | 
 | #define ASC_MC_DISC_ENABLE              0x00A2 | 
 | #define ASC_MC_IDLE_CMD_STATUS          0x00A4 | 
 | #define ASC_MC_IDLE_CMD                 0x00A6 | 
 | #define ASC_MC_IDLE_CMD_PARAMETER       0x00A8 | 
 | #define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC | 
 | #define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE | 
 | #define ASC_MC_DEFAULT_MEM_CFG          0x00B0 | 
 | #define ASC_MC_DEFAULT_SEL_MASK         0x00B2 | 
 | #define ASC_MC_SDTR_DONE                0x00B6 | 
 | #define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0 | 
 | #define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0 | 
 | #define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100 | 
 | #define ASC_MC_CONTROL_FLAG             0x0122	/* Microcode control flag. */ | 
 | #define ASC_MC_WDTR_DONE                0x0124 | 
 | #define ASC_MC_CAM_MODE_MASK            0x015E	/* CAM mode TID bitmask. */ | 
 | #define ASC_MC_ICQ                      0x0160 | 
 | #define ASC_MC_IRQ                      0x0164 | 
 | #define ASC_MC_PPR_ABLE                 0x017A | 
 |  | 
 | /* | 
 |  * BIOS LRAM variable absolute offsets. | 
 |  */ | 
 | #define BIOS_CODESEG    0x54 | 
 | #define BIOS_CODELEN    0x56 | 
 | #define BIOS_SIGNATURE  0x58 | 
 | #define BIOS_VERSION    0x5A | 
 |  | 
 | /* | 
 |  * Microcode Control Flags | 
 |  * | 
 |  * Flags set by the Adv Library in RISC variable 'control_flag' (0x122) | 
 |  * and handled by the microcode. | 
 |  */ | 
 | #define CONTROL_FLAG_IGNORE_PERR        0x0001	/* Ignore DMA Parity Errors */ | 
 | #define CONTROL_FLAG_ENABLE_AIPP        0x0002	/* Enabled AIPP checking. */ | 
 |  | 
 | /* | 
 |  * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format | 
 |  */ | 
 | #define HSHK_CFG_WIDE_XFR       0x8000 | 
 | #define HSHK_CFG_RATE           0x0F00 | 
 | #define HSHK_CFG_OFFSET         0x001F | 
 |  | 
 | #define ASC_DEF_MAX_HOST_QNG    0xFD	/* Max. number of host commands (253) */ | 
 | #define ASC_DEF_MIN_HOST_QNG    0x10	/* Min. number of host commands (16) */ | 
 | #define ASC_DEF_MAX_DVC_QNG     0x3F	/* Max. number commands per device (63) */ | 
 | #define ASC_DEF_MIN_DVC_QNG     0x04	/* Min. number commands per device (4) */ | 
 |  | 
 | #define ASC_QC_DATA_CHECK  0x01	/* Require ASC_QC_DATA_OUT set or clear. */ | 
 | #define ASC_QC_DATA_OUT    0x02	/* Data out DMA transfer. */ | 
 | #define ASC_QC_START_MOTOR 0x04	/* Send auto-start motor before request. */ | 
 | #define ASC_QC_NO_OVERRUN  0x08	/* Don't report overrun. */ | 
 | #define ASC_QC_FREEZE_TIDQ 0x10	/* Freeze TID queue after request. XXX TBD */ | 
 |  | 
 | #define ASC_QSC_NO_DISC     0x01	/* Don't allow disconnect for request. */ | 
 | #define ASC_QSC_NO_TAGMSG   0x02	/* Don't allow tag queuing for request. */ | 
 | #define ASC_QSC_NO_SYNC     0x04	/* Don't use Synch. transfer on request. */ | 
 | #define ASC_QSC_NO_WIDE     0x08	/* Don't use Wide transfer on request. */ | 
 | #define ASC_QSC_REDO_DTR    0x10	/* Renegotiate WDTR/SDTR before request. */ | 
 | /* | 
 |  * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or | 
 |  * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used. | 
 |  */ | 
 | #define ASC_QSC_HEAD_TAG    0x40	/* Use Head Tag Message (0x21). */ | 
 | #define ASC_QSC_ORDERED_TAG 0x80	/* Use Ordered Tag Message (0x22). */ | 
 |  | 
 | /* | 
 |  * All fields here are accessed by the board microcode and need to be | 
 |  * little-endian. | 
 |  */ | 
 | typedef struct adv_carr_t { | 
 | 	ADV_VADDR carr_va;	/* Carrier Virtual Address */ | 
 | 	ADV_PADDR carr_pa;	/* Carrier Physical Address */ | 
 | 	ADV_VADDR areq_vpa;	/* ASC_SCSI_REQ_Q Virtual or Physical Address */ | 
 | 	/* | 
 | 	 * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer | 
 | 	 * | 
 | 	 * next_vpa [3:1]             Reserved Bits | 
 | 	 * next_vpa [0]               Done Flag set in Response Queue. | 
 | 	 */ | 
 | 	ADV_VADDR next_vpa; | 
 | } ADV_CARR_T; | 
 |  | 
 | /* | 
 |  * Mask used to eliminate low 4 bits of carrier 'next_vpa' field. | 
 |  */ | 
 | #define ASC_NEXT_VPA_MASK       0xFFFFFFF0 | 
 |  | 
 | #define ASC_RQ_DONE             0x00000001 | 
 | #define ASC_RQ_GOOD             0x00000002 | 
 | #define ASC_CQ_STOPPER          0x00000000 | 
 |  | 
 | #define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK) | 
 |  | 
 | #define ADV_CARRIER_NUM_PAGE_CROSSING \ | 
 |     (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE) | 
 |  | 
 | #define ADV_CARRIER_BUFSIZE \ | 
 |     ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T)) | 
 |  | 
 | /* | 
 |  * ASC_SCSI_REQ_Q 'a_flag' definitions | 
 |  * | 
 |  * The Adv Library should limit use to the lower nibble (4 bits) of | 
 |  * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag. | 
 |  */ | 
 | #define ADV_POLL_REQUEST                0x01	/* poll for request completion */ | 
 | #define ADV_SCSIQ_DONE                  0x02	/* request done */ | 
 | #define ADV_DONT_RETRY                  0x08	/* don't do retry */ | 
 |  | 
 | #define ADV_CHIP_ASC3550          0x01	/* Ultra-Wide IC */ | 
 | #define ADV_CHIP_ASC38C0800       0x02	/* Ultra2-Wide/LVD IC */ | 
 | #define ADV_CHIP_ASC38C1600       0x03	/* Ultra3-Wide/LVD2 IC */ | 
 |  | 
 | /* | 
 |  * Adapter temporary configuration structure | 
 |  * | 
 |  * This structure can be discarded after initialization. Don't add | 
 |  * fields here needed after initialization. | 
 |  * | 
 |  * Field naming convention: | 
 |  * | 
 |  *  *_enable indicates the field enables or disables a feature. The | 
 |  *  value of the field is never reset. | 
 |  */ | 
 | typedef struct adv_dvc_cfg { | 
 | 	ushort disc_enable;	/* enable disconnection */ | 
 | 	uchar chip_version;	/* chip version */ | 
 | 	uchar termination;	/* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */ | 
 | 	ushort control_flag;	/* Microcode Control Flag */ | 
 | 	ushort mcode_date;	/* Microcode date */ | 
 | 	ushort mcode_version;	/* Microcode version */ | 
 | 	ushort serial1;		/* EEPROM serial number word 1 */ | 
 | 	ushort serial2;		/* EEPROM serial number word 2 */ | 
 | 	ushort serial3;		/* EEPROM serial number word 3 */ | 
 | } ADV_DVC_CFG; | 
 |  | 
 | struct adv_dvc_var; | 
 | struct adv_scsi_req_q; | 
 |  | 
 | typedef struct asc_sg_block { | 
 | 	uchar reserved1; | 
 | 	uchar reserved2; | 
 | 	uchar reserved3; | 
 | 	uchar sg_cnt;		/* Valid entries in block. */ | 
 | 	ADV_PADDR sg_ptr;	/* Pointer to next sg block. */ | 
 | 	struct { | 
 | 		ADV_PADDR sg_addr;	/* SG element address. */ | 
 | 		ADV_DCNT sg_count;	/* SG element count. */ | 
 | 	} sg_list[NO_OF_SG_PER_BLOCK]; | 
 | } ADV_SG_BLOCK; | 
 |  | 
 | /* | 
 |  * ADV_SCSI_REQ_Q - microcode request structure | 
 |  * | 
 |  * All fields in this structure up to byte 60 are used by the microcode. | 
 |  * The microcode makes assumptions about the size and ordering of fields | 
 |  * in this structure. Do not change the structure definition here without | 
 |  * coordinating the change with the microcode. | 
 |  * | 
 |  * All fields accessed by microcode must be maintained in little_endian | 
 |  * order. | 
 |  */ | 
 | typedef struct adv_scsi_req_q { | 
 | 	uchar cntl;		/* Ucode flags and state (ASC_MC_QC_*). */ | 
 | 	uchar target_cmd; | 
 | 	uchar target_id;	/* Device target identifier. */ | 
 | 	uchar target_lun;	/* Device target logical unit number. */ | 
 | 	ADV_PADDR data_addr;	/* Data buffer physical address. */ | 
 | 	ADV_DCNT data_cnt;	/* Data count. Ucode sets to residual. */ | 
 | 	ADV_PADDR sense_addr; | 
 | 	ADV_PADDR carr_pa; | 
 | 	uchar mflag; | 
 | 	uchar sense_len; | 
 | 	uchar cdb_len;		/* SCSI CDB length. Must <= 16 bytes. */ | 
 | 	uchar scsi_cntl; | 
 | 	uchar done_status;	/* Completion status. */ | 
 | 	uchar scsi_status;	/* SCSI status byte. */ | 
 | 	uchar host_status;	/* Ucode host status. */ | 
 | 	uchar sg_working_ix; | 
 | 	uchar cdb[12];		/* SCSI CDB bytes 0-11. */ | 
 | 	ADV_PADDR sg_real_addr;	/* SG list physical address. */ | 
 | 	ADV_PADDR scsiq_rptr; | 
 | 	uchar cdb16[4];		/* SCSI CDB bytes 12-15. */ | 
 | 	ADV_VADDR scsiq_ptr; | 
 | 	ADV_VADDR carr_va; | 
 | 	/* | 
 | 	 * End of microcode structure - 60 bytes. The rest of the structure | 
 | 	 * is used by the Adv Library and ignored by the microcode. | 
 | 	 */ | 
 | 	ADV_VADDR srb_ptr; | 
 | 	ADV_SG_BLOCK *sg_list_ptr;	/* SG list virtual address. */ | 
 | 	char *vdata_addr;	/* Data buffer virtual address. */ | 
 | 	uchar a_flag; | 
 | 	uchar pad[2];		/* Pad out to a word boundary. */ | 
 | } ADV_SCSI_REQ_Q; | 
 |  | 
 | /* | 
 |  * The following two structures are used to process Wide Board requests. | 
 |  * | 
 |  * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library | 
 |  * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the | 
 |  * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the | 
 |  * Mid-Level SCSI request structure. | 
 |  * | 
 |  * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each | 
 |  * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux | 
 |  * up to 255 scatter-gather elements may be used per request or | 
 |  * ADV_SCSI_REQ_Q. | 
 |  * | 
 |  * Both structures must be 32 byte aligned. | 
 |  */ | 
 | typedef struct adv_sgblk { | 
 | 	ADV_SG_BLOCK sg_block;	/* Sgblock structure. */ | 
 | 	uchar align[32];	/* Sgblock structure padding. */ | 
 | 	struct adv_sgblk *next_sgblkp;	/* Next scatter-gather structure. */ | 
 | } adv_sgblk_t; | 
 |  | 
 | typedef struct adv_req { | 
 | 	ADV_SCSI_REQ_Q scsi_req_q;	/* Adv Library request structure. */ | 
 | 	uchar align[32];	/* Request structure padding. */ | 
 | 	struct scsi_cmnd *cmndp;	/* Mid-Level SCSI command pointer. */ | 
 | 	adv_sgblk_t *sgblkp;	/* Adv Library scatter-gather pointer. */ | 
 | 	struct adv_req *next_reqp;	/* Next Request Structure. */ | 
 | } adv_req_t; | 
 |  | 
 | /* | 
 |  * Adapter operation variable structure. | 
 |  * | 
 |  * One structure is required per host adapter. | 
 |  * | 
 |  * Field naming convention: | 
 |  * | 
 |  *  *_able indicates both whether a feature should be enabled or disabled | 
 |  *  and whether a device isi capable of the feature. At initialization | 
 |  *  this field may be set, but later if a device is found to be incapable | 
 |  *  of the feature, the field is cleared. | 
 |  */ | 
 | typedef struct adv_dvc_var { | 
 | 	AdvPortAddr iop_base;	/* I/O port address */ | 
 | 	ushort err_code;	/* fatal error code */ | 
 | 	ushort bios_ctrl;	/* BIOS control word, EEPROM word 12 */ | 
 | 	ushort wdtr_able;	/* try WDTR for a device */ | 
 | 	ushort sdtr_able;	/* try SDTR for a device */ | 
 | 	ushort ultra_able;	/* try SDTR Ultra speed for a device */ | 
 | 	ushort sdtr_speed1;	/* EEPROM SDTR Speed for TID 0-3   */ | 
 | 	ushort sdtr_speed2;	/* EEPROM SDTR Speed for TID 4-7   */ | 
 | 	ushort sdtr_speed3;	/* EEPROM SDTR Speed for TID 8-11  */ | 
 | 	ushort sdtr_speed4;	/* EEPROM SDTR Speed for TID 12-15 */ | 
 | 	ushort tagqng_able;	/* try tagged queuing with a device */ | 
 | 	ushort ppr_able;	/* PPR message capable per TID bitmask. */ | 
 | 	uchar max_dvc_qng;	/* maximum number of tagged commands per device */ | 
 | 	ushort start_motor;	/* start motor command allowed */ | 
 | 	uchar scsi_reset_wait;	/* delay in seconds after scsi bus reset */ | 
 | 	uchar chip_no;		/* should be assigned by caller */ | 
 | 	uchar max_host_qng;	/* maximum number of Q'ed command allowed */ | 
 | 	ushort no_scam;		/* scam_tolerant of EEPROM */ | 
 | 	struct asc_board *drv_ptr;	/* driver pointer to private structure */ | 
 | 	uchar chip_scsi_id;	/* chip SCSI target ID */ | 
 | 	uchar chip_type; | 
 | 	uchar bist_err_code; | 
 | 	ADV_CARR_T *carrier_buf; | 
 | 	ADV_CARR_T *carr_freelist;	/* Carrier free list. */ | 
 | 	ADV_CARR_T *icq_sp;	/* Initiator command queue stopper pointer. */ | 
 | 	ADV_CARR_T *irq_sp;	/* Initiator response queue stopper pointer. */ | 
 | 	ushort carr_pending_cnt;	/* Count of pending carriers. */ | 
 | 	struct adv_req *orig_reqp;	/* adv_req_t memory block. */ | 
 | 	/* | 
 | 	 * Note: The following fields will not be used after initialization. The | 
 | 	 * driver may discard the buffer after initialization is done. | 
 | 	 */ | 
 | 	ADV_DVC_CFG *cfg;	/* temporary configuration structure  */ | 
 | } ADV_DVC_VAR; | 
 |  | 
 | /* | 
 |  * Microcode idle loop commands | 
 |  */ | 
 | #define IDLE_CMD_COMPLETED           0 | 
 | #define IDLE_CMD_STOP_CHIP           0x0001 | 
 | #define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002 | 
 | #define IDLE_CMD_SEND_INT            0x0004 | 
 | #define IDLE_CMD_ABORT               0x0008 | 
 | #define IDLE_CMD_DEVICE_RESET        0x0010 | 
 | #define IDLE_CMD_SCSI_RESET_START    0x0020	/* Assert SCSI Bus Reset */ | 
 | #define IDLE_CMD_SCSI_RESET_END      0x0040	/* Deassert SCSI Bus Reset */ | 
 | #define IDLE_CMD_SCSIREQ             0x0080 | 
 |  | 
 | #define IDLE_CMD_STATUS_SUCCESS      0x0001 | 
 | #define IDLE_CMD_STATUS_FAILURE      0x0002 | 
 |  | 
 | /* | 
 |  * AdvSendIdleCmd() flag definitions. | 
 |  */ | 
 | #define ADV_NOWAIT     0x01 | 
 |  | 
 | /* | 
 |  * Wait loop time out values. | 
 |  */ | 
 | #define SCSI_WAIT_100_MSEC           100UL	/* 100 milliseconds */ | 
 | #define SCSI_US_PER_MSEC             1000	/* microseconds per millisecond */ | 
 | #define SCSI_MAX_RETRY               10	/* retry count */ | 
 |  | 
 | #define ADV_ASYNC_RDMA_FAILURE          0x01	/* Fatal RDMA failure. */ | 
 | #define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02	/* Detected SCSI Bus Reset. */ | 
 | #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03	/* Carrier Ready failure. */ | 
 | #define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04	/* RDMAed-in data invalid. */ | 
 |  | 
 | #define ADV_HOST_SCSI_BUS_RESET      0x80	/* Host Initiated SCSI Bus Reset. */ | 
 |  | 
 | /* Read byte from a register. */ | 
 | #define AdvReadByteRegister(iop_base, reg_off) \ | 
 |      (ADV_MEM_READB((iop_base) + (reg_off))) | 
 |  | 
 | /* Write byte to a register. */ | 
 | #define AdvWriteByteRegister(iop_base, reg_off, byte) \ | 
 |      (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte))) | 
 |  | 
 | /* Read word (2 bytes) from a register. */ | 
 | #define AdvReadWordRegister(iop_base, reg_off) \ | 
 |      (ADV_MEM_READW((iop_base) + (reg_off))) | 
 |  | 
 | /* Write word (2 bytes) to a register. */ | 
 | #define AdvWriteWordRegister(iop_base, reg_off, word) \ | 
 |      (ADV_MEM_WRITEW((iop_base) + (reg_off), (word))) | 
 |  | 
 | /* Write dword (4 bytes) to a register. */ | 
 | #define AdvWriteDWordRegister(iop_base, reg_off, dword) \ | 
 |      (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword))) | 
 |  | 
 | /* Read byte from LRAM. */ | 
 | #define AdvReadByteLram(iop_base, addr, byte) \ | 
 | do { \ | 
 |     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ | 
 |     (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \ | 
 | } while (0) | 
 |  | 
 | /* Write byte to LRAM. */ | 
 | #define AdvWriteByteLram(iop_base, addr, byte) \ | 
 |     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ | 
 |      ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte))) | 
 |  | 
 | /* Read word (2 bytes) from LRAM. */ | 
 | #define AdvReadWordLram(iop_base, addr, word) \ | 
 | do { \ | 
 |     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ | 
 |     (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \ | 
 | } while (0) | 
 |  | 
 | /* Write word (2 bytes) to LRAM. */ | 
 | #define AdvWriteWordLram(iop_base, addr, word) \ | 
 |     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ | 
 |      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) | 
 |  | 
 | /* Write little-endian double word (4 bytes) to LRAM */ | 
 | /* Because of unspecified C language ordering don't use auto-increment. */ | 
 | #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \ | 
 |     ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ | 
 |       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ | 
 |                      cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \ | 
 |      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \ | 
 |       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ | 
 |                      cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF))))) | 
 |  | 
 | /* Read word (2 bytes) from LRAM assuming that the address is already set. */ | 
 | #define AdvReadWordAutoIncLram(iop_base) \ | 
 |      (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)) | 
 |  | 
 | /* Write word (2 bytes) to LRAM assuming that the address is already set. */ | 
 | #define AdvWriteWordAutoIncLram(iop_base, word) \ | 
 |      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) | 
 |  | 
 | /* | 
 |  * Define macro to check for Condor signature. | 
 |  * | 
 |  * Evaluate to ADV_TRUE if a Condor chip is found the specified port | 
 |  * address 'iop_base'. Otherwise evalue to ADV_FALSE. | 
 |  */ | 
 | #define AdvFindSignature(iop_base) \ | 
 |     (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \ | 
 |     ADV_CHIP_ID_BYTE) && \ | 
 |      (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \ | 
 |     ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE) | 
 |  | 
 | /* | 
 |  * Define macro to Return the version number of the chip at 'iop_base'. | 
 |  * | 
 |  * The second parameter 'bus_type' is currently unused. | 
 |  */ | 
 | #define AdvGetChipVersion(iop_base, bus_type) \ | 
 |     AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV) | 
 |  | 
 | /* | 
 |  * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must | 
 |  * match the ASC_SCSI_REQ_Q 'srb_ptr' field. | 
 |  * | 
 |  * If the request has not yet been sent to the device it will simply be | 
 |  * aborted from RISC memory. If the request is disconnected it will be | 
 |  * aborted on reselection by sending an Abort Message to the target ID. | 
 |  * | 
 |  * Return value: | 
 |  *      ADV_TRUE(1) - Queue was successfully aborted. | 
 |  *      ADV_FALSE(0) - Queue was not found on the active queue list. | 
 |  */ | 
 | #define AdvAbortQueue(asc_dvc, scsiq) \ | 
 |         AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \ | 
 |                        (ADV_DCNT) (scsiq)) | 
 |  | 
 | /* | 
 |  * Send a Bus Device Reset Message to the specified target ID. | 
 |  * | 
 |  * All outstanding commands will be purged if sending the | 
 |  * Bus Device Reset Message is successful. | 
 |  * | 
 |  * Return Value: | 
 |  *      ADV_TRUE(1) - All requests on the target are purged. | 
 |  *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests | 
 |  *                     are not purged. | 
 |  */ | 
 | #define AdvResetDevice(asc_dvc, target_id) \ | 
 |         AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \ | 
 |                     (ADV_DCNT) (target_id)) | 
 |  | 
 | /* | 
 |  * SCSI Wide Type definition. | 
 |  */ | 
 | #define ADV_SCSI_BIT_ID_TYPE   ushort | 
 |  | 
 | /* | 
 |  * AdvInitScsiTarget() 'cntl_flag' options. | 
 |  */ | 
 | #define ADV_SCAN_LUN           0x01 | 
 | #define ADV_CAPINFO_NOLUN      0x02 | 
 |  | 
 | /* | 
 |  * Convert target id to target id bit mask. | 
 |  */ | 
 | #define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID)) | 
 |  | 
 | /* | 
 |  * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values. | 
 |  */ | 
 |  | 
 | #define QD_NO_STATUS         0x00	/* Request not completed yet. */ | 
 | #define QD_NO_ERROR          0x01 | 
 | #define QD_ABORTED_BY_HOST   0x02 | 
 | #define QD_WITH_ERROR        0x04 | 
 |  | 
 | #define QHSTA_NO_ERROR              0x00 | 
 | #define QHSTA_M_SEL_TIMEOUT         0x11 | 
 | #define QHSTA_M_DATA_OVER_RUN       0x12 | 
 | #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 | 
 | #define QHSTA_M_QUEUE_ABORTED       0x15 | 
 | #define QHSTA_M_SXFR_SDMA_ERR       0x16	/* SXFR_STATUS SCSI DMA Error */ | 
 | #define QHSTA_M_SXFR_SXFR_PERR      0x17	/* SXFR_STATUS SCSI Bus Parity Error */ | 
 | #define QHSTA_M_RDMA_PERR           0x18	/* RISC PCI DMA parity error */ | 
 | #define QHSTA_M_SXFR_OFF_UFLW       0x19	/* SXFR_STATUS Offset Underflow */ | 
 | #define QHSTA_M_SXFR_OFF_OFLW       0x20	/* SXFR_STATUS Offset Overflow */ | 
 | #define QHSTA_M_SXFR_WD_TMO         0x21	/* SXFR_STATUS Watchdog Timeout */ | 
 | #define QHSTA_M_SXFR_DESELECTED     0x22	/* SXFR_STATUS Deselected */ | 
 | /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */ | 
 | #define QHSTA_M_SXFR_XFR_OFLW       0x12	/* SXFR_STATUS Transfer Overflow */ | 
 | #define QHSTA_M_SXFR_XFR_PH_ERR     0x24	/* SXFR_STATUS Transfer Phase Error */ | 
 | #define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25	/* SXFR_STATUS Unknown Error */ | 
 | #define QHSTA_M_SCSI_BUS_RESET      0x30	/* Request aborted from SBR */ | 
 | #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31	/* Request aborted from unsol. SBR */ | 
 | #define QHSTA_M_BUS_DEVICE_RESET    0x32	/* Request aborted from BDR */ | 
 | #define QHSTA_M_DIRECTION_ERR       0x35	/* Data Phase mismatch */ | 
 | #define QHSTA_M_DIRECTION_ERR_HUNG  0x36	/* Data Phase mismatch and bus hang */ | 
 | #define QHSTA_M_WTM_TIMEOUT         0x41 | 
 | #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42 | 
 | #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43 | 
 | #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 | 
 | #define QHSTA_M_INVALID_DEVICE      0x45	/* Bad target ID */ | 
 | #define QHSTA_M_FROZEN_TIDQ         0x46	/* TID Queue frozen. */ | 
 | #define QHSTA_M_SGBACKUP_ERROR      0x47	/* Scatter-Gather backup error */ | 
 |  | 
 | /* Return the address that is aligned at the next doubleword >= to 'addr'. */ | 
 | #define ADV_8BALIGN(addr)      (((ulong) (addr) + 0x7) & ~0x7) | 
 | #define ADV_16BALIGN(addr)     (((ulong) (addr) + 0xF) & ~0xF) | 
 | #define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F) | 
 |  | 
 | /* | 
 |  * Total contiguous memory needed for driver SG blocks. | 
 |  * | 
 |  * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum | 
 |  * number of scatter-gather elements the driver supports in a | 
 |  * single request. | 
 |  */ | 
 |  | 
 | #define ADV_SG_LIST_MAX_BYTE_SIZE \ | 
 |          (sizeof(ADV_SG_BLOCK) * \ | 
 |           ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK)) | 
 |  | 
 | /* struct asc_board flags */ | 
 | #define ASC_IS_WIDE_BOARD       0x04	/* AdvanSys Wide Board */ | 
 |  | 
 | #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0) | 
 |  | 
 | #define NO_ISA_DMA              0xff	/* No ISA DMA Channel Used */ | 
 |  | 
 | #define ASC_INFO_SIZE           128	/* advansys_info() line size */ | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | /* /proc/scsi/advansys/[0...] related definitions */ | 
 | #define ASC_PRTBUF_SIZE         2048 | 
 | #define ASC_PRTLINE_SIZE        160 | 
 |  | 
 | #define ASC_PRT_NEXT() \ | 
 |     if (cp) { \ | 
 |         totlen += len; \ | 
 |         leftlen -= len; \ | 
 |         if (leftlen == 0) { \ | 
 |             return totlen; \ | 
 |         } \ | 
 |         cp += len; \ | 
 |     } | 
 | #endif /* CONFIG_PROC_FS */ | 
 |  | 
 | /* Asc Library return codes */ | 
 | #define ASC_TRUE        1 | 
 | #define ASC_FALSE       0 | 
 | #define ASC_NOERROR     1 | 
 | #define ASC_BUSY        0 | 
 | #define ASC_ERROR       (-1) | 
 |  | 
 | /* struct scsi_cmnd function return codes */ | 
 | #define STATUS_BYTE(byte)   (byte) | 
 | #define MSG_BYTE(byte)      ((byte) << 8) | 
 | #define HOST_BYTE(byte)     ((byte) << 16) | 
 | #define DRIVER_BYTE(byte)   ((byte) << 24) | 
 |  | 
 | #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1) | 
 | #ifndef ADVANSYS_STATS | 
 | #define ASC_STATS_ADD(shost, counter, count) | 
 | #else /* ADVANSYS_STATS */ | 
 | #define ASC_STATS_ADD(shost, counter, count) \ | 
 | 	(((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count)) | 
 | #endif /* ADVANSYS_STATS */ | 
 |  | 
 | /* If the result wraps when calculating tenths, return 0. */ | 
 | #define ASC_TENTHS(num, den) \ | 
 |     (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \ | 
 |     0 : ((((num) * 10)/(den)) - (10 * ((num)/(den))))) | 
 |  | 
 | /* | 
 |  * Display a message to the console. | 
 |  */ | 
 | #define ASC_PRINT(s) \ | 
 |     { \ | 
 |         printk("advansys: "); \ | 
 |         printk(s); \ | 
 |     } | 
 |  | 
 | #define ASC_PRINT1(s, a1) \ | 
 |     { \ | 
 |         printk("advansys: "); \ | 
 |         printk((s), (a1)); \ | 
 |     } | 
 |  | 
 | #define ASC_PRINT2(s, a1, a2) \ | 
 |     { \ | 
 |         printk("advansys: "); \ | 
 |         printk((s), (a1), (a2)); \ | 
 |     } | 
 |  | 
 | #define ASC_PRINT3(s, a1, a2, a3) \ | 
 |     { \ | 
 |         printk("advansys: "); \ | 
 |         printk((s), (a1), (a2), (a3)); \ | 
 |     } | 
 |  | 
 | #define ASC_PRINT4(s, a1, a2, a3, a4) \ | 
 |     { \ | 
 |         printk("advansys: "); \ | 
 |         printk((s), (a1), (a2), (a3), (a4)); \ | 
 |     } | 
 |  | 
 | #ifndef ADVANSYS_DEBUG | 
 |  | 
 | #define ASC_DBG(lvl, s...) | 
 | #define ASC_DBG_PRT_SCSI_HOST(lvl, s) | 
 | #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) | 
 | #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) | 
 | #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) | 
 | #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) | 
 | #define ASC_DBG_PRT_HEX(lvl, name, start, length) | 
 | #define ASC_DBG_PRT_CDB(lvl, cdb, len) | 
 | #define ASC_DBG_PRT_SENSE(lvl, sense, len) | 
 | #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) | 
 |  | 
 | #else /* ADVANSYS_DEBUG */ | 
 |  | 
 | /* | 
 |  * Debugging Message Levels: | 
 |  * 0: Errors Only | 
 |  * 1: High-Level Tracing | 
 |  * 2-N: Verbose Tracing | 
 |  */ | 
 |  | 
 | #define ASC_DBG(lvl, format, arg...) {					\ | 
 | 	if (asc_dbglvl >= (lvl))					\ | 
 | 		printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,		\ | 
 | 			__func__ , ## arg);				\ | 
 | } | 
 |  | 
 | #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \ | 
 |     { \ | 
 |         if (asc_dbglvl >= (lvl)) { \ | 
 |             asc_prt_scsi_host(s); \ | 
 |         } \ | 
 |     } | 
 |  | 
 | #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \ | 
 |     { \ | 
 |         if (asc_dbglvl >= (lvl)) { \ | 
 |             asc_prt_asc_scsi_q(scsiqp); \ | 
 |         } \ | 
 |     } | 
 |  | 
 | #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \ | 
 |     { \ | 
 |         if (asc_dbglvl >= (lvl)) { \ | 
 |             asc_prt_asc_qdone_info(qdone); \ | 
 |         } \ | 
 |     } | 
 |  | 
 | #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \ | 
 |     { \ | 
 |         if (asc_dbglvl >= (lvl)) { \ | 
 |             asc_prt_adv_scsi_req_q(scsiqp); \ | 
 |         } \ | 
 |     } | 
 |  | 
 | #define ASC_DBG_PRT_HEX(lvl, name, start, length) \ | 
 |     { \ | 
 |         if (asc_dbglvl >= (lvl)) { \ | 
 |             asc_prt_hex((name), (start), (length)); \ | 
 |         } \ | 
 |     } | 
 |  | 
 | #define ASC_DBG_PRT_CDB(lvl, cdb, len) \ | 
 |         ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len)); | 
 |  | 
 | #define ASC_DBG_PRT_SENSE(lvl, sense, len) \ | 
 |         ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len)); | 
 |  | 
 | #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \ | 
 |         ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len)); | 
 | #endif /* ADVANSYS_DEBUG */ | 
 |  | 
 | #ifdef ADVANSYS_STATS | 
 |  | 
 | /* Per board statistics structure */ | 
 | struct asc_stats { | 
 | 	/* Driver Entrypoint Statistics */ | 
 | 	ADV_DCNT queuecommand;	/* # calls to advansys_queuecommand() */ | 
 | 	ADV_DCNT reset;		/* # calls to advansys_eh_bus_reset() */ | 
 | 	ADV_DCNT biosparam;	/* # calls to advansys_biosparam() */ | 
 | 	ADV_DCNT interrupt;	/* # advansys_interrupt() calls */ | 
 | 	ADV_DCNT callback;	/* # calls to asc/adv_isr_callback() */ | 
 | 	ADV_DCNT done;		/* # calls to request's scsi_done function */ | 
 | 	ADV_DCNT build_error;	/* # asc/adv_build_req() ASC_ERROR returns. */ | 
 | 	ADV_DCNT adv_build_noreq;	/* # adv_build_req() adv_req_t alloc. fail. */ | 
 | 	ADV_DCNT adv_build_nosg;	/* # adv_build_req() adv_sgblk_t alloc. fail. */ | 
 | 	/* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */ | 
 | 	ADV_DCNT exe_noerror;	/* # ASC_NOERROR returns. */ | 
 | 	ADV_DCNT exe_busy;	/* # ASC_BUSY returns. */ | 
 | 	ADV_DCNT exe_error;	/* # ASC_ERROR returns. */ | 
 | 	ADV_DCNT exe_unknown;	/* # unknown returns. */ | 
 | 	/* Data Transfer Statistics */ | 
 | 	ADV_DCNT xfer_cnt;	/* # I/O requests received */ | 
 | 	ADV_DCNT xfer_elem;	/* # scatter-gather elements */ | 
 | 	ADV_DCNT xfer_sect;	/* # 512-byte blocks */ | 
 | }; | 
 | #endif /* ADVANSYS_STATS */ | 
 |  | 
 | /* | 
 |  * Structure allocated for each board. | 
 |  * | 
 |  * This structure is allocated by scsi_host_alloc() at the end | 
 |  * of the 'Scsi_Host' structure starting at the 'hostdata' | 
 |  * field. It is guaranteed to be allocated from DMA-able memory. | 
 |  */ | 
 | struct asc_board { | 
 | 	struct device *dev; | 
 | 	uint flags;		/* Board flags */ | 
 | 	unsigned int irq; | 
 | 	union { | 
 | 		ASC_DVC_VAR asc_dvc_var;	/* Narrow board */ | 
 | 		ADV_DVC_VAR adv_dvc_var;	/* Wide board */ | 
 | 	} dvc_var; | 
 | 	union { | 
 | 		ASC_DVC_CFG asc_dvc_cfg;	/* Narrow board */ | 
 | 		ADV_DVC_CFG adv_dvc_cfg;	/* Wide board */ | 
 | 	} dvc_cfg; | 
 | 	ushort asc_n_io_port;	/* Number I/O ports. */ | 
 | 	ADV_SCSI_BIT_ID_TYPE init_tidmask;	/* Target init./valid mask */ | 
 | 	ushort reqcnt[ADV_MAX_TID + 1];	/* Starvation request count */ | 
 | 	ADV_SCSI_BIT_ID_TYPE queue_full;	/* Queue full mask */ | 
 | 	ushort queue_full_cnt[ADV_MAX_TID + 1];	/* Queue full count */ | 
 | 	union { | 
 | 		ASCEEP_CONFIG asc_eep;	/* Narrow EEPROM config. */ | 
 | 		ADVEEP_3550_CONFIG adv_3550_eep;	/* 3550 EEPROM config. */ | 
 | 		ADVEEP_38C0800_CONFIG adv_38C0800_eep;	/* 38C0800 EEPROM config. */ | 
 | 		ADVEEP_38C1600_CONFIG adv_38C1600_eep;	/* 38C1600 EEPROM config. */ | 
 | 	} eep_config; | 
 | 	ulong last_reset;	/* Saved last reset time */ | 
 | 	/* /proc/scsi/advansys/[0...] */ | 
 | 	char *prtbuf;		/* /proc print buffer */ | 
 | #ifdef ADVANSYS_STATS | 
 | 	struct asc_stats asc_stats;	/* Board statistics */ | 
 | #endif				/* ADVANSYS_STATS */ | 
 | 	/* | 
 | 	 * The following fields are used only for Narrow Boards. | 
 | 	 */ | 
 | 	uchar sdtr_data[ASC_MAX_TID + 1];	/* SDTR information */ | 
 | 	/* | 
 | 	 * The following fields are used only for Wide Boards. | 
 | 	 */ | 
 | 	void __iomem *ioremap_addr;	/* I/O Memory remap address. */ | 
 | 	ushort ioport;		/* I/O Port address. */ | 
 | 	adv_req_t *adv_reqp;	/* Request structures. */ | 
 | 	adv_sgblk_t *adv_sgblkp;	/* Scatter-gather structures. */ | 
 | 	ushort bios_signature;	/* BIOS Signature. */ | 
 | 	ushort bios_version;	/* BIOS Version. */ | 
 | 	ushort bios_codeseg;	/* BIOS Code Segment. */ | 
 | 	ushort bios_codelen;	/* BIOS Code Segment Length. */ | 
 | }; | 
 |  | 
 | #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \ | 
 | 							dvc_var.asc_dvc_var) | 
 | #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \ | 
 | 							dvc_var.adv_dvc_var) | 
 | #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev) | 
 |  | 
 | #ifdef ADVANSYS_DEBUG | 
 | static int asc_dbglvl = 3; | 
 |  | 
 | /* | 
 |  * asc_prt_asc_dvc_var() | 
 |  */ | 
 | static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h) | 
 | { | 
 | 	printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h); | 
 |  | 
 | 	printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl " | 
 | 	       "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl); | 
 |  | 
 | 	printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type, | 
 | 		(unsigned)h->init_sdtr); | 
 |  | 
 | 	printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, " | 
 | 	       "chip_no 0x%x,\n", (unsigned)h->sdtr_done, | 
 | 	       (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready, | 
 | 	       (unsigned)h->chip_no); | 
 |  | 
 | 	printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait " | 
 | 	       "%u,\n", (unsigned)h->queue_full_or_busy, | 
 | 	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait); | 
 |  | 
 | 	printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, " | 
 | 	       "in_critical_cnt %u,\n", (unsigned)h->is_in_int, | 
 | 	       (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng, | 
 | 	       (unsigned)h->in_critical_cnt); | 
 |  | 
 | 	printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, " | 
 | 	       "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage, | 
 | 	       (unsigned)h->init_state, (unsigned)h->no_scam, | 
 | 	       (unsigned)h->pci_fix_asyn_xfer); | 
 |  | 
 | 	printk(" cfg 0x%lx\n", (ulong)h->cfg); | 
 | } | 
 |  | 
 | /* | 
 |  * asc_prt_asc_dvc_cfg() | 
 |  */ | 
 | static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h) | 
 | { | 
 | 	printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h); | 
 |  | 
 | 	printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n", | 
 | 	       h->can_tagged_qng, h->cmd_qng_enabled); | 
 | 	printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n", | 
 | 	       h->disc_enable, h->sdtr_enable); | 
 |  | 
 | 	printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, " | 
 | 		"chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed, | 
 | 		h->isa_dma_channel, h->chip_version); | 
 |  | 
 | 	printk(" mcode_date 0x%x, mcode_version %d\n", | 
 | 		h->mcode_date, h->mcode_version); | 
 | } | 
 |  | 
 | /* | 
 |  * asc_prt_adv_dvc_var() | 
 |  * | 
 |  * Display an ADV_DVC_VAR structure. | 
 |  */ | 
 | static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h) | 
 | { | 
 | 	printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h); | 
 |  | 
 | 	printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n", | 
 | 	       (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able); | 
 |  | 
 | 	printk("  sdtr_able 0x%x, wdtr_able 0x%x\n", | 
 | 	       (unsigned)h->sdtr_able, (unsigned)h->wdtr_able); | 
 |  | 
 | 	printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n", | 
 | 	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait); | 
 |  | 
 | 	printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n", | 
 | 	       (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng, | 
 | 	       (ulong)h->carr_freelist); | 
 |  | 
 | 	printk("  icq_sp 0x%lx, irq_sp 0x%lx\n", | 
 | 	       (ulong)h->icq_sp, (ulong)h->irq_sp); | 
 |  | 
 | 	printk("  no_scam 0x%x, tagqng_able 0x%x\n", | 
 | 	       (unsigned)h->no_scam, (unsigned)h->tagqng_able); | 
 |  | 
 | 	printk("  chip_scsi_id 0x%x, cfg 0x%lx\n", | 
 | 	       (unsigned)h->chip_scsi_id, (ulong)h->cfg); | 
 | } | 
 |  | 
 | /* | 
 |  * asc_prt_adv_dvc_cfg() | 
 |  * | 
 |  * Display an ADV_DVC_CFG structure. | 
 |  */ | 
 | static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h) | 
 | { | 
 | 	printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h); | 
 |  | 
 | 	printk("  disc_enable 0x%x, termination 0x%x\n", | 
 | 	       h->disc_enable, h->termination); | 
 |  | 
 | 	printk("  chip_version 0x%x, mcode_date 0x%x\n", | 
 | 	       h->chip_version, h->mcode_date); | 
 |  | 
 | 	printk("  mcode_version 0x%x, control_flag 0x%x\n", | 
 | 	       h->mcode_version, h->control_flag); | 
 | } | 
 |  | 
 | /* | 
 |  * asc_prt_scsi_host() | 
 |  */ | 
 | static void asc_prt_scsi_host(struct Scsi_Host *s) | 
 | { | 
 | 	struct asc_board *boardp = shost_priv(s); | 
 |  | 
 | 	printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev)); | 
 | 	printk(" host_busy %u, host_no %d, last_reset %d,\n", | 
 | 	       s->host_busy, s->host_no, (unsigned)s->last_reset); | 
 |  | 
 | 	printk(" base 0x%lx, io_port 0x%lx, irq %d,\n", | 
 | 	       (ulong)s->base, (ulong)s->io_port, boardp->irq); | 
 |  | 
 | 	printk(" dma_channel %d, this_id %d, can_queue %d,\n", | 
 | 	       s->dma_channel, s->this_id, s->can_queue); | 
 |  | 
 | 	printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n", | 
 | 	       s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma); | 
 |  | 
 | 	if (ASC_NARROW_BOARD(boardp)) { | 
 | 		asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var); | 
 | 		asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg); | 
 | 	} else { | 
 | 		asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var); | 
 | 		asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * asc_prt_hex() | 
 |  * | 
 |  * Print hexadecimal output in 4 byte groupings 32 bytes | 
 |  * or 8 double-words per line. | 
 |  */ | 
 | static void asc_prt_hex(char *f, uchar *s, int l) | 
 | { | 
 | 	int i; | 
 | 	int j; | 
 | 	int k; | 
 | 	int m; | 
 |  | 
 | 	printk("%s: (%d bytes)\n", f, l); | 
 |  | 
 | 	for (i = 0; i < l; i += 32) { | 
 |  | 
 | 		/* Display a maximum of 8 double-words per line. */ | 
 | 		if ((k = (l - i) / 4) >= 8) { | 
 | 			k = 8; | 
 | 			m = 0; | 
 | 		} else { | 
 | 			m = (l - i) % 4; | 
 | 		} | 
 |  | 
 | 		for (j = 0; j < k; j++) { | 
 | 			printk(" %2.2X%2.2X%2.2X%2.2X", | 
 | 			       (unsigned)s[i + (j * 4)], | 
 | 			       (unsigned)s[i + (j * 4) + 1], | 
 | 			       (unsigned)s[i + (j * 4) + 2], | 
 | 			       (unsigned)s[i + (j * 4) + 3]); | 
 | 		} | 
 |  | 
 | 		switch (m) { | 
 | 		case 0: | 
 | 		default: | 
 | 			break; | 
 | 		case 1: | 
 | 			printk(" %2.2X", (unsigned)s[i + (j * 4)]); | 
 | 			break; | 
 | 		case 2: | 
 | 			printk(" %2.2X%2.2X", | 
 | 			       (unsigned)s[i + (j * 4)], | 
 | 			       (unsigned)s[i + (j * 4) + 1]); | 
 | 			break; | 
 | 		case 3: | 
 | 			printk(" %2.2X%2.2X%2.2X", | 
 | 			       (unsigned)s[i + (j * 4) + 1], | 
 | 			       (unsigned)s[i + (j * 4) + 2], | 
 | 			       (unsigned)s[i + (j * 4) + 3]); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		printk("\n"); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * asc_prt_asc_scsi_q() | 
 |  */ | 
 | static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q) | 
 | { | 
 | 	ASC_SG_HEAD *sgp; | 
 | 	int i; | 
 |  | 
 | 	printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q); | 
 |  | 
 | 	printk | 
 | 	    (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n", | 
 | 	     q->q2.target_ix, q->q1.target_lun, (ulong)q->q2.srb_ptr, | 
 | 	     q->q2.tag_code); | 
 |  | 
 | 	printk | 
 | 	    (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", | 
 | 	     (ulong)le32_to_cpu(q->q1.data_addr), | 
 | 	     (ulong)le32_to_cpu(q->q1.data_cnt), | 
 | 	     (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len); | 
 |  | 
 | 	printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n", | 
 | 	       (ulong)q->cdbptr, q->q2.cdb_len, | 
 | 	       (ulong)q->sg_head, q->q1.sg_queue_cnt); | 
 |  | 
 | 	if (q->sg_head) { | 
 | 		sgp = q->sg_head; | 
 | 		printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp); | 
 | 		printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt, | 
 | 		       sgp->queue_cnt); | 
 | 		for (i = 0; i < sgp->entry_cnt; i++) { | 
 | 			printk(" [%u]: addr 0x%lx, bytes %lu\n", | 
 | 			       i, (ulong)le32_to_cpu(sgp->sg_list[i].addr), | 
 | 			       (ulong)le32_to_cpu(sgp->sg_list[i].bytes)); | 
 | 		} | 
 |  | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * asc_prt_asc_qdone_info() | 
 |  */ | 
 | static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q) | 
 | { | 
 | 	printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q); | 
 | 	printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n", | 
 | 	       (ulong)q->d2.srb_ptr, q->d2.target_ix, q->d2.cdb_len, | 
 | 	       q->d2.tag_code); | 
 | 	printk | 
 | 	    (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n", | 
 | 	     q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg); | 
 | } | 
 |  | 
 | /* | 
 |  * asc_prt_adv_sgblock() | 
 |  * | 
 |  * Display an ADV_SG_BLOCK structure. | 
 |  */ | 
 | static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n", | 
 | 	       (ulong)b, sgblockno); | 
 | 	printk("  sg_cnt %u, sg_ptr 0x%lx\n", | 
 | 	       b->sg_cnt, (ulong)le32_to_cpu(b->sg_ptr)); | 
 | 	BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK); | 
 | 	if (b->sg_ptr != 0) | 
 | 		BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK); | 
 | 	for (i = 0; i < b->sg_cnt; i++) { | 
 | 		printk("  [%u]: sg_addr 0x%lx, sg_count 0x%lx\n", | 
 | 		       i, (ulong)b->sg_list[i].sg_addr, | 
 | 		       (ulong)b->sg_list[i].sg_count); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * asc_prt_adv_scsi_req_q() | 
 |  * | 
 |  * Display an ADV_SCSI_REQ_Q structure. | 
 |  */ | 
 | static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q) | 
 | { | 
 | 	int sg_blk_cnt; | 
 | 	struct asc_sg_block *sg_ptr; | 
 |  | 
 | 	printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q); | 
 |  | 
 | 	printk("  target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n", | 
 | 	       q->target_id, q->target_lun, (ulong)q->srb_ptr, q->a_flag); | 
 |  | 
 | 	printk("  cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n", | 
 | 	       q->cntl, (ulong)le32_to_cpu(q->data_addr), (ulong)q->vdata_addr); | 
 |  | 
 | 	printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", | 
 | 	       (ulong)le32_to_cpu(q->data_cnt), | 
 | 	       (ulong)le32_to_cpu(q->sense_addr), q->sense_len); | 
 |  | 
 | 	printk | 
 | 	    ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n", | 
 | 	     q->cdb_len, q->done_status, q->host_status, q->scsi_status); | 
 |  | 
 | 	printk("  sg_working_ix 0x%x, target_cmd %u\n", | 
 | 	       q->sg_working_ix, q->target_cmd); | 
 |  | 
 | 	printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n", | 
 | 	       (ulong)le32_to_cpu(q->scsiq_rptr), | 
 | 	       (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr); | 
 |  | 
 | 	/* Display the request's ADV_SG_BLOCK structures. */ | 
 | 	if (q->sg_list_ptr != NULL) { | 
 | 		sg_blk_cnt = 0; | 
 | 		while (1) { | 
 | 			/* | 
 | 			 * 'sg_ptr' is a physical address. Convert it to a virtual | 
 | 			 * address by indexing 'sg_blk_cnt' into the virtual address | 
 | 			 * array 'sg_list_ptr'. | 
 | 			 * | 
 | 			 * XXX - Assumes all SG physical blocks are virtually contiguous. | 
 | 			 */ | 
 | 			sg_ptr = | 
 | 			    &(((ADV_SG_BLOCK *)(q->sg_list_ptr))[sg_blk_cnt]); | 
 | 			asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr); | 
 | 			if (sg_ptr->sg_ptr == 0) { | 
 | 				break; | 
 | 			} | 
 | 			sg_blk_cnt++; | 
 | 		} | 
 | 	} | 
 | } | 
 | #endif /* ADVANSYS_DEBUG */ | 
 |  | 
 | /* | 
 |  * The advansys chip/microcode contains a 32-bit identifier for each command | 
 |  * known as the 'srb'.  I don't know what it stands for.  The driver used | 
 |  * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it | 
 |  * with bus_to_virt.  Now the driver keeps a per-host map of integers to | 
 |  * pointers.  It auto-expands when full, unless it can't allocate memory. | 
 |  * Note that an srb of 0 is treated specially by the chip/firmware, hence | 
 |  * the return of i+1 in this routine, and the corresponding subtraction in | 
 |  * the inverse routine. | 
 |  */ | 
 | #define BAD_SRB 0 | 
 | static u32 advansys_ptr_to_srb(struct asc_dvc_var *asc_dvc, void *ptr) | 
 | { | 
 | 	int i; | 
 | 	void **new_ptr; | 
 |  | 
 | 	for (i = 0; i < asc_dvc->ptr_map_count; i++) { | 
 | 		if (!asc_dvc->ptr_map[i]) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	if (asc_dvc->ptr_map_count == 0) | 
 | 		asc_dvc->ptr_map_count = 1; | 
 | 	else | 
 | 		asc_dvc->ptr_map_count *= 2; | 
 |  | 
 | 	new_ptr = krealloc(asc_dvc->ptr_map, | 
 | 			asc_dvc->ptr_map_count * sizeof(void *), GFP_ATOMIC); | 
 | 	if (!new_ptr) | 
 | 		return BAD_SRB; | 
 | 	asc_dvc->ptr_map = new_ptr; | 
 |  out: | 
 | 	ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr, i); | 
 | 	asc_dvc->ptr_map[i] = ptr; | 
 | 	return i + 1; | 
 | } | 
 |  | 
 | static void * advansys_srb_to_ptr(struct asc_dvc_var *asc_dvc, u32 srb) | 
 | { | 
 | 	void *ptr; | 
 |  | 
 | 	srb--; | 
 | 	if (srb >= asc_dvc->ptr_map_count) { | 
 | 		printk("advansys: bad SRB %u, max %u\n", srb, | 
 | 							asc_dvc->ptr_map_count); | 
 | 		return NULL; | 
 | 	} | 
 | 	ptr = asc_dvc->ptr_map[srb]; | 
 | 	asc_dvc->ptr_map[srb] = NULL; | 
 | 	ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr, srb); | 
 | 	return ptr; | 
 | } | 
 |  | 
 | /* | 
 |  * advansys_info() | 
 |  * | 
 |  * Return suitable for printing on the console with the argument | 
 |  * adapter's configuration information. | 
 |  * | 
 |  * Note: The information line should not exceed ASC_INFO_SIZE bytes, | 
 |  * otherwise the static 'info' array will be overrun. | 
 |  */ | 
 | static const char *advansys_info(struct Scsi_Host *shost) | 
 | { | 
 | 	static char info[ASC_INFO_SIZE]; | 
 | 	struct asc_board *boardp = shost_priv(shost); | 
 | 	ASC_DVC_VAR *asc_dvc_varp; | 
 | 	ADV_DVC_VAR *adv_dvc_varp; | 
 | 	char *busname; | 
 | 	char *widename = NULL; | 
 |  | 
 | 	if (ASC_NARROW_BOARD(boardp)) { | 
 | 		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; | 
 | 		ASC_DBG(1, "begin\n"); | 
 | 		if (asc_dvc_varp->bus_type & ASC_IS_ISA) { | 
 | 			if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) == | 
 | 			    ASC_IS_ISAPNP) { | 
 | 				busname = "ISA PnP"; | 
 | 			} else { | 
 | 				busname = "ISA"; | 
 | 			} | 
 | 			sprintf(info, | 
 | 				"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X", | 
 | 				ASC_VERSION, busname, | 
 | 				(ulong)shost->io_port, | 
 | 				(ulong)shost->io_port + ASC_IOADR_GAP - 1, | 
 | 				boardp->irq, shost->dma_channel); | 
 | 		} else { | 
 | 			if (asc_dvc_varp->bus_type & ASC_IS_VL) { | 
 | 				busname = "VL"; | 
 | 			} else if (asc_dvc_varp->bus_type & ASC_IS_EISA) { | 
 | 				busname = "EISA"; | 
 | 			} else if (asc_dvc_varp->bus_type & ASC_IS_PCI) { | 
 | 				if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA) | 
 | 				    == ASC_IS_PCI_ULTRA) { | 
 | 					busname = "PCI Ultra"; | 
 | 				} else { | 
 | 					busname = "PCI"; | 
 | 				} | 
 | 			} else { | 
 | 				busname = "?"; | 
 | 				shost_printk(KERN_ERR, shost, "unknown bus " | 
 | 					"type %d\n", asc_dvc_varp->bus_type); | 
 | 			} | 
 | 			sprintf(info, | 
 | 				"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X", | 
 | 				ASC_VERSION, busname, (ulong)shost->io_port, | 
 | 				(ulong)shost->io_port + ASC_IOADR_GAP - 1, | 
 | 				boardp->irq); | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * Wide Adapter Information | 
 | 		 * | 
 | 		 * Memory-mapped I/O is used instead of I/O space to access | 
 | 		 * the adapter, but display the I/O Port range. The Memory | 
 | 		 * I/O address is displayed through the driver /proc file. | 
 | 		 */ | 
 | 		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; | 
 | 		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { | 
 | 			widename = "Ultra-Wide"; | 
 | 		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { | 
 | 			widename = "Ultra2-Wide"; | 
 | 		} else { | 
 | 			widename = "Ultra3-Wide"; | 
 | 		} | 
 | 		sprintf(info, | 
 | 			"AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X", | 
 | 			ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base, | 
 | 			(ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq); | 
 | 	} | 
 | 	BUG_ON(strlen(info) >= ASC_INFO_SIZE); | 
 | 	ASC_DBG(1, "end\n"); | 
 | 	return info; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | /* | 
 |  * asc_prt_line() | 
 |  * | 
 |  * If 'cp' is NULL print to the console, otherwise print to a buffer. | 
 |  * | 
 |  * Return 0 if printing to the console, otherwise return the number of | 
 |  * bytes written to the buffer. | 
 |  * | 
 |  * Note: If any single line is greater than ASC_PRTLINE_SIZE bytes the stack | 
 |  * will be corrupted. 's[]' is defined to be ASC_PRTLINE_SIZE bytes. | 
 |  */ | 
 | static int asc_prt_line(char *buf, int buflen, char *fmt, ...) | 
 | { | 
 | 	va_list args; | 
 | 	int ret; | 
 | 	char s[ASC_PRTLINE_SIZE]; | 
 |  | 
 | 	va_start(args, fmt); | 
 | 	ret = vsprintf(s, fmt, args); | 
 | 	BUG_ON(ret >= ASC_PRTLINE_SIZE); | 
 | 	if (buf == NULL) { | 
 | 		(void)printk(s); | 
 | 		ret = 0; | 
 | 	} else { | 
 | 		ret = min(buflen, ret); | 
 | 		memcpy(buf, s, ret); | 
 | 	} | 
 | 	va_end(args); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * asc_prt_board_devices() | 
 |  * | 
 |  * Print driver information for devices attached to the board. | 
 |  * | 
 |  * Note: no single line should be greater than ASC_PRTLINE_SIZE, | 
 |  * cf. asc_prt_line(). | 
 |  * | 
 |  * Return the number of characters copied into 'cp'. No more than | 
 |  * 'cplen' characters will be copied to 'cp'. | 
 |  */ | 
 | static int asc_prt_board_devices(struct Scsi_Host *shost, char *cp, int cplen) | 
 | { | 
 | 	struct asc_board *boardp = shost_priv(shost); | 
 | 	int leftlen; | 
 | 	int totlen; | 
 | 	int len; | 
 | 	int chip_scsi_id; | 
 | 	int i; | 
 |  | 
 | 	leftlen = cplen; | 
 | 	totlen = len = 0; | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, | 
 | 			   "\nDevice Information for AdvanSys SCSI Host %d:\n", | 
 | 			   shost->host_no); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	if (ASC_NARROW_BOARD(boardp)) { | 
 | 		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; | 
 | 	} else { | 
 | 		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; | 
 | 	} | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, "Target IDs Detected:"); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ADV_MAX_TID; i++) { | 
 | 		if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) { | 
 | 			len = asc_prt_line(cp, leftlen, " %X,", i); | 
 | 			ASC_PRT_NEXT(); | 
 | 		} | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, " (%X=Host Adapter)\n", chip_scsi_id); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	return totlen; | 
 | } | 
 |  | 
 | /* | 
 |  * Display Wide Board BIOS Information. | 
 |  */ | 
 | static int asc_prt_adv_bios(struct Scsi_Host *shost, char *cp, int cplen) | 
 | { | 
 | 	struct asc_board *boardp = shost_priv(shost); | 
 | 	int leftlen; | 
 | 	int totlen; | 
 | 	int len; | 
 | 	ushort major, minor, letter; | 
 |  | 
 | 	leftlen = cplen; | 
 | 	totlen = len = 0; | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, "\nROM BIOS Version: "); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	/* | 
 | 	 * If the BIOS saved a valid signature, then fill in | 
 | 	 * the BIOS code segment base address. | 
 | 	 */ | 
 | 	if (boardp->bios_signature != 0x55AA) { | 
 | 		len = asc_prt_line(cp, leftlen, "Disabled or Pre-3.1\n"); | 
 | 		ASC_PRT_NEXT(); | 
 | 		len = asc_prt_line(cp, leftlen, | 
 | 				   "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"); | 
 | 		ASC_PRT_NEXT(); | 
 | 		len = asc_prt_line(cp, leftlen, | 
 | 				   "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n"); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} else { | 
 | 		major = (boardp->bios_version >> 12) & 0xF; | 
 | 		minor = (boardp->bios_version >> 8) & 0xF; | 
 | 		letter = (boardp->bios_version & 0xFF); | 
 |  | 
 | 		len = asc_prt_line(cp, leftlen, "%d.%d%c\n", | 
 | 				   major, minor, | 
 | 				   letter >= 26 ? '?' : letter + 'A'); | 
 | 		ASC_PRT_NEXT(); | 
 |  | 
 | 		/* | 
 | 		 * Current available ROM BIOS release is 3.1I for UW | 
 | 		 * and 3.2I for U2W. This code doesn't differentiate | 
 | 		 * UW and U2W boards. | 
 | 		 */ | 
 | 		if (major < 3 || (major <= 3 && minor < 1) || | 
 | 		    (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) { | 
 | 			len = asc_prt_line(cp, leftlen, | 
 | 					   "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"); | 
 | 			ASC_PRT_NEXT(); | 
 | 			len = asc_prt_line(cp, leftlen, | 
 | 					   "ftp://ftp.connectcom.net/pub\n"); | 
 | 			ASC_PRT_NEXT(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return totlen; | 
 | } | 
 |  | 
 | /* | 
 |  * Add serial number to information bar if signature AAh | 
 |  * is found in at bit 15-9 (7 bits) of word 1. | 
 |  * | 
 |  * Serial Number consists fo 12 alpha-numeric digits. | 
 |  * | 
 |  *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits) | 
 |  *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits) | 
 |  *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits) | 
 |  *       5 - Product revision (A-J)    Word0:  "         " | 
 |  * | 
 |  *           Signature                 Word1: 15-9 (7 bits) | 
 |  *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit) | 
 |  *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits) | 
 |  * | 
 |  *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits) | 
 |  * | 
 |  * Note 1: Only production cards will have a serial number. | 
 |  * | 
 |  * Note 2: Signature is most significant 7 bits (0xFE). | 
 |  * | 
 |  * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE. | 
 |  */ | 
 | static int asc_get_eeprom_string(ushort *serialnum, uchar *cp) | 
 | { | 
 | 	ushort w, num; | 
 |  | 
 | 	if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) { | 
 | 		return ASC_FALSE; | 
 | 	} else { | 
 | 		/* | 
 | 		 * First word - 6 digits. | 
 | 		 */ | 
 | 		w = serialnum[0]; | 
 |  | 
 | 		/* Product type - 1st digit. */ | 
 | 		if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') { | 
 | 			/* Product type is P=Prototype */ | 
 | 			*cp += 0x8; | 
 | 		} | 
 | 		cp++; | 
 |  | 
 | 		/* Manufacturing location - 2nd digit. */ | 
 | 		*cp++ = 'A' + ((w & 0x1C00) >> 10); | 
 |  | 
 | 		/* Product ID - 3rd, 4th digits. */ | 
 | 		num = w & 0x3FF; | 
 | 		*cp++ = '0' + (num / 100); | 
 | 		num %= 100; | 
 | 		*cp++ = '0' + (num / 10); | 
 |  | 
 | 		/* Product revision - 5th digit. */ | 
 | 		*cp++ = 'A' + (num % 10); | 
 |  | 
 | 		/* | 
 | 		 * Second word | 
 | 		 */ | 
 | 		w = serialnum[1]; | 
 |  | 
 | 		/* | 
 | 		 * Year - 6th digit. | 
 | 		 * | 
 | 		 * If bit 15 of third word is set, then the | 
 | 		 * last digit of the year is greater than 7. | 
 | 		 */ | 
 | 		if (serialnum[2] & 0x8000) { | 
 | 			*cp++ = '8' + ((w & 0x1C0) >> 6); | 
 | 		} else { | 
 | 			*cp++ = '0' + ((w & 0x1C0) >> 6); | 
 | 		} | 
 |  | 
 | 		/* Week of year - 7th, 8th digits. */ | 
 | 		num = w & 0x003F; | 
 | 		*cp++ = '0' + num / 10; | 
 | 		num %= 10; | 
 | 		*cp++ = '0' + num; | 
 |  | 
 | 		/* | 
 | 		 * Third word | 
 | 		 */ | 
 | 		w = serialnum[2] & 0x7FFF; | 
 |  | 
 | 		/* Serial number - 9th digit. */ | 
 | 		*cp++ = 'A' + (w / 1000); | 
 |  | 
 | 		/* 10th, 11th, 12th digits. */ | 
 | 		num = w % 1000; | 
 | 		*cp++ = '0' + num / 100; | 
 | 		num %= 100; | 
 | 		*cp++ = '0' + num / 10; | 
 | 		num %= 10; | 
 | 		*cp++ = '0' + num; | 
 |  | 
 | 		*cp = '\0';	/* Null Terminate the string. */ | 
 | 		return ASC_TRUE; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * asc_prt_asc_board_eeprom() | 
 |  * | 
 |  * Print board EEPROM configuration. | 
 |  * | 
 |  * Note: no single line should be greater than ASC_PRTLINE_SIZE, | 
 |  * cf. asc_prt_line(). | 
 |  * | 
 |  * Return the number of characters copied into 'cp'. No more than | 
 |  * 'cplen' characters will be copied to 'cp'. | 
 |  */ | 
 | static int asc_prt_asc_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen) | 
 | { | 
 | 	struct asc_board *boardp = shost_priv(shost); | 
 | 	ASC_DVC_VAR *asc_dvc_varp; | 
 | 	int leftlen; | 
 | 	int totlen; | 
 | 	int len; | 
 | 	ASCEEP_CONFIG *ep; | 
 | 	int i; | 
 | #ifdef CONFIG_ISA | 
 | 	int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 }; | 
 | #endif /* CONFIG_ISA */ | 
 | 	uchar serialstr[13]; | 
 |  | 
 | 	asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; | 
 | 	ep = &boardp->eep_config.asc_eep; | 
 |  | 
 | 	leftlen = cplen; | 
 | 	totlen = len = 0; | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, | 
 | 			   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", | 
 | 			   shost->host_no); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr) | 
 | 	    == ASC_TRUE) { | 
 | 		len = | 
 | 		    asc_prt_line(cp, leftlen, " Serial Number: %s\n", | 
 | 				 serialstr); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} else { | 
 | 		if (ep->adapter_info[5] == 0xBB) { | 
 | 			len = asc_prt_line(cp, leftlen, | 
 | 					   " Default Settings Used for EEPROM-less Adapter.\n"); | 
 | 			ASC_PRT_NEXT(); | 
 | 		} else { | 
 | 			len = asc_prt_line(cp, leftlen, | 
 | 					   " Serial Number Signature Not Present.\n"); | 
 | 			ASC_PRT_NEXT(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, | 
 | 			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", | 
 | 			   ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng, | 
 | 			   ep->max_tag_qng); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, | 
 | 			   " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, " Target ID:           "); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ASC_MAX_TID; i++) { | 
 | 		len = asc_prt_line(cp, leftlen, " %d", i); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, " Disconnects:         "); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ASC_MAX_TID; i++) { | 
 | 		len = asc_prt_line(cp, leftlen, " %c", | 
 | 				   (ep-> | 
 | 				    disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : | 
 | 				   'N'); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, " Command Queuing:     "); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ASC_MAX_TID; i++) { | 
 | 		len = asc_prt_line(cp, leftlen, " %c", | 
 | 				   (ep-> | 
 | 				    use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : | 
 | 				   'N'); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, " Start Motor:         "); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ASC_MAX_TID; i++) { | 
 | 		len = asc_prt_line(cp, leftlen, " %c", | 
 | 				   (ep-> | 
 | 				    start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : | 
 | 				   'N'); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, " Synchronous Transfer:"); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ASC_MAX_TID; i++) { | 
 | 		len = asc_prt_line(cp, leftlen, " %c", | 
 | 				   (ep-> | 
 | 				    init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : | 
 | 				   'N'); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | #ifdef CONFIG_ISA | 
 | 	if (asc_dvc_varp->bus_type & ASC_IS_ISA) { | 
 | 		len = asc_prt_line(cp, leftlen, | 
 | 				   " Host ISA DMA speed:   %d MB/S\n", | 
 | 				   isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | #endif /* CONFIG_ISA */ | 
 |  | 
 | 	return totlen; | 
 | } | 
 |  | 
 | /* | 
 |  * asc_prt_adv_board_eeprom() | 
 |  * | 
 |  * Print board EEPROM configuration. | 
 |  * | 
 |  * Note: no single line should be greater than ASC_PRTLINE_SIZE, | 
 |  * cf. asc_prt_line(). | 
 |  * | 
 |  * Return the number of characters copied into 'cp'. No more than | 
 |  * 'cplen' characters will be copied to 'cp'. | 
 |  */ | 
 | static int asc_prt_adv_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen) | 
 | { | 
 | 	struct asc_board *boardp = shost_priv(shost); | 
 | 	ADV_DVC_VAR *adv_dvc_varp; | 
 | 	int leftlen; | 
 | 	int totlen; | 
 | 	int len; | 
 | 	int i; | 
 | 	char *termstr; | 
 | 	uchar serialstr[13]; | 
 | 	ADVEEP_3550_CONFIG *ep_3550 = NULL; | 
 | 	ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL; | 
 | 	ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL; | 
 | 	ushort word; | 
 | 	ushort *wordp; | 
 | 	ushort sdtr_speed = 0; | 
 |  | 
 | 	adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; | 
 | 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { | 
 | 		ep_3550 = &boardp->eep_config.adv_3550_eep; | 
 | 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { | 
 | 		ep_38C0800 = &boardp->eep_config.adv_38C0800_eep; | 
 | 	} else { | 
 | 		ep_38C1600 = &boardp->eep_config.adv_38C1600_eep; | 
 | 	} | 
 |  | 
 | 	leftlen = cplen; | 
 | 	totlen = len = 0; | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, | 
 | 			   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", | 
 | 			   shost->host_no); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { | 
 | 		wordp = &ep_3550->serial_number_word1; | 
 | 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { | 
 | 		wordp = &ep_38C0800->serial_number_word1; | 
 | 	} else { | 
 | 		wordp = &ep_38C1600->serial_number_word1; | 
 | 	} | 
 |  | 
 | 	if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE) { | 
 | 		len = | 
 | 		    asc_prt_line(cp, leftlen, " Serial Number: %s\n", | 
 | 				 serialstr); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} else { | 
 | 		len = asc_prt_line(cp, leftlen, | 
 | 				   " Serial Number Signature Not Present.\n"); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 |  | 
 | 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { | 
 | 		len = asc_prt_line(cp, leftlen, | 
 | 				   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", | 
 | 				   ep_3550->adapter_scsi_id, | 
 | 				   ep_3550->max_host_qng, ep_3550->max_dvc_qng); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { | 
 | 		len = asc_prt_line(cp, leftlen, | 
 | 				   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", | 
 | 				   ep_38C0800->adapter_scsi_id, | 
 | 				   ep_38C0800->max_host_qng, | 
 | 				   ep_38C0800->max_dvc_qng); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} else { | 
 | 		len = asc_prt_line(cp, leftlen, | 
 | 				   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", | 
 | 				   ep_38C1600->adapter_scsi_id, | 
 | 				   ep_38C1600->max_host_qng, | 
 | 				   ep_38C1600->max_dvc_qng); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { | 
 | 		word = ep_3550->termination; | 
 | 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { | 
 | 		word = ep_38C0800->termination_lvd; | 
 | 	} else { | 
 | 		word = ep_38C1600->termination_lvd; | 
 | 	} | 
 | 	switch (word) { | 
 | 	case 1: | 
 | 		termstr = "Low Off/High Off"; | 
 | 		break; | 
 | 	case 2: | 
 | 		termstr = "Low Off/High On"; | 
 | 		break; | 
 | 	case 3: | 
 | 		termstr = "Low On/High On"; | 
 | 		break; | 
 | 	default: | 
 | 	case 0: | 
 | 		termstr = "Automatic"; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { | 
 | 		len = asc_prt_line(cp, leftlen, | 
 | 				   " termination: %u (%s), bios_ctrl: 0x%x\n", | 
 | 				   ep_3550->termination, termstr, | 
 | 				   ep_3550->bios_ctrl); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { | 
 | 		len = asc_prt_line(cp, leftlen, | 
 | 				   " termination: %u (%s), bios_ctrl: 0x%x\n", | 
 | 				   ep_38C0800->termination_lvd, termstr, | 
 | 				   ep_38C0800->bios_ctrl); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} else { | 
 | 		len = asc_prt_line(cp, leftlen, | 
 | 				   " termination: %u (%s), bios_ctrl: 0x%x\n", | 
 | 				   ep_38C1600->termination_lvd, termstr, | 
 | 				   ep_38C1600->bios_ctrl); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, " Target ID:           "); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ADV_MAX_TID; i++) { | 
 | 		len = asc_prt_line(cp, leftlen, " %X", i); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { | 
 | 		word = ep_3550->disc_enable; | 
 | 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { | 
 | 		word = ep_38C0800->disc_enable; | 
 | 	} else { | 
 | 		word = ep_38C1600->disc_enable; | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, " Disconnects:         "); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ADV_MAX_TID; i++) { | 
 | 		len = asc_prt_line(cp, leftlen, " %c", | 
 | 				   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { | 
 | 		word = ep_3550->tagqng_able; | 
 | 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { | 
 | 		word = ep_38C0800->tagqng_able; | 
 | 	} else { | 
 | 		word = ep_38C1600->tagqng_able; | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, " Command Queuing:     "); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ADV_MAX_TID; i++) { | 
 | 		len = asc_prt_line(cp, leftlen, " %c", | 
 | 				   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { | 
 | 		word = ep_3550->start_motor; | 
 | 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { | 
 | 		word = ep_38C0800->start_motor; | 
 | 	} else { | 
 | 		word = ep_38C1600->start_motor; | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, " Start Motor:         "); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ADV_MAX_TID; i++) { | 
 | 		len = asc_prt_line(cp, leftlen, " %c", | 
 | 				   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { | 
 | 		len = asc_prt_line(cp, leftlen, " Synchronous Transfer:"); | 
 | 		ASC_PRT_NEXT(); | 
 | 		for (i = 0; i <= ADV_MAX_TID; i++) { | 
 | 			len = asc_prt_line(cp, leftlen, " %c", | 
 | 					   (ep_3550-> | 
 | 					    sdtr_able & ADV_TID_TO_TIDMASK(i)) ? | 
 | 					   'Y' : 'N'); | 
 | 			ASC_PRT_NEXT(); | 
 | 		} | 
 | 		len = asc_prt_line(cp, leftlen, "\n"); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 |  | 
 | 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { | 
 | 		len = asc_prt_line(cp, leftlen, " Ultra Transfer:      "); | 
 | 		ASC_PRT_NEXT(); | 
 | 		for (i = 0; i <= ADV_MAX_TID; i++) { | 
 | 			len = asc_prt_line(cp, leftlen, " %c", | 
 | 					   (ep_3550-> | 
 | 					    ultra_able & ADV_TID_TO_TIDMASK(i)) | 
 | 					   ? 'Y' : 'N'); | 
 | 			ASC_PRT_NEXT(); | 
 | 		} | 
 | 		len = asc_prt_line(cp, leftlen, "\n"); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 |  | 
 | 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { | 
 | 		word = ep_3550->wdtr_able; | 
 | 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { | 
 | 		word = ep_38C0800->wdtr_able; | 
 | 	} else { | 
 | 		word = ep_38C1600->wdtr_able; | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, " Wide Transfer:       "); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ADV_MAX_TID; i++) { | 
 | 		len = asc_prt_line(cp, leftlen, " %c", | 
 | 				   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 || | 
 | 	    adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) { | 
 | 		len = asc_prt_line(cp, leftlen, | 
 | 				   " Synchronous Transfer Speed (Mhz):\n  "); | 
 | 		ASC_PRT_NEXT(); | 
 | 		for (i = 0; i <= ADV_MAX_TID; i++) { | 
 | 			char *speed_str; | 
 |  | 
 | 			if (i == 0) { | 
 | 				sdtr_speed = adv_dvc_varp->sdtr_speed1; | 
 | 			} else if (i == 4) { | 
 | 				sdtr_speed = adv_dvc_varp->sdtr_speed2; | 
 | 			} else if (i == 8) { | 
 | 				sdtr_speed = adv_dvc_varp->sdtr_speed3; | 
 | 			} else if (i == 12) { | 
 | 				sdtr_speed = adv_dvc_varp->sdtr_speed4; | 
 | 			} | 
 | 			switch (sdtr_speed & ADV_MAX_TID) { | 
 | 			case 0: | 
 | 				speed_str = "Off"; | 
 | 				break; | 
 | 			case 1: | 
 | 				speed_str = "  5"; | 
 | 				break; | 
 | 			case 2: | 
 | 				speed_str = " 10"; | 
 | 				break; | 
 | 			case 3: | 
 | 				speed_str = " 20"; | 
 | 				break; | 
 | 			case 4: | 
 | 				speed_str = " 40"; | 
 | 				break; | 
 | 			case 5: | 
 | 				speed_str = " 80"; | 
 | 				break; | 
 | 			default: | 
 | 				speed_str = "Unk"; | 
 | 				break; | 
 | 			} | 
 | 			len = asc_prt_line(cp, leftlen, "%X:%s ", i, speed_str); | 
 | 			ASC_PRT_NEXT(); | 
 | 			if (i == 7) { | 
 | 				len = asc_prt_line(cp, leftlen, "\n  "); | 
 | 				ASC_PRT_NEXT(); | 
 | 			} | 
 | 			sdtr_speed >>= 4; | 
 | 		} | 
 | 		len = asc_prt_line(cp, leftlen, "\n"); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 |  | 
 | 	return totlen; | 
 | } | 
 |  | 
 | /* | 
 |  * asc_prt_driver_conf() | 
 |  * | 
 |  * Note: no single line should be greater than ASC_PRTLINE_SIZE, | 
 |  * cf. asc_prt_line(). | 
 |  * | 
 |  * Return the number of characters copied into 'cp'. No more than | 
 |  * 'cplen' characters will be copied to 'cp'. | 
 |  */ | 
 | static int asc_prt_driver_conf(struct Scsi_Host *shost, char *cp, int cplen) | 
 | { | 
 | 	struct asc_board *boardp = shost_priv(shost); | 
 | 	int leftlen; | 
 | 	int totlen; | 
 | 	int len; | 
 | 	int chip_scsi_id; | 
 |  | 
 | 	leftlen = cplen; | 
 | 	totlen = len = 0; | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, | 
 | 			   "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n", | 
 | 			   shost->host_no); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, | 
 | 			   " host_busy %u, last_reset %u, max_id %u, max_lun %u, max_channel %u\n", | 
 | 			   shost->host_busy, shost->last_reset, shost->max_id, | 
 | 			   shost->max_lun, shost->max_channel); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, | 
 | 			   " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n", | 
 | 			   shost->unique_id, shost->can_queue, shost->this_id, | 
 | 			   shost->sg_tablesize, shost->cmd_per_lun); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, | 
 | 			   " unchecked_isa_dma %d, use_clustering %d\n", | 
 | 			   shost->unchecked_isa_dma, shost->use_clustering); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, | 
 | 			   " flags 0x%x, last_reset 0x%x, jiffies 0x%x, asc_n_io_port 0x%x\n", | 
 | 			   boardp->flags, boardp->last_reset, jiffies, | 
 | 			   boardp->asc_n_io_port); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, " io_port 0x%x\n", shost->io_port); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	if (ASC_NARROW_BOARD(boardp)) { | 
 | 		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; | 
 | 	} else { | 
 | 		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; | 
 | 	} | 
 |  | 
 | 	return totlen; | 
 | } | 
 |  | 
 | /* | 
 |  * asc_prt_asc_board_info() | 
 |  * | 
 |  * Print dynamic board configuration information. | 
 |  * | 
 |  * Note: no single line should be greater than ASC_PRTLINE_SIZE, | 
 |  * cf. asc_prt_line(). | 
 |  * | 
 |  * Return the number of characters copied into 'cp'. No more than | 
 |  * 'cplen' characters will be copied to 'cp'. | 
 |  */ | 
 | static int asc_prt_asc_board_info(struct Scsi_Host *shost, char *cp, int cplen) | 
 | { | 
 | 	struct asc_board *boardp = shost_priv(shost); | 
 | 	int chip_scsi_id; | 
 | 	int leftlen; | 
 | 	int totlen; | 
 | 	int len; | 
 | 	ASC_DVC_VAR *v; | 
 | 	ASC_DVC_CFG *c; | 
 | 	int i; | 
 | 	int renegotiate = 0; | 
 |  | 
 | 	v = &boardp->dvc_var.asc_dvc_var; | 
 | 	c = &boardp->dvc_cfg.asc_dvc_cfg; | 
 | 	chip_scsi_id = c->chip_scsi_id; | 
 |  | 
 | 	leftlen = cplen; | 
 | 	totlen = len = 0; | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, | 
 | 			   "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", | 
 | 			   shost->host_no); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, " | 
 | 			   "mcode_version 0x%x, err_code %u\n", | 
 | 			   c->chip_version, c->mcode_date, c->mcode_version, | 
 | 			   v->err_code); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	/* Current number of commands waiting for the host. */ | 
 | 	len = asc_prt_line(cp, leftlen, | 
 | 			   " Total Command Pending: %d\n", v->cur_total_qng); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, " Command Queuing:"); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ASC_MAX_TID; i++) { | 
 | 		if ((chip_scsi_id == i) || | 
 | 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { | 
 | 			continue; | 
 | 		} | 
 | 		len = asc_prt_line(cp, leftlen, " %X:%c", | 
 | 				   i, | 
 | 				   (v-> | 
 | 				    use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? | 
 | 				   'Y' : 'N'); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	/* Current number of commands waiting for a device. */ | 
 | 	len = asc_prt_line(cp, leftlen, " Command Queue Pending:"); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ASC_MAX_TID; i++) { | 
 | 		if ((chip_scsi_id == i) || | 
 | 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { | 
 | 			continue; | 
 | 		} | 
 | 		len = asc_prt_line(cp, leftlen, " %X:%u", i, v->cur_dvc_qng[i]); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	/* Current limit on number of commands that can be sent to a device. */ | 
 | 	len = asc_prt_line(cp, leftlen, " Command Queue Limit:"); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ASC_MAX_TID; i++) { | 
 | 		if ((chip_scsi_id == i) || | 
 | 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { | 
 | 			continue; | 
 | 		} | 
 | 		len = asc_prt_line(cp, leftlen, " %X:%u", i, v->max_dvc_qng[i]); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	/* Indicate whether the device has returned queue full status. */ | 
 | 	len = asc_prt_line(cp, leftlen, " Command Queue Full:"); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ASC_MAX_TID; i++) { | 
 | 		if ((chip_scsi_id == i) || | 
 | 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { | 
 | 			continue; | 
 | 		} | 
 | 		if (boardp->queue_full & ADV_TID_TO_TIDMASK(i)) { | 
 | 			len = asc_prt_line(cp, leftlen, " %X:Y-%d", | 
 | 					   i, boardp->queue_full_cnt[i]); | 
 | 		} else { | 
 | 			len = asc_prt_line(cp, leftlen, " %X:N", i); | 
 | 		} | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, " Synchronous Transfer:"); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ASC_MAX_TID; i++) { | 
 | 		if ((chip_scsi_id == i) || | 
 | 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { | 
 | 			continue; | 
 | 		} | 
 | 		len = asc_prt_line(cp, leftlen, " %X:%c", | 
 | 				   i, | 
 | 				   (v-> | 
 | 				    sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : | 
 | 				   'N'); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	for (i = 0; i <= ASC_MAX_TID; i++) { | 
 | 		uchar syn_period_ix; | 
 |  | 
 | 		if ((chip_scsi_id == i) || | 
 | 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) || | 
 | 		    ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) { | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		len = asc_prt_line(cp, leftlen, "  %X:", i); | 
 | 		ASC_PRT_NEXT(); | 
 |  | 
 | 		if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) { | 
 | 			len = asc_prt_line(cp, leftlen, " Asynchronous"); | 
 | 			ASC_PRT_NEXT(); | 
 | 		} else { | 
 | 			syn_period_ix = | 
 | 			    (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index - | 
 | 							   1); | 
 |  | 
 | 			len = asc_prt_line(cp, leftlen, | 
 | 					   " Transfer Period Factor: %d (%d.%d Mhz),", | 
 | 					   v->sdtr_period_tbl[syn_period_ix], | 
 | 					   250 / | 
 | 					   v->sdtr_period_tbl[syn_period_ix], | 
 | 					   ASC_TENTHS(250, | 
 | 						      v-> | 
 | 						      sdtr_period_tbl | 
 | 						      [syn_period_ix])); | 
 | 			ASC_PRT_NEXT(); | 
 |  | 
 | 			len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d", | 
 | 					   boardp-> | 
 | 					   sdtr_data[i] & ASC_SYN_MAX_OFFSET); | 
 | 			ASC_PRT_NEXT(); | 
 | 		} | 
 |  | 
 | 		if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { | 
 | 			len = asc_prt_line(cp, leftlen, "*\n"); | 
 | 			renegotiate = 1; | 
 | 		} else { | 
 | 			len = asc_prt_line(cp, leftlen, "\n"); | 
 | 		} | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 |  | 
 | 	if (renegotiate) { | 
 | 		len = asc_prt_line(cp, leftlen, | 
 | 				   " * = Re-negotiation pending before next command.\n"); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 |  | 
 | 	return totlen; | 
 | } | 
 |  | 
 | /* | 
 |  * asc_prt_adv_board_info() | 
 |  * | 
 |  * Print dynamic board configuration information. | 
 |  * | 
 |  * Note: no single line should be greater than ASC_PRTLINE_SIZE, | 
 |  * cf. asc_prt_line(). | 
 |  * | 
 |  * Return the number of characters copied into 'cp'. No more than | 
 |  * 'cplen' characters will be copied to 'cp'. | 
 |  */ | 
 | static int asc_prt_adv_board_info(struct Scsi_Host *shost, char *cp, int cplen) | 
 | { | 
 | 	struct asc_board *boardp = shost_priv(shost); | 
 | 	int leftlen; | 
 | 	int totlen; | 
 | 	int len; | 
 | 	int i; | 
 | 	ADV_DVC_VAR *v; | 
 | 	ADV_DVC_CFG *c; | 
 | 	AdvPortAddr iop_base; | 
 | 	ushort chip_scsi_id; | 
 | 	ushort lramword; | 
 | 	uchar lrambyte; | 
 | 	ushort tagqng_able; | 
 | 	ushort sdtr_able, wdtr_able; | 
 | 	ushort wdtr_done, sdtr_done; | 
 | 	ushort period = 0; | 
 | 	int renegotiate = 0; | 
 |  | 
 | 	v = &boardp->dvc_var.adv_dvc_var; | 
 | 	c = &boardp->dvc_cfg.adv_dvc_cfg; | 
 | 	iop_base = v->iop_base; | 
 | 	chip_scsi_id = v->chip_scsi_id; | 
 |  | 
 | 	leftlen = cplen; | 
 | 	totlen = len = 0; | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, | 
 | 			   "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", | 
 | 			   shost->host_no); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, | 
 | 			   " iop_base 0x%lx, cable_detect: %X, err_code %u\n", | 
 | 			   v->iop_base, | 
 | 			   AdvReadWordRegister(iop_base, | 
 | 					       IOPW_SCSI_CFG1) & CABLE_DETECT, | 
 | 			   v->err_code); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, " | 
 | 			   "mcode_version 0x%x\n", c->chip_version, | 
 | 			   c->mcode_date, c->mcode_version); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); | 
 | 	len = asc_prt_line(cp, leftlen, " Queuing Enabled:"); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ADV_MAX_TID; i++) { | 
 | 		if ((chip_scsi_id == i) || | 
 | 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		len = asc_prt_line(cp, leftlen, " %X:%c", | 
 | 				   i, | 
 | 				   (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : | 
 | 				   'N'); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, " Queue Limit:"); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ADV_MAX_TID; i++) { | 
 | 		if ((chip_scsi_id == i) || | 
 | 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i, | 
 | 				lrambyte); | 
 |  | 
 | 		len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, " Command Pending:"); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ADV_MAX_TID; i++) { | 
 | 		if ((chip_scsi_id == i) || | 
 | 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i, | 
 | 				lrambyte); | 
 |  | 
 | 		len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); | 
 | 	len = asc_prt_line(cp, leftlen, " Wide Enabled:"); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ADV_MAX_TID; i++) { | 
 | 		if ((chip_scsi_id == i) || | 
 | 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		len = asc_prt_line(cp, leftlen, " %X:%c", | 
 | 				   i, | 
 | 				   (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : | 
 | 				   'N'); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done); | 
 | 	len = asc_prt_line(cp, leftlen, " Transfer Bit Width:"); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ADV_MAX_TID; i++) { | 
 | 		if ((chip_scsi_id == i) || | 
 | 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		AdvReadWordLram(iop_base, | 
 | 				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), | 
 | 				lramword); | 
 |  | 
 | 		len = asc_prt_line(cp, leftlen, " %X:%d", | 
 | 				   i, (lramword & 0x8000) ? 16 : 8); | 
 | 		ASC_PRT_NEXT(); | 
 |  | 
 | 		if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) && | 
 | 		    (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { | 
 | 			len = asc_prt_line(cp, leftlen, "*"); | 
 | 			ASC_PRT_NEXT(); | 
 | 			renegotiate = 1; | 
 | 		} | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); | 
 | 	len = asc_prt_line(cp, leftlen, " Synchronous Enabled:"); | 
 | 	ASC_PRT_NEXT(); | 
 | 	for (i = 0; i <= ADV_MAX_TID; i++) { | 
 | 		if ((chip_scsi_id == i) || | 
 | 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		len = asc_prt_line(cp, leftlen, " %X:%c", | 
 | 				   i, | 
 | 				   (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : | 
 | 				   'N'); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 | 	len = asc_prt_line(cp, leftlen, "\n"); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done); | 
 | 	for (i = 0; i <= ADV_MAX_TID; i++) { | 
 |  | 
 | 		AdvReadWordLram(iop_base, | 
 | 				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), | 
 | 				lramword); | 
 | 		lramword &= ~0x8000; | 
 |  | 
 | 		if ((chip_scsi_id == i) || | 
 | 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) || | 
 | 		    ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) { | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		len = asc_prt_line(cp, leftlen, "  %X:", i); | 
 | 		ASC_PRT_NEXT(); | 
 |  | 
 | 		if ((lramword & 0x1F) == 0) {	/* Check for REQ/ACK Offset 0. */ | 
 | 			len = asc_prt_line(cp, leftlen, " Asynchronous"); | 
 | 			ASC_PRT_NEXT(); | 
 | 		} else { | 
 | 			len = | 
 | 			    asc_prt_line(cp, leftlen, | 
 | 					 " Transfer Period Factor: "); | 
 | 			ASC_PRT_NEXT(); | 
 |  | 
 | 			if ((lramword & 0x1F00) == 0x1100) {	/* 80 Mhz */ | 
 | 				len = | 
 | 				    asc_prt_line(cp, leftlen, "9 (80.0 Mhz),"); | 
 | 				ASC_PRT_NEXT(); | 
 | 			} else if ((lramword & 0x1F00) == 0x1000) {	/* 40 Mhz */ | 
 | 				len = | 
 | 				    asc_prt_line(cp, leftlen, "10 (40.0 Mhz),"); | 
 | 				ASC_PRT_NEXT(); | 
 | 			} else {	/* 20 Mhz or below. */ | 
 |  | 
 | 				period = (((lramword >> 8) * 25) + 50) / 4; | 
 |  | 
 | 				if (period == 0) {	/* Should never happen. */ | 
 | 					len = | 
 | 					    asc_prt_line(cp, leftlen, | 
 | 							 "%d (? Mhz), "); | 
 | 					ASC_PRT_NEXT(); | 
 | 				} else { | 
 | 					len = asc_prt_line(cp, leftlen, | 
 | 							   "%d (%d.%d Mhz),", | 
 | 							   period, 250 / period, | 
 | 							   ASC_TENTHS(250, | 
 | 								      period)); | 
 | 					ASC_PRT_NEXT(); | 
 | 				} | 
 | 			} | 
 |  | 
 | 			len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d", | 
 | 					   lramword & 0x1F); | 
 | 			ASC_PRT_NEXT(); | 
 | 		} | 
 |  | 
 | 		if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { | 
 | 			len = asc_prt_line(cp, leftlen, "*\n"); | 
 | 			renegotiate = 1; | 
 | 		} else { | 
 | 			len = asc_prt_line(cp, leftlen, "\n"); | 
 | 		} | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 |  | 
 | 	if (renegotiate) { | 
 | 		len = asc_prt_line(cp, leftlen, | 
 | 				   " * = Re-negotiation pending before next command.\n"); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 |  | 
 | 	return totlen; | 
 | } | 
 |  | 
 | /* | 
 |  * asc_proc_copy() | 
 |  * | 
 |  * Copy proc information to a read buffer taking into account the current | 
 |  * read offset in the file and the remaining space in the read buffer. | 
 |  */ | 
 | static int | 
 | asc_proc_copy(off_t advoffset, off_t offset, char *curbuf, int leftlen, | 
 | 	      char *cp, int cplen) | 
 | { | 
 | 	int cnt = 0; | 
 |  | 
 | 	ASC_DBG(2, "offset %d, advoffset %d, cplen %d\n", | 
 | 		 (unsigned)offset, (unsigned)advoffset, cplen); | 
 | 	if (offset <= advoffset) { | 
 | 		/* Read offset below current offset, copy everything. */ | 
 | 		cnt = min(cplen, leftlen); | 
 | 		ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n", | 
 | 			 (ulong)curbuf, (ulong)cp, cnt); | 
 | 		memcpy(curbuf, cp, cnt); | 
 | 	} else if (offset < advoffset + cplen) { | 
 | 		/* Read offset within current range, partial copy. */ | 
 | 		cnt = (advoffset + cplen) - offset; | 
 | 		cp = (cp + cplen) - cnt; | 
 | 		cnt = min(cnt, leftlen); | 
 | 		ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n", | 
 | 			 (ulong)curbuf, (ulong)cp, cnt); | 
 | 		memcpy(curbuf, cp, cnt); | 
 | 	} | 
 | 	return cnt; | 
 | } | 
 |  | 
 | #ifdef ADVANSYS_STATS | 
 | /* | 
 |  * asc_prt_board_stats() | 
 |  * | 
 |  * Note: no single line should be greater than ASC_PRTLINE_SIZE, | 
 |  * cf. asc_prt_line(). | 
 |  * | 
 |  * Return the number of characters copied into 'cp'. No more than | 
 |  * 'cplen' characters will be copied to 'cp'. | 
 |  */ | 
 | static int asc_prt_board_stats(struct Scsi_Host *shost, char *cp, int cplen) | 
 | { | 
 | 	struct asc_board *boardp = shost_priv(shost); | 
 | 	struct asc_stats *s = &boardp->asc_stats; | 
 |  | 
 | 	int leftlen = cplen; | 
 | 	int len, totlen = 0; | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, | 
 | 			   "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n", | 
 | 			   shost->host_no); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, | 
 | 			   " queuecommand %lu, reset %lu, biosparam %lu, interrupt %lu\n", | 
 | 			   s->queuecommand, s->reset, s->biosparam, | 
 | 			   s->interrupt); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, | 
 | 			   " callback %lu, done %lu, build_error %lu, build_noreq %lu, build_nosg %lu\n", | 
 | 			   s->callback, s->done, s->build_error, | 
 | 			   s->adv_build_noreq, s->adv_build_nosg); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	len = asc_prt_line(cp, leftlen, | 
 | 			   " exe_noerror %lu, exe_busy %lu, exe_error %lu, exe_unknown %lu\n", | 
 | 			   s->exe_noerror, s->exe_busy, s->exe_error, | 
 | 			   s->exe_unknown); | 
 | 	ASC_PRT_NEXT(); | 
 |  | 
 | 	/* | 
 | 	 * Display data transfer statistics. | 
 | 	 */ | 
 | 	if (s->xfer_cnt > 0) { | 
 | 		len = asc_prt_line(cp, leftlen, " xfer_cnt %lu, xfer_elem %lu, ", | 
 | 				   s->xfer_cnt, s->xfer_elem); | 
 | 		ASC_PRT_NEXT(); | 
 |  | 
 | 		len = asc_prt_line(cp, leftlen, "xfer_bytes %lu.%01lu kb\n", | 
 | 				   s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2)); | 
 | 		ASC_PRT_NEXT(); | 
 |  | 
 | 		/* Scatter gather transfer statistics */ | 
 | 		len = asc_prt_line(cp, leftlen, " avg_num_elem %lu.%01lu, ", | 
 | 				   s->xfer_elem / s->xfer_cnt, | 
 | 				   ASC_TENTHS(s->xfer_elem, s->xfer_cnt)); | 
 | 		ASC_PRT_NEXT(); | 
 |  | 
 | 		len = asc_prt_line(cp, leftlen, "avg_elem_size %lu.%01lu kb, ", | 
 | 				   (s->xfer_sect / 2) / s->xfer_elem, | 
 | 				   ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem)); | 
 | 		ASC_PRT_NEXT(); | 
 |  | 
 | 		len = asc_prt_line(cp, leftlen, "avg_xfer_size %lu.%01lu kb\n", | 
 | 				   (s->xfer_sect / 2) / s->xfer_cnt, | 
 | 				   ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt)); | 
 | 		ASC_PRT_NEXT(); | 
 | 	} | 
 |  | 
 | 	return totlen; | 
 | } | 
 | #endif /* ADVANSYS_STATS */ | 
 |  | 
 | /* | 
 |  * advansys_proc_info() - /proc/scsi/advansys/{0,1,2,3,...} | 
 |  * | 
 |  * *buffer: I/O buffer | 
 |  * **start: if inout == FALSE pointer into buffer where user read should start | 
 |  * offset: current offset into a /proc/scsi/advansys/[0...] file | 
 |  * length: length of buffer | 
 |  * hostno: Scsi_Host host_no | 
 |  * inout: TRUE - user is writing; FALSE - user is reading | 
 |  * | 
 |  * Return the number of bytes read from or written to a | 
 |  * /proc/scsi/advansys/[0...] file. | 
 |  * | 
 |  * Note: This function uses the per board buffer 'prtbuf' which is | 
 |  * allocated when the board is initialized in advansys_detect(). The | 
 |  * buffer is ASC_PRTBUF_SIZE bytes. The function asc_proc_copy() is | 
 |  * used to write to the buffer. The way asc_proc_copy() is written | 
 |  * if 'prtbuf' is too small it will not be overwritten. Instead the | 
 |  * user just won't get all the available statistics. | 
 |  */ | 
 | static int | 
 | advansys_proc_info(struct Scsi_Host *shost, char *buffer, char **start, | 
 | 		   off_t offset, int length, int inout) | 
 | { | 
 | 	struct asc_board *boardp = shost_priv(shost); | 
 | 	char *cp; | 
 | 	int cplen; | 
 | 	int cnt; | 
 | 	int totcnt; | 
 | 	int leftlen; | 
 | 	char *curbuf; | 
 | 	off_t advoffset; | 
 |  | 
 | 	ASC_DBG(1, "begin\n"); | 
 |  | 
 | 	/* | 
 | 	 * User write not supported. | 
 | 	 */ | 
 | 	if (inout == TRUE) | 
 | 		return -ENOSYS; | 
 |  | 
 | 	/* | 
 | 	 * User read of /proc/scsi/advansys/[0...] file. | 
 | 	 */ | 
 |  | 
 | 	/* Copy read data starting at the beginning of the buffer. */ | 
 | 	*start = buffer; | 
 | 	curbuf = buffer; | 
 | 	advoffset = 0; | 
 | 	totcnt = 0; | 
 | 	leftlen = length; | 
 |  | 
 | 	/* | 
 | 	 * Get board configuration information. | 
 | 	 * | 
 | 	 * advansys_info() returns the board string from its own static buffer. | 
 | 	 */ | 
 | 	cp = (char *)advansys_info(shost); | 
 | 	strcat(cp, "\n"); | 
 | 	cplen = strlen(cp); | 
 | 	/* Copy board information. */ | 
 | 	cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen); | 
 | 	totcnt += cnt; | 
 | 	leftlen -= cnt; | 
 | 	if (leftlen == 0) { | 
 | 		ASC_DBG(1, "totcnt %d\n", totcnt); | 
 | 		return totcnt; | 
 | 	} | 
 | 	advoffset += cplen; | 
 | 	curbuf += cnt; | 
 |  | 
 | 	/* | 
 | 	 * Display Wide Board BIOS Information. | 
 | 	 */ | 
 | 	if (!ASC_NARROW_BOARD(boardp)) { | 
 | 		cp = boardp->prtbuf; | 
 | 		cplen = asc_prt_adv_bios(shost, cp, ASC_PRTBUF_SIZE); | 
 | 		BUG_ON(cplen >= ASC_PRTBUF_SIZE); | 
 | 		cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, | 
 | 				  cplen); | 
 | 		totcnt += cnt; | 
 | 		leftlen -= cnt; | 
 | 		if (leftlen == 0) { | 
 | 			ASC_DBG(1, "totcnt %d\n", totcnt); | 
 | 			return totcnt; | 
 | 		} | 
 | 		advoffset += cplen; | 
 | 		curbuf += cnt; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Display driver information for each device attached to the board. | 
 | 	 */ | 
 | 	cp = boardp->prtbuf; | 
 | 	cplen = asc_prt_board_devices(shost, cp, ASC_PRTBUF_SIZE); | 
 | 	BUG_ON(cplen >= ASC_PRTBUF_SIZE); | 
 | 	cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen); | 
 | 	totcnt += cnt; | 
 | 	leftlen -= cnt; | 
 | 	if (leftlen == 0) { | 
 | 		ASC_DBG(1, "totcnt %d\n", totcnt); | 
 | 		return totcnt; | 
 | 	} | 
 | 	advoffset += cplen; | 
 | 	curbuf += cnt; | 
 |  | 
 | 	/* | 
 | 	 * Display EEPROM configuration for the board. | 
 | 	 */ | 
 | 	cp = boardp->prtbuf; | 
 | 	if (ASC_NARROW_BOARD(boardp)) { | 
 | 		cplen = asc_prt_asc_board_eeprom(shost, cp, ASC_PRTBUF_SIZE); | 
 | 	} else { | 
 | 		cplen = asc_prt_adv_board_eeprom(shost, cp, ASC_PRTBUF_SIZE); | 
 | 	} | 
 | 	BUG_ON(cplen >= ASC_PRTBUF_SIZE); | 
 | 	cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen); | 
 | 	totcnt += cnt; | 
 | 	leftlen -= cnt; | 
 | 	if (leftlen == 0) { | 
 | 		ASC_DBG(1, "totcnt %d\n", totcnt); | 
 | 		return totcnt; | 
 | 	} | 
 | 	advoffset += cplen; | 
 | 	curbuf += cnt; | 
 |  | 
 | 	/* | 
 | 	 * Display driver configuration and information for the board. | 
 | 	 */ | 
 | 	cp = boardp->prtbuf; | 
 | 	cplen = asc_prt_driver_conf(shost, cp, ASC_PRTBUF_SIZE); | 
 | 	BUG_ON(cplen >= ASC_PRTBUF_SIZE); | 
 | 	cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen); | 
 | 	totcnt += cnt; | 
 | 	leftlen -= cnt; | 
 | 	if (leftlen == 0) { | 
 | 		ASC_DBG(1, "totcnt %d\n", totcnt); | 
 | 		return totcnt; | 
 | 	} | 
 | 	advoffset += cplen; | 
 | 	curbuf += cnt; | 
 |  | 
 | #ifdef ADVANSYS_STATS | 
 | 	/* | 
 | 	 * Display driver statistics for the board. | 
 | 	 */ | 
 | 	cp = boardp->prtbuf; | 
 | 	cplen = asc_prt_board_stats(shost, cp, ASC_PRTBUF_SIZE); | 
 | 	BUG_ON(cplen >= ASC_PRTBUF_SIZE); | 
 | 	cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen); | 
 | 	totcnt += cnt; | 
 | 	leftlen -= cnt; | 
 | 	if (leftlen == 0) { | 
 | 		ASC_DBG(1, "totcnt %d\n", totcnt); | 
 | 		return totcnt; | 
 | 	} | 
 | 	advoffset += cplen; | 
 | 	curbuf += cnt; | 
 | #endif /* ADVANSYS_STATS */ | 
 |  | 
 | 	/* | 
 | 	 * Display Asc Library dynamic configuration information | 
 | 	 * for the board. | 
 | 	 */ | 
 | 	cp = boardp->prtbuf; | 
 | 	if (ASC_NARROW_BOARD(boardp)) { | 
 | 		cplen = asc_prt_asc_board_info(shost, cp, ASC_PRTBUF_SIZE); | 
 | 	} else { | 
 | 		cplen = asc_prt_adv_board_info(shost, cp, ASC_PRTBUF_SIZE); | 
 | 	} | 
 | 	BUG_ON(cplen >= ASC_PRTBUF_SIZE); | 
 | 	cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen); | 
 | 	totcnt += cnt; | 
 | 	leftlen -= cnt; | 
 | 	if (leftlen == 0) { | 
 | 		ASC_DBG(1, "totcnt %d\n", totcnt); | 
 | 		return totcnt; | 
 | 	} | 
 | 	advoffset += cplen; | 
 | 	curbuf += cnt; | 
 |  | 
 | 	ASC_DBG(1, "totcnt %d\n", totcnt); | 
 |  | 
 | 	return totcnt; | 
 | } | 
 | #endif /* CONFIG_PROC_FS */ | 
 |  | 
 | static void asc_scsi_done(struct scsi_cmnd *scp) | 
 | { | 
 | 	scsi_dma_unmap(scp); | 
 | 	ASC_STATS(scp->device->host, done); | 
 | 	scp->scsi_done(scp); | 
 | } | 
 |  | 
 | static void AscSetBank(PortAddr iop_base, uchar bank) | 
 | { | 
 | 	uchar val; | 
 |  | 
 | 	val = AscGetChipControl(iop_base) & | 
 | 	    (~ | 
 | 	     (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET | | 
 | 	      CC_CHIP_RESET)); | 
 | 	if (bank == 1) { | 
 | 		val |= CC_BANK_ONE; | 
 | 	} else if (bank == 2) { | 
 | 		val |= CC_DIAG | CC_BANK_ONE; | 
 | 	} else { | 
 | 		val &= ~CC_BANK_ONE; | 
 | 	} | 
 | 	AscSetChipControl(iop_base, val); | 
 | } | 
 |  | 
 | static void AscSetChipIH(PortAddr iop_base, ushort ins_code) | 
 | { | 
 | 	AscSetBank(iop_base, 1); | 
 | 	AscWriteChipIH(iop_base, ins_code); | 
 | 	AscSetBank(iop_base, 0); | 
 | } | 
 |  | 
 | static int AscStartChip(PortAddr iop_base) | 
 | { | 
 | 	AscSetChipControl(iop_base, 0); | 
 | 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { | 
 | 		return (0); | 
 | 	} | 
 | 	return (1); | 
 | } | 
 |  | 
 | static int AscStopChip(PortAddr iop_base) | 
 | { | 
 | 	uchar cc_val; | 
 |  | 
 | 	cc_val = | 
 | 	    AscGetChipControl(iop_base) & | 
 | 	    (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG)); | 
 | 	AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT)); | 
 | 	AscSetChipIH(iop_base, INS_HALT); | 
 | 	AscSetChipIH(iop_base, INS_RFLAG_WTM); | 
 | 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) { | 
 | 		return (0); | 
 | 	} | 
 | 	return (1); | 
 | } | 
 |  | 
 | static int AscIsChipHalted(PortAddr iop_base) | 
 | { | 
 | 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { | 
 | 		if ((AscGetChipControl(iop_base) & CC_HALT) != 0) { | 
 | 			return (1); | 
 | 		} | 
 | 	} | 
 | 	return (0); | 
 | } | 
 |  | 
 | static int AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc) | 
 | { | 
 | 	PortAddr iop_base; | 
 | 	int i = 10; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 | 	while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE) | 
 | 	       && (i-- > 0)) { | 
 | 		mdelay(100); | 
 | 	} | 
 | 	AscStopChip(iop_base); | 
 | 	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT); | 
 | 	udelay(60); | 
 | 	AscSetChipIH(iop_base, INS_RFLAG_WTM); | 
 | 	AscSetChipIH(iop_base, INS_HALT); | 
 | 	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT); | 
 | 	AscSetChipControl(iop_base, CC_HALT); | 
 | 	mdelay(200); | 
 | 	AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); | 
 | 	AscSetChipStatus(iop_base, 0); | 
 | 	return (AscIsChipHalted(iop_base)); | 
 | } | 
 |  | 
 | static int AscFindSignature(PortAddr iop_base) | 
 | { | 
 | 	ushort sig_word; | 
 |  | 
 | 	ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n", | 
 | 		 iop_base, AscGetChipSignatureByte(iop_base)); | 
 | 	if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) { | 
 | 		ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n", | 
 | 			 iop_base, AscGetChipSignatureWord(iop_base)); | 
 | 		sig_word = AscGetChipSignatureWord(iop_base); | 
 | 		if ((sig_word == (ushort)ASC_1000_ID0W) || | 
 | 		    (sig_word == (ushort)ASC_1000_ID0W_FIX)) { | 
 | 			return (1); | 
 | 		} | 
 | 	} | 
 | 	return (0); | 
 | } | 
 |  | 
 | static void AscEnableInterrupt(PortAddr iop_base) | 
 | { | 
 | 	ushort cfg; | 
 |  | 
 | 	cfg = AscGetChipCfgLsw(iop_base); | 
 | 	AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON); | 
 | } | 
 |  | 
 | static void AscDisableInterrupt(PortAddr iop_base) | 
 | { | 
 | 	ushort cfg; | 
 |  | 
 | 	cfg = AscGetChipCfgLsw(iop_base); | 
 | 	AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON)); | 
 | } | 
 |  | 
 | static uchar AscReadLramByte(PortAddr iop_base, ushort addr) | 
 | { | 
 | 	unsigned char byte_data; | 
 | 	unsigned short word_data; | 
 |  | 
 | 	if (isodd_word(addr)) { | 
 | 		AscSetChipLramAddr(iop_base, addr - 1); | 
 | 		word_data = AscGetChipLramData(iop_base); | 
 | 		byte_data = (word_data >> 8) & 0xFF; | 
 | 	} else { | 
 | 		AscSetChipLramAddr(iop_base, addr); | 
 | 		word_data = AscGetChipLramData(iop_base); | 
 | 		byte_data = word_data & 0xFF; | 
 | 	} | 
 | 	return byte_data; | 
 | } | 
 |  | 
 | static ushort AscReadLramWord(PortAddr iop_base, ushort addr) | 
 | { | 
 | 	ushort word_data; | 
 |  | 
 | 	AscSetChipLramAddr(iop_base, addr); | 
 | 	word_data = AscGetChipLramData(iop_base); | 
 | 	return (word_data); | 
 | } | 
 |  | 
 | #if CC_VERY_LONG_SG_LIST | 
 | static ASC_DCNT AscReadLramDWord(PortAddr iop_base, ushort addr) | 
 | { | 
 | 	ushort val_low, val_high; | 
 | 	ASC_DCNT dword_data; | 
 |  | 
 | 	AscSetChipLramAddr(iop_base, addr); | 
 | 	val_low = AscGetChipLramData(iop_base); | 
 | 	val_high = AscGetChipLramData(iop_base); | 
 | 	dword_data = ((ASC_DCNT) val_high << 16) | (ASC_DCNT) val_low; | 
 | 	return (dword_data); | 
 | } | 
 | #endif /* CC_VERY_LONG_SG_LIST */ | 
 |  | 
 | static void | 
 | AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	AscSetChipLramAddr(iop_base, s_addr); | 
 | 	for (i = 0; i < words; i++) { | 
 | 		AscSetChipLramData(iop_base, set_wval); | 
 | 	} | 
 | } | 
 |  | 
 | static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val) | 
 | { | 
 | 	AscSetChipLramAddr(iop_base, addr); | 
 | 	AscSetChipLramData(iop_base, word_val); | 
 | } | 
 |  | 
 | static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val) | 
 | { | 
 | 	ushort word_data; | 
 |  | 
 | 	if (isodd_word(addr)) { | 
 | 		addr--; | 
 | 		word_data = AscReadLramWord(iop_base, addr); | 
 | 		word_data &= 0x00FF; | 
 | 		word_data |= (((ushort)byte_val << 8) & 0xFF00); | 
 | 	} else { | 
 | 		word_data = AscReadLramWord(iop_base, addr); | 
 | 		word_data &= 0xFF00; | 
 | 		word_data |= ((ushort)byte_val & 0x00FF); | 
 | 	} | 
 | 	AscWriteLramWord(iop_base, addr, word_data); | 
 | } | 
 |  | 
 | /* | 
 |  * Copy 2 bytes to LRAM. | 
 |  * | 
 |  * The source data is assumed to be in little-endian order in memory | 
 |  * and is maintained in little-endian order when written to LRAM. | 
 |  */ | 
 | static void | 
 | AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr, | 
 | 			const uchar *s_buffer, int words) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	AscSetChipLramAddr(iop_base, s_addr); | 
 | 	for (i = 0; i < 2 * words; i += 2) { | 
 | 		/* | 
 | 		 * On a little-endian system the second argument below | 
 | 		 * produces a little-endian ushort which is written to | 
 | 		 * LRAM in little-endian order. On a big-endian system | 
 | 		 * the second argument produces a big-endian ushort which | 
 | 		 * is "transparently" byte-swapped by outpw() and written | 
 | 		 * in little-endian order to LRAM. | 
 | 		 */ | 
 | 		outpw(iop_base + IOP_RAM_DATA, | 
 | 		      ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Copy 4 bytes to LRAM. | 
 |  * | 
 |  * The source data is assumed to be in little-endian order in memory | 
 |  * and is maintained in little-endian order when writen to LRAM. | 
 |  */ | 
 | static void | 
 | AscMemDWordCopyPtrToLram(PortAddr iop_base, | 
 | 			 ushort s_addr, uchar *s_buffer, int dwords) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	AscSetChipLramAddr(iop_base, s_addr); | 
 | 	for (i = 0; i < 4 * dwords; i += 4) { | 
 | 		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);	/* LSW */ | 
 | 		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);	/* MSW */ | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Copy 2 bytes from LRAM. | 
 |  * | 
 |  * The source data is assumed to be in little-endian order in LRAM | 
 |  * and is maintained in little-endian order when written to memory. | 
 |  */ | 
 | static void | 
 | AscMemWordCopyPtrFromLram(PortAddr iop_base, | 
 | 			  ushort s_addr, uchar *d_buffer, int words) | 
 | { | 
 | 	int i; | 
 | 	ushort word; | 
 |  | 
 | 	AscSetChipLramAddr(iop_base, s_addr); | 
 | 	for (i = 0; i < 2 * words; i += 2) { | 
 | 		word = inpw(iop_base + IOP_RAM_DATA); | 
 | 		d_buffer[i] = word & 0xff; | 
 | 		d_buffer[i + 1] = (word >> 8) & 0xff; | 
 | 	} | 
 | } | 
 |  | 
 | static ASC_DCNT AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words) | 
 | { | 
 | 	ASC_DCNT sum; | 
 | 	int i; | 
 |  | 
 | 	sum = 0L; | 
 | 	for (i = 0; i < words; i++, s_addr += 2) { | 
 | 		sum += AscReadLramWord(iop_base, s_addr); | 
 | 	} | 
 | 	return (sum); | 
 | } | 
 |  | 
 | static ushort AscInitLram(ASC_DVC_VAR *asc_dvc) | 
 | { | 
 | 	uchar i; | 
 | 	ushort s_addr; | 
 | 	PortAddr iop_base; | 
 | 	ushort warn_code; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 | 	warn_code = 0; | 
 | 	AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0, | 
 | 			  (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) * | 
 | 				    64) >> 1)); | 
 | 	i = ASC_MIN_ACTIVE_QNO; | 
 | 	s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE; | 
 | 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), | 
 | 			 (uchar)(i + 1)); | 
 | 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), | 
 | 			 (uchar)(asc_dvc->max_total_qng)); | 
 | 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), | 
 | 			 (uchar)i); | 
 | 	i++; | 
 | 	s_addr += ASC_QBLK_SIZE; | 
 | 	for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) { | 
 | 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), | 
 | 				 (uchar)(i + 1)); | 
 | 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), | 
 | 				 (uchar)(i - 1)); | 
 | 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), | 
 | 				 (uchar)i); | 
 | 	} | 
 | 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), | 
 | 			 (uchar)ASC_QLINK_END); | 
 | 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), | 
 | 			 (uchar)(asc_dvc->max_total_qng - 1)); | 
 | 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), | 
 | 			 (uchar)asc_dvc->max_total_qng); | 
 | 	i++; | 
 | 	s_addr += ASC_QBLK_SIZE; | 
 | 	for (; i <= (uchar)(asc_dvc->max_total_qng + 3); | 
 | 	     i++, s_addr += ASC_QBLK_SIZE) { | 
 | 		AscWriteLramByte(iop_base, | 
 | 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i); | 
 | 		AscWriteLramByte(iop_base, | 
 | 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i); | 
 | 		AscWriteLramByte(iop_base, | 
 | 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i); | 
 | 	} | 
 | 	return warn_code; | 
 | } | 
 |  | 
 | static ASC_DCNT | 
 | AscLoadMicroCode(PortAddr iop_base, ushort s_addr, | 
 | 		 const uchar *mcode_buf, ushort mcode_size) | 
 | { | 
 | 	ASC_DCNT chksum; | 
 | 	ushort mcode_word_size; | 
 | 	ushort mcode_chksum; | 
 |  | 
 | 	/* Write the microcode buffer starting at LRAM address 0. */ | 
 | 	mcode_word_size = (ushort)(mcode_size >> 1); | 
 | 	AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size); | 
 | 	AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size); | 
 |  | 
 | 	chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size); | 
 | 	ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum); | 
 | 	mcode_chksum = (ushort)AscMemSumLramWord(iop_base, | 
 | 						 (ushort)ASC_CODE_SEC_BEG, | 
 | 						 (ushort)((mcode_size - | 
 | 							   s_addr - (ushort) | 
 | 							   ASC_CODE_SEC_BEG) / | 
 | 							  2)); | 
 | 	ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum); | 
 | 	AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum); | 
 | 	AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size); | 
 | 	return chksum; | 
 | } | 
 |  | 
 | static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc) | 
 | { | 
 | 	PortAddr iop_base; | 
 | 	int i; | 
 | 	ushort lram_addr; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 | 	AscPutRiscVarFreeQHead(iop_base, 1); | 
 | 	AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng); | 
 | 	AscPutVarFreeQHead(iop_base, 1); | 
 | 	AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng); | 
 | 	AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B, | 
 | 			 (uchar)((int)asc_dvc->max_total_qng + 1)); | 
 | 	AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B, | 
 | 			 (uchar)((int)asc_dvc->max_total_qng + 2)); | 
 | 	AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B, | 
 | 			 asc_dvc->max_total_qng); | 
 | 	AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0); | 
 | 	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); | 
 | 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0); | 
 | 	AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0); | 
 | 	AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0); | 
 | 	AscPutQDoneInProgress(iop_base, 0); | 
 | 	lram_addr = ASC_QADR_BEG; | 
 | 	for (i = 0; i < 32; i++, lram_addr += 2) { | 
 | 		AscWriteLramWord(iop_base, lram_addr, 0); | 
 | 	} | 
 | } | 
 |  | 
 | static ushort AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc) | 
 | { | 
 | 	int i; | 
 | 	ushort warn_code; | 
 | 	PortAddr iop_base; | 
 | 	ASC_PADDR phy_addr; | 
 | 	ASC_DCNT phy_size; | 
 | 	struct asc_board *board = asc_dvc_to_board(asc_dvc); | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 | 	warn_code = 0; | 
 | 	for (i = 0; i <= ASC_MAX_TID; i++) { | 
 | 		AscPutMCodeInitSDTRAtID(iop_base, i, | 
 | 					asc_dvc->cfg->sdtr_period_offset[i]); | 
 | 	} | 
 |  | 
 | 	AscInitQLinkVar(asc_dvc); | 
 | 	AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B, | 
 | 			 asc_dvc->cfg->disc_enable); | 
 | 	AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B, | 
 | 			 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id)); | 
 |  | 
 | 	/* Ensure overrun buffer is aligned on an 8 byte boundary. */ | 
 | 	BUG_ON((unsigned long)asc_dvc->overrun_buf & 7); | 
 | 	asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf, | 
 | 					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); | 
 | 	if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) { | 
 | 		warn_code = -ENOMEM; | 
 | 		goto err_dma_map; | 
 | 	} | 
 | 	phy_addr = cpu_to_le32(asc_dvc->overrun_dma); | 
 | 	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D, | 
 | 				 (uchar *)&phy_addr, 1); | 
 | 	phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE); | 
 | 	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D, | 
 | 				 (uchar *)&phy_size, 1); | 
 |  | 
 | 	asc_dvc->cfg->mcode_date = | 
 | 	    AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W); | 
 | 	asc_dvc->cfg->mcode_version = | 
 | 	    AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W); | 
 |  | 
 | 	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); | 
 | 	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { | 
 | 		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; | 
 | 		warn_code = UW_ERR; | 
 | 		goto err_mcode_start; | 
 | 	} | 
 | 	if (AscStartChip(iop_base) != 1) { | 
 | 		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; | 
 | 		warn_code = UW_ERR; | 
 | 		goto err_mcode_start; | 
 | 	} | 
 |  | 
 | 	return warn_code; | 
 |  | 
 | err_mcode_start: | 
 | 	dma_unmap_single(board->dev, asc_dvc->overrun_dma, | 
 | 			 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); | 
 | err_dma_map: | 
 | 	asc_dvc->overrun_dma = 0; | 
 | 	return warn_code; | 
 | } | 
 |  | 
 | static ushort AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc) | 
 | { | 
 | 	const struct firmware *fw; | 
 | 	const char fwname[] = "advansys/mcode.bin"; | 
 | 	int err; | 
 | 	unsigned long chksum; | 
 | 	ushort warn_code; | 
 | 	PortAddr iop_base; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 | 	warn_code = 0; | 
 | 	if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) && | 
 | 	    !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) { | 
 | 		AscResetChipAndScsiBus(asc_dvc); | 
 | 		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ | 
 | 	} | 
 | 	asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC; | 
 | 	if (asc_dvc->err_code != 0) | 
 | 		return UW_ERR; | 
 | 	if (!AscFindSignature(asc_dvc->iop_base)) { | 
 | 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; | 
 | 		return warn_code; | 
 | 	} | 
 | 	AscDisableInterrupt(iop_base); | 
 | 	warn_code |= AscInitLram(asc_dvc); | 
 | 	if (asc_dvc->err_code != 0) | 
 | 		return UW_ERR; | 
 |  | 
 | 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); | 
 | 	if (err) { | 
 | 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n", | 
 | 		       fwname, err); | 
 | 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; | 
 | 		return err; | 
 | 	} | 
 | 	if (fw->size < 4) { | 
 | 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", | 
 | 		       fw->size, fwname); | 
 | 		release_firmware(fw); | 
 | 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | | 
 | 		 (fw->data[1] << 8) | fw->data[0]; | 
 | 	ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum); | 
 | 	if (AscLoadMicroCode(iop_base, 0, &fw->data[4], | 
 | 			     fw->size - 4) != chksum) { | 
 | 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; | 
 | 		release_firmware(fw); | 
 | 		return warn_code; | 
 | 	} | 
 | 	release_firmware(fw); | 
 | 	warn_code |= AscInitMicroCodeVar(asc_dvc); | 
 | 	if (!asc_dvc->overrun_dma) | 
 | 		return warn_code; | 
 | 	asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC; | 
 | 	AscEnableInterrupt(iop_base); | 
 | 	return warn_code; | 
 | } | 
 |  | 
 | /* | 
 |  * Load the Microcode | 
 |  * | 
 |  * Write the microcode image to RISC memory starting at address 0. | 
 |  * | 
 |  * The microcode is stored compressed in the following format: | 
 |  * | 
 |  *  254 word (508 byte) table indexed by byte code followed | 
 |  *  by the following byte codes: | 
 |  * | 
 |  *    1-Byte Code: | 
 |  *      00: Emit word 0 in table. | 
 |  *      01: Emit word 1 in table. | 
 |  *      . | 
 |  *      FD: Emit word 253 in table. | 
 |  * | 
 |  *    Multi-Byte Code: | 
 |  *      FE WW WW: (3 byte code) Word to emit is the next word WW WW. | 
 |  *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW. | 
 |  * | 
 |  * Returns 0 or an error if the checksum doesn't match | 
 |  */ | 
 | static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf, | 
 | 			    int size, int memsize, int chksum) | 
 | { | 
 | 	int i, j, end, len = 0; | 
 | 	ADV_DCNT sum; | 
 |  | 
 | 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); | 
 |  | 
 | 	for (i = 253 * 2; i < size; i++) { | 
 | 		if (buf[i] == 0xff) { | 
 | 			unsigned short word = (buf[i + 3] << 8) | buf[i + 2]; | 
 | 			for (j = 0; j < buf[i + 1]; j++) { | 
 | 				AdvWriteWordAutoIncLram(iop_base, word); | 
 | 				len += 2; | 
 | 			} | 
 | 			i += 3; | 
 | 		} else if (buf[i] == 0xfe) { | 
 | 			unsigned short word = (buf[i + 2] << 8) | buf[i + 1]; | 
 | 			AdvWriteWordAutoIncLram(iop_base, word); | 
 | 			i += 2; | 
 | 			len += 2; | 
 | 		} else { | 
 | 			unsigned int off = buf[i] * 2; | 
 | 			unsigned short word = (buf[off + 1] << 8) | buf[off]; | 
 | 			AdvWriteWordAutoIncLram(iop_base, word); | 
 | 			len += 2; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	end = len; | 
 |  | 
 | 	while (len < memsize) { | 
 | 		AdvWriteWordAutoIncLram(iop_base, 0); | 
 | 		len += 2; | 
 | 	} | 
 |  | 
 | 	/* Verify the microcode checksum. */ | 
 | 	sum = 0; | 
 | 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); | 
 |  | 
 | 	for (len = 0; len < end; len += 2) { | 
 | 		sum += AdvReadWordAutoIncLram(iop_base); | 
 | 	} | 
 |  | 
 | 	if (sum != chksum) | 
 | 		return ASC_IERR_MCODE_CHKSUM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc) | 
 | { | 
 | 	ADV_CARR_T *carrp; | 
 | 	ADV_SDCNT buf_size; | 
 | 	ADV_PADDR carr_paddr; | 
 |  | 
 | 	carrp = (ADV_CARR_T *) ADV_16BALIGN(asc_dvc->carrier_buf); | 
 | 	asc_dvc->carr_freelist = NULL; | 
 | 	if (carrp == asc_dvc->carrier_buf) { | 
 | 		buf_size = ADV_CARRIER_BUFSIZE; | 
 | 	} else { | 
 | 		buf_size = ADV_CARRIER_BUFSIZE - sizeof(ADV_CARR_T); | 
 | 	} | 
 |  | 
 | 	do { | 
 | 		/* Get physical address of the carrier 'carrp'. */ | 
 | 		carr_paddr = cpu_to_le32(virt_to_bus(carrp)); | 
 |  | 
 | 		buf_size -= sizeof(ADV_CARR_T); | 
 |  | 
 | 		carrp->carr_pa = carr_paddr; | 
 | 		carrp->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(carrp)); | 
 |  | 
 | 		/* | 
 | 		 * Insert the carrier at the beginning of the freelist. | 
 | 		 */ | 
 | 		carrp->next_vpa = | 
 | 			cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist)); | 
 | 		asc_dvc->carr_freelist = carrp; | 
 |  | 
 | 		carrp++; | 
 | 	} while (buf_size > 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Send an idle command to the chip and wait for completion. | 
 |  * | 
 |  * Command completion is polled for once per microsecond. | 
 |  * | 
 |  * The function can be called from anywhere including an interrupt handler. | 
 |  * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical() | 
 |  * functions to prevent reentrancy. | 
 |  * | 
 |  * Return Values: | 
 |  *   ADV_TRUE - command completed successfully | 
 |  *   ADV_FALSE - command failed | 
 |  *   ADV_ERROR - command timed out | 
 |  */ | 
 | static int | 
 | AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc, | 
 | 	       ushort idle_cmd, ADV_DCNT idle_cmd_parameter) | 
 | { | 
 | 	int result; | 
 | 	ADV_DCNT i, j; | 
 | 	AdvPortAddr iop_base; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 |  | 
 | 	/* | 
 | 	 * Clear the idle command status which is set by the microcode | 
 | 	 * to a non-zero value to indicate when the command is completed. | 
 | 	 * The non-zero result is one of the IDLE_CMD_STATUS_* values | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0); | 
 |  | 
 | 	/* | 
 | 	 * Write the idle command value after the idle command parameter | 
 | 	 * has been written to avoid a race condition. If the order is not | 
 | 	 * followed, the microcode may process the idle command before the | 
 | 	 * parameters have been written to LRAM. | 
 | 	 */ | 
 | 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER, | 
 | 				cpu_to_le32(idle_cmd_parameter)); | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd); | 
 |  | 
 | 	/* | 
 | 	 * Tickle the RISC to tell it to process the idle command. | 
 | 	 */ | 
 | 	AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B); | 
 | 	if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { | 
 | 		/* | 
 | 		 * Clear the tickle value. In the ASC-3550 the RISC flag | 
 | 		 * command 'clr_tickle_b' does not work unless the host | 
 | 		 * value is cleared. | 
 | 		 */ | 
 | 		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP); | 
 | 	} | 
 |  | 
 | 	/* Wait for up to 100 millisecond for the idle command to timeout. */ | 
 | 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) { | 
 | 		/* Poll once each microsecond for command completion. */ | 
 | 		for (j = 0; j < SCSI_US_PER_MSEC; j++) { | 
 | 			AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, | 
 | 					result); | 
 | 			if (result != 0) | 
 | 				return result; | 
 | 			udelay(1); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	BUG();		/* The idle command should never timeout. */ | 
 | 	return ADV_ERROR; | 
 | } | 
 |  | 
 | /* | 
 |  * Reset SCSI Bus and purge all outstanding requests. | 
 |  * | 
 |  * Return Value: | 
 |  *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset. | 
 |  *      ADV_FALSE(0) -  Microcode command failed. | 
 |  *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC | 
 |  *                      may be hung which requires driver recovery. | 
 |  */ | 
 | static int AdvResetSB(ADV_DVC_VAR *asc_dvc) | 
 | { | 
 | 	int status; | 
 |  | 
 | 	/* | 
 | 	 * Send the SCSI Bus Reset idle start idle command which asserts | 
 | 	 * the SCSI Bus Reset signal. | 
 | 	 */ | 
 | 	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L); | 
 | 	if (status != ADV_TRUE) { | 
 | 		return status; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Delay for the specified SCSI Bus Reset hold time. | 
 | 	 * | 
 | 	 * The hold time delay is done on the host because the RISC has no | 
 | 	 * microsecond accurate timer. | 
 | 	 */ | 
 | 	udelay(ASC_SCSI_RESET_HOLD_TIME_US); | 
 |  | 
 | 	/* | 
 | 	 * Send the SCSI Bus Reset end idle command which de-asserts | 
 | 	 * the SCSI Bus Reset signal and purges any pending requests. | 
 | 	 */ | 
 | 	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L); | 
 | 	if (status != ADV_TRUE) { | 
 | 		return status; | 
 | 	} | 
 |  | 
 | 	mdelay(asc_dvc->scsi_reset_wait * 1000);	/* XXX: msleep? */ | 
 |  | 
 | 	return status; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the ASC-3550. | 
 |  * | 
 |  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. | 
 |  * | 
 |  * For a non-fatal error return a warning code. If there are no warnings | 
 |  * then 0 is returned. | 
 |  * | 
 |  * Needed after initialization for error recovery. | 
 |  */ | 
 | static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc) | 
 | { | 
 | 	const struct firmware *fw; | 
 | 	const char fwname[] = "advansys/3550.bin"; | 
 | 	AdvPortAddr iop_base; | 
 | 	ushort warn_code; | 
 | 	int begin_addr; | 
 | 	int end_addr; | 
 | 	ushort code_sum; | 
 | 	int word; | 
 | 	int i; | 
 | 	int err; | 
 | 	unsigned long chksum; | 
 | 	ushort scsi_cfg1; | 
 | 	uchar tid; | 
 | 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */ | 
 | 	ushort wdtr_able = 0, sdtr_able, tagqng_able; | 
 | 	uchar max_cmd[ADV_MAX_TID + 1]; | 
 |  | 
 | 	/* If there is already an error, don't continue. */ | 
 | 	if (asc_dvc->err_code != 0) | 
 | 		return ADV_ERROR; | 
 |  | 
 | 	/* | 
 | 	 * The caller must set 'chip_type' to ADV_CHIP_ASC3550. | 
 | 	 */ | 
 | 	if (asc_dvc->chip_type != ADV_CHIP_ASC3550) { | 
 | 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; | 
 | 		return ADV_ERROR; | 
 | 	} | 
 |  | 
 | 	warn_code = 0; | 
 | 	iop_base = asc_dvc->iop_base; | 
 |  | 
 | 	/* | 
 | 	 * Save the RISC memory BIOS region before writing the microcode. | 
 | 	 * The BIOS may already be loaded and using its RISC LRAM region | 
 | 	 * so its region must be saved and restored. | 
 | 	 * | 
 | 	 * Note: This code makes the assumption, which is currently true, | 
 | 	 * that a chip reset does not clear RISC LRAM. | 
 | 	 */ | 
 | 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { | 
 | 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), | 
 | 				bios_mem[i]); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Save current per TID negotiated values. | 
 | 	 */ | 
 | 	if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) { | 
 | 		ushort bios_version, major, minor; | 
 |  | 
 | 		bios_version = | 
 | 		    bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2]; | 
 | 		major = (bios_version >> 12) & 0xF; | 
 | 		minor = (bios_version >> 8) & 0xF; | 
 | 		if (major < 3 || (major == 3 && minor == 1)) { | 
 | 			/* BIOS 3.1 and earlier location of 'wdtr_able' variable. */ | 
 | 			AdvReadWordLram(iop_base, 0x120, wdtr_able); | 
 | 		} else { | 
 | 			AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); | 
 | 		} | 
 | 	} | 
 | 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); | 
 | 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); | 
 | 	for (tid = 0; tid <= ADV_MAX_TID; tid++) { | 
 | 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, | 
 | 				max_cmd[tid]); | 
 | 	} | 
 |  | 
 | 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); | 
 | 	if (err) { | 
 | 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n", | 
 | 		       fwname, err); | 
 | 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; | 
 | 		return err; | 
 | 	} | 
 | 	if (fw->size < 4) { | 
 | 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", | 
 | 		       fw->size, fwname); | 
 | 		release_firmware(fw); | 
 | 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | | 
 | 		 (fw->data[1] << 8) | fw->data[0]; | 
 | 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], | 
 | 					     fw->size - 4, ADV_3550_MEMSIZE, | 
 | 					     chksum); | 
 | 	release_firmware(fw); | 
 | 	if (asc_dvc->err_code) | 
 | 		return ADV_ERROR; | 
 |  | 
 | 	/* | 
 | 	 * Restore the RISC memory BIOS region. | 
 | 	 */ | 
 | 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { | 
 | 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), | 
 | 				 bios_mem[i]); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Calculate and write the microcode code checksum to the microcode | 
 | 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). | 
 | 	 */ | 
 | 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); | 
 | 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); | 
 | 	code_sum = 0; | 
 | 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); | 
 | 	for (word = begin_addr; word < end_addr; word += 2) { | 
 | 		code_sum += AdvReadWordAutoIncLram(iop_base); | 
 | 	} | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); | 
 |  | 
 | 	/* | 
 | 	 * Read and save microcode version and date. | 
 | 	 */ | 
 | 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, | 
 | 			asc_dvc->cfg->mcode_date); | 
 | 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, | 
 | 			asc_dvc->cfg->mcode_version); | 
 |  | 
 | 	/* | 
 | 	 * Set the chip type to indicate the ASC3550. | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550); | 
 |  | 
 | 	/* | 
 | 	 * If the PCI Configuration Command Register "Parity Error Response | 
 | 	 * Control" Bit was clear (0), then set the microcode variable | 
 | 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode | 
 | 	 * to ignore DMA parity errors. | 
 | 	 */ | 
 | 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { | 
 | 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); | 
 | 		word |= CONTROL_FLAG_IGNORE_PERR; | 
 | 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO | 
 | 	 * threshold of 128 bytes. This register is only accessible to the host. | 
 | 	 */ | 
 | 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, | 
 | 			     START_CTL_EMFU | READ_CMD_MRM); | 
 |  | 
 | 	/* | 
 | 	 * Microcode operating variables for WDTR, SDTR, and command tag | 
 | 	 * queuing will be set in slave_configure() based on what a | 
 | 	 * device reports it is capable of in Inquiry byte 7. | 
 | 	 * | 
 | 	 * If SCSI Bus Resets have been disabled, then directly set | 
 | 	 * SDTR and WDTR from the EEPROM configuration. This will allow | 
 | 	 * the BIOS and warm boot to work without a SCSI bus hang on | 
 | 	 * the Inquiry caused by host and target mismatched DTR values. | 
 | 	 * Without the SCSI Bus Reset, before an Inquiry a device can't | 
 | 	 * be assumed to be in Asynchronous, Narrow mode. | 
 | 	 */ | 
 | 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { | 
 | 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, | 
 | 				 asc_dvc->wdtr_able); | 
 | 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, | 
 | 				 asc_dvc->sdtr_able); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2, | 
 | 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID | 
 | 	 * bitmask. These values determine the maximum SDTR speed negotiated | 
 | 	 * with a device. | 
 | 	 * | 
 | 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, | 
 | 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them | 
 | 	 * without determining here whether the device supports SDTR. | 
 | 	 * | 
 | 	 * 4-bit speed  SDTR speed name | 
 | 	 * ===========  =============== | 
 | 	 * 0000b (0x0)  SDTR disabled | 
 | 	 * 0001b (0x1)  5 Mhz | 
 | 	 * 0010b (0x2)  10 Mhz | 
 | 	 * 0011b (0x3)  20 Mhz (Ultra) | 
 | 	 * 0100b (0x4)  40 Mhz (LVD/Ultra2) | 
 | 	 * 0101b (0x5)  80 Mhz (LVD2/Ultra3) | 
 | 	 * 0110b (0x6)  Undefined | 
 | 	 * . | 
 | 	 * 1111b (0xF)  Undefined | 
 | 	 */ | 
 | 	word = 0; | 
 | 	for (tid = 0; tid <= ADV_MAX_TID; tid++) { | 
 | 		if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) { | 
 | 			/* Set Ultra speed for TID 'tid'. */ | 
 | 			word |= (0x3 << (4 * (tid % 4))); | 
 | 		} else { | 
 | 			/* Set Fast speed for TID 'tid'. */ | 
 | 			word |= (0x2 << (4 * (tid % 4))); | 
 | 		} | 
 | 		if (tid == 3) {	/* Check if done with sdtr_speed1. */ | 
 | 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word); | 
 | 			word = 0; | 
 | 		} else if (tid == 7) {	/* Check if done with sdtr_speed2. */ | 
 | 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word); | 
 | 			word = 0; | 
 | 		} else if (tid == 11) {	/* Check if done with sdtr_speed3. */ | 
 | 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word); | 
 | 			word = 0; | 
 | 		} else if (tid == 15) {	/* Check if done with sdtr_speed4. */ | 
 | 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word); | 
 | 			/* End of loop. */ | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set microcode operating variable for the disconnect per TID bitmask. | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, | 
 | 			 asc_dvc->cfg->disc_enable); | 
 |  | 
 | 	/* | 
 | 	 * Set SCSI_CFG0 Microcode Default Value. | 
 | 	 * | 
 | 	 * The microcode will set the SCSI_CFG0 register using this value | 
 | 	 * after it is started below. | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, | 
 | 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | | 
 | 			 asc_dvc->chip_scsi_id); | 
 |  | 
 | 	/* | 
 | 	 * Determine SCSI_CFG1 Microcode Default Value. | 
 | 	 * | 
 | 	 * The microcode will set the SCSI_CFG1 register using this value | 
 | 	 * after it is started below. | 
 | 	 */ | 
 |  | 
 | 	/* Read current SCSI_CFG1 Register value. */ | 
 | 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); | 
 |  | 
 | 	/* | 
 | 	 * If all three connectors are in use, return an error. | 
 | 	 */ | 
 | 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 || | 
 | 	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) { | 
 | 		asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION; | 
 | 		return ADV_ERROR; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the internal narrow cable is reversed all of the SCSI_CTRL | 
 | 	 * register signals will be set. Check for and return an error if | 
 | 	 * this condition is found. | 
 | 	 */ | 
 | 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { | 
 | 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; | 
 | 		return ADV_ERROR; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this is a differential board and a single-ended device | 
 | 	 * is attached to one of the connectors, return an error. | 
 | 	 */ | 
 | 	if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) { | 
 | 		asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE; | 
 | 		return ADV_ERROR; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If automatic termination control is enabled, then set the | 
 | 	 * termination value based on a table listed in a_condor.h. | 
 | 	 * | 
 | 	 * If manual termination was specified with an EEPROM setting | 
 | 	 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and | 
 | 	 * is ready to be 'ored' into SCSI_CFG1. | 
 | 	 */ | 
 | 	if (asc_dvc->cfg->termination == 0) { | 
 | 		/* | 
 | 		 * The software always controls termination by setting TERM_CTL_SEL. | 
 | 		 * If TERM_CTL_SEL were set to 0, the hardware would set termination. | 
 | 		 */ | 
 | 		asc_dvc->cfg->termination |= TERM_CTL_SEL; | 
 |  | 
 | 		switch (scsi_cfg1 & CABLE_DETECT) { | 
 | 			/* TERM_CTL_H: on, TERM_CTL_L: on */ | 
 | 		case 0x3: | 
 | 		case 0x7: | 
 | 		case 0xB: | 
 | 		case 0xD: | 
 | 		case 0xE: | 
 | 		case 0xF: | 
 | 			asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L); | 
 | 			break; | 
 |  | 
 | 			/* TERM_CTL_H: on, TERM_CTL_L: off */ | 
 | 		case 0x1: | 
 | 		case 0x5: | 
 | 		case 0x9: | 
 | 		case 0xA: | 
 | 		case 0xC: | 
 | 			asc_dvc->cfg->termination |= TERM_CTL_H; | 
 | 			break; | 
 |  | 
 | 			/* TERM_CTL_H: off, TERM_CTL_L: off */ | 
 | 		case 0x2: | 
 | 		case 0x6: | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits. | 
 | 	 */ | 
 | 	scsi_cfg1 &= ~TERM_CTL; | 
 |  | 
 | 	/* | 
 | 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then | 
 | 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be | 
 | 	 * referenced, because the hardware internally inverts | 
 | 	 * the Termination High and Low bits if TERM_POL is set. | 
 | 	 */ | 
 | 	scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL)); | 
 |  | 
 | 	/* | 
 | 	 * Set SCSI_CFG1 Microcode Default Value | 
 | 	 * | 
 | 	 * Set filter value and possibly modified termination control | 
 | 	 * bits in the Microcode SCSI_CFG1 Register Value. | 
 | 	 * | 
 | 	 * The microcode will set the SCSI_CFG1 register using this value | 
 | 	 * after it is started below. | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, | 
 | 			 FLTR_DISABLE | scsi_cfg1); | 
 |  | 
 | 	/* | 
 | 	 * Set MEM_CFG Microcode Default Value | 
 | 	 * | 
 | 	 * The microcode will set the MEM_CFG register using this value | 
 | 	 * after it is started below. | 
 | 	 * | 
 | 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 | 
 | 	 * are defined. | 
 | 	 * | 
 | 	 * ASC-3550 has 8KB internal memory. | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, | 
 | 			 BIOS_EN | RAM_SZ_8KB); | 
 |  | 
 | 	/* | 
 | 	 * Set SEL_MASK Microcode Default Value | 
 | 	 * | 
 | 	 * The microcode will set the SEL_MASK register using this value | 
 | 	 * after it is started below. | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, | 
 | 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); | 
 |  | 
 | 	AdvBuildCarrierFreelist(asc_dvc); | 
 |  | 
 | 	/* | 
 | 	 * Set-up the Host->RISC Initiator Command Queue (ICQ). | 
 | 	 */ | 
 |  | 
 | 	if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) { | 
 | 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER; | 
 | 		return ADV_ERROR; | 
 | 	} | 
 | 	asc_dvc->carr_freelist = (ADV_CARR_T *) | 
 | 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa)); | 
 |  | 
 | 	/* | 
 | 	 * The first command issued will be placed in the stopper carrier. | 
 | 	 */ | 
 | 	asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); | 
 |  | 
 | 	/* | 
 | 	 * Set RISC ICQ physical address start value. | 
 | 	 */ | 
 | 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); | 
 |  | 
 | 	/* | 
 | 	 * Set-up the RISC->Host Initiator Response Queue (IRQ). | 
 | 	 */ | 
 | 	if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) { | 
 | 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER; | 
 | 		return ADV_ERROR; | 
 | 	} | 
 | 	asc_dvc->carr_freelist = (ADV_CARR_T *) | 
 | 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa)); | 
 |  | 
 | 	/* | 
 | 	 * The first command completed by the RISC will be placed in | 
 | 	 * the stopper. | 
 | 	 * | 
 | 	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is | 
 | 	 * completed the RISC will set the ASC_RQ_STOPPER bit. | 
 | 	 */ | 
 | 	asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); | 
 |  | 
 | 	/* | 
 | 	 * Set RISC IRQ physical address start value. | 
 | 	 */ | 
 | 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); | 
 | 	asc_dvc->carr_pending_cnt = 0; | 
 |  | 
 | 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, | 
 | 			     (ADV_INTR_ENABLE_HOST_INTR | | 
 | 			      ADV_INTR_ENABLE_GLOBAL_INTR)); | 
 |  | 
 | 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); | 
 | 	AdvWriteWordRegister(iop_base, IOPW_PC, word); | 
 |  | 
 | 	/* finally, finally, gentlemen, start your engine */ | 
 | 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); | 
 |  | 
 | 	/* | 
 | 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus | 
 | 	 * Resets should be performed. The RISC has to be running | 
 | 	 * to issue a SCSI Bus Reset. | 
 | 	 */ | 
 | 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { | 
 | 		/* | 
 | 		 * If the BIOS Signature is present in memory, restore the | 
 | 		 * BIOS Handshake Configuration Table and do not perform | 
 | 		 * a SCSI Bus Reset. | 
 | 		 */ | 
 | 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == | 
 | 		    0x55AA) { | 
 | 			/* | 
 | 			 * Restore per TID negotiated values. | 
 | 			 */ | 
 | 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); | 
 | 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); | 
 | 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, | 
 | 					 tagqng_able); | 
 | 			for (tid = 0; tid <= ADV_MAX_TID; tid++) { | 
 | 				AdvWriteByteLram(iop_base, | 
 | 						 ASC_MC_NUMBER_OF_MAX_CMD + tid, | 
 | 						 max_cmd[tid]); | 
 | 			} | 
 | 		} else { | 
 | 			if (AdvResetSB(asc_dvc) != ADV_TRUE) { | 
 | 				warn_code = ASC_WARN_BUSRESET_ERROR; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return warn_code; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the ASC-38C0800. | 
 |  * | 
 |  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. | 
 |  * | 
 |  * For a non-fatal error return a warning code. If there are no warnings | 
 |  * then 0 is returned. | 
 |  * | 
 |  * Needed after initialization for error recovery. | 
 |  */ | 
 | static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc) | 
 | { | 
 | 	const struct firmware *fw; | 
 | 	const char fwname[] = "advansys/38C0800.bin"; | 
 | 	AdvPortAddr iop_base; | 
 | 	ushort warn_code; | 
 | 	int begin_addr; | 
 | 	int end_addr; | 
 | 	ushort code_sum; | 
 | 	int word; | 
 | 	int i; | 
 | 	int err; | 
 | 	unsigned long chksum; | 
 | 	ushort scsi_cfg1; | 
 | 	uchar byte; | 
 | 	uchar tid; | 
 | 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */ | 
 | 	ushort wdtr_able, sdtr_able, tagqng_able; | 
 | 	uchar max_cmd[ADV_MAX_TID + 1]; | 
 |  | 
 | 	/* If there is already an error, don't continue. */ | 
 | 	if (asc_dvc->err_code != 0) | 
 | 		return ADV_ERROR; | 
 |  | 
 | 	/* | 
 | 	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800. | 
 | 	 */ | 
 | 	if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) { | 
 | 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; | 
 | 		return ADV_ERROR; | 
 | 	} | 
 |  | 
 | 	warn_code = 0; | 
 | 	iop_base = asc_dvc->iop_base; | 
 |  | 
 | 	/* | 
 | 	 * Save the RISC memory BIOS region before writing the microcode. | 
 | 	 * The BIOS may already be loaded and using its RISC LRAM region | 
 | 	 * so its region must be saved and restored. | 
 | 	 * | 
 | 	 * Note: This code makes the assumption, which is currently true, | 
 | 	 * that a chip reset does not clear RISC LRAM. | 
 | 	 */ | 
 | 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { | 
 | 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), | 
 | 				bios_mem[i]); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Save current per TID negotiated values. | 
 | 	 */ | 
 | 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); | 
 | 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); | 
 | 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); | 
 | 	for (tid = 0; tid <= ADV_MAX_TID; tid++) { | 
 | 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, | 
 | 				max_cmd[tid]); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * RAM BIST (RAM Built-In Self Test) | 
 | 	 * | 
 | 	 * Address : I/O base + offset 0x38h register (byte). | 
 | 	 * Function: Bit 7-6(RW) : RAM mode | 
 | 	 *                          Normal Mode   : 0x00 | 
 | 	 *                          Pre-test Mode : 0x40 | 
 | 	 *                          RAM Test Mode : 0x80 | 
 | 	 *           Bit 5       : unused | 
 | 	 *           Bit 4(RO)   : Done bit | 
 | 	 *           Bit 3-0(RO) : Status | 
 | 	 *                          Host Error    : 0x08 | 
 | 	 *                          Int_RAM Error : 0x04 | 
 | 	 *                          RISC Error    : 0x02 | 
 | 	 *                          SCSI Error    : 0x01 | 
 | 	 *                          No Error      : 0x00 | 
 | 	 * | 
 | 	 * Note: RAM BIST code should be put right here, before loading the | 
 | 	 * microcode and after saving the RISC memory BIOS region. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * LRAM Pre-test | 
 | 	 * | 
 | 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds. | 
 | 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return | 
 | 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset | 
 | 	 * to NORMAL_MODE, return an error too. | 
 | 	 */ | 
 | 	for (i = 0; i < 2; i++) { | 
 | 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE); | 
 | 		mdelay(10);	/* Wait for 10ms before reading back. */ | 
 | 		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); | 
 | 		if ((byte & RAM_TEST_DONE) == 0 | 
 | 		    || (byte & 0x0F) != PRE_TEST_VALUE) { | 
 | 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; | 
 | 			return ADV_ERROR; | 
 | 		} | 
 |  | 
 | 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); | 
 | 		mdelay(10);	/* Wait for 10ms before reading back. */ | 
 | 		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST) | 
 | 		    != NORMAL_VALUE) { | 
 | 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; | 
 | 			return ADV_ERROR; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * LRAM Test - It takes about 1.5 ms to run through the test. | 
 | 	 * | 
 | 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds. | 
 | 	 * If Done bit not set or Status not 0, save register byte, set the | 
 | 	 * err_code, and return an error. | 
 | 	 */ | 
 | 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE); | 
 | 	mdelay(10);	/* Wait for 10ms before checking status. */ | 
 |  | 
 | 	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); | 
 | 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) { | 
 | 		/* Get here if Done bit not set or Status not 0. */ | 
 | 		asc_dvc->bist_err_code = byte;	/* for BIOS display message */ | 
 | 		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST; | 
 | 		return ADV_ERROR; | 
 | 	} | 
 |  | 
 | 	/* We need to reset back to normal mode after LRAM test passes. */ | 
 | 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); | 
 |  | 
 | 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); | 
 | 	if (err) { | 
 | 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n", | 
 | 		       fwname, err); | 
 | 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; | 
 | 		return err; | 
 | 	} | 
 | 	if (fw->size < 4) { | 
 | 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", | 
 | 		       fw->size, fwname); | 
 | 		release_firmware(fw); | 
 | 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | | 
 | 		 (fw->data[1] << 8) | fw->data[0]; | 
 | 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], | 
 | 					     fw->size - 4, ADV_38C0800_MEMSIZE, | 
 | 					     chksum); | 
 | 	release_firmware(fw); | 
 | 	if (asc_dvc->err_code) | 
 | 		return ADV_ERROR; | 
 |  | 
 | 	/* | 
 | 	 * Restore the RISC memory BIOS region. | 
 | 	 */ | 
 | 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { | 
 | 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), | 
 | 				 bios_mem[i]); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Calculate and write the microcode code checksum to the microcode | 
 | 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). | 
 | 	 */ | 
 | 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); | 
 | 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); | 
 | 	code_sum = 0; | 
 | 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); | 
 | 	for (word = begin_addr; word < end_addr; word += 2) { | 
 | 		code_sum += AdvReadWordAutoIncLram(iop_base); | 
 | 	} | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); | 
 |  | 
 | 	/* | 
 | 	 * Read microcode version and date. | 
 | 	 */ | 
 | 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, | 
 | 			asc_dvc->cfg->mcode_date); | 
 | 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, | 
 | 			asc_dvc->cfg->mcode_version); | 
 |  | 
 | 	/* | 
 | 	 * Set the chip type to indicate the ASC38C0800. | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800); | 
 |  | 
 | 	/* | 
 | 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. | 
 | 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current | 
 | 	 * cable detection and then we are able to read C_DET[3:0]. | 
 | 	 * | 
 | 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 | 
 | 	 * Microcode Default Value' section below. | 
 | 	 */ | 
 | 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); | 
 | 	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, | 
 | 			     scsi_cfg1 | DIS_TERM_DRV); | 
 |  | 
 | 	/* | 
 | 	 * If the PCI Configuration Command Register "Parity Error Response | 
 | 	 * Control" Bit was clear (0), then set the microcode variable | 
 | 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode | 
 | 	 * to ignore DMA parity errors. | 
 | 	 */ | 
 | 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { | 
 | 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); | 
 | 		word |= CONTROL_FLAG_IGNORE_PERR; | 
 | 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2] | 
 | 	 * bits for the default FIFO threshold. | 
 | 	 * | 
 | 	 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes. | 
 | 	 * | 
 | 	 * For DMA Errata #4 set the BC_THRESH_ENB bit. | 
 | 	 */ | 
 | 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, | 
 | 			     BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH | | 
 | 			     READ_CMD_MRM); | 
 |  | 
 | 	/* | 
 | 	 * Microcode operating variables for WDTR, SDTR, and command tag | 
 | 	 * queuing will be set in slave_configure() based on what a | 
 | 	 * device reports it is capable of in Inquiry byte 7. | 
 | 	 * | 
 | 	 * If SCSI Bus Resets have been disabled, then directly set | 
 | 	 * SDTR and WDTR from the EEPROM configuration. This will allow | 
 | 	 * the BIOS and warm boot to work without a SCSI bus hang on | 
 | 	 * the Inquiry caused by host and target mismatched DTR values. | 
 | 	 * Without the SCSI Bus Reset, before an Inquiry a device can't | 
 | 	 * be assumed to be in Asynchronous, Narrow mode. | 
 | 	 */ | 
 | 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { | 
 | 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, | 
 | 				 asc_dvc->wdtr_able); | 
 | 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, | 
 | 				 asc_dvc->sdtr_able); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set microcode operating variables for DISC and SDTR_SPEED1, | 
 | 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM | 
 | 	 * configuration values. | 
 | 	 * | 
 | 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, | 
 | 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them | 
 | 	 * without determining here whether the device supports SDTR. | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, | 
 | 			 asc_dvc->cfg->disc_enable); | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1); | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2); | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3); | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4); | 
 |  | 
 | 	/* | 
 | 	 * Set SCSI_CFG0 Microcode Default Value. | 
 | 	 * | 
 | 	 * The microcode will set the SCSI_CFG0 register using this value | 
 | 	 * after it is started below. | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, | 
 | 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | | 
 | 			 asc_dvc->chip_scsi_id); | 
 |  | 
 | 	/* | 
 | 	 * Determine SCSI_CFG1 Microcode Default Value. | 
 | 	 * | 
 | 	 * The microcode will set the SCSI_CFG1 register using this value | 
 | 	 * after it is started below. | 
 | 	 */ | 
 |  | 
 | 	/* Read current SCSI_CFG1 Register value. */ | 
 | 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); | 
 |  | 
 | 	/* | 
 | 	 * If the internal narrow cable is reversed all of the SCSI_CTRL | 
 | 	 * register signals will be set. Check for and return an error if | 
 | 	 * this condition is found. | 
 | 	 */ | 
 | 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { | 
 | 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; | 
 | 		return ADV_ERROR; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * All kind of combinations of devices attached to one of four | 
 | 	 * connectors are acceptable except HVD device attached. For example, | 
 | 	 * LVD device can be attached to SE connector while SE device attached | 
 | 	 * to LVD connector.  If LVD device attached to SE connector, it only | 
 | 	 * runs up to Ultra speed. | 
 | 	 * | 
 | 	 * If an HVD device is attached to one of LVD connectors, return an | 
 | 	 * error.  However, there is no way to detect HVD device attached to | 
 | 	 * SE connectors. | 
 | 	 */ | 
 | 	if (scsi_cfg1 & HVD) { | 
 | 		asc_dvc->err_code = ASC_IERR_HVD_DEVICE; | 
 | 		return ADV_ERROR; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If either SE or LVD automatic termination control is enabled, then | 
 | 	 * set the termination value based on a table listed in a_condor.h. | 
 | 	 * | 
 | 	 * If manual termination was specified with an EEPROM setting then | 
 | 	 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready | 
 | 	 * to be 'ored' into SCSI_CFG1. | 
 | 	 */ | 
 | 	if ((asc_dvc->cfg->termination & TERM_SE) == 0) { | 
 | 		/* SE automatic termination control is enabled. */ | 
 | 		switch (scsi_cfg1 & C_DET_SE) { | 
 | 			/* TERM_SE_HI: on, TERM_SE_LO: on */ | 
 | 		case 0x1: | 
 | 		case 0x2: | 
 | 		case 0x3: | 
 | 			asc_dvc->cfg->termination |= TERM_SE; | 
 | 			break; | 
 |  | 
 | 			/* TERM_SE_HI: on, TERM_SE_LO: off */ | 
 | 		case 0x0: | 
 | 			asc_dvc->cfg->termination |= TERM_SE_HI; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if ((asc_dvc->cfg->termination & TERM_LVD) == 0) { | 
 | 		/* LVD automatic termination control is enabled. */ | 
 | 		switch (scsi_cfg1 & C_DET_LVD) { | 
 | 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */ | 
 | 		case 0x4: | 
 | 		case 0x8: | 
 | 		case 0xC: | 
 | 			asc_dvc->cfg->termination |= TERM_LVD; | 
 | 			break; | 
 |  | 
 | 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */ | 
 | 		case 0x0: | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Clear any set TERM_SE and TERM_LVD bits. | 
 | 	 */ | 
 | 	scsi_cfg1 &= (~TERM_SE & ~TERM_LVD); | 
 |  | 
 | 	/* | 
 | 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'. | 
 | 	 */ | 
 | 	scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0); | 
 |  | 
 | 	/* | 
 | 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE | 
 | 	 * bits and set possibly modified termination control bits in the | 
 | 	 * Microcode SCSI_CFG1 Register Value. | 
 | 	 */ | 
 | 	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE); | 
 |  | 
 | 	/* | 
 | 	 * Set SCSI_CFG1 Microcode Default Value | 
 | 	 * | 
 | 	 * Set possibly modified termination control and reset DIS_TERM_DRV | 
 | 	 * bits in the Microcode SCSI_CFG1 Register Value. | 
 | 	 * | 
 | 	 * The microcode will set the SCSI_CFG1 register using this value | 
 | 	 * after it is started below. | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); | 
 |  | 
 | 	/* | 
 | 	 * Set MEM_CFG Microcode Default Value | 
 | 	 * | 
 | 	 * The microcode will set the MEM_CFG register using this value | 
 | 	 * after it is started below. | 
 | 	 * | 
 | 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 | 
 | 	 * are defined. | 
 | 	 * | 
 | 	 * ASC-38C0800 has 16KB internal memory. | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, | 
 | 			 BIOS_EN | RAM_SZ_16KB); | 
 |  | 
 | 	/* | 
 | 	 * Set SEL_MASK Microcode Default Value | 
 | 	 * | 
 | 	 * The microcode will set the SEL_MASK register using this value | 
 | 	 * after it is started below. | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, | 
 | 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); | 
 |  | 
 | 	AdvBuildCarrierFreelist(asc_dvc); | 
 |  | 
 | 	/* | 
 | 	 * Set-up the Host->RISC Initiator Command Queue (ICQ). | 
 | 	 */ | 
 |  | 
 | 	if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) { | 
 | 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER; | 
 | 		return ADV_ERROR; | 
 | 	} | 
 | 	asc_dvc->carr_freelist = (ADV_CARR_T *) | 
 | 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa)); | 
 |  | 
 | 	/* | 
 | 	 * The first command issued will be placed in the stopper carrier. | 
 | 	 */ | 
 | 	asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); | 
 |  | 
 | 	/* | 
 | 	 * Set RISC ICQ physical address start value. | 
 | 	 * carr_pa is LE, must be native before write | 
 | 	 */ | 
 | 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); | 
 |  | 
 | 	/* | 
 | 	 * Set-up the RISC->Host Initiator Response Queue (IRQ). | 
 | 	 */ | 
 | 	if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) { | 
 | 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER; | 
 | 		return ADV_ERROR; | 
 | 	} | 
 | 	asc_dvc->carr_freelist = (ADV_CARR_T *) | 
 | 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa)); | 
 |  | 
 | 	/* | 
 | 	 * The first command completed by the RISC will be placed in | 
 | 	 * the stopper. | 
 | 	 * | 
 | 	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is | 
 | 	 * completed the RISC will set the ASC_RQ_STOPPER bit. | 
 | 	 */ | 
 | 	asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); | 
 |  | 
 | 	/* | 
 | 	 * Set RISC IRQ physical address start value. | 
 | 	 * | 
 | 	 * carr_pa is LE, must be native before write * | 
 | 	 */ | 
 | 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); | 
 | 	asc_dvc->carr_pending_cnt = 0; | 
 |  | 
 | 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, | 
 | 			     (ADV_INTR_ENABLE_HOST_INTR | | 
 | 			      ADV_INTR_ENABLE_GLOBAL_INTR)); | 
 |  | 
 | 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); | 
 | 	AdvWriteWordRegister(iop_base, IOPW_PC, word); | 
 |  | 
 | 	/* finally, finally, gentlemen, start your engine */ | 
 | 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); | 
 |  | 
 | 	/* | 
 | 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus | 
 | 	 * Resets should be performed. The RISC has to be running | 
 | 	 * to issue a SCSI Bus Reset. | 
 | 	 */ | 
 | 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { | 
 | 		/* | 
 | 		 * If the BIOS Signature is present in memory, restore the | 
 | 		 * BIOS Handshake Configuration Table and do not perform | 
 | 		 * a SCSI Bus Reset. | 
 | 		 */ | 
 | 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == | 
 | 		    0x55AA) { | 
 | 			/* | 
 | 			 * Restore per TID negotiated values. | 
 | 			 */ | 
 | 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); | 
 | 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); | 
 | 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, | 
 | 					 tagqng_able); | 
 | 			for (tid = 0; tid <= ADV_MAX_TID; tid++) { | 
 | 				AdvWriteByteLram(iop_base, | 
 | 						 ASC_MC_NUMBER_OF_MAX_CMD + tid, | 
 | 						 max_cmd[tid]); | 
 | 			} | 
 | 		} else { | 
 | 			if (AdvResetSB(asc_dvc) != ADV_TRUE) { | 
 | 				warn_code = ASC_WARN_BUSRESET_ERROR; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return warn_code; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the ASC-38C1600. | 
 |  * | 
 |  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR. | 
 |  * | 
 |  * For a non-fatal error return a warning code. If there are no warnings | 
 |  * then 0 is returned. | 
 |  * | 
 |  * Needed after initialization for error recovery. | 
 |  */ | 
 | static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc) | 
 | { | 
 | 	const struct firmware *fw; | 
 | 	const char fwname[] = "advansys/38C1600.bin"; | 
 | 	AdvPortAddr iop_base; | 
 | 	ushort warn_code; | 
 | 	int begin_addr; | 
 | 	int end_addr; | 
 | 	ushort code_sum; | 
 | 	long word; | 
 | 	int i; | 
 | 	int err; | 
 | 	unsigned long chksum; | 
 | 	ushort scsi_cfg1; | 
 | 	uchar byte; | 
 | 	uchar tid; | 
 | 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */ | 
 | 	ushort wdtr_able, sdtr_able, ppr_able, tagqng_able; | 
 | 	uchar max_cmd[ASC_MAX_TID + 1]; | 
 |  | 
 | 	/* If there is already an error, don't continue. */ | 
 | 	if (asc_dvc->err_code != 0) { | 
 | 		return ADV_ERROR; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600. | 
 | 	 */ | 
 | 	if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) { | 
 | 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; | 
 | 		return ADV_ERROR; | 
 | 	} | 
 |  | 
 | 	warn_code = 0; | 
 | 	iop_base = asc_dvc->iop_base; | 
 |  | 
 | 	/* | 
 | 	 * Save the RISC memory BIOS region before writing the microcode. | 
 | 	 * The BIOS may already be loaded and using its RISC LRAM region | 
 | 	 * so its region must be saved and restored. | 
 | 	 * | 
 | 	 * Note: This code makes the assumption, which is currently true, | 
 | 	 * that a chip reset does not clear RISC LRAM. | 
 | 	 */ | 
 | 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { | 
 | 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), | 
 | 				bios_mem[i]); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Save current per TID negotiated values. | 
 | 	 */ | 
 | 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); | 
 | 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); | 
 | 	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); | 
 | 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); | 
 | 	for (tid = 0; tid <= ASC_MAX_TID; tid++) { | 
 | 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, | 
 | 				max_cmd[tid]); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * RAM BIST (Built-In Self Test) | 
 | 	 * | 
 | 	 * Address : I/O base + offset 0x38h register (byte). | 
 | 	 * Function: Bit 7-6(RW) : RAM mode | 
 | 	 *                          Normal Mode   : 0x00 | 
 | 	 *                          Pre-test Mode : 0x40 | 
 | 	 *                          RAM Test Mode : 0x80 | 
 | 	 *           Bit 5       : unused | 
 | 	 *           Bit 4(RO)   : Done bit | 
 | 	 *           Bit 3-0(RO) : Status | 
 | 	 *                          Host Error    : 0x08 | 
 | 	 *                          Int_RAM Error : 0x04 | 
 | 	 *                          RISC Error    : 0x02 | 
 | 	 *                          SCSI Error    : 0x01 | 
 | 	 *                          No Error      : 0x00 | 
 | 	 * | 
 | 	 * Note: RAM BIST code should be put right here, before loading the | 
 | 	 * microcode and after saving the RISC memory BIOS region. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * LRAM Pre-test | 
 | 	 * | 
 | 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds. | 
 | 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return | 
 | 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset | 
 | 	 * to NORMAL_MODE, return an error too. | 
 | 	 */ | 
 | 	for (i = 0; i < 2; i++) { | 
 | 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE); | 
 | 		mdelay(10);	/* Wait for 10ms before reading back. */ | 
 | 		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); | 
 | 		if ((byte & RAM_TEST_DONE) == 0 | 
 | 		    || (byte & 0x0F) != PRE_TEST_VALUE) { | 
 | 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; | 
 | 			return ADV_ERROR; | 
 | 		} | 
 |  | 
 | 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); | 
 | 		mdelay(10);	/* Wait for 10ms before reading back. */ | 
 | 		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST) | 
 | 		    != NORMAL_VALUE) { | 
 | 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; | 
 | 			return ADV_ERROR; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * LRAM Test - It takes about 1.5 ms to run through the test. | 
 | 	 * | 
 | 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds. | 
 | 	 * If Done bit not set or Status not 0, save register byte, set the | 
 | 	 * err_code, and return an error. | 
 | 	 */ | 
 | 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE); | 
 | 	mdelay(10);	/* Wait for 10ms before checking status. */ | 
 |  | 
 | 	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); | 
 | 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) { | 
 | 		/* Get here if Done bit not set or Status not 0. */ | 
 | 		asc_dvc->bist_err_code = byte;	/* for BIOS display message */ | 
 | 		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST; | 
 | 		return ADV_ERROR; | 
 | 	} | 
 |  | 
 | 	/* We need to reset back to normal mode after LRAM test passes. */ | 
 | 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); | 
 |  | 
 | 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); | 
 | 	if (err) { | 
 | 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n", | 
 | 		       fwname, err); | 
 | 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; | 
 | 		return err; | 
 | 	} | 
 | 	if (fw->size < 4) { | 
 | 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", | 
 | 		       fw->size, fwname); | 
 | 		release_firmware(fw); | 
 | 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | | 
 | 		 (fw->data[1] << 8) | fw->data[0]; | 
 | 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], | 
 | 					     fw->size - 4, ADV_38C1600_MEMSIZE, | 
 | 					     chksum); | 
 | 	release_firmware(fw); | 
 | 	if (asc_dvc->err_code) | 
 | 		return ADV_ERROR; | 
 |  | 
 | 	/* | 
 | 	 * Restore the RISC memory BIOS region. | 
 | 	 */ | 
 | 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { | 
 | 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), | 
 | 				 bios_mem[i]); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Calculate and write the microcode code checksum to the microcode | 
 | 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). | 
 | 	 */ | 
 | 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); | 
 | 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); | 
 | 	code_sum = 0; | 
 | 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); | 
 | 	for (word = begin_addr; word < end_addr; word += 2) { | 
 | 		code_sum += AdvReadWordAutoIncLram(iop_base); | 
 | 	} | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); | 
 |  | 
 | 	/* | 
 | 	 * Read microcode version and date. | 
 | 	 */ | 
 | 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, | 
 | 			asc_dvc->cfg->mcode_date); | 
 | 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, | 
 | 			asc_dvc->cfg->mcode_version); | 
 |  | 
 | 	/* | 
 | 	 * Set the chip type to indicate the ASC38C1600. | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600); | 
 |  | 
 | 	/* | 
 | 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. | 
 | 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current | 
 | 	 * cable detection and then we are able to read C_DET[3:0]. | 
 | 	 * | 
 | 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 | 
 | 	 * Microcode Default Value' section below. | 
 | 	 */ | 
 | 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); | 
 | 	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, | 
 | 			     scsi_cfg1 | DIS_TERM_DRV); | 
 |  | 
 | 	/* | 
 | 	 * If the PCI Configuration Command Register "Parity Error Response | 
 | 	 * Control" Bit was clear (0), then set the microcode variable | 
 | 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode | 
 | 	 * to ignore DMA parity errors. | 
 | 	 */ | 
 | 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { | 
 | 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); | 
 | 		word |= CONTROL_FLAG_IGNORE_PERR; | 
 | 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the BIOS control flag AIPP (Asynchronous Information | 
 | 	 * Phase Protection) disable bit is not set, then set the firmware | 
 | 	 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable | 
 | 	 * AIPP checking and encoding. | 
 | 	 */ | 
 | 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) { | 
 | 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); | 
 | 		word |= CONTROL_FLAG_ENABLE_AIPP; | 
 | 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4], | 
 | 	 * and START_CTL_TH [3:2]. | 
 | 	 */ | 
 | 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, | 
 | 			     FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM); | 
 |  | 
 | 	/* | 
 | 	 * Microcode operating variables for WDTR, SDTR, and command tag | 
 | 	 * queuing will be set in slave_configure() based on what a | 
 | 	 * device reports it is capable of in Inquiry byte 7. | 
 | 	 * | 
 | 	 * If SCSI Bus Resets have been disabled, then directly set | 
 | 	 * SDTR and WDTR from the EEPROM configuration. This will allow | 
 | 	 * the BIOS and warm boot to work without a SCSI bus hang on | 
 | 	 * the Inquiry caused by host and target mismatched DTR values. | 
 | 	 * Without the SCSI Bus Reset, before an Inquiry a device can't | 
 | 	 * be assumed to be in Asynchronous, Narrow mode. | 
 | 	 */ | 
 | 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { | 
 | 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, | 
 | 				 asc_dvc->wdtr_able); | 
 | 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, | 
 | 				 asc_dvc->sdtr_able); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set microcode operating variables for DISC and SDTR_SPEED1, | 
 | 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM | 
 | 	 * configuration values. | 
 | 	 * | 
 | 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, | 
 | 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them | 
 | 	 * without determining here whether the device supports SDTR. | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, | 
 | 			 asc_dvc->cfg->disc_enable); | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1); | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2); | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3); | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4); | 
 |  | 
 | 	/* | 
 | 	 * Set SCSI_CFG0 Microcode Default Value. | 
 | 	 * | 
 | 	 * The microcode will set the SCSI_CFG0 register using this value | 
 | 	 * after it is started below. | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, | 
 | 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | | 
 | 			 asc_dvc->chip_scsi_id); | 
 |  | 
 | 	/* | 
 | 	 * Calculate SCSI_CFG1 Microcode Default Value. | 
 | 	 * | 
 | 	 * The microcode will set the SCSI_CFG1 register using this value | 
 | 	 * after it is started below. | 
 | 	 * | 
 | 	 * Each ASC-38C1600 function has only two cable detect bits. | 
 | 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR. | 
 | 	 */ | 
 | 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); | 
 |  | 
 | 	/* | 
 | 	 * If the cable is reversed all of the SCSI_CTRL register signals | 
 | 	 * will be set. Check for and return an error if this condition is | 
 | 	 * found. | 
 | 	 */ | 
 | 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { | 
 | 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; | 
 | 		return ADV_ERROR; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Each ASC-38C1600 function has two connectors. Only an HVD device | 
 | 	 * can not be connected to either connector. An LVD device or SE device | 
 | 	 * may be connected to either connecor. If an SE device is connected, | 
 | 	 * then at most Ultra speed (20 Mhz) can be used on both connectors. | 
 | 	 * | 
 | 	 * If an HVD device is attached, return an error. | 
 | 	 */ | 
 | 	if (scsi_cfg1 & HVD) { | 
 | 		asc_dvc->err_code |= ASC_IERR_HVD_DEVICE; | 
 | 		return ADV_ERROR; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Each function in the ASC-38C1600 uses only the SE cable detect and | 
 | 	 * termination because there are two connectors for each function. Each | 
 | 	 * function may use either LVD or SE mode. Corresponding the SE automatic | 
 | 	 * termination control EEPROM bits are used for each function. Each | 
 | 	 * function has its own EEPROM. If SE automatic control is enabled for | 
 | 	 * the function, then set the termination value based on a table listed | 
 | 	 * in a_condor.h. | 
 | 	 * | 
 | 	 * If manual termination is specified in the EEPROM for the function, | 
 | 	 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is | 
 | 	 * ready to be 'ored' into SCSI_CFG1. | 
 | 	 */ | 
 | 	if ((asc_dvc->cfg->termination & TERM_SE) == 0) { | 
 | 		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc); | 
 | 		/* SE automatic termination control is enabled. */ | 
 | 		switch (scsi_cfg1 & C_DET_SE) { | 
 | 			/* TERM_SE_HI: on, TERM_SE_LO: on */ | 
 | 		case 0x1: | 
 | 		case 0x2: | 
 | 		case 0x3: | 
 | 			asc_dvc->cfg->termination |= TERM_SE; | 
 | 			break; | 
 |  | 
 | 		case 0x0: | 
 | 			if (PCI_FUNC(pdev->devfn) == 0) { | 
 | 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */ | 
 | 			} else { | 
 | 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */ | 
 | 				asc_dvc->cfg->termination |= TERM_SE_HI; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Clear any set TERM_SE bits. | 
 | 	 */ | 
 | 	scsi_cfg1 &= ~TERM_SE; | 
 |  | 
 | 	/* | 
 | 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'. | 
 | 	 */ | 
 | 	scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE); | 
 |  | 
 | 	/* | 
 | 	 * Clear Big Endian and Terminator Polarity bits and set possibly | 
 | 	 * modified termination control bits in the Microcode SCSI_CFG1 | 
 | 	 * Register Value. | 
 | 	 * | 
 | 	 * Big Endian bit is not used even on big endian machines. | 
 | 	 */ | 
 | 	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL); | 
 |  | 
 | 	/* | 
 | 	 * Set SCSI_CFG1 Microcode Default Value | 
 | 	 * | 
 | 	 * Set possibly modified termination control bits in the Microcode | 
 | 	 * SCSI_CFG1 Register Value. | 
 | 	 * | 
 | 	 * The microcode will set the SCSI_CFG1 register using this value | 
 | 	 * after it is started below. | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); | 
 |  | 
 | 	/* | 
 | 	 * Set MEM_CFG Microcode Default Value | 
 | 	 * | 
 | 	 * The microcode will set the MEM_CFG register using this value | 
 | 	 * after it is started below. | 
 | 	 * | 
 | 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 | 
 | 	 * are defined. | 
 | 	 * | 
 | 	 * ASC-38C1600 has 32KB internal memory. | 
 | 	 * | 
 | 	 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come | 
 | 	 * out a special 16K Adv Library and Microcode version. After the issue | 
 | 	 * resolved, we should turn back to the 32K support. Both a_condor.h and | 
 | 	 * mcode.sas files also need to be updated. | 
 | 	 * | 
 | 	 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, | 
 | 	 *  BIOS_EN | RAM_SZ_32KB); | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, | 
 | 			 BIOS_EN | RAM_SZ_16KB); | 
 |  | 
 | 	/* | 
 | 	 * Set SEL_MASK Microcode Default Value | 
 | 	 * | 
 | 	 * The microcode will set the SEL_MASK register using this value | 
 | 	 * after it is started below. | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, | 
 | 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); | 
 |  | 
 | 	AdvBuildCarrierFreelist(asc_dvc); | 
 |  | 
 | 	/* | 
 | 	 * Set-up the Host->RISC Initiator Command Queue (ICQ). | 
 | 	 */ | 
 | 	if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) { | 
 | 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER; | 
 | 		return ADV_ERROR; | 
 | 	} | 
 | 	asc_dvc->carr_freelist = (ADV_CARR_T *) | 
 | 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa)); | 
 |  | 
 | 	/* | 
 | 	 * The first command issued will be placed in the stopper carrier. | 
 | 	 */ | 
 | 	asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); | 
 |  | 
 | 	/* | 
 | 	 * Set RISC ICQ physical address start value. Initialize the | 
 | 	 * COMMA register to the same value otherwise the RISC will | 
 | 	 * prematurely detect a command is available. | 
 | 	 */ | 
 | 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); | 
 | 	AdvWriteDWordRegister(iop_base, IOPDW_COMMA, | 
 | 			      le32_to_cpu(asc_dvc->icq_sp->carr_pa)); | 
 |  | 
 | 	/* | 
 | 	 * Set-up the RISC->Host Initiator Response Queue (IRQ). | 
 | 	 */ | 
 | 	if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) { | 
 | 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER; | 
 | 		return ADV_ERROR; | 
 | 	} | 
 | 	asc_dvc->carr_freelist = (ADV_CARR_T *) | 
 | 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa)); | 
 |  | 
 | 	/* | 
 | 	 * The first command completed by the RISC will be placed in | 
 | 	 * the stopper. | 
 | 	 * | 
 | 	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is | 
 | 	 * completed the RISC will set the ASC_RQ_STOPPER bit. | 
 | 	 */ | 
 | 	asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); | 
 |  | 
 | 	/* | 
 | 	 * Set RISC IRQ physical address start value. | 
 | 	 */ | 
 | 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); | 
 | 	asc_dvc->carr_pending_cnt = 0; | 
 |  | 
 | 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, | 
 | 			     (ADV_INTR_ENABLE_HOST_INTR | | 
 | 			      ADV_INTR_ENABLE_GLOBAL_INTR)); | 
 | 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); | 
 | 	AdvWriteWordRegister(iop_base, IOPW_PC, word); | 
 |  | 
 | 	/* finally, finally, gentlemen, start your engine */ | 
 | 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); | 
 |  | 
 | 	/* | 
 | 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus | 
 | 	 * Resets should be performed. The RISC has to be running | 
 | 	 * to issue a SCSI Bus Reset. | 
 | 	 */ | 
 | 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { | 
 | 		/* | 
 | 		 * If the BIOS Signature is present in memory, restore the | 
 | 		 * per TID microcode operating variables. | 
 | 		 */ | 
 | 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == | 
 | 		    0x55AA) { | 
 | 			/* | 
 | 			 * Restore per TID negotiated values. | 
 | 			 */ | 
 | 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); | 
 | 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); | 
 | 			AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); | 
 | 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, | 
 | 					 tagqng_able); | 
 | 			for (tid = 0; tid <= ASC_MAX_TID; tid++) { | 
 | 				AdvWriteByteLram(iop_base, | 
 | 						 ASC_MC_NUMBER_OF_MAX_CMD + tid, | 
 | 						 max_cmd[tid]); | 
 | 			} | 
 | 		} else { | 
 | 			if (AdvResetSB(asc_dvc) != ADV_TRUE) { | 
 | 				warn_code = ASC_WARN_BUSRESET_ERROR; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return warn_code; | 
 | } | 
 |  | 
 | /* | 
 |  * Reset chip and SCSI Bus. | 
 |  * | 
 |  * Return Value: | 
 |  *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful. | 
 |  *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure. | 
 |  */ | 
 | static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc) | 
 | { | 
 | 	int status; | 
 | 	ushort wdtr_able, sdtr_able, tagqng_able; | 
 | 	ushort ppr_able = 0; | 
 | 	uchar tid, max_cmd[ADV_MAX_TID + 1]; | 
 | 	AdvPortAddr iop_base; | 
 | 	ushort bios_sig; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 |  | 
 | 	/* | 
 | 	 * Save current per TID negotiated values. | 
 | 	 */ | 
 | 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); | 
 | 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); | 
 | 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { | 
 | 		AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); | 
 | 	} | 
 | 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); | 
 | 	for (tid = 0; tid <= ADV_MAX_TID; tid++) { | 
 | 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, | 
 | 				max_cmd[tid]); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Force the AdvInitAsc3550/38C0800Driver() function to | 
 | 	 * perform a SCSI Bus Reset by clearing the BIOS signature word. | 
 | 	 * The initialization functions assumes a SCSI Bus Reset is not | 
 | 	 * needed if the BIOS signature word is present. | 
 | 	 */ | 
 | 	AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig); | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0); | 
 |  | 
 | 	/* | 
 | 	 * Stop chip and reset it. | 
 | 	 */ | 
 | 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP); | 
 | 	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET); | 
 | 	mdelay(100); | 
 | 	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, | 
 | 			     ADV_CTRL_REG_CMD_WR_IO_REG); | 
 |  | 
 | 	/* | 
 | 	 * Reset Adv Library error code, if any, and try | 
 | 	 * re-initializing the chip. | 
 | 	 */ | 
 | 	asc_dvc->err_code = 0; | 
 | 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { | 
 | 		status = AdvInitAsc38C1600Driver(asc_dvc); | 
 | 	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { | 
 | 		status = AdvInitAsc38C0800Driver(asc_dvc); | 
 | 	} else { | 
 | 		status = AdvInitAsc3550Driver(asc_dvc); | 
 | 	} | 
 |  | 
 | 	/* Translate initialization return value to status value. */ | 
 | 	if (status == 0) { | 
 | 		status = ADV_TRUE; | 
 | 	} else { | 
 | 		status = ADV_FALSE; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Restore the BIOS signature word. | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig); | 
 |  | 
 | 	/* | 
 | 	 * Restore per TID negotiated values. | 
 | 	 */ | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); | 
 | 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { | 
 | 		AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); | 
 | 	} | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); | 
 | 	for (tid = 0; tid <= ADV_MAX_TID; tid++) { | 
 | 		AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, | 
 | 				 max_cmd[tid]); | 
 | 	} | 
 |  | 
 | 	return status; | 
 | } | 
 |  | 
 | /* | 
 |  * adv_async_callback() - Adv Library asynchronous event callback function. | 
 |  */ | 
 | static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code) | 
 | { | 
 | 	switch (code) { | 
 | 	case ADV_ASYNC_SCSI_BUS_RESET_DET: | 
 | 		/* | 
 | 		 * The firmware detected a SCSI Bus reset. | 
 | 		 */ | 
 | 		ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n"); | 
 | 		break; | 
 |  | 
 | 	case ADV_ASYNC_RDMA_FAILURE: | 
 | 		/* | 
 | 		 * Handle RDMA failure by resetting the SCSI Bus and | 
 | 		 * possibly the chip if it is unresponsive. Log the error | 
 | 		 * with a unique code. | 
 | 		 */ | 
 | 		ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n"); | 
 | 		AdvResetChipAndSB(adv_dvc_varp); | 
 | 		break; | 
 |  | 
 | 	case ADV_HOST_SCSI_BUS_RESET: | 
 | 		/* | 
 | 		 * Host generated SCSI bus reset occurred. | 
 | 		 */ | 
 | 		ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n"); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		ASC_DBG(0, "unknown code 0x%x\n", code); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR(). | 
 |  * | 
 |  * Callback function for the Wide SCSI Adv Library. | 
 |  */ | 
 | static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp) | 
 | { | 
 | 	struct asc_board *boardp; | 
 | 	adv_req_t *reqp; | 
 | 	adv_sgblk_t *sgblkp; | 
 | 	struct scsi_cmnd *scp; | 
 | 	struct Scsi_Host *shost; | 
 | 	ADV_DCNT resid_cnt; | 
 |  | 
 | 	ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n", | 
 | 		 (ulong)adv_dvc_varp, (ulong)scsiqp); | 
 | 	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); | 
 |  | 
 | 	/* | 
 | 	 * Get the adv_req_t structure for the command that has been | 
 | 	 * completed. The adv_req_t structure actually contains the | 
 | 	 * completed ADV_SCSI_REQ_Q structure. | 
 | 	 */ | 
 | 	reqp = (adv_req_t *)ADV_U32_TO_VADDR(scsiqp->srb_ptr); | 
 | 	ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp); | 
 | 	if (reqp == NULL) { | 
 | 		ASC_PRINT("adv_isr_callback: reqp is NULL\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Get the struct scsi_cmnd structure and Scsi_Host structure for the | 
 | 	 * command that has been completed. | 
 | 	 * | 
 | 	 * Note: The adv_req_t request structure and adv_sgblk_t structure, | 
 | 	 * if any, are dropped, because a board structure pointer can not be | 
 | 	 * determined. | 
 | 	 */ | 
 | 	scp = reqp->cmndp; | 
 | 	ASC_DBG(1, "scp 0x%p\n", scp); | 
 | 	if (scp == NULL) { | 
 | 		ASC_PRINT | 
 | 		    ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n"); | 
 | 		return; | 
 | 	} | 
 | 	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); | 
 |  | 
 | 	shost = scp->device->host; | 
 | 	ASC_STATS(shost, callback); | 
 | 	ASC_DBG(1, "shost 0x%p\n", shost); | 
 |  | 
 | 	boardp = shost_priv(shost); | 
 | 	BUG_ON(adv_dvc_varp != &boardp->dvc_var.adv_dvc_var); | 
 |  | 
 | 	/* | 
 | 	 * 'done_status' contains the command's ending status. | 
 | 	 */ | 
 | 	switch (scsiqp->done_status) { | 
 | 	case QD_NO_ERROR: | 
 | 		ASC_DBG(2, "QD_NO_ERROR\n"); | 
 | 		scp->result = 0; | 
 |  | 
 | 		/* | 
 | 		 * Check for an underrun condition. | 
 | 		 * | 
 | 		 * If there was no error and an underrun condition, then | 
 | 		 * then return the number of underrun bytes. | 
 | 		 */ | 
 | 		resid_cnt = le32_to_cpu(scsiqp->data_cnt); | 
 | 		if (scsi_bufflen(scp) != 0 && resid_cnt != 0 && | 
 | 		    resid_cnt <= scsi_bufflen(scp)) { | 
 | 			ASC_DBG(1, "underrun condition %lu bytes\n", | 
 | 				 (ulong)resid_cnt); | 
 | 			scsi_set_resid(scp, resid_cnt); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case QD_WITH_ERROR: | 
 | 		ASC_DBG(2, "QD_WITH_ERROR\n"); | 
 | 		switch (scsiqp->host_status) { | 
 | 		case QHSTA_NO_ERROR: | 
 | 			if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) { | 
 | 				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n"); | 
 | 				ASC_DBG_PRT_SENSE(2, scp->sense_buffer, | 
 | 						  SCSI_SENSE_BUFFERSIZE); | 
 | 				/* | 
 | 				 * Note: The 'status_byte()' macro used by | 
 | 				 * target drivers defined in scsi.h shifts the | 
 | 				 * status byte returned by host drivers right | 
 | 				 * by 1 bit.  This is why target drivers also | 
 | 				 * use right shifted status byte definitions. | 
 | 				 * For instance target drivers use | 
 | 				 * CHECK_CONDITION, defined to 0x1, instead of | 
 | 				 * the SCSI defined check condition value of | 
 | 				 * 0x2. Host drivers are supposed to return | 
 | 				 * the status byte as it is defined by SCSI. | 
 | 				 */ | 
 | 				scp->result = DRIVER_BYTE(DRIVER_SENSE) | | 
 | 				    STATUS_BYTE(scsiqp->scsi_status); | 
 | 			} else { | 
 | 				scp->result = STATUS_BYTE(scsiqp->scsi_status); | 
 | 			} | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			/* Some other QHSTA error occurred. */ | 
 | 			ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status); | 
 | 			scp->result = HOST_BYTE(DID_BAD_TARGET); | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case QD_ABORTED_BY_HOST: | 
 | 		ASC_DBG(1, "QD_ABORTED_BY_HOST\n"); | 
 | 		scp->result = | 
 | 		    HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status); | 
 | 		scp->result = | 
 | 		    HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the 'init_tidmask' bit isn't already set for the target and the | 
 | 	 * current request finished normally, then set the bit for the target | 
 | 	 * to indicate that a device is present. | 
 | 	 */ | 
 | 	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 && | 
 | 	    scsiqp->done_status == QD_NO_ERROR && | 
 | 	    scsiqp->host_status == QHSTA_NO_ERROR) { | 
 | 		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id); | 
 | 	} | 
 |  | 
 | 	asc_scsi_done(scp); | 
 |  | 
 | 	/* | 
 | 	 * Free all 'adv_sgblk_t' structures allocated for the request. | 
 | 	 */ | 
 | 	while ((sgblkp = reqp->sgblkp) != NULL) { | 
 | 		/* Remove 'sgblkp' from the request list. */ | 
 | 		reqp->sgblkp = sgblkp->next_sgblkp; | 
 |  | 
 | 		/* Add 'sgblkp' to the board free list. */ | 
 | 		sgblkp->next_sgblkp = boardp->adv_sgblkp; | 
 | 		boardp->adv_sgblkp = sgblkp; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Free the adv_req_t structure used with the command by adding | 
 | 	 * it back to the board free list. | 
 | 	 */ | 
 | 	reqp->next_reqp = boardp->adv_reqp; | 
 | 	boardp->adv_reqp = reqp; | 
 |  | 
 | 	ASC_DBG(1, "done\n"); | 
 | } | 
 |  | 
 | /* | 
 |  * Adv Library Interrupt Service Routine | 
 |  * | 
 |  *  This function is called by a driver's interrupt service routine. | 
 |  *  The function disables and re-enables interrupts. | 
 |  * | 
 |  *  When a microcode idle command is completed, the ADV_DVC_VAR | 
 |  *  'idle_cmd_done' field is set to ADV_TRUE. | 
 |  * | 
 |  *  Note: AdvISR() can be called when interrupts are disabled or even | 
 |  *  when there is no hardware interrupt condition present. It will | 
 |  *  always check for completed idle commands and microcode requests. | 
 |  *  This is an important feature that shouldn't be changed because it | 
 |  *  allows commands to be completed from polling mode loops. | 
 |  * | 
 |  * Return: | 
 |  *   ADV_TRUE(1) - interrupt was pending | 
 |  *   ADV_FALSE(0) - no interrupt was pending | 
 |  */ | 
 | static int AdvISR(ADV_DVC_VAR *asc_dvc) | 
 | { | 
 | 	AdvPortAddr iop_base; | 
 | 	uchar int_stat; | 
 | 	ushort target_bit; | 
 | 	ADV_CARR_T *free_carrp; | 
 | 	ADV_VADDR irq_next_vpa; | 
 | 	ADV_SCSI_REQ_Q *scsiq; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 |  | 
 | 	/* Reading the register clears the interrupt. */ | 
 | 	int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG); | 
 |  | 
 | 	if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB | | 
 | 			 ADV_INTR_STATUS_INTRC)) == 0) { | 
 | 		return ADV_FALSE; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Notify the driver of an asynchronous microcode condition by | 
 | 	 * calling the adv_async_callback function. The function | 
 | 	 * is passed the microcode ASC_MC_INTRB_CODE byte value. | 
 | 	 */ | 
 | 	if (int_stat & ADV_INTR_STATUS_INTRB) { | 
 | 		uchar intrb_code; | 
 |  | 
 | 		AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code); | 
 |  | 
 | 		if (asc_dvc->chip_type == ADV_CHIP_ASC3550 || | 
 | 		    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { | 
 | 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE && | 
 | 			    asc_dvc->carr_pending_cnt != 0) { | 
 | 				AdvWriteByteRegister(iop_base, IOPB_TICKLE, | 
 | 						     ADV_TICKLE_A); | 
 | 				if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { | 
 | 					AdvWriteByteRegister(iop_base, | 
 | 							     IOPB_TICKLE, | 
 | 							     ADV_TICKLE_NOP); | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		adv_async_callback(asc_dvc, intrb_code); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check if the IRQ stopper carrier contains a completed request. | 
 | 	 */ | 
 | 	while (((irq_next_vpa = | 
 | 		 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ASC_RQ_DONE) != 0) { | 
 | 		/* | 
 | 		 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure. | 
 | 		 * The RISC will have set 'areq_vpa' to a virtual address. | 
 | 		 * | 
 | 		 * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr | 
 | 		 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion | 
 | 		 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr' | 
 | 		 * in AdvExeScsiQueue(). | 
 | 		 */ | 
 | 		scsiq = (ADV_SCSI_REQ_Q *) | 
 | 		    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->areq_vpa)); | 
 |  | 
 | 		/* | 
 | 		 * Request finished with good status and the queue was not | 
 | 		 * DMAed to host memory by the firmware. Set all status fields | 
 | 		 * to indicate good status. | 
 | 		 */ | 
 | 		if ((irq_next_vpa & ASC_RQ_GOOD) != 0) { | 
 | 			scsiq->done_status = QD_NO_ERROR; | 
 | 			scsiq->host_status = scsiq->scsi_status = 0; | 
 | 			scsiq->data_cnt = 0L; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Advance the stopper pointer to the next carrier | 
 | 		 * ignoring the lower four bits. Free the previous | 
 | 		 * stopper carrier. | 
 | 		 */ | 
 | 		free_carrp = asc_dvc->irq_sp; | 
 | 		asc_dvc->irq_sp = (ADV_CARR_T *) | 
 | 		    ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa)); | 
 |  | 
 | 		free_carrp->next_vpa = | 
 | 		    cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist)); | 
 | 		asc_dvc->carr_freelist = free_carrp; | 
 | 		asc_dvc->carr_pending_cnt--; | 
 |  | 
 | 		target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id); | 
 |  | 
 | 		/* | 
 | 		 * Clear request microcode control flag. | 
 | 		 */ | 
 | 		scsiq->cntl = 0; | 
 |  | 
 | 		/* | 
 | 		 * Notify the driver of the completed request by passing | 
 | 		 * the ADV_SCSI_REQ_Q pointer to its callback function. | 
 | 		 */ | 
 | 		scsiq->a_flag |= ADV_SCSIQ_DONE; | 
 | 		adv_isr_callback(asc_dvc, scsiq); | 
 | 		/* | 
 | 		 * Note: After the driver callback function is called, 'scsiq' | 
 | 		 * can no longer be referenced. | 
 | 		 * | 
 | 		 * Fall through and continue processing other completed | 
 | 		 * requests... | 
 | 		 */ | 
 | 	} | 
 | 	return ADV_TRUE; | 
 | } | 
 |  | 
 | static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code) | 
 | { | 
 | 	if (asc_dvc->err_code == 0) { | 
 | 		asc_dvc->err_code = err_code; | 
 | 		AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W, | 
 | 				 err_code); | 
 | 	} | 
 | 	return err_code; | 
 | } | 
 |  | 
 | static void AscAckInterrupt(PortAddr iop_base) | 
 | { | 
 | 	uchar host_flag; | 
 | 	uchar risc_flag; | 
 | 	ushort loop; | 
 |  | 
 | 	loop = 0; | 
 | 	do { | 
 | 		risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B); | 
 | 		if (loop++ > 0x7FFF) { | 
 | 			break; | 
 | 		} | 
 | 	} while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0); | 
 | 	host_flag = | 
 | 	    AscReadLramByte(iop_base, | 
 | 			    ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT); | 
 | 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, | 
 | 			 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT)); | 
 | 	AscSetChipStatus(iop_base, CIW_INT_ACK); | 
 | 	loop = 0; | 
 | 	while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) { | 
 | 		AscSetChipStatus(iop_base, CIW_INT_ACK); | 
 | 		if (loop++ > 3) { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); | 
 | } | 
 |  | 
 | static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time) | 
 | { | 
 | 	const uchar *period_table; | 
 | 	int max_index; | 
 | 	int min_index; | 
 | 	int i; | 
 |  | 
 | 	period_table = asc_dvc->sdtr_period_tbl; | 
 | 	max_index = (int)asc_dvc->max_sdtr_index; | 
 | 	min_index = (int)asc_dvc->min_sdtr_index; | 
 | 	if ((syn_time <= period_table[max_index])) { | 
 | 		for (i = min_index; i < (max_index - 1); i++) { | 
 | 			if (syn_time <= period_table[i]) { | 
 | 				return (uchar)i; | 
 | 			} | 
 | 		} | 
 | 		return (uchar)max_index; | 
 | 	} else { | 
 | 		return (uchar)(max_index + 1); | 
 | 	} | 
 | } | 
 |  | 
 | static uchar | 
 | AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset) | 
 | { | 
 | 	EXT_MSG sdtr_buf; | 
 | 	uchar sdtr_period_index; | 
 | 	PortAddr iop_base; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 | 	sdtr_buf.msg_type = EXTENDED_MESSAGE; | 
 | 	sdtr_buf.msg_len = MS_SDTR_LEN; | 
 | 	sdtr_buf.msg_req = EXTENDED_SDTR; | 
 | 	sdtr_buf.xfer_period = sdtr_period; | 
 | 	sdtr_offset &= ASC_SYN_MAX_OFFSET; | 
 | 	sdtr_buf.req_ack_offset = sdtr_offset; | 
 | 	sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period); | 
 | 	if (sdtr_period_index <= asc_dvc->max_sdtr_index) { | 
 | 		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, | 
 | 					(uchar *)&sdtr_buf, | 
 | 					sizeof(EXT_MSG) >> 1); | 
 | 		return ((sdtr_period_index << 4) | sdtr_offset); | 
 | 	} else { | 
 | 		sdtr_buf.req_ack_offset = 0; | 
 | 		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, | 
 | 					(uchar *)&sdtr_buf, | 
 | 					sizeof(EXT_MSG) >> 1); | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | static uchar | 
 | AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset) | 
 | { | 
 | 	uchar byte; | 
 | 	uchar sdtr_period_ix; | 
 |  | 
 | 	sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period); | 
 | 	if (sdtr_period_ix > asc_dvc->max_sdtr_index) | 
 | 		return 0xFF; | 
 | 	byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET); | 
 | 	return byte; | 
 | } | 
 |  | 
 | static int AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data) | 
 | { | 
 | 	ASC_SCSI_BIT_ID_TYPE org_id; | 
 | 	int i; | 
 | 	int sta = TRUE; | 
 |  | 
 | 	AscSetBank(iop_base, 1); | 
 | 	org_id = AscReadChipDvcID(iop_base); | 
 | 	for (i = 0; i <= ASC_MAX_TID; i++) { | 
 | 		if (org_id == (0x01 << i)) | 
 | 			break; | 
 | 	} | 
 | 	org_id = (ASC_SCSI_BIT_ID_TYPE) i; | 
 | 	AscWriteChipDvcID(iop_base, id); | 
 | 	if (AscReadChipDvcID(iop_base) == (0x01 << id)) { | 
 | 		AscSetBank(iop_base, 0); | 
 | 		AscSetChipSyn(iop_base, sdtr_data); | 
 | 		if (AscGetChipSyn(iop_base) != sdtr_data) { | 
 | 			sta = FALSE; | 
 | 		} | 
 | 	} else { | 
 | 		sta = FALSE; | 
 | 	} | 
 | 	AscSetBank(iop_base, 1); | 
 | 	AscWriteChipDvcID(iop_base, org_id); | 
 | 	AscSetBank(iop_base, 0); | 
 | 	return (sta); | 
 | } | 
 |  | 
 | static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no) | 
 | { | 
 | 	AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); | 
 | 	AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data); | 
 | } | 
 |  | 
 | static int AscIsrChipHalted(ASC_DVC_VAR *asc_dvc) | 
 | { | 
 | 	EXT_MSG ext_msg; | 
 | 	EXT_MSG out_msg; | 
 | 	ushort halt_q_addr; | 
 | 	int sdtr_accept; | 
 | 	ushort int_halt_code; | 
 | 	ASC_SCSI_BIT_ID_TYPE scsi_busy; | 
 | 	ASC_SCSI_BIT_ID_TYPE target_id; | 
 | 	PortAddr iop_base; | 
 | 	uchar tag_code; | 
 | 	uchar q_status; | 
 | 	uchar halt_qp; | 
 | 	uchar sdtr_data; | 
 | 	uchar target_ix; | 
 | 	uchar q_cntl, tid_no; | 
 | 	uchar cur_dvc_qng; | 
 | 	uchar asyn_sdtr; | 
 | 	uchar scsi_status; | 
 | 	struct asc_board *boardp; | 
 |  | 
 | 	BUG_ON(!asc_dvc->drv_ptr); | 
 | 	boardp = asc_dvc->drv_ptr; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 | 	int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W); | 
 |  | 
 | 	halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B); | 
 | 	halt_q_addr = ASC_QNO_TO_QADDR(halt_qp); | 
 | 	target_ix = AscReadLramByte(iop_base, | 
 | 				    (ushort)(halt_q_addr + | 
 | 					     (ushort)ASC_SCSIQ_B_TARGET_IX)); | 
 | 	q_cntl = AscReadLramByte(iop_base, | 
 | 			    (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL)); | 
 | 	tid_no = ASC_TIX_TO_TID(target_ix); | 
 | 	target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no); | 
 | 	if (asc_dvc->pci_fix_asyn_xfer & target_id) { | 
 | 		asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB; | 
 | 	} else { | 
 | 		asyn_sdtr = 0; | 
 | 	} | 
 | 	if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) { | 
 | 		if (asc_dvc->pci_fix_asyn_xfer & target_id) { | 
 | 			AscSetChipSDTR(iop_base, 0, tid_no); | 
 | 			boardp->sdtr_data[tid_no] = 0; | 
 | 		} | 
 | 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); | 
 | 		return (0); | 
 | 	} else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) { | 
 | 		if (asc_dvc->pci_fix_asyn_xfer & target_id) { | 
 | 			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); | 
 | 			boardp->sdtr_data[tid_no] = asyn_sdtr; | 
 | 		} | 
 | 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); | 
 | 		return (0); | 
 | 	} else if (int_halt_code == ASC_HALT_EXTMSG_IN) { | 
 | 		AscMemWordCopyPtrFromLram(iop_base, | 
 | 					  ASCV_MSGIN_BEG, | 
 | 					  (uchar *)&ext_msg, | 
 | 					  sizeof(EXT_MSG) >> 1); | 
 |  | 
 | 		if (ext_msg.msg_type == EXTENDED_MESSAGE && | 
 | 		    ext_msg.msg_req == EXTENDED_SDTR && | 
 | 		    ext_msg.msg_len == MS_SDTR_LEN) { | 
 | 			sdtr_accept = TRUE; | 
 | 			if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) { | 
 |  | 
 | 				sdtr_accept = FALSE; | 
 | 				ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET; | 
 | 			} | 
 | 			if ((ext_msg.xfer_period < | 
 | 			     asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index]) | 
 | 			    || (ext_msg.xfer_period > | 
 | 				asc_dvc->sdtr_period_tbl[asc_dvc-> | 
 | 							 max_sdtr_index])) { | 
 | 				sdtr_accept = FALSE; | 
 | 				ext_msg.xfer_period = | 
 | 				    asc_dvc->sdtr_period_tbl[asc_dvc-> | 
 | 							     min_sdtr_index]; | 
 | 			} | 
 | 			if (sdtr_accept) { | 
 | 				sdtr_data = | 
 | 				    AscCalSDTRData(asc_dvc, ext_msg.xfer_period, | 
 | 						   ext_msg.req_ack_offset); | 
 | 				if ((sdtr_data == 0xFF)) { | 
 |  | 
 | 					q_cntl |= QC_MSG_OUT; | 
 | 					asc_dvc->init_sdtr &= ~target_id; | 
 | 					asc_dvc->sdtr_done &= ~target_id; | 
 | 					AscSetChipSDTR(iop_base, asyn_sdtr, | 
 | 						       tid_no); | 
 | 					boardp->sdtr_data[tid_no] = asyn_sdtr; | 
 | 				} | 
 | 			} | 
 | 			if (ext_msg.req_ack_offset == 0) { | 
 |  | 
 | 				q_cntl &= ~QC_MSG_OUT; | 
 | 				asc_dvc->init_sdtr &= ~target_id; | 
 | 				asc_dvc->sdtr_done &= ~target_id; | 
 | 				AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); | 
 | 			} else { | 
 | 				if (sdtr_accept && (q_cntl & QC_MSG_OUT)) { | 
 | 					q_cntl &= ~QC_MSG_OUT; | 
 | 					asc_dvc->sdtr_done |= target_id; | 
 | 					asc_dvc->init_sdtr |= target_id; | 
 | 					asc_dvc->pci_fix_asyn_xfer &= | 
 | 					    ~target_id; | 
 | 					sdtr_data = | 
 | 					    AscCalSDTRData(asc_dvc, | 
 | 							   ext_msg.xfer_period, | 
 | 							   ext_msg. | 
 | 							   req_ack_offset); | 
 | 					AscSetChipSDTR(iop_base, sdtr_data, | 
 | 						       tid_no); | 
 | 					boardp->sdtr_data[tid_no] = sdtr_data; | 
 | 				} else { | 
 | 					q_cntl |= QC_MSG_OUT; | 
 | 					AscMsgOutSDTR(asc_dvc, | 
 | 						      ext_msg.xfer_period, | 
 | 						      ext_msg.req_ack_offset); | 
 | 					asc_dvc->pci_fix_asyn_xfer &= | 
 | 					    ~target_id; | 
 | 					sdtr_data = | 
 | 					    AscCalSDTRData(asc_dvc, | 
 | 							   ext_msg.xfer_period, | 
 | 							   ext_msg. | 
 | 							   req_ack_offset); | 
 | 					AscSetChipSDTR(iop_base, sdtr_data, | 
 | 						       tid_no); | 
 | 					boardp->sdtr_data[tid_no] = sdtr_data; | 
 | 					asc_dvc->sdtr_done |= target_id; | 
 | 					asc_dvc->init_sdtr |= target_id; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			AscWriteLramByte(iop_base, | 
 | 					 (ushort)(halt_q_addr + | 
 | 						  (ushort)ASC_SCSIQ_B_CNTL), | 
 | 					 q_cntl); | 
 | 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); | 
 | 			return (0); | 
 | 		} else if (ext_msg.msg_type == EXTENDED_MESSAGE && | 
 | 			   ext_msg.msg_req == EXTENDED_WDTR && | 
 | 			   ext_msg.msg_len == MS_WDTR_LEN) { | 
 |  | 
 | 			ext_msg.wdtr_width = 0; | 
 | 			AscMemWordCopyPtrToLram(iop_base, | 
 | 						ASCV_MSGOUT_BEG, | 
 | 						(uchar *)&ext_msg, | 
 | 						sizeof(EXT_MSG) >> 1); | 
 | 			q_cntl |= QC_MSG_OUT; | 
 | 			AscWriteLramByte(iop_base, | 
 | 					 (ushort)(halt_q_addr + | 
 | 						  (ushort)ASC_SCSIQ_B_CNTL), | 
 | 					 q_cntl); | 
 | 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); | 
 | 			return (0); | 
 | 		} else { | 
 |  | 
 | 			ext_msg.msg_type = MESSAGE_REJECT; | 
 | 			AscMemWordCopyPtrToLram(iop_base, | 
 | 						ASCV_MSGOUT_BEG, | 
 | 						(uchar *)&ext_msg, | 
 | 						sizeof(EXT_MSG) >> 1); | 
 | 			q_cntl |= QC_MSG_OUT; | 
 | 			AscWriteLramByte(iop_base, | 
 | 					 (ushort)(halt_q_addr + | 
 | 						  (ushort)ASC_SCSIQ_B_CNTL), | 
 | 					 q_cntl); | 
 | 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); | 
 | 			return (0); | 
 | 		} | 
 | 	} else if (int_halt_code == ASC_HALT_CHK_CONDITION) { | 
 |  | 
 | 		q_cntl |= QC_REQ_SENSE; | 
 |  | 
 | 		if ((asc_dvc->init_sdtr & target_id) != 0) { | 
 |  | 
 | 			asc_dvc->sdtr_done &= ~target_id; | 
 |  | 
 | 			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); | 
 | 			q_cntl |= QC_MSG_OUT; | 
 | 			AscMsgOutSDTR(asc_dvc, | 
 | 				      asc_dvc-> | 
 | 				      sdtr_period_tbl[(sdtr_data >> 4) & | 
 | 						      (uchar)(asc_dvc-> | 
 | 							      max_sdtr_index - | 
 | 							      1)], | 
 | 				      (uchar)(sdtr_data & (uchar) | 
 | 					      ASC_SYN_MAX_OFFSET)); | 
 | 		} | 
 |  | 
 | 		AscWriteLramByte(iop_base, | 
 | 				 (ushort)(halt_q_addr + | 
 | 					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl); | 
 |  | 
 | 		tag_code = AscReadLramByte(iop_base, | 
 | 					   (ushort)(halt_q_addr + (ushort) | 
 | 						    ASC_SCSIQ_B_TAG_CODE)); | 
 | 		tag_code &= 0xDC; | 
 | 		if ((asc_dvc->pci_fix_asyn_xfer & target_id) | 
 | 		    && !(asc_dvc->pci_fix_asyn_xfer_always & target_id) | 
 | 		    ) { | 
 |  | 
 | 			tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT | 
 | 				     | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX); | 
 |  | 
 | 		} | 
 | 		AscWriteLramByte(iop_base, | 
 | 				 (ushort)(halt_q_addr + | 
 | 					  (ushort)ASC_SCSIQ_B_TAG_CODE), | 
 | 				 tag_code); | 
 |  | 
 | 		q_status = AscReadLramByte(iop_base, | 
 | 					   (ushort)(halt_q_addr + (ushort) | 
 | 						    ASC_SCSIQ_B_STATUS)); | 
 | 		q_status |= (QS_READY | QS_BUSY); | 
 | 		AscWriteLramByte(iop_base, | 
 | 				 (ushort)(halt_q_addr + | 
 | 					  (ushort)ASC_SCSIQ_B_STATUS), | 
 | 				 q_status); | 
 |  | 
 | 		scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B); | 
 | 		scsi_busy &= ~target_id; | 
 | 		AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy); | 
 |  | 
 | 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); | 
 | 		return (0); | 
 | 	} else if (int_halt_code == ASC_HALT_SDTR_REJECTED) { | 
 |  | 
 | 		AscMemWordCopyPtrFromLram(iop_base, | 
 | 					  ASCV_MSGOUT_BEG, | 
 | 					  (uchar *)&out_msg, | 
 | 					  sizeof(EXT_MSG) >> 1); | 
 |  | 
 | 		if ((out_msg.msg_type == EXTENDED_MESSAGE) && | 
 | 		    (out_msg.msg_len == MS_SDTR_LEN) && | 
 | 		    (out_msg.msg_req == EXTENDED_SDTR)) { | 
 |  | 
 | 			asc_dvc->init_sdtr &= ~target_id; | 
 | 			asc_dvc->sdtr_done &= ~target_id; | 
 | 			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); | 
 | 			boardp->sdtr_data[tid_no] = asyn_sdtr; | 
 | 		} | 
 | 		q_cntl &= ~QC_MSG_OUT; | 
 | 		AscWriteLramByte(iop_base, | 
 | 				 (ushort)(halt_q_addr + | 
 | 					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl); | 
 | 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); | 
 | 		return (0); | 
 | 	} else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) { | 
 |  | 
 | 		scsi_status = AscReadLramByte(iop_base, | 
 | 					      (ushort)((ushort)halt_q_addr + | 
 | 						       (ushort) | 
 | 						       ASC_SCSIQ_SCSI_STATUS)); | 
 | 		cur_dvc_qng = | 
 | 		    AscReadLramByte(iop_base, | 
 | 				    (ushort)((ushort)ASC_QADR_BEG + | 
 | 					     (ushort)target_ix)); | 
 | 		if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) { | 
 |  | 
 | 			scsi_busy = AscReadLramByte(iop_base, | 
 | 						    (ushort)ASCV_SCSIBUSY_B); | 
 | 			scsi_busy |= target_id; | 
 | 			AscWriteLramByte(iop_base, | 
 | 					 (ushort)ASCV_SCSIBUSY_B, scsi_busy); | 
 | 			asc_dvc->queue_full_or_busy |= target_id; | 
 |  | 
 | 			if (scsi_status == SAM_STAT_TASK_SET_FULL) { | 
 | 				if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) { | 
 | 					cur_dvc_qng -= 1; | 
 | 					asc_dvc->max_dvc_qng[tid_no] = | 
 | 					    cur_dvc_qng; | 
 |  | 
 | 					AscWriteLramByte(iop_base, | 
 | 							 (ushort)((ushort) | 
 | 								  ASCV_MAX_DVC_QNG_BEG | 
 | 								  + (ushort) | 
 | 								  tid_no), | 
 | 							 cur_dvc_qng); | 
 |  | 
 | 					/* | 
 | 					 * Set the device queue depth to the | 
 | 					 * number of active requests when the | 
 | 					 * QUEUE FULL condition was encountered. | 
 | 					 */ | 
 | 					boardp->queue_full |= target_id; | 
 | 					boardp->queue_full_cnt[tid_no] = | 
 | 					    cur_dvc_qng; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); | 
 | 		return (0); | 
 | 	} | 
 | #if CC_VERY_LONG_SG_LIST | 
 | 	else if (int_halt_code == ASC_HALT_HOST_COPY_SG_LIST_TO_RISC) { | 
 | 		uchar q_no; | 
 | 		ushort q_addr; | 
 | 		uchar sg_wk_q_no; | 
 | 		uchar first_sg_wk_q_no; | 
 | 		ASC_SCSI_Q *scsiq;	/* Ptr to driver request. */ | 
 | 		ASC_SG_HEAD *sg_head;	/* Ptr to driver SG request. */ | 
 | 		ASC_SG_LIST_Q scsi_sg_q;	/* Structure written to queue. */ | 
 | 		ushort sg_list_dwords; | 
 | 		ushort sg_entry_cnt; | 
 | 		uchar next_qp; | 
 | 		int i; | 
 |  | 
 | 		q_no = AscReadLramByte(iop_base, (ushort)ASCV_REQ_SG_LIST_QP); | 
 | 		if (q_no == ASC_QLINK_END) | 
 | 			return 0; | 
 |  | 
 | 		q_addr = ASC_QNO_TO_QADDR(q_no); | 
 |  | 
 | 		/* | 
 | 		 * Convert the request's SRB pointer to a host ASC_SCSI_REQ | 
 | 		 * structure pointer using a macro provided by the driver. | 
 | 		 * The ASC_SCSI_REQ pointer provides a pointer to the | 
 | 		 * host ASC_SG_HEAD structure. | 
 | 		 */ | 
 | 		/* Read request's SRB pointer. */ | 
 | 		scsiq = (ASC_SCSI_Q *) | 
 | 		    ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base, | 
 | 								    (ushort) | 
 | 								    (q_addr + | 
 | 								     ASC_SCSIQ_D_SRBPTR)))); | 
 |  | 
 | 		/* | 
 | 		 * Get request's first and working SG queue. | 
 | 		 */ | 
 | 		sg_wk_q_no = AscReadLramByte(iop_base, | 
 | 					     (ushort)(q_addr + | 
 | 						      ASC_SCSIQ_B_SG_WK_QP)); | 
 |  | 
 | 		first_sg_wk_q_no = AscReadLramByte(iop_base, | 
 | 						   (ushort)(q_addr + | 
 | 							    ASC_SCSIQ_B_FIRST_SG_WK_QP)); | 
 |  | 
 | 		/* | 
 | 		 * Reset request's working SG queue back to the | 
 | 		 * first SG queue. | 
 | 		 */ | 
 | 		AscWriteLramByte(iop_base, | 
 | 				 (ushort)(q_addr + | 
 | 					  (ushort)ASC_SCSIQ_B_SG_WK_QP), | 
 | 				 first_sg_wk_q_no); | 
 |  | 
 | 		sg_head = scsiq->sg_head; | 
 |  | 
 | 		/* | 
 | 		 * Set sg_entry_cnt to the number of SG elements | 
 | 		 * that will be completed on this interrupt. | 
 | 		 * | 
 | 		 * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1 | 
 | 		 * SG elements. The data_cnt and data_addr fields which | 
 | 		 * add 1 to the SG element capacity are not used when | 
 | 		 * restarting SG handling after a halt. | 
 | 		 */ | 
 | 		if (scsiq->remain_sg_entry_cnt > (ASC_MAX_SG_LIST - 1)) { | 
 | 			sg_entry_cnt = ASC_MAX_SG_LIST - 1; | 
 |  | 
 | 			/* | 
 | 			 * Keep track of remaining number of SG elements that | 
 | 			 * will need to be handled on the next interrupt. | 
 | 			 */ | 
 | 			scsiq->remain_sg_entry_cnt -= (ASC_MAX_SG_LIST - 1); | 
 | 		} else { | 
 | 			sg_entry_cnt = scsiq->remain_sg_entry_cnt; | 
 | 			scsiq->remain_sg_entry_cnt = 0; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Copy SG elements into the list of allocated SG queues. | 
 | 		 * | 
 | 		 * Last index completed is saved in scsiq->next_sg_index. | 
 | 		 */ | 
 | 		next_qp = first_sg_wk_q_no; | 
 | 		q_addr = ASC_QNO_TO_QADDR(next_qp); | 
 | 		scsi_sg_q.sg_head_qp = q_no; | 
 | 		scsi_sg_q.cntl = QCSG_SG_XFER_LIST; | 
 | 		for (i = 0; i < sg_head->queue_cnt; i++) { | 
 | 			scsi_sg_q.seq_no = i + 1; | 
 | 			if (sg_entry_cnt > ASC_SG_LIST_PER_Q) { | 
 | 				sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2); | 
 | 				sg_entry_cnt -= ASC_SG_LIST_PER_Q; | 
 | 				/* | 
 | 				 * After very first SG queue RISC FW uses next | 
 | 				 * SG queue first element then checks sg_list_cnt | 
 | 				 * against zero and then decrements, so set | 
 | 				 * sg_list_cnt 1 less than number of SG elements | 
 | 				 * in each SG queue. | 
 | 				 */ | 
 | 				scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1; | 
 | 				scsi_sg_q.sg_cur_list_cnt = | 
 | 				    ASC_SG_LIST_PER_Q - 1; | 
 | 			} else { | 
 | 				/* | 
 | 				 * This is the last SG queue in the list of | 
 | 				 * allocated SG queues. If there are more | 
 | 				 * SG elements than will fit in the allocated | 
 | 				 * queues, then set the QCSG_SG_XFER_MORE flag. | 
 | 				 */ | 
 | 				if (scsiq->remain_sg_entry_cnt != 0) { | 
 | 					scsi_sg_q.cntl |= QCSG_SG_XFER_MORE; | 
 | 				} else { | 
 | 					scsi_sg_q.cntl |= QCSG_SG_XFER_END; | 
 | 				} | 
 | 				/* equals sg_entry_cnt * 2 */ | 
 | 				sg_list_dwords = sg_entry_cnt << 1; | 
 | 				scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1; | 
 | 				scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1; | 
 | 				sg_entry_cnt = 0; | 
 | 			} | 
 |  | 
 | 			scsi_sg_q.q_no = next_qp; | 
 | 			AscMemWordCopyPtrToLram(iop_base, | 
 | 						q_addr + ASC_SCSIQ_SGHD_CPY_BEG, | 
 | 						(uchar *)&scsi_sg_q, | 
 | 						sizeof(ASC_SG_LIST_Q) >> 1); | 
 |  | 
 | 			AscMemDWordCopyPtrToLram(iop_base, | 
 | 						 q_addr + ASC_SGQ_LIST_BEG, | 
 | 						 (uchar *)&sg_head-> | 
 | 						 sg_list[scsiq->next_sg_index], | 
 | 						 sg_list_dwords); | 
 |  | 
 | 			scsiq->next_sg_index += ASC_SG_LIST_PER_Q; | 
 |  | 
 | 			/* | 
 | 			 * If the just completed SG queue contained the | 
 | 			 * last SG element, then no more SG queues need | 
 | 			 * to be written. | 
 | 			 */ | 
 | 			if (scsi_sg_q.cntl & QCSG_SG_XFER_END) { | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			next_qp = AscReadLramByte(iop_base, | 
 | 						  (ushort)(q_addr + | 
 | 							   ASC_SCSIQ_B_FWD)); | 
 | 			q_addr = ASC_QNO_TO_QADDR(next_qp); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Clear the halt condition so the RISC will be restarted | 
 | 		 * after the return. | 
 | 		 */ | 
 | 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); | 
 | 		return (0); | 
 | 	} | 
 | #endif /* CC_VERY_LONG_SG_LIST */ | 
 | 	return (0); | 
 | } | 
 |  | 
 | /* | 
 |  * void | 
 |  * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words) | 
 |  * | 
 |  * Calling/Exit State: | 
 |  *    none | 
 |  * | 
 |  * Description: | 
 |  *     Input an ASC_QDONE_INFO structure from the chip | 
 |  */ | 
 | static void | 
 | DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words) | 
 | { | 
 | 	int i; | 
 | 	ushort word; | 
 |  | 
 | 	AscSetChipLramAddr(iop_base, s_addr); | 
 | 	for (i = 0; i < 2 * words; i += 2) { | 
 | 		if (i == 10) { | 
 | 			continue; | 
 | 		} | 
 | 		word = inpw(iop_base + IOP_RAM_DATA); | 
 | 		inbuf[i] = word & 0xff; | 
 | 		inbuf[i + 1] = (word >> 8) & 0xff; | 
 | 	} | 
 | 	ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words); | 
 | } | 
 |  | 
 | static uchar | 
 | _AscCopyLramScsiDoneQ(PortAddr iop_base, | 
 | 		      ushort q_addr, | 
 | 		      ASC_QDONE_INFO *scsiq, ASC_DCNT max_dma_count) | 
 | { | 
 | 	ushort _val; | 
 | 	uchar sg_queue_cnt; | 
 |  | 
 | 	DvcGetQinfo(iop_base, | 
 | 		    q_addr + ASC_SCSIQ_DONE_INFO_BEG, | 
 | 		    (uchar *)scsiq, | 
 | 		    (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2); | 
 |  | 
 | 	_val = AscReadLramWord(iop_base, | 
 | 			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS)); | 
 | 	scsiq->q_status = (uchar)_val; | 
 | 	scsiq->q_no = (uchar)(_val >> 8); | 
 | 	_val = AscReadLramWord(iop_base, | 
 | 			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL)); | 
 | 	scsiq->cntl = (uchar)_val; | 
 | 	sg_queue_cnt = (uchar)(_val >> 8); | 
 | 	_val = AscReadLramWord(iop_base, | 
 | 			       (ushort)(q_addr + | 
 | 					(ushort)ASC_SCSIQ_B_SENSE_LEN)); | 
 | 	scsiq->sense_len = (uchar)_val; | 
 | 	scsiq->extra_bytes = (uchar)(_val >> 8); | 
 |  | 
 | 	/* | 
 | 	 * Read high word of remain bytes from alternate location. | 
 | 	 */ | 
 | 	scsiq->remain_bytes = (((ADV_DCNT)AscReadLramWord(iop_base, | 
 | 							  (ushort)(q_addr + | 
 | 								   (ushort) | 
 | 								   ASC_SCSIQ_W_ALT_DC1))) | 
 | 			       << 16); | 
 | 	/* | 
 | 	 * Read low word of remain bytes from original location. | 
 | 	 */ | 
 | 	scsiq->remain_bytes += AscReadLramWord(iop_base, | 
 | 					       (ushort)(q_addr + (ushort) | 
 | 							ASC_SCSIQ_DW_REMAIN_XFER_CNT)); | 
 |  | 
 | 	scsiq->remain_bytes &= max_dma_count; | 
 | 	return sg_queue_cnt; | 
 | } | 
 |  | 
 | /* | 
 |  * asc_isr_callback() - Second Level Interrupt Handler called by AscISR(). | 
 |  * | 
 |  * Interrupt callback function for the Narrow SCSI Asc Library. | 
 |  */ | 
 | static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep) | 
 | { | 
 | 	struct asc_board *boardp; | 
 | 	struct scsi_cmnd *scp; | 
 | 	struct Scsi_Host *shost; | 
 |  | 
 | 	ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep); | 
 | 	ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep); | 
 |  | 
 | 	scp = advansys_srb_to_ptr(asc_dvc_varp, qdonep->d2.srb_ptr); | 
 | 	if (!scp) | 
 | 		return; | 
 |  | 
 | 	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); | 
 |  | 
 | 	shost = scp->device->host; | 
 | 	ASC_STATS(shost, callback); | 
 | 	ASC_DBG(1, "shost 0x%p\n", shost); | 
 |  | 
 | 	boardp = shost_priv(shost); | 
 | 	BUG_ON(asc_dvc_varp != &boardp->dvc_var.asc_dvc_var); | 
 |  | 
 | 	dma_unmap_single(boardp->dev, scp->SCp.dma_handle, | 
 | 			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); | 
 | 	/* | 
 | 	 * 'qdonep' contains the command's ending status. | 
 | 	 */ | 
 | 	switch (qdonep->d3.done_stat) { | 
 | 	case QD_NO_ERROR: | 
 | 		ASC_DBG(2, "QD_NO_ERROR\n"); | 
 | 		scp->result = 0; | 
 |  | 
 | 		/* | 
 | 		 * Check for an underrun condition. | 
 | 		 * | 
 | 		 * If there was no error and an underrun condition, then | 
 | 		 * return the number of underrun bytes. | 
 | 		 */ | 
 | 		if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 && | 
 | 		    qdonep->remain_bytes <= scsi_bufflen(scp)) { | 
 | 			ASC_DBG(1, "underrun condition %u bytes\n", | 
 | 				 (unsigned)qdonep->remain_bytes); | 
 | 			scsi_set_resid(scp, qdonep->remain_bytes); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case QD_WITH_ERROR: | 
 | 		ASC_DBG(2, "QD_WITH_ERROR\n"); | 
 | 		switch (qdonep->d3.host_stat) { | 
 | 		case QHSTA_NO_ERROR: | 
 | 			if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) { | 
 | 				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n"); | 
 | 				ASC_DBG_PRT_SENSE(2, scp->sense_buffer, | 
 | 						  SCSI_SENSE_BUFFERSIZE); | 
 | 				/* | 
 | 				 * Note: The 'status_byte()' macro used by | 
 | 				 * target drivers defined in scsi.h shifts the | 
 | 				 * status byte returned by host drivers right | 
 | 				 * by 1 bit.  This is why target drivers also | 
 | 				 * use right shifted status byte definitions. | 
 | 				 * For instance target drivers use | 
 | 				 * CHECK_CONDITION, defined to 0x1, instead of | 
 | 				 * the SCSI defined check condition value of | 
 | 				 * 0x2. Host drivers are supposed to return | 
 | 				 * the status byte as it is defined by SCSI. | 
 | 				 */ | 
 | 				scp->result = DRIVER_BYTE(DRIVER_SENSE) | | 
 | 				    STATUS_BYTE(qdonep->d3.scsi_stat); | 
 | 			} else { | 
 | 				scp->result = STATUS_BYTE(qdonep->d3.scsi_stat); | 
 | 			} | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			/* QHSTA error occurred */ | 
 | 			ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat); | 
 | 			scp->result = HOST_BYTE(DID_BAD_TARGET); | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case QD_ABORTED_BY_HOST: | 
 | 		ASC_DBG(1, "QD_ABORTED_BY_HOST\n"); | 
 | 		scp->result = | 
 | 		    HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3. | 
 | 						    scsi_msg) | | 
 | 		    STATUS_BYTE(qdonep->d3.scsi_stat); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat); | 
 | 		scp->result = | 
 | 		    HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3. | 
 | 						    scsi_msg) | | 
 | 		    STATUS_BYTE(qdonep->d3.scsi_stat); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the 'init_tidmask' bit isn't already set for the target and the | 
 | 	 * current request finished normally, then set the bit for the target | 
 | 	 * to indicate that a device is present. | 
 | 	 */ | 
 | 	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 && | 
 | 	    qdonep->d3.done_stat == QD_NO_ERROR && | 
 | 	    qdonep->d3.host_stat == QHSTA_NO_ERROR) { | 
 | 		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id); | 
 | 	} | 
 |  | 
 | 	asc_scsi_done(scp); | 
 | } | 
 |  | 
 | static int AscIsrQDone(ASC_DVC_VAR *asc_dvc) | 
 | { | 
 | 	uchar next_qp; | 
 | 	uchar n_q_used; | 
 | 	uchar sg_list_qp; | 
 | 	uchar sg_queue_cnt; | 
 | 	uchar q_cnt; | 
 | 	uchar done_q_tail; | 
 | 	uchar tid_no; | 
 | 	ASC_SCSI_BIT_ID_TYPE scsi_busy; | 
 | 	ASC_SCSI_BIT_ID_TYPE target_id; | 
 | 	PortAddr iop_base; | 
 | 	ushort q_addr; | 
 | 	ushort sg_q_addr; | 
 | 	uchar cur_target_qng; | 
 | 	ASC_QDONE_INFO scsiq_buf; | 
 | 	ASC_QDONE_INFO *scsiq; | 
 | 	int false_overrun; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 | 	n_q_used = 1; | 
 | 	scsiq = (ASC_QDONE_INFO *)&scsiq_buf; | 
 | 	done_q_tail = (uchar)AscGetVarDoneQTail(iop_base); | 
 | 	q_addr = ASC_QNO_TO_QADDR(done_q_tail); | 
 | 	next_qp = AscReadLramByte(iop_base, | 
 | 				  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD)); | 
 | 	if (next_qp != ASC_QLINK_END) { | 
 | 		AscPutVarDoneQTail(iop_base, next_qp); | 
 | 		q_addr = ASC_QNO_TO_QADDR(next_qp); | 
 | 		sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq, | 
 | 						     asc_dvc->max_dma_count); | 
 | 		AscWriteLramByte(iop_base, | 
 | 				 (ushort)(q_addr + | 
 | 					  (ushort)ASC_SCSIQ_B_STATUS), | 
 | 				 (uchar)(scsiq-> | 
 | 					 q_status & (uchar)~(QS_READY | | 
 | 							     QS_ABORTED))); | 
 | 		tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix); | 
 | 		target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix); | 
 | 		if ((scsiq->cntl & QC_SG_HEAD) != 0) { | 
 | 			sg_q_addr = q_addr; | 
 | 			sg_list_qp = next_qp; | 
 | 			for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) { | 
 | 				sg_list_qp = AscReadLramByte(iop_base, | 
 | 							     (ushort)(sg_q_addr | 
 | 								      + (ushort) | 
 | 								      ASC_SCSIQ_B_FWD)); | 
 | 				sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp); | 
 | 				if (sg_list_qp == ASC_QLINK_END) { | 
 | 					AscSetLibErrorCode(asc_dvc, | 
 | 							   ASCQ_ERR_SG_Q_LINKS); | 
 | 					scsiq->d3.done_stat = QD_WITH_ERROR; | 
 | 					scsiq->d3.host_stat = | 
 | 					    QHSTA_D_QDONE_SG_LIST_CORRUPTED; | 
 | 					goto FATAL_ERR_QDONE; | 
 | 				} | 
 | 				AscWriteLramByte(iop_base, | 
 | 						 (ushort)(sg_q_addr + (ushort) | 
 | 							  ASC_SCSIQ_B_STATUS), | 
 | 						 QS_FREE); | 
 | 			} | 
 | 			n_q_used = sg_queue_cnt + 1; | 
 | 			AscPutVarDoneQTail(iop_base, sg_list_qp); | 
 | 		} | 
 | 		if (asc_dvc->queue_full_or_busy & target_id) { | 
 | 			cur_target_qng = AscReadLramByte(iop_base, | 
 | 							 (ushort)((ushort) | 
 | 								  ASC_QADR_BEG | 
 | 								  + (ushort) | 
 | 								  scsiq->d2. | 
 | 								  target_ix)); | 
 | 			if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) { | 
 | 				scsi_busy = AscReadLramByte(iop_base, (ushort) | 
 | 							    ASCV_SCSIBUSY_B); | 
 | 				scsi_busy &= ~target_id; | 
 | 				AscWriteLramByte(iop_base, | 
 | 						 (ushort)ASCV_SCSIBUSY_B, | 
 | 						 scsi_busy); | 
 | 				asc_dvc->queue_full_or_busy &= ~target_id; | 
 | 			} | 
 | 		} | 
 | 		if (asc_dvc->cur_total_qng >= n_q_used) { | 
 | 			asc_dvc->cur_total_qng -= n_q_used; | 
 | 			if (asc_dvc->cur_dvc_qng[tid_no] != 0) { | 
 | 				asc_dvc->cur_dvc_qng[tid_no]--; | 
 | 			} | 
 | 		} else { | 
 | 			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG); | 
 | 			scsiq->d3.done_stat = QD_WITH_ERROR; | 
 | 			goto FATAL_ERR_QDONE; | 
 | 		} | 
 | 		if ((scsiq->d2.srb_ptr == 0UL) || | 
 | 		    ((scsiq->q_status & QS_ABORTED) != 0)) { | 
 | 			return (0x11); | 
 | 		} else if (scsiq->q_status == QS_DONE) { | 
 | 			false_overrun = FALSE; | 
 | 			if (scsiq->extra_bytes != 0) { | 
 | 				scsiq->remain_bytes += | 
 | 				    (ADV_DCNT)scsiq->extra_bytes; | 
 | 			} | 
 | 			if (scsiq->d3.done_stat == QD_WITH_ERROR) { | 
 | 				if (scsiq->d3.host_stat == | 
 | 				    QHSTA_M_DATA_OVER_RUN) { | 
 | 					if ((scsiq-> | 
 | 					     cntl & (QC_DATA_IN | QC_DATA_OUT)) | 
 | 					    == 0) { | 
 | 						scsiq->d3.done_stat = | 
 | 						    QD_NO_ERROR; | 
 | 						scsiq->d3.host_stat = | 
 | 						    QHSTA_NO_ERROR; | 
 | 					} else if (false_overrun) { | 
 | 						scsiq->d3.done_stat = | 
 | 						    QD_NO_ERROR; | 
 | 						scsiq->d3.host_stat = | 
 | 						    QHSTA_NO_ERROR; | 
 | 					} | 
 | 				} else if (scsiq->d3.host_stat == | 
 | 					   QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) { | 
 | 					AscStopChip(iop_base); | 
 | 					AscSetChipControl(iop_base, | 
 | 							  (uchar)(CC_SCSI_RESET | 
 | 								  | CC_HALT)); | 
 | 					udelay(60); | 
 | 					AscSetChipControl(iop_base, CC_HALT); | 
 | 					AscSetChipStatus(iop_base, | 
 | 							 CIW_CLR_SCSI_RESET_INT); | 
 | 					AscSetChipStatus(iop_base, 0); | 
 | 					AscSetChipControl(iop_base, 0); | 
 | 				} | 
 | 			} | 
 | 			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { | 
 | 				asc_isr_callback(asc_dvc, scsiq); | 
 | 			} else { | 
 | 				if ((AscReadLramByte(iop_base, | 
 | 						     (ushort)(q_addr + (ushort) | 
 | 							      ASC_SCSIQ_CDB_BEG)) | 
 | 				     == START_STOP)) { | 
 | 					asc_dvc->unit_not_ready &= ~target_id; | 
 | 					if (scsiq->d3.done_stat != QD_NO_ERROR) { | 
 | 						asc_dvc->start_motor &= | 
 | 						    ~target_id; | 
 | 					} | 
 | 				} | 
 | 			} | 
 | 			return (1); | 
 | 		} else { | 
 | 			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS); | 
 |  FATAL_ERR_QDONE: | 
 | 			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { | 
 | 				asc_isr_callback(asc_dvc, scsiq); | 
 | 			} | 
 | 			return (0x80); | 
 | 		} | 
 | 	} | 
 | 	return (0); | 
 | } | 
 |  | 
 | static int AscISR(ASC_DVC_VAR *asc_dvc) | 
 | { | 
 | 	ASC_CS_TYPE chipstat; | 
 | 	PortAddr iop_base; | 
 | 	ushort saved_ram_addr; | 
 | 	uchar ctrl_reg; | 
 | 	uchar saved_ctrl_reg; | 
 | 	int int_pending; | 
 | 	int status; | 
 | 	uchar host_flag; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 | 	int_pending = FALSE; | 
 |  | 
 | 	if (AscIsIntPending(iop_base) == 0) | 
 | 		return int_pending; | 
 |  | 
 | 	if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) { | 
 | 		return ERR; | 
 | 	} | 
 | 	if (asc_dvc->in_critical_cnt != 0) { | 
 | 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL); | 
 | 		return ERR; | 
 | 	} | 
 | 	if (asc_dvc->is_in_int) { | 
 | 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY); | 
 | 		return ERR; | 
 | 	} | 
 | 	asc_dvc->is_in_int = TRUE; | 
 | 	ctrl_reg = AscGetChipControl(iop_base); | 
 | 	saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET | | 
 | 				       CC_SINGLE_STEP | CC_DIAG | CC_TEST)); | 
 | 	chipstat = AscGetChipStatus(iop_base); | 
 | 	if (chipstat & CSW_SCSI_RESET_LATCH) { | 
 | 		if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) { | 
 | 			int i = 10; | 
 | 			int_pending = TRUE; | 
 | 			asc_dvc->sdtr_done = 0; | 
 | 			saved_ctrl_reg &= (uchar)(~CC_HALT); | 
 | 			while ((AscGetChipStatus(iop_base) & | 
 | 				CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) { | 
 | 				mdelay(100); | 
 | 			} | 
 | 			AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT)); | 
 | 			AscSetChipControl(iop_base, CC_HALT); | 
 | 			AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); | 
 | 			AscSetChipStatus(iop_base, 0); | 
 | 			chipstat = AscGetChipStatus(iop_base); | 
 | 		} | 
 | 	} | 
 | 	saved_ram_addr = AscGetChipLramAddr(iop_base); | 
 | 	host_flag = AscReadLramByte(iop_base, | 
 | 				    ASCV_HOST_FLAG_B) & | 
 | 	    (uchar)(~ASC_HOST_FLAG_IN_ISR); | 
 | 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, | 
 | 			 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR)); | 
 | 	if ((chipstat & CSW_INT_PENDING) || (int_pending)) { | 
 | 		AscAckInterrupt(iop_base); | 
 | 		int_pending = TRUE; | 
 | 		if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) { | 
 | 			if (AscIsrChipHalted(asc_dvc) == ERR) { | 
 | 				goto ISR_REPORT_QDONE_FATAL_ERROR; | 
 | 			} else { | 
 | 				saved_ctrl_reg &= (uchar)(~CC_HALT); | 
 | 			} | 
 | 		} else { | 
 |  ISR_REPORT_QDONE_FATAL_ERROR: | 
 | 			if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) { | 
 | 				while (((status = | 
 | 					 AscIsrQDone(asc_dvc)) & 0x01) != 0) { | 
 | 				} | 
 | 			} else { | 
 | 				do { | 
 | 					if ((status = | 
 | 					     AscIsrQDone(asc_dvc)) == 1) { | 
 | 						break; | 
 | 					} | 
 | 				} while (status == 0x11); | 
 | 			} | 
 | 			if ((status & 0x80) != 0) | 
 | 				int_pending = ERR; | 
 | 		} | 
 | 	} | 
 | 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); | 
 | 	AscSetChipLramAddr(iop_base, saved_ram_addr); | 
 | 	AscSetChipControl(iop_base, saved_ctrl_reg); | 
 | 	asc_dvc->is_in_int = FALSE; | 
 | 	return int_pending; | 
 | } | 
 |  | 
 | /* | 
 |  * advansys_reset() | 
 |  * | 
 |  * Reset the bus associated with the command 'scp'. | 
 |  * | 
 |  * This function runs its own thread. Interrupts must be blocked but | 
 |  * sleeping is allowed and no locking other than for host structures is | 
 |  * required. Returns SUCCESS or FAILED. | 
 |  */ | 
 | static int advansys_reset(struct scsi_cmnd *scp) | 
 | { | 
 | 	struct Scsi_Host *shost = scp->device->host; | 
 | 	struct asc_board *boardp = shost_priv(shost); | 
 | 	unsigned long flags; | 
 | 	int status; | 
 | 	int ret = SUCCESS; | 
 |  | 
 | 	ASC_DBG(1, "0x%p\n", scp); | 
 |  | 
 | 	ASC_STATS(shost, reset); | 
 |  | 
 | 	scmd_printk(KERN_INFO, scp, "SCSI bus reset started...\n"); | 
 |  | 
 | 	if (ASC_NARROW_BOARD(boardp)) { | 
 | 		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var; | 
 |  | 
 | 		/* Reset the chip and SCSI bus. */ | 
 | 		ASC_DBG(1, "before AscInitAsc1000Driver()\n"); | 
 | 		status = AscInitAsc1000Driver(asc_dvc); | 
 |  | 
 | 		/* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */ | 
 | 		if (asc_dvc->err_code || !asc_dvc->overrun_dma) { | 
 | 			scmd_printk(KERN_INFO, scp, "SCSI bus reset error: " | 
 | 				    "0x%x, status: 0x%x\n", asc_dvc->err_code, | 
 | 				    status); | 
 | 			ret = FAILED; | 
 | 		} else if (status) { | 
 | 			scmd_printk(KERN_INFO, scp, "SCSI bus reset warning: " | 
 | 				    "0x%x\n", status); | 
 | 		} else { | 
 | 			scmd_printk(KERN_INFO, scp, "SCSI bus reset " | 
 | 				    "successful\n"); | 
 | 		} | 
 |  | 
 | 		ASC_DBG(1, "after AscInitAsc1000Driver()\n"); | 
 | 		spin_lock_irqsave(shost->host_lock, flags); | 
 | 	} else { | 
 | 		/* | 
 | 		 * If the suggest reset bus flags are set, then reset the bus. | 
 | 		 * Otherwise only reset the device. | 
 | 		 */ | 
 | 		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var; | 
 |  | 
 | 		/* | 
 | 		 * Reset the target's SCSI bus. | 
 | 		 */ | 
 | 		ASC_DBG(1, "before AdvResetChipAndSB()\n"); | 
 | 		switch (AdvResetChipAndSB(adv_dvc)) { | 
 | 		case ASC_TRUE: | 
 | 			scmd_printk(KERN_INFO, scp, "SCSI bus reset " | 
 | 				    "successful\n"); | 
 | 			break; | 
 | 		case ASC_FALSE: | 
 | 		default: | 
 | 			scmd_printk(KERN_INFO, scp, "SCSI bus reset error\n"); | 
 | 			ret = FAILED; | 
 | 			break; | 
 | 		} | 
 | 		spin_lock_irqsave(shost->host_lock, flags); | 
 | 		AdvISR(adv_dvc); | 
 | 	} | 
 |  | 
 | 	/* Save the time of the most recently completed reset. */ | 
 | 	boardp->last_reset = jiffies; | 
 | 	spin_unlock_irqrestore(shost->host_lock, flags); | 
 |  | 
 | 	ASC_DBG(1, "ret %d\n", ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * advansys_biosparam() | 
 |  * | 
 |  * Translate disk drive geometry if the "BIOS greater than 1 GB" | 
 |  * support is enabled for a drive. | 
 |  * | 
 |  * ip (information pointer) is an int array with the following definition: | 
 |  * ip[0]: heads | 
 |  * ip[1]: sectors | 
 |  * ip[2]: cylinders | 
 |  */ | 
 | static int | 
 | advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev, | 
 | 		   sector_t capacity, int ip[]) | 
 | { | 
 | 	struct asc_board *boardp = shost_priv(sdev->host); | 
 |  | 
 | 	ASC_DBG(1, "begin\n"); | 
 | 	ASC_STATS(sdev->host, biosparam); | 
 | 	if (ASC_NARROW_BOARD(boardp)) { | 
 | 		if ((boardp->dvc_var.asc_dvc_var.dvc_cntl & | 
 | 		     ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) { | 
 | 			ip[0] = 255; | 
 | 			ip[1] = 63; | 
 | 		} else { | 
 | 			ip[0] = 64; | 
 | 			ip[1] = 32; | 
 | 		} | 
 | 	} else { | 
 | 		if ((boardp->dvc_var.adv_dvc_var.bios_ctrl & | 
 | 		     BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) { | 
 | 			ip[0] = 255; | 
 | 			ip[1] = 63; | 
 | 		} else { | 
 | 			ip[0] = 64; | 
 | 			ip[1] = 32; | 
 | 		} | 
 | 	} | 
 | 	ip[2] = (unsigned long)capacity / (ip[0] * ip[1]); | 
 | 	ASC_DBG(1, "end\n"); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * First-level interrupt handler. | 
 |  * | 
 |  * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host. | 
 |  */ | 
 | static irqreturn_t advansys_interrupt(int irq, void *dev_id) | 
 | { | 
 | 	struct Scsi_Host *shost = dev_id; | 
 | 	struct asc_board *boardp = shost_priv(shost); | 
 | 	irqreturn_t result = IRQ_NONE; | 
 |  | 
 | 	ASC_DBG(2, "boardp 0x%p\n", boardp); | 
 | 	spin_lock(shost->host_lock); | 
 | 	if (ASC_NARROW_BOARD(boardp)) { | 
 | 		if (AscIsIntPending(shost->io_port)) { | 
 | 			result = IRQ_HANDLED; | 
 | 			ASC_STATS(shost, interrupt); | 
 | 			ASC_DBG(1, "before AscISR()\n"); | 
 | 			AscISR(&boardp->dvc_var.asc_dvc_var); | 
 | 		} | 
 | 	} else { | 
 | 		ASC_DBG(1, "before AdvISR()\n"); | 
 | 		if (AdvISR(&boardp->dvc_var.adv_dvc_var)) { | 
 | 			result = IRQ_HANDLED; | 
 | 			ASC_STATS(shost, interrupt); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(shost->host_lock); | 
 |  | 
 | 	ASC_DBG(1, "end\n"); | 
 | 	return result; | 
 | } | 
 |  | 
 | static int AscHostReqRiscHalt(PortAddr iop_base) | 
 | { | 
 | 	int count = 0; | 
 | 	int sta = 0; | 
 | 	uchar saved_stop_code; | 
 |  | 
 | 	if (AscIsChipHalted(iop_base)) | 
 | 		return (1); | 
 | 	saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B); | 
 | 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, | 
 | 			 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP); | 
 | 	do { | 
 | 		if (AscIsChipHalted(iop_base)) { | 
 | 			sta = 1; | 
 | 			break; | 
 | 		} | 
 | 		mdelay(100); | 
 | 	} while (count++ < 20); | 
 | 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code); | 
 | 	return (sta); | 
 | } | 
 |  | 
 | static int | 
 | AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data) | 
 | { | 
 | 	int sta = FALSE; | 
 |  | 
 | 	if (AscHostReqRiscHalt(iop_base)) { | 
 | 		sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); | 
 | 		AscStartChip(iop_base); | 
 | 	} | 
 | 	return sta; | 
 | } | 
 |  | 
 | static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev) | 
 | { | 
 | 	char type = sdev->type; | 
 | 	ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id; | 
 |  | 
 | 	if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN)) | 
 | 		return; | 
 | 	if (asc_dvc->init_sdtr & tid_bits) | 
 | 		return; | 
 |  | 
 | 	if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0)) | 
 | 		asc_dvc->pci_fix_asyn_xfer_always |= tid_bits; | 
 |  | 
 | 	asc_dvc->pci_fix_asyn_xfer |= tid_bits; | 
 | 	if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) || | 
 | 	    (type == TYPE_ROM) || (type == TYPE_TAPE)) | 
 | 		asc_dvc->pci_fix_asyn_xfer &= ~tid_bits; | 
 |  | 
 | 	if (asc_dvc->pci_fix_asyn_xfer & tid_bits) | 
 | 		AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id, | 
 | 					ASYN_SDTR_DATA_FIX_PCI_REV_AB); | 
 | } | 
 |  | 
 | static void | 
 | advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc) | 
 | { | 
 | 	ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id; | 
 | 	ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng; | 
 |  | 
 | 	if (sdev->lun == 0) { | 
 | 		ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr; | 
 | 		if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) { | 
 | 			asc_dvc->init_sdtr |= tid_bit; | 
 | 		} else { | 
 | 			asc_dvc->init_sdtr &= ~tid_bit; | 
 | 		} | 
 |  | 
 | 		if (orig_init_sdtr != asc_dvc->init_sdtr) | 
 | 			AscAsyncFix(asc_dvc, sdev); | 
 | 	} | 
 |  | 
 | 	if (sdev->tagged_supported) { | 
 | 		if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) { | 
 | 			if (sdev->lun == 0) { | 
 | 				asc_dvc->cfg->can_tagged_qng |= tid_bit; | 
 | 				asc_dvc->use_tagged_qng |= tid_bit; | 
 | 			} | 
 | 			scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, | 
 | 						asc_dvc->max_dvc_qng[sdev->id]); | 
 | 		} | 
 | 	} else { | 
 | 		if (sdev->lun == 0) { | 
 | 			asc_dvc->cfg->can_tagged_qng &= ~tid_bit; | 
 | 			asc_dvc->use_tagged_qng &= ~tid_bit; | 
 | 		} | 
 | 		scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun); | 
 | 	} | 
 |  | 
 | 	if ((sdev->lun == 0) && | 
 | 	    (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) { | 
 | 		AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B, | 
 | 				 asc_dvc->cfg->disc_enable); | 
 | 		AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B, | 
 | 				 asc_dvc->use_tagged_qng); | 
 | 		AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B, | 
 | 				 asc_dvc->cfg->can_tagged_qng); | 
 |  | 
 | 		asc_dvc->max_dvc_qng[sdev->id] = | 
 | 					asc_dvc->cfg->max_tag_qng[sdev->id]; | 
 | 		AscWriteLramByte(asc_dvc->iop_base, | 
 | 				 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id), | 
 | 				 asc_dvc->max_dvc_qng[sdev->id]); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Wide Transfers | 
 |  * | 
 |  * If the EEPROM enabled WDTR for the device and the device supports wide | 
 |  * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and | 
 |  * write the new value to the microcode. | 
 |  */ | 
 | static void | 
 | advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask) | 
 | { | 
 | 	unsigned short cfg_word; | 
 | 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); | 
 | 	if ((cfg_word & tidmask) != 0) | 
 | 		return; | 
 |  | 
 | 	cfg_word |= tidmask; | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); | 
 |  | 
 | 	/* | 
 | 	 * Clear the microcode SDTR and WDTR negotiation done indicators for | 
 | 	 * the target to cause it to negotiate with the new setting set above. | 
 | 	 * WDTR when accepted causes the target to enter asynchronous mode, so | 
 | 	 * SDTR must be negotiated. | 
 | 	 */ | 
 | 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); | 
 | 	cfg_word &= ~tidmask; | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); | 
 | 	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); | 
 | 	cfg_word &= ~tidmask; | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); | 
 | } | 
 |  | 
 | /* | 
 |  * Synchronous Transfers | 
 |  * | 
 |  * If the EEPROM enabled SDTR for the device and the device | 
 |  * supports synchronous transfers, then turn on the device's | 
 |  * 'sdtr_able' bit. Write the new value to the microcode. | 
 |  */ | 
 | static void | 
 | advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask) | 
 | { | 
 | 	unsigned short cfg_word; | 
 | 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); | 
 | 	if ((cfg_word & tidmask) != 0) | 
 | 		return; | 
 |  | 
 | 	cfg_word |= tidmask; | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); | 
 |  | 
 | 	/* | 
 | 	 * Clear the microcode "SDTR negotiation" done indicator for the | 
 | 	 * target to cause it to negotiate with the new setting set above. | 
 | 	 */ | 
 | 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); | 
 | 	cfg_word &= ~tidmask; | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); | 
 | } | 
 |  | 
 | /* | 
 |  * PPR (Parallel Protocol Request) Capable | 
 |  * | 
 |  * If the device supports DT mode, then it must be PPR capable. | 
 |  * The PPR message will be used in place of the SDTR and WDTR | 
 |  * messages to negotiate synchronous speed and offset, transfer | 
 |  * width, and protocol options. | 
 |  */ | 
 | static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc, | 
 | 				AdvPortAddr iop_base, unsigned short tidmask) | 
 | { | 
 | 	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able); | 
 | 	adv_dvc->ppr_able |= tidmask; | 
 | 	AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able); | 
 | } | 
 |  | 
 | static void | 
 | advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc) | 
 | { | 
 | 	AdvPortAddr iop_base = adv_dvc->iop_base; | 
 | 	unsigned short tidmask = 1 << sdev->id; | 
 |  | 
 | 	if (sdev->lun == 0) { | 
 | 		/* | 
 | 		 * Handle WDTR, SDTR, and Tag Queuing. If the feature | 
 | 		 * is enabled in the EEPROM and the device supports the | 
 | 		 * feature, then enable it in the microcode. | 
 | 		 */ | 
 |  | 
 | 		if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr) | 
 | 			advansys_wide_enable_wdtr(iop_base, tidmask); | 
 | 		if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr) | 
 | 			advansys_wide_enable_sdtr(iop_base, tidmask); | 
 | 		if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr) | 
 | 			advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask); | 
 |  | 
 | 		/* | 
 | 		 * Tag Queuing is disabled for the BIOS which runs in polled | 
 | 		 * mode and would see no benefit from Tag Queuing. Also by | 
 | 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing | 
 | 		 * bugs will at least work with the BIOS. | 
 | 		 */ | 
 | 		if ((adv_dvc->tagqng_able & tidmask) && | 
 | 		    sdev->tagged_supported) { | 
 | 			unsigned short cfg_word; | 
 | 			AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word); | 
 | 			cfg_word |= tidmask; | 
 | 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, | 
 | 					 cfg_word); | 
 | 			AdvWriteByteLram(iop_base, | 
 | 					 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id, | 
 | 					 adv_dvc->max_dvc_qng); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) { | 
 | 		scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, | 
 | 					adv_dvc->max_dvc_qng); | 
 | 	} else { | 
 | 		scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Set the number of commands to queue per device for the | 
 |  * specified host adapter. | 
 |  */ | 
 | static int advansys_slave_configure(struct scsi_device *sdev) | 
 | { | 
 | 	struct asc_board *boardp = shost_priv(sdev->host); | 
 |  | 
 | 	if (ASC_NARROW_BOARD(boardp)) | 
 | 		advansys_narrow_slave_configure(sdev, | 
 | 						&boardp->dvc_var.asc_dvc_var); | 
 | 	else | 
 | 		advansys_wide_slave_configure(sdev, | 
 | 						&boardp->dvc_var.adv_dvc_var); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static __le32 advansys_get_sense_buffer_dma(struct scsi_cmnd *scp) | 
 | { | 
 | 	struct asc_board *board = shost_priv(scp->device->host); | 
 | 	scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer, | 
 | 					     SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); | 
 | 	dma_cache_sync(board->dev, scp->sense_buffer, | 
 | 		       SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); | 
 | 	return cpu_to_le32(scp->SCp.dma_handle); | 
 | } | 
 |  | 
 | static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp, | 
 | 			struct asc_scsi_q *asc_scsi_q) | 
 | { | 
 | 	struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var; | 
 | 	int use_sg; | 
 |  | 
 | 	memset(asc_scsi_q, 0, sizeof(*asc_scsi_q)); | 
 |  | 
 | 	/* | 
 | 	 * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'. | 
 | 	 */ | 
 | 	asc_scsi_q->q2.srb_ptr = advansys_ptr_to_srb(asc_dvc, scp); | 
 | 	if (asc_scsi_q->q2.srb_ptr == BAD_SRB) { | 
 | 		scp->result = HOST_BYTE(DID_SOFT_ERROR); | 
 | 		return ASC_ERROR; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Build the ASC_SCSI_Q request. | 
 | 	 */ | 
 | 	asc_scsi_q->cdbptr = &scp->cmnd[0]; | 
 | 	asc_scsi_q->q2.cdb_len = scp->cmd_len; | 
 | 	asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id); | 
 | 	asc_scsi_q->q1.target_lun = scp->device->lun; | 
 | 	asc_scsi_q->q2.target_ix = | 
 | 	    ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun); | 
 | 	asc_scsi_q->q1.sense_addr = advansys_get_sense_buffer_dma(scp); | 
 | 	asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE; | 
 |  | 
 | 	/* | 
 | 	 * If there are any outstanding requests for the current target, | 
 | 	 * then every 255th request send an ORDERED request. This heuristic | 
 | 	 * tries to retain the benefit of request sorting while preventing | 
 | 	 * request starvation. 255 is the max number of tags or pending commands | 
 | 	 * a device may have outstanding. | 
 | 	 * | 
 | 	 * The request count is incremented below for every successfully | 
 | 	 * started request. | 
 | 	 * | 
 | 	 */ | 
 | 	if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) && | 
 | 	    (boardp->reqcnt[scp->device->id] % 255) == 0) { | 
 | 		asc_scsi_q->q2.tag_code = MSG_ORDERED_TAG; | 
 | 	} else { | 
 | 		asc_scsi_q->q2.tag_code = MSG_SIMPLE_TAG; | 
 | 	} | 
 |  | 
 | 	/* Build ASC_SCSI_Q */ | 
 | 	use_sg = scsi_dma_map(scp); | 
 | 	if (use_sg != 0) { | 
 | 		int sgcnt; | 
 | 		struct scatterlist *slp; | 
 | 		struct asc_sg_head *asc_sg_head; | 
 |  | 
 | 		if (use_sg > scp->device->host->sg_tablesize) { | 
 | 			scmd_printk(KERN_ERR, scp, "use_sg %d > " | 
 | 				"sg_tablesize %d\n", use_sg, | 
 | 				scp->device->host->sg_tablesize); | 
 | 			scsi_dma_unmap(scp); | 
 | 			scp->result = HOST_BYTE(DID_ERROR); | 
 | 			return ASC_ERROR; | 
 | 		} | 
 |  | 
 | 		asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) + | 
 | 			use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC); | 
 | 		if (!asc_sg_head) { | 
 | 			scsi_dma_unmap(scp); | 
 | 			scp->result = HOST_BYTE(DID_SOFT_ERROR); | 
 | 			return ASC_ERROR; | 
 | 		} | 
 |  | 
 | 		asc_scsi_q->q1.cntl |= QC_SG_HEAD; | 
 | 		asc_scsi_q->sg_head = asc_sg_head; | 
 | 		asc_scsi_q->q1.data_cnt = 0; | 
 | 		asc_scsi_q->q1.data_addr = 0; | 
 | 		/* This is a byte value, otherwise it would need to be swapped. */ | 
 | 		asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg; | 
 | 		ASC_STATS_ADD(scp->device->host, xfer_elem, | 
 | 			      asc_sg_head->entry_cnt); | 
 |  | 
 | 		/* | 
 | 		 * Convert scatter-gather list into ASC_SG_HEAD list. | 
 | 		 */ | 
 | 		scsi_for_each_sg(scp, slp, use_sg, sgcnt) { | 
 | 			asc_sg_head->sg_list[sgcnt].addr = | 
 | 			    cpu_to_le32(sg_dma_address(slp)); | 
 | 			asc_sg_head->sg_list[sgcnt].bytes = | 
 | 			    cpu_to_le32(sg_dma_len(slp)); | 
 | 			ASC_STATS_ADD(scp->device->host, xfer_sect, | 
 | 				      DIV_ROUND_UP(sg_dma_len(slp), 512)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ASC_STATS(scp->device->host, xfer_cnt); | 
 |  | 
 | 	ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q); | 
 | 	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); | 
 |  | 
 | 	return ASC_NOERROR; | 
 | } | 
 |  | 
 | /* | 
 |  * Build scatter-gather list for Adv Library (Wide Board). | 
 |  * | 
 |  * Additional ADV_SG_BLOCK structures will need to be allocated | 
 |  * if the total number of scatter-gather elements exceeds | 
 |  * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are | 
 |  * assumed to be physically contiguous. | 
 |  * | 
 |  * Return: | 
 |  *      ADV_SUCCESS(1) - SG List successfully created | 
 |  *      ADV_ERROR(-1) - SG List creation failed | 
 |  */ | 
 | static int | 
 | adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, struct scsi_cmnd *scp, | 
 | 	       int use_sg) | 
 | { | 
 | 	adv_sgblk_t *sgblkp; | 
 | 	ADV_SCSI_REQ_Q *scsiqp; | 
 | 	struct scatterlist *slp; | 
 | 	int sg_elem_cnt; | 
 | 	ADV_SG_BLOCK *sg_block, *prev_sg_block; | 
 | 	ADV_PADDR sg_block_paddr; | 
 | 	int i; | 
 |  | 
 | 	scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q); | 
 | 	slp = scsi_sglist(scp); | 
 | 	sg_elem_cnt = use_sg; | 
 | 	prev_sg_block = NULL; | 
 | 	reqp->sgblkp = NULL; | 
 |  | 
 | 	for (;;) { | 
 | 		/* | 
 | 		 * Allocate a 'adv_sgblk_t' structure from the board free | 
 | 		 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK | 
 | 		 * (15) scatter-gather elements. | 
 | 		 */ | 
 | 		if ((sgblkp = boardp->adv_sgblkp) == NULL) { | 
 | 			ASC_DBG(1, "no free adv_sgblk_t\n"); | 
 | 			ASC_STATS(scp->device->host, adv_build_nosg); | 
 |  | 
 | 			/* | 
 | 			 * Allocation failed. Free 'adv_sgblk_t' structures | 
 | 			 * already allocated for the request. | 
 | 			 */ | 
 | 			while ((sgblkp = reqp->sgblkp) != NULL) { | 
 | 				/* Remove 'sgblkp' from the request list. */ | 
 | 				reqp->sgblkp = sgblkp->next_sgblkp; | 
 |  | 
 | 				/* Add 'sgblkp' to the board free list. */ | 
 | 				sgblkp->next_sgblkp = boardp->adv_sgblkp; | 
 | 				boardp->adv_sgblkp = sgblkp; | 
 | 			} | 
 | 			return ASC_BUSY; | 
 | 		} | 
 |  | 
 | 		/* Complete 'adv_sgblk_t' board allocation. */ | 
 | 		boardp->adv_sgblkp = sgblkp->next_sgblkp; | 
 | 		sgblkp->next_sgblkp = NULL; | 
 |  | 
 | 		/* | 
 | 		 * Get 8 byte aligned virtual and physical addresses | 
 | 		 * for the allocated ADV_SG_BLOCK structure. | 
 | 		 */ | 
 | 		sg_block = (ADV_SG_BLOCK *)ADV_8BALIGN(&sgblkp->sg_block); | 
 | 		sg_block_paddr = virt_to_bus(sg_block); | 
 |  | 
 | 		/* | 
 | 		 * Check if this is the first 'adv_sgblk_t' for the | 
 | 		 * request. | 
 | 		 */ | 
 | 		if (reqp->sgblkp == NULL) { | 
 | 			/* Request's first scatter-gather block. */ | 
 | 			reqp->sgblkp = sgblkp; | 
 |  | 
 | 			/* | 
 | 			 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical | 
 | 			 * address pointers. | 
 | 			 */ | 
 | 			scsiqp->sg_list_ptr = sg_block; | 
 | 			scsiqp->sg_real_addr = cpu_to_le32(sg_block_paddr); | 
 | 		} else { | 
 | 			/* Request's second or later scatter-gather block. */ | 
 | 			sgblkp->next_sgblkp = reqp->sgblkp; | 
 | 			reqp->sgblkp = sgblkp; | 
 |  | 
 | 			/* | 
 | 			 * Point the previous ADV_SG_BLOCK structure to | 
 | 			 * the newly allocated ADV_SG_BLOCK structure. | 
 | 			 */ | 
 | 			prev_sg_block->sg_ptr = cpu_to_le32(sg_block_paddr); | 
 | 		} | 
 |  | 
 | 		for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) { | 
 | 			sg_block->sg_list[i].sg_addr = | 
 | 					cpu_to_le32(sg_dma_address(slp)); | 
 | 			sg_block->sg_list[i].sg_count = | 
 | 					cpu_to_le32(sg_dma_len(slp)); | 
 | 			ASC_STATS_ADD(scp->device->host, xfer_sect, | 
 | 				      DIV_ROUND_UP(sg_dma_len(slp), 512)); | 
 |  | 
 | 			if (--sg_elem_cnt == 0) {	/* Last ADV_SG_BLOCK and scatter-gather entry. */ | 
 | 				sg_block->sg_cnt = i + 1; | 
 | 				sg_block->sg_ptr = 0L;	/* Last ADV_SG_BLOCK in list. */ | 
 | 				return ADV_SUCCESS; | 
 | 			} | 
 | 			slp++; | 
 | 		} | 
 | 		sg_block->sg_cnt = NO_OF_SG_PER_BLOCK; | 
 | 		prev_sg_block = sg_block; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Build a request structure for the Adv Library (Wide Board). | 
 |  * | 
 |  * If an adv_req_t can not be allocated to issue the request, | 
 |  * then return ASC_BUSY. If an error occurs, then return ASC_ERROR. | 
 |  * | 
 |  * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the | 
 |  * microcode for DMA addresses or math operations are byte swapped | 
 |  * to little-endian order. | 
 |  */ | 
 | static int | 
 | adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp, | 
 | 	      ADV_SCSI_REQ_Q **adv_scsiqpp) | 
 | { | 
 | 	adv_req_t *reqp; | 
 | 	ADV_SCSI_REQ_Q *scsiqp; | 
 | 	int i; | 
 | 	int ret; | 
 | 	int use_sg; | 
 |  | 
 | 	/* | 
 | 	 * Allocate an adv_req_t structure from the board to execute | 
 | 	 * the command. | 
 | 	 */ | 
 | 	if (boardp->adv_reqp == NULL) { | 
 | 		ASC_DBG(1, "no free adv_req_t\n"); | 
 | 		ASC_STATS(scp->device->host, adv_build_noreq); | 
 | 		return ASC_BUSY; | 
 | 	} else { | 
 | 		reqp = boardp->adv_reqp; | 
 | 		boardp->adv_reqp = reqp->next_reqp; | 
 | 		reqp->next_reqp = NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers. | 
 | 	 */ | 
 | 	scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q); | 
 |  | 
 | 	/* | 
 | 	 * Initialize the structure. | 
 | 	 */ | 
 | 	scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0; | 
 |  | 
 | 	/* | 
 | 	 * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure. | 
 | 	 */ | 
 | 	scsiqp->srb_ptr = ADV_VADDR_TO_U32(reqp); | 
 |  | 
 | 	/* | 
 | 	 * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure. | 
 | 	 */ | 
 | 	reqp->cmndp = scp; | 
 |  | 
 | 	/* | 
 | 	 * Build the ADV_SCSI_REQ_Q request. | 
 | 	 */ | 
 |  | 
 | 	/* Set CDB length and copy it to the request structure.  */ | 
 | 	scsiqp->cdb_len = scp->cmd_len; | 
 | 	/* Copy first 12 CDB bytes to cdb[]. */ | 
 | 	for (i = 0; i < scp->cmd_len && i < 12; i++) { | 
 | 		scsiqp->cdb[i] = scp->cmnd[i]; | 
 | 	} | 
 | 	/* Copy last 4 CDB bytes, if present, to cdb16[]. */ | 
 | 	for (; i < scp->cmd_len; i++) { | 
 | 		scsiqp->cdb16[i - 12] = scp->cmnd[i]; | 
 | 	} | 
 |  | 
 | 	scsiqp->target_id = scp->device->id; | 
 | 	scsiqp->target_lun = scp->device->lun; | 
 |  | 
 | 	scsiqp->sense_addr = cpu_to_le32(virt_to_bus(&scp->sense_buffer[0])); | 
 | 	scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE; | 
 |  | 
 | 	/* Build ADV_SCSI_REQ_Q */ | 
 |  | 
 | 	use_sg = scsi_dma_map(scp); | 
 | 	if (use_sg == 0) { | 
 | 		/* Zero-length transfer */ | 
 | 		reqp->sgblkp = NULL; | 
 | 		scsiqp->data_cnt = 0; | 
 | 		scsiqp->vdata_addr = NULL; | 
 |  | 
 | 		scsiqp->data_addr = 0; | 
 | 		scsiqp->sg_list_ptr = NULL; | 
 | 		scsiqp->sg_real_addr = 0; | 
 | 	} else { | 
 | 		if (use_sg > ADV_MAX_SG_LIST) { | 
 | 			scmd_printk(KERN_ERR, scp, "use_sg %d > " | 
 | 				   "ADV_MAX_SG_LIST %d\n", use_sg, | 
 | 				   scp->device->host->sg_tablesize); | 
 | 			scsi_dma_unmap(scp); | 
 | 			scp->result = HOST_BYTE(DID_ERROR); | 
 |  | 
 | 			/* | 
 | 			 * Free the 'adv_req_t' structure by adding it back | 
 | 			 * to the board free list. | 
 | 			 */ | 
 | 			reqp->next_reqp = boardp->adv_reqp; | 
 | 			boardp->adv_reqp = reqp; | 
 |  | 
 | 			return ASC_ERROR; | 
 | 		} | 
 |  | 
 | 		scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp)); | 
 |  | 
 | 		ret = adv_get_sglist(boardp, reqp, scp, use_sg); | 
 | 		if (ret != ADV_SUCCESS) { | 
 | 			/* | 
 | 			 * Free the adv_req_t structure by adding it back to | 
 | 			 * the board free list. | 
 | 			 */ | 
 | 			reqp->next_reqp = boardp->adv_reqp; | 
 | 			boardp->adv_reqp = reqp; | 
 |  | 
 | 			return ret; | 
 | 		} | 
 |  | 
 | 		ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg); | 
 | 	} | 
 |  | 
 | 	ASC_STATS(scp->device->host, xfer_cnt); | 
 |  | 
 | 	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); | 
 | 	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); | 
 |  | 
 | 	*adv_scsiqpp = scsiqp; | 
 |  | 
 | 	return ASC_NOERROR; | 
 | } | 
 |  | 
 | static int AscSgListToQueue(int sg_list) | 
 | { | 
 | 	int n_sg_list_qs; | 
 |  | 
 | 	n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q); | 
 | 	if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0) | 
 | 		n_sg_list_qs++; | 
 | 	return n_sg_list_qs + 1; | 
 | } | 
 |  | 
 | static uint | 
 | AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs) | 
 | { | 
 | 	uint cur_used_qs; | 
 | 	uint cur_free_qs; | 
 | 	ASC_SCSI_BIT_ID_TYPE target_id; | 
 | 	uchar tid_no; | 
 |  | 
 | 	target_id = ASC_TIX_TO_TARGET_ID(target_ix); | 
 | 	tid_no = ASC_TIX_TO_TID(target_ix); | 
 | 	if ((asc_dvc->unit_not_ready & target_id) || | 
 | 	    (asc_dvc->queue_full_or_busy & target_id)) { | 
 | 		return 0; | 
 | 	} | 
 | 	if (n_qs == 1) { | 
 | 		cur_used_qs = (uint) asc_dvc->cur_total_qng + | 
 | 		    (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q; | 
 | 	} else { | 
 | 		cur_used_qs = (uint) asc_dvc->cur_total_qng + | 
 | 		    (uint) ASC_MIN_FREE_Q; | 
 | 	} | 
 | 	if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) { | 
 | 		cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs; | 
 | 		if (asc_dvc->cur_dvc_qng[tid_no] >= | 
 | 		    asc_dvc->max_dvc_qng[tid_no]) { | 
 | 			return 0; | 
 | 		} | 
 | 		return cur_free_qs; | 
 | 	} | 
 | 	if (n_qs > 1) { | 
 | 		if ((n_qs > asc_dvc->last_q_shortage) | 
 | 		    && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) { | 
 | 			asc_dvc->last_q_shortage = n_qs; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head) | 
 | { | 
 | 	ushort q_addr; | 
 | 	uchar next_qp; | 
 | 	uchar q_status; | 
 |  | 
 | 	q_addr = ASC_QNO_TO_QADDR(free_q_head); | 
 | 	q_status = (uchar)AscReadLramByte(iop_base, | 
 | 					  (ushort)(q_addr + | 
 | 						   ASC_SCSIQ_B_STATUS)); | 
 | 	next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD)); | 
 | 	if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END)) | 
 | 		return next_qp; | 
 | 	return ASC_QLINK_END; | 
 | } | 
 |  | 
 | static uchar | 
 | AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q) | 
 | { | 
 | 	uchar i; | 
 |  | 
 | 	for (i = 0; i < n_free_q; i++) { | 
 | 		free_q_head = AscAllocFreeQueue(iop_base, free_q_head); | 
 | 		if (free_q_head == ASC_QLINK_END) | 
 | 			break; | 
 | 	} | 
 | 	return free_q_head; | 
 | } | 
 |  | 
 | /* | 
 |  * void | 
 |  * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words) | 
 |  * | 
 |  * Calling/Exit State: | 
 |  *    none | 
 |  * | 
 |  * Description: | 
 |  *     Output an ASC_SCSI_Q structure to the chip | 
 |  */ | 
 | static void | 
 | DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words); | 
 | 	AscSetChipLramAddr(iop_base, s_addr); | 
 | 	for (i = 0; i < 2 * words; i += 2) { | 
 | 		if (i == 4 || i == 20) { | 
 | 			continue; | 
 | 		} | 
 | 		outpw(iop_base + IOP_RAM_DATA, | 
 | 		      ((ushort)outbuf[i + 1] << 8) | outbuf[i]); | 
 | 	} | 
 | } | 
 |  | 
 | static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no) | 
 | { | 
 | 	ushort q_addr; | 
 | 	uchar tid_no; | 
 | 	uchar sdtr_data; | 
 | 	uchar syn_period_ix; | 
 | 	uchar syn_offset; | 
 | 	PortAddr iop_base; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 | 	if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) && | 
 | 	    ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) { | 
 | 		tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix); | 
 | 		sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); | 
 | 		syn_period_ix = | 
 | 		    (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1); | 
 | 		syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET; | 
 | 		AscMsgOutSDTR(asc_dvc, | 
 | 			      asc_dvc->sdtr_period_tbl[syn_period_ix], | 
 | 			      syn_offset); | 
 | 		scsiq->q1.cntl |= QC_MSG_OUT; | 
 | 	} | 
 | 	q_addr = ASC_QNO_TO_QADDR(q_no); | 
 | 	if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) { | 
 | 		scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG; | 
 | 	} | 
 | 	scsiq->q1.status = QS_FREE; | 
 | 	AscMemWordCopyPtrToLram(iop_base, | 
 | 				q_addr + ASC_SCSIQ_CDB_BEG, | 
 | 				(uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1); | 
 |  | 
 | 	DvcPutScsiQ(iop_base, | 
 | 		    q_addr + ASC_SCSIQ_CPY_BEG, | 
 | 		    (uchar *)&scsiq->q1.cntl, | 
 | 		    ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1); | 
 | 	AscWriteLramWord(iop_base, | 
 | 			 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS), | 
 | 			 (ushort)(((ushort)scsiq->q1. | 
 | 				   q_no << 8) | (ushort)QS_READY)); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int | 
 | AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no) | 
 | { | 
 | 	int sta; | 
 | 	int i; | 
 | 	ASC_SG_HEAD *sg_head; | 
 | 	ASC_SG_LIST_Q scsi_sg_q; | 
 | 	ASC_DCNT saved_data_addr; | 
 | 	ASC_DCNT saved_data_cnt; | 
 | 	PortAddr iop_base; | 
 | 	ushort sg_list_dwords; | 
 | 	ushort sg_index; | 
 | 	ushort sg_entry_cnt; | 
 | 	ushort q_addr; | 
 | 	uchar next_qp; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 | 	sg_head = scsiq->sg_head; | 
 | 	saved_data_addr = scsiq->q1.data_addr; | 
 | 	saved_data_cnt = scsiq->q1.data_cnt; | 
 | 	scsiq->q1.data_addr = (ASC_PADDR) sg_head->sg_list[0].addr; | 
 | 	scsiq->q1.data_cnt = (ASC_DCNT) sg_head->sg_list[0].bytes; | 
 | #if CC_VERY_LONG_SG_LIST | 
 | 	/* | 
 | 	 * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST | 
 | 	 * then not all SG elements will fit in the allocated queues. | 
 | 	 * The rest of the SG elements will be copied when the RISC | 
 | 	 * completes the SG elements that fit and halts. | 
 | 	 */ | 
 | 	if (sg_head->entry_cnt > ASC_MAX_SG_LIST) { | 
 | 		/* | 
 | 		 * Set sg_entry_cnt to be the number of SG elements that | 
 | 		 * will fit in the allocated SG queues. It is minus 1, because | 
 | 		 * the first SG element is handled above. ASC_MAX_SG_LIST is | 
 | 		 * already inflated by 1 to account for this. For example it | 
 | 		 * may be 50 which is 1 + 7 queues * 7 SG elements. | 
 | 		 */ | 
 | 		sg_entry_cnt = ASC_MAX_SG_LIST - 1; | 
 |  | 
 | 		/* | 
 | 		 * Keep track of remaining number of SG elements that will | 
 | 		 * need to be handled from a_isr.c. | 
 | 		 */ | 
 | 		scsiq->remain_sg_entry_cnt = | 
 | 		    sg_head->entry_cnt - ASC_MAX_SG_LIST; | 
 | 	} else { | 
 | #endif /* CC_VERY_LONG_SG_LIST */ | 
 | 		/* | 
 | 		 * Set sg_entry_cnt to be the number of SG elements that | 
 | 		 * will fit in the allocated SG queues. It is minus 1, because | 
 | 		 * the first SG element is handled above. | 
 | 		 */ | 
 | 		sg_entry_cnt = sg_head->entry_cnt - 1; | 
 | #if CC_VERY_LONG_SG_LIST | 
 | 	} | 
 | #endif /* CC_VERY_LONG_SG_LIST */ | 
 | 	if (sg_entry_cnt != 0) { | 
 | 		scsiq->q1.cntl |= QC_SG_HEAD; | 
 | 		q_addr = ASC_QNO_TO_QADDR(q_no); | 
 | 		sg_index = 1; | 
 | 		scsiq->q1.sg_queue_cnt = sg_head->queue_cnt; | 
 | 		scsi_sg_q.sg_head_qp = q_no; | 
 | 		scsi_sg_q.cntl = QCSG_SG_XFER_LIST; | 
 | 		for (i = 0; i < sg_head->queue_cnt; i++) { | 
 | 			scsi_sg_q.seq_no = i + 1; | 
 | 			if (sg_entry_cnt > ASC_SG_LIST_PER_Q) { | 
 | 				sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2); | 
 | 				sg_entry_cnt -= ASC_SG_LIST_PER_Q; | 
 | 				if (i == 0) { | 
 | 					scsi_sg_q.sg_list_cnt = | 
 | 					    ASC_SG_LIST_PER_Q; | 
 | 					scsi_sg_q.sg_cur_list_cnt = | 
 | 					    ASC_SG_LIST_PER_Q; | 
 | 				} else { | 
 | 					scsi_sg_q.sg_list_cnt = | 
 | 					    ASC_SG_LIST_PER_Q - 1; | 
 | 					scsi_sg_q.sg_cur_list_cnt = | 
 | 					    ASC_SG_LIST_PER_Q - 1; | 
 | 				} | 
 | 			} else { | 
 | #if CC_VERY_LONG_SG_LIST | 
 | 				/* | 
 | 				 * This is the last SG queue in the list of | 
 | 				 * allocated SG queues. If there are more | 
 | 				 * SG elements than will fit in the allocated | 
 | 				 * queues, then set the QCSG_SG_XFER_MORE flag. | 
 | 				 */ | 
 | 				if (sg_head->entry_cnt > ASC_MAX_SG_LIST) { | 
 | 					scsi_sg_q.cntl |= QCSG_SG_XFER_MORE; | 
 | 				} else { | 
 | #endif /* CC_VERY_LONG_SG_LIST */ | 
 | 					scsi_sg_q.cntl |= QCSG_SG_XFER_END; | 
 | #if CC_VERY_LONG_SG_LIST | 
 | 				} | 
 | #endif /* CC_VERY_LONG_SG_LIST */ | 
 | 				sg_list_dwords = sg_entry_cnt << 1; | 
 | 				if (i == 0) { | 
 | 					scsi_sg_q.sg_list_cnt = sg_entry_cnt; | 
 | 					scsi_sg_q.sg_cur_list_cnt = | 
 | 					    sg_entry_cnt; | 
 | 				} else { | 
 | 					scsi_sg_q.sg_list_cnt = | 
 | 					    sg_entry_cnt - 1; | 
 | 					scsi_sg_q.sg_cur_list_cnt = | 
 | 					    sg_entry_cnt - 1; | 
 | 				} | 
 | 				sg_entry_cnt = 0; | 
 | 			} | 
 | 			next_qp = AscReadLramByte(iop_base, | 
 | 						  (ushort)(q_addr + | 
 | 							   ASC_SCSIQ_B_FWD)); | 
 | 			scsi_sg_q.q_no = next_qp; | 
 | 			q_addr = ASC_QNO_TO_QADDR(next_qp); | 
 | 			AscMemWordCopyPtrToLram(iop_base, | 
 | 						q_addr + ASC_SCSIQ_SGHD_CPY_BEG, | 
 | 						(uchar *)&scsi_sg_q, | 
 | 						sizeof(ASC_SG_LIST_Q) >> 1); | 
 | 			AscMemDWordCopyPtrToLram(iop_base, | 
 | 						 q_addr + ASC_SGQ_LIST_BEG, | 
 | 						 (uchar *)&sg_head-> | 
 | 						 sg_list[sg_index], | 
 | 						 sg_list_dwords); | 
 | 			sg_index += ASC_SG_LIST_PER_Q; | 
 | 			scsiq->next_sg_index = sg_index; | 
 | 		} | 
 | 	} else { | 
 | 		scsiq->q1.cntl &= ~QC_SG_HEAD; | 
 | 	} | 
 | 	sta = AscPutReadyQueue(asc_dvc, scsiq, q_no); | 
 | 	scsiq->q1.data_addr = saved_data_addr; | 
 | 	scsiq->q1.data_cnt = saved_data_cnt; | 
 | 	return (sta); | 
 | } | 
 |  | 
 | static int | 
 | AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required) | 
 | { | 
 | 	PortAddr iop_base; | 
 | 	uchar free_q_head; | 
 | 	uchar next_qp; | 
 | 	uchar tid_no; | 
 | 	uchar target_ix; | 
 | 	int sta; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 | 	target_ix = scsiq->q2.target_ix; | 
 | 	tid_no = ASC_TIX_TO_TID(target_ix); | 
 | 	sta = 0; | 
 | 	free_q_head = (uchar)AscGetVarFreeQHead(iop_base); | 
 | 	if (n_q_required > 1) { | 
 | 		next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head, | 
 | 						    (uchar)n_q_required); | 
 | 		if (next_qp != ASC_QLINK_END) { | 
 | 			asc_dvc->last_q_shortage = 0; | 
 | 			scsiq->sg_head->queue_cnt = n_q_required - 1; | 
 | 			scsiq->q1.q_no = free_q_head; | 
 | 			sta = AscPutReadySgListQueue(asc_dvc, scsiq, | 
 | 						     free_q_head); | 
 | 		} | 
 | 	} else if (n_q_required == 1) { | 
 | 		next_qp = AscAllocFreeQueue(iop_base, free_q_head); | 
 | 		if (next_qp != ASC_QLINK_END) { | 
 | 			scsiq->q1.q_no = free_q_head; | 
 | 			sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head); | 
 | 		} | 
 | 	} | 
 | 	if (sta == 1) { | 
 | 		AscPutVarFreeQHead(iop_base, next_qp); | 
 | 		asc_dvc->cur_total_qng += n_q_required; | 
 | 		asc_dvc->cur_dvc_qng[tid_no]++; | 
 | 	} | 
 | 	return sta; | 
 | } | 
 |  | 
 | #define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16 | 
 | static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = { | 
 | 	INQUIRY, | 
 | 	REQUEST_SENSE, | 
 | 	READ_CAPACITY, | 
 | 	READ_TOC, | 
 | 	MODE_SELECT, | 
 | 	MODE_SENSE, | 
 | 	MODE_SELECT_10, | 
 | 	MODE_SENSE_10, | 
 | 	0xFF, | 
 | 	0xFF, | 
 | 	0xFF, | 
 | 	0xFF, | 
 | 	0xFF, | 
 | 	0xFF, | 
 | 	0xFF, | 
 | 	0xFF | 
 | }; | 
 |  | 
 | static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq) | 
 | { | 
 | 	PortAddr iop_base; | 
 | 	int sta; | 
 | 	int n_q_required; | 
 | 	int disable_syn_offset_one_fix; | 
 | 	int i; | 
 | 	ASC_PADDR addr; | 
 | 	ushort sg_entry_cnt = 0; | 
 | 	ushort sg_entry_cnt_minus_one = 0; | 
 | 	uchar target_ix; | 
 | 	uchar tid_no; | 
 | 	uchar sdtr_data; | 
 | 	uchar extra_bytes; | 
 | 	uchar scsi_cmd; | 
 | 	uchar disable_cmd; | 
 | 	ASC_SG_HEAD *sg_head; | 
 | 	ASC_DCNT data_cnt; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 | 	sg_head = scsiq->sg_head; | 
 | 	if (asc_dvc->err_code != 0) | 
 | 		return (ERR); | 
 | 	scsiq->q1.q_no = 0; | 
 | 	if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) { | 
 | 		scsiq->q1.extra_bytes = 0; | 
 | 	} | 
 | 	sta = 0; | 
 | 	target_ix = scsiq->q2.target_ix; | 
 | 	tid_no = ASC_TIX_TO_TID(target_ix); | 
 | 	n_q_required = 1; | 
 | 	if (scsiq->cdbptr[0] == REQUEST_SENSE) { | 
 | 		if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) { | 
 | 			asc_dvc->sdtr_done &= ~scsiq->q1.target_id; | 
 | 			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); | 
 | 			AscMsgOutSDTR(asc_dvc, | 
 | 				      asc_dvc-> | 
 | 				      sdtr_period_tbl[(sdtr_data >> 4) & | 
 | 						      (uchar)(asc_dvc-> | 
 | 							      max_sdtr_index - | 
 | 							      1)], | 
 | 				      (uchar)(sdtr_data & (uchar) | 
 | 					      ASC_SYN_MAX_OFFSET)); | 
 | 			scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT); | 
 | 		} | 
 | 	} | 
 | 	if (asc_dvc->in_critical_cnt != 0) { | 
 | 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY); | 
 | 		return (ERR); | 
 | 	} | 
 | 	asc_dvc->in_critical_cnt++; | 
 | 	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { | 
 | 		if ((sg_entry_cnt = sg_head->entry_cnt) == 0) { | 
 | 			asc_dvc->in_critical_cnt--; | 
 | 			return (ERR); | 
 | 		} | 
 | #if !CC_VERY_LONG_SG_LIST | 
 | 		if (sg_entry_cnt > ASC_MAX_SG_LIST) { | 
 | 			asc_dvc->in_critical_cnt--; | 
 | 			return (ERR); | 
 | 		} | 
 | #endif /* !CC_VERY_LONG_SG_LIST */ | 
 | 		if (sg_entry_cnt == 1) { | 
 | 			scsiq->q1.data_addr = | 
 | 			    (ADV_PADDR)sg_head->sg_list[0].addr; | 
 | 			scsiq->q1.data_cnt = | 
 | 			    (ADV_DCNT)sg_head->sg_list[0].bytes; | 
 | 			scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE); | 
 | 		} | 
 | 		sg_entry_cnt_minus_one = sg_entry_cnt - 1; | 
 | 	} | 
 | 	scsi_cmd = scsiq->cdbptr[0]; | 
 | 	disable_syn_offset_one_fix = FALSE; | 
 | 	if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) && | 
 | 	    !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) { | 
 | 		if (scsiq->q1.cntl & QC_SG_HEAD) { | 
 | 			data_cnt = 0; | 
 | 			for (i = 0; i < sg_entry_cnt; i++) { | 
 | 				data_cnt += | 
 | 				    (ADV_DCNT)le32_to_cpu(sg_head->sg_list[i]. | 
 | 							  bytes); | 
 | 			} | 
 | 		} else { | 
 | 			data_cnt = le32_to_cpu(scsiq->q1.data_cnt); | 
 | 		} | 
 | 		if (data_cnt != 0UL) { | 
 | 			if (data_cnt < 512UL) { | 
 | 				disable_syn_offset_one_fix = TRUE; | 
 | 			} else { | 
 | 				for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST; | 
 | 				     i++) { | 
 | 					disable_cmd = | 
 | 					    _syn_offset_one_disable_cmd[i]; | 
 | 					if (disable_cmd == 0xFF) { | 
 | 						break; | 
 | 					} | 
 | 					if (scsi_cmd == disable_cmd) { | 
 | 						disable_syn_offset_one_fix = | 
 | 						    TRUE; | 
 | 						break; | 
 | 					} | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	if (disable_syn_offset_one_fix) { | 
 | 		scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG; | 
 | 		scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX | | 
 | 				       ASC_TAG_FLAG_DISABLE_DISCONNECT); | 
 | 	} else { | 
 | 		scsiq->q2.tag_code &= 0x27; | 
 | 	} | 
 | 	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { | 
 | 		if (asc_dvc->bug_fix_cntl) { | 
 | 			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { | 
 | 				if ((scsi_cmd == READ_6) || | 
 | 				    (scsi_cmd == READ_10)) { | 
 | 					addr = | 
 | 					    (ADV_PADDR)le32_to_cpu(sg_head-> | 
 | 								   sg_list | 
 | 								   [sg_entry_cnt_minus_one]. | 
 | 								   addr) + | 
 | 					    (ADV_DCNT)le32_to_cpu(sg_head-> | 
 | 								  sg_list | 
 | 								  [sg_entry_cnt_minus_one]. | 
 | 								  bytes); | 
 | 					extra_bytes = | 
 | 					    (uchar)((ushort)addr & 0x0003); | 
 | 					if ((extra_bytes != 0) | 
 | 					    && | 
 | 					    ((scsiq->q2. | 
 | 					      tag_code & | 
 | 					      ASC_TAG_FLAG_EXTRA_BYTES) | 
 | 					     == 0)) { | 
 | 						scsiq->q2.tag_code |= | 
 | 						    ASC_TAG_FLAG_EXTRA_BYTES; | 
 | 						scsiq->q1.extra_bytes = | 
 | 						    extra_bytes; | 
 | 						data_cnt = | 
 | 						    le32_to_cpu(sg_head-> | 
 | 								sg_list | 
 | 								[sg_entry_cnt_minus_one]. | 
 | 								bytes); | 
 | 						data_cnt -= | 
 | 						    (ASC_DCNT) extra_bytes; | 
 | 						sg_head-> | 
 | 						    sg_list | 
 | 						    [sg_entry_cnt_minus_one]. | 
 | 						    bytes = | 
 | 						    cpu_to_le32(data_cnt); | 
 | 					} | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		sg_head->entry_to_copy = sg_head->entry_cnt; | 
 | #if CC_VERY_LONG_SG_LIST | 
 | 		/* | 
 | 		 * Set the sg_entry_cnt to the maximum possible. The rest of | 
 | 		 * the SG elements will be copied when the RISC completes the | 
 | 		 * SG elements that fit and halts. | 
 | 		 */ | 
 | 		if (sg_entry_cnt > ASC_MAX_SG_LIST) { | 
 | 			sg_entry_cnt = ASC_MAX_SG_LIST; | 
 | 		} | 
 | #endif /* CC_VERY_LONG_SG_LIST */ | 
 | 		n_q_required = AscSgListToQueue(sg_entry_cnt); | 
 | 		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >= | 
 | 		     (uint) n_q_required) | 
 | 		    || ((scsiq->q1.cntl & QC_URGENT) != 0)) { | 
 | 			if ((sta = | 
 | 			     AscSendScsiQueue(asc_dvc, scsiq, | 
 | 					      n_q_required)) == 1) { | 
 | 				asc_dvc->in_critical_cnt--; | 
 | 				return (sta); | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		if (asc_dvc->bug_fix_cntl) { | 
 | 			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { | 
 | 				if ((scsi_cmd == READ_6) || | 
 | 				    (scsi_cmd == READ_10)) { | 
 | 					addr = | 
 | 					    le32_to_cpu(scsiq->q1.data_addr) + | 
 | 					    le32_to_cpu(scsiq->q1.data_cnt); | 
 | 					extra_bytes = | 
 | 					    (uchar)((ushort)addr & 0x0003); | 
 | 					if ((extra_bytes != 0) | 
 | 					    && | 
 | 					    ((scsiq->q2. | 
 | 					      tag_code & | 
 | 					      ASC_TAG_FLAG_EXTRA_BYTES) | 
 | 					     == 0)) { | 
 | 						data_cnt = | 
 | 						    le32_to_cpu(scsiq->q1. | 
 | 								data_cnt); | 
 | 						if (((ushort)data_cnt & 0x01FF) | 
 | 						    == 0) { | 
 | 							scsiq->q2.tag_code |= | 
 | 							    ASC_TAG_FLAG_EXTRA_BYTES; | 
 | 							data_cnt -= (ASC_DCNT) | 
 | 							    extra_bytes; | 
 | 							scsiq->q1.data_cnt = | 
 | 							    cpu_to_le32 | 
 | 							    (data_cnt); | 
 | 							scsiq->q1.extra_bytes = | 
 | 							    extra_bytes; | 
 | 						} | 
 | 					} | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		n_q_required = 1; | 
 | 		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) || | 
 | 		    ((scsiq->q1.cntl & QC_URGENT) != 0)) { | 
 | 			if ((sta = AscSendScsiQueue(asc_dvc, scsiq, | 
 | 						    n_q_required)) == 1) { | 
 | 				asc_dvc->in_critical_cnt--; | 
 | 				return (sta); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	asc_dvc->in_critical_cnt--; | 
 | 	return (sta); | 
 | } | 
 |  | 
 | /* | 
 |  * AdvExeScsiQueue() - Send a request to the RISC microcode program. | 
 |  * | 
 |  *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q, | 
 |  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the | 
 |  *   RISC to notify it a new command is ready to be executed. | 
 |  * | 
 |  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be | 
 |  * set to SCSI_MAX_RETRY. | 
 |  * | 
 |  * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode | 
 |  * for DMA addresses or math operations are byte swapped to little-endian | 
 |  * order. | 
 |  * | 
 |  * Return: | 
 |  *      ADV_SUCCESS(1) - The request was successfully queued. | 
 |  *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending | 
 |  *                       request completes. | 
 |  *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure | 
 |  *                       host IC error. | 
 |  */ | 
 | static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq) | 
 | { | 
 | 	AdvPortAddr iop_base; | 
 | 	ADV_PADDR req_paddr; | 
 | 	ADV_CARR_T *new_carrp; | 
 |  | 
 | 	/* | 
 | 	 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID. | 
 | 	 */ | 
 | 	if (scsiq->target_id > ADV_MAX_TID) { | 
 | 		scsiq->host_status = QHSTA_M_INVALID_DEVICE; | 
 | 		scsiq->done_status = QD_WITH_ERROR; | 
 | 		return ADV_ERROR; | 
 | 	} | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 |  | 
 | 	/* | 
 | 	 * Allocate a carrier ensuring at least one carrier always | 
 | 	 * remains on the freelist and initialize fields. | 
 | 	 */ | 
 | 	if ((new_carrp = asc_dvc->carr_freelist) == NULL) { | 
 | 		return ADV_BUSY; | 
 | 	} | 
 | 	asc_dvc->carr_freelist = (ADV_CARR_T *) | 
 | 	    ADV_U32_TO_VADDR(le32_to_cpu(new_carrp->next_vpa)); | 
 | 	asc_dvc->carr_pending_cnt++; | 
 |  | 
 | 	/* | 
 | 	 * Set the carrier to be a stopper by setting 'next_vpa' | 
 | 	 * to the stopper value. The current stopper will be changed | 
 | 	 * below to point to the new stopper. | 
 | 	 */ | 
 | 	new_carrp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); | 
 |  | 
 | 	/* | 
 | 	 * Clear the ADV_SCSI_REQ_Q done flag. | 
 | 	 */ | 
 | 	scsiq->a_flag &= ~ADV_SCSIQ_DONE; | 
 |  | 
 | 	req_paddr = virt_to_bus(scsiq); | 
 | 	BUG_ON(req_paddr & 31); | 
 | 	/* Wait for assertion before making little-endian */ | 
 | 	req_paddr = cpu_to_le32(req_paddr); | 
 |  | 
 | 	/* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */ | 
 | 	scsiq->scsiq_ptr = cpu_to_le32(ADV_VADDR_TO_U32(scsiq)); | 
 | 	scsiq->scsiq_rptr = req_paddr; | 
 |  | 
 | 	scsiq->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->icq_sp)); | 
 | 	/* | 
 | 	 * Every ADV_CARR_T.carr_pa is byte swapped to little-endian | 
 | 	 * order during initialization. | 
 | 	 */ | 
 | 	scsiq->carr_pa = asc_dvc->icq_sp->carr_pa; | 
 |  | 
 | 	/* | 
 | 	 * Use the current stopper to send the ADV_SCSI_REQ_Q command to | 
 | 	 * the microcode. The newly allocated stopper will become the new | 
 | 	 * stopper. | 
 | 	 */ | 
 | 	asc_dvc->icq_sp->areq_vpa = req_paddr; | 
 |  | 
 | 	/* | 
 | 	 * Set the 'next_vpa' pointer for the old stopper to be the | 
 | 	 * physical address of the new stopper. The RISC can only | 
 | 	 * follow physical addresses. | 
 | 	 */ | 
 | 	asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa; | 
 |  | 
 | 	/* | 
 | 	 * Set the host adapter stopper pointer to point to the new carrier. | 
 | 	 */ | 
 | 	asc_dvc->icq_sp = new_carrp; | 
 |  | 
 | 	if (asc_dvc->chip_type == ADV_CHIP_ASC3550 || | 
 | 	    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { | 
 | 		/* | 
 | 		 * Tickle the RISC to tell it to read its Command Queue Head pointer. | 
 | 		 */ | 
 | 		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A); | 
 | 		if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { | 
 | 			/* | 
 | 			 * Clear the tickle value. In the ASC-3550 the RISC flag | 
 | 			 * command 'clr_tickle_a' does not work unless the host | 
 | 			 * value is cleared. | 
 | 			 */ | 
 | 			AdvWriteByteRegister(iop_base, IOPB_TICKLE, | 
 | 					     ADV_TICKLE_NOP); | 
 | 		} | 
 | 	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { | 
 | 		/* | 
 | 		 * Notify the RISC a carrier is ready by writing the physical | 
 | 		 * address of the new carrier stopper to the COMMA register. | 
 | 		 */ | 
 | 		AdvWriteDWordRegister(iop_base, IOPDW_COMMA, | 
 | 				      le32_to_cpu(new_carrp->carr_pa)); | 
 | 	} | 
 |  | 
 | 	return ADV_SUCCESS; | 
 | } | 
 |  | 
 | /* | 
 |  * Execute a single 'Scsi_Cmnd'. | 
 |  */ | 
 | static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp) | 
 | { | 
 | 	int ret, err_code; | 
 | 	struct asc_board *boardp = shost_priv(scp->device->host); | 
 |  | 
 | 	ASC_DBG(1, "scp 0x%p\n", scp); | 
 |  | 
 | 	if (ASC_NARROW_BOARD(boardp)) { | 
 | 		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var; | 
 | 		struct asc_scsi_q asc_scsi_q; | 
 |  | 
 | 		/* asc_build_req() can not return ASC_BUSY. */ | 
 | 		ret = asc_build_req(boardp, scp, &asc_scsi_q); | 
 | 		if (ret == ASC_ERROR) { | 
 | 			ASC_STATS(scp->device->host, build_error); | 
 | 			return ASC_ERROR; | 
 | 		} | 
 |  | 
 | 		ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q); | 
 | 		kfree(asc_scsi_q.sg_head); | 
 | 		err_code = asc_dvc->err_code; | 
 | 	} else { | 
 | 		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var; | 
 | 		ADV_SCSI_REQ_Q *adv_scsiqp; | 
 |  | 
 | 		switch (adv_build_req(boardp, scp, &adv_scsiqp)) { | 
 | 		case ASC_NOERROR: | 
 | 			ASC_DBG(3, "adv_build_req ASC_NOERROR\n"); | 
 | 			break; | 
 | 		case ASC_BUSY: | 
 | 			ASC_DBG(1, "adv_build_req ASC_BUSY\n"); | 
 | 			/* | 
 | 			 * The asc_stats fields 'adv_build_noreq' and | 
 | 			 * 'adv_build_nosg' count wide board busy conditions. | 
 | 			 * They are updated in adv_build_req and | 
 | 			 * adv_get_sglist, respectively. | 
 | 			 */ | 
 | 			return ASC_BUSY; | 
 | 		case ASC_ERROR: | 
 | 		default: | 
 | 			ASC_DBG(1, "adv_build_req ASC_ERROR\n"); | 
 | 			ASC_STATS(scp->device->host, build_error); | 
 | 			return ASC_ERROR; | 
 | 		} | 
 |  | 
 | 		ret = AdvExeScsiQueue(adv_dvc, adv_scsiqp); | 
 | 		err_code = adv_dvc->err_code; | 
 | 	} | 
 |  | 
 | 	switch (ret) { | 
 | 	case ASC_NOERROR: | 
 | 		ASC_STATS(scp->device->host, exe_noerror); | 
 | 		/* | 
 | 		 * Increment monotonically increasing per device | 
 | 		 * successful request counter. Wrapping doesn't matter. | 
 | 		 */ | 
 | 		boardp->reqcnt[scp->device->id]++; | 
 | 		ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n"); | 
 | 		break; | 
 | 	case ASC_BUSY: | 
 | 		ASC_STATS(scp->device->host, exe_busy); | 
 | 		break; | 
 | 	case ASC_ERROR: | 
 | 		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, " | 
 | 			"err_code 0x%x\n", err_code); | 
 | 		ASC_STATS(scp->device->host, exe_error); | 
 | 		scp->result = HOST_BYTE(DID_ERROR); | 
 | 		break; | 
 | 	default: | 
 | 		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, " | 
 | 			"err_code 0x%x\n", err_code); | 
 | 		ASC_STATS(scp->device->host, exe_unknown); | 
 | 		scp->result = HOST_BYTE(DID_ERROR); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	ASC_DBG(1, "end\n"); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * advansys_queuecommand() - interrupt-driven I/O entrypoint. | 
 |  * | 
 |  * This function always returns 0. Command return status is saved | 
 |  * in the 'scp' result field. | 
 |  */ | 
 | static int | 
 | advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *)) | 
 | { | 
 | 	struct Scsi_Host *shost = scp->device->host; | 
 | 	int asc_res, result = 0; | 
 |  | 
 | 	ASC_STATS(shost, queuecommand); | 
 | 	scp->scsi_done = done; | 
 |  | 
 | 	asc_res = asc_execute_scsi_cmnd(scp); | 
 |  | 
 | 	switch (asc_res) { | 
 | 	case ASC_NOERROR: | 
 | 		break; | 
 | 	case ASC_BUSY: | 
 | 		result = SCSI_MLQUEUE_HOST_BUSY; | 
 | 		break; | 
 | 	case ASC_ERROR: | 
 | 	default: | 
 | 		asc_scsi_done(scp); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 | static DEF_SCSI_QCMD(advansys_queuecommand) | 
 |  | 
 | static ushort __devinit AscGetEisaChipCfg(PortAddr iop_base) | 
 | { | 
 | 	PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | | 
 | 	    (PortAddr) (ASC_EISA_CFG_IOP_MASK); | 
 | 	return inpw(eisa_cfg_iop); | 
 | } | 
 |  | 
 | /* | 
 |  * Return the BIOS address of the adapter at the specified | 
 |  * I/O port and with the specified bus type. | 
 |  */ | 
 | static unsigned short __devinit | 
 | AscGetChipBiosAddress(PortAddr iop_base, unsigned short bus_type) | 
 | { | 
 | 	unsigned short cfg_lsw; | 
 | 	unsigned short bios_addr; | 
 |  | 
 | 	/* | 
 | 	 * The PCI BIOS is re-located by the motherboard BIOS. Because | 
 | 	 * of this the driver can not determine where a PCI BIOS is | 
 | 	 * loaded and executes. | 
 | 	 */ | 
 | 	if (bus_type & ASC_IS_PCI) | 
 | 		return 0; | 
 |  | 
 | 	if ((bus_type & ASC_IS_EISA) != 0) { | 
 | 		cfg_lsw = AscGetEisaChipCfg(iop_base); | 
 | 		cfg_lsw &= 0x000F; | 
 | 		bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE; | 
 | 		return bios_addr; | 
 | 	} | 
 |  | 
 | 	cfg_lsw = AscGetChipCfgLsw(iop_base); | 
 |  | 
 | 	/* | 
 | 	 *  ISA PnP uses the top bit as the 32K BIOS flag | 
 | 	 */ | 
 | 	if (bus_type == ASC_IS_ISAPNP) | 
 | 		cfg_lsw &= 0x7FFF; | 
 | 	bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE; | 
 | 	return bios_addr; | 
 | } | 
 |  | 
 | static uchar __devinit AscSetChipScsiID(PortAddr iop_base, uchar new_host_id) | 
 | { | 
 | 	ushort cfg_lsw; | 
 |  | 
 | 	if (AscGetChipScsiID(iop_base) == new_host_id) { | 
 | 		return (new_host_id); | 
 | 	} | 
 | 	cfg_lsw = AscGetChipCfgLsw(iop_base); | 
 | 	cfg_lsw &= 0xF8FF; | 
 | 	cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8); | 
 | 	AscSetChipCfgLsw(iop_base, cfg_lsw); | 
 | 	return (AscGetChipScsiID(iop_base)); | 
 | } | 
 |  | 
 | static unsigned char __devinit AscGetChipScsiCtrl(PortAddr iop_base) | 
 | { | 
 | 	unsigned char sc; | 
 |  | 
 | 	AscSetBank(iop_base, 1); | 
 | 	sc = inp(iop_base + IOP_REG_SC); | 
 | 	AscSetBank(iop_base, 0); | 
 | 	return sc; | 
 | } | 
 |  | 
 | static unsigned char __devinit | 
 | AscGetChipVersion(PortAddr iop_base, unsigned short bus_type) | 
 | { | 
 | 	if (bus_type & ASC_IS_EISA) { | 
 | 		PortAddr eisa_iop; | 
 | 		unsigned char revision; | 
 | 		eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | | 
 | 		    (PortAddr) ASC_EISA_REV_IOP_MASK; | 
 | 		revision = inp(eisa_iop); | 
 | 		return ASC_CHIP_MIN_VER_EISA - 1 + revision; | 
 | 	} | 
 | 	return AscGetChipVerNo(iop_base); | 
 | } | 
 |  | 
 | #ifdef CONFIG_ISA | 
 | static void __devinit AscEnableIsaDma(uchar dma_channel) | 
 | { | 
 | 	if (dma_channel < 4) { | 
 | 		outp(0x000B, (ushort)(0xC0 | dma_channel)); | 
 | 		outp(0x000A, dma_channel); | 
 | 	} else if (dma_channel < 8) { | 
 | 		outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4))); | 
 | 		outp(0x00D4, (ushort)(dma_channel - 4)); | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_ISA */ | 
 |  | 
 | static int AscStopQueueExe(PortAddr iop_base) | 
 | { | 
 | 	int count = 0; | 
 |  | 
 | 	if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) { | 
 | 		AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, | 
 | 				 ASC_STOP_REQ_RISC_STOP); | 
 | 		do { | 
 | 			if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) & | 
 | 			    ASC_STOP_ACK_RISC_STOP) { | 
 | 				return (1); | 
 | 			} | 
 | 			mdelay(100); | 
 | 		} while (count++ < 20); | 
 | 	} | 
 | 	return (0); | 
 | } | 
 |  | 
 | static ASC_DCNT __devinit AscGetMaxDmaCount(ushort bus_type) | 
 | { | 
 | 	if (bus_type & ASC_IS_ISA) | 
 | 		return ASC_MAX_ISA_DMA_COUNT; | 
 | 	else if (bus_type & (ASC_IS_EISA | ASC_IS_VL)) | 
 | 		return ASC_MAX_VL_DMA_COUNT; | 
 | 	return ASC_MAX_PCI_DMA_COUNT; | 
 | } | 
 |  | 
 | #ifdef CONFIG_ISA | 
 | static ushort __devinit AscGetIsaDmaChannel(PortAddr iop_base) | 
 | { | 
 | 	ushort channel; | 
 |  | 
 | 	channel = AscGetChipCfgLsw(iop_base) & 0x0003; | 
 | 	if (channel == 0x03) | 
 | 		return (0); | 
 | 	else if (channel == 0x00) | 
 | 		return (7); | 
 | 	return (channel + 4); | 
 | } | 
 |  | 
 | static ushort __devinit AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel) | 
 | { | 
 | 	ushort cfg_lsw; | 
 | 	uchar value; | 
 |  | 
 | 	if ((dma_channel >= 5) && (dma_channel <= 7)) { | 
 | 		if (dma_channel == 7) | 
 | 			value = 0x00; | 
 | 		else | 
 | 			value = dma_channel - 4; | 
 | 		cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC; | 
 | 		cfg_lsw |= value; | 
 | 		AscSetChipCfgLsw(iop_base, cfg_lsw); | 
 | 		return (AscGetIsaDmaChannel(iop_base)); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static uchar __devinit AscGetIsaDmaSpeed(PortAddr iop_base) | 
 | { | 
 | 	uchar speed_value; | 
 |  | 
 | 	AscSetBank(iop_base, 1); | 
 | 	speed_value = AscReadChipDmaSpeed(iop_base); | 
 | 	speed_value &= 0x07; | 
 | 	AscSetBank(iop_base, 0); | 
 | 	return speed_value; | 
 | } | 
 |  | 
 | static uchar __devinit AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value) | 
 | { | 
 | 	speed_value &= 0x07; | 
 | 	AscSetBank(iop_base, 1); | 
 | 	AscWriteChipDmaSpeed(iop_base, speed_value); | 
 | 	AscSetBank(iop_base, 0); | 
 | 	return AscGetIsaDmaSpeed(iop_base); | 
 | } | 
 | #endif /* CONFIG_ISA */ | 
 |  | 
 | static ushort __devinit AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc) | 
 | { | 
 | 	int i; | 
 | 	PortAddr iop_base; | 
 | 	ushort warn_code; | 
 | 	uchar chip_version; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 | 	warn_code = 0; | 
 | 	asc_dvc->err_code = 0; | 
 | 	if ((asc_dvc->bus_type & | 
 | 	     (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) { | 
 | 		asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE; | 
 | 	} | 
 | 	AscSetChipControl(iop_base, CC_HALT); | 
 | 	AscSetChipStatus(iop_base, 0); | 
 | 	asc_dvc->bug_fix_cntl = 0; | 
 | 	asc_dvc->pci_fix_asyn_xfer = 0; | 
 | 	asc_dvc->pci_fix_asyn_xfer_always = 0; | 
 | 	/* asc_dvc->init_state initialized in AscInitGetConfig(). */ | 
 | 	asc_dvc->sdtr_done = 0; | 
 | 	asc_dvc->cur_total_qng = 0; | 
 | 	asc_dvc->is_in_int = 0; | 
 | 	asc_dvc->in_critical_cnt = 0; | 
 | 	asc_dvc->last_q_shortage = 0; | 
 | 	asc_dvc->use_tagged_qng = 0; | 
 | 	asc_dvc->no_scam = 0; | 
 | 	asc_dvc->unit_not_ready = 0; | 
 | 	asc_dvc->queue_full_or_busy = 0; | 
 | 	asc_dvc->redo_scam = 0; | 
 | 	asc_dvc->res2 = 0; | 
 | 	asc_dvc->min_sdtr_index = 0; | 
 | 	asc_dvc->cfg->can_tagged_qng = 0; | 
 | 	asc_dvc->cfg->cmd_qng_enabled = 0; | 
 | 	asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL; | 
 | 	asc_dvc->init_sdtr = 0; | 
 | 	asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG; | 
 | 	asc_dvc->scsi_reset_wait = 3; | 
 | 	asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET; | 
 | 	asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type); | 
 | 	asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET; | 
 | 	asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET; | 
 | 	asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID; | 
 | 	chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type); | 
 | 	asc_dvc->cfg->chip_version = chip_version; | 
 | 	asc_dvc->sdtr_period_tbl = asc_syn_xfer_period; | 
 | 	asc_dvc->max_sdtr_index = 7; | 
 | 	if ((asc_dvc->bus_type & ASC_IS_PCI) && | 
 | 	    (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) { | 
 | 		asc_dvc->bus_type = ASC_IS_PCI_ULTRA; | 
 | 		asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period; | 
 | 		asc_dvc->max_sdtr_index = 15; | 
 | 		if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) { | 
 | 			AscSetExtraControl(iop_base, | 
 | 					   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); | 
 | 		} else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) { | 
 | 			AscSetExtraControl(iop_base, | 
 | 					   (SEC_ACTIVE_NEGATE | | 
 | 					    SEC_ENABLE_FILTER)); | 
 | 		} | 
 | 	} | 
 | 	if (asc_dvc->bus_type == ASC_IS_PCI) { | 
 | 		AscSetExtraControl(iop_base, | 
 | 				   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); | 
 | 	} | 
 |  | 
 | 	asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED; | 
 | #ifdef CONFIG_ISA | 
 | 	if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) { | 
 | 		if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) { | 
 | 			AscSetChipIFC(iop_base, IFC_INIT_DEFAULT); | 
 | 			asc_dvc->bus_type = ASC_IS_ISAPNP; | 
 | 		} | 
 | 		asc_dvc->cfg->isa_dma_channel = | 
 | 		    (uchar)AscGetIsaDmaChannel(iop_base); | 
 | 	} | 
 | #endif /* CONFIG_ISA */ | 
 | 	for (i = 0; i <= ASC_MAX_TID; i++) { | 
 | 		asc_dvc->cur_dvc_qng[i] = 0; | 
 | 		asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG; | 
 | 		asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L; | 
 | 		asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L; | 
 | 		asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG; | 
 | 	} | 
 | 	return warn_code; | 
 | } | 
 |  | 
 | static int __devinit AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg) | 
 | { | 
 | 	int retry; | 
 |  | 
 | 	for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) { | 
 | 		unsigned char read_back; | 
 | 		AscSetChipEEPCmd(iop_base, cmd_reg); | 
 | 		mdelay(1); | 
 | 		read_back = AscGetChipEEPCmd(iop_base); | 
 | 		if (read_back == cmd_reg) | 
 | 			return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __devinit AscWaitEEPRead(void) | 
 | { | 
 | 	mdelay(1); | 
 | } | 
 |  | 
 | static ushort __devinit AscReadEEPWord(PortAddr iop_base, uchar addr) | 
 | { | 
 | 	ushort read_wval; | 
 | 	uchar cmd_reg; | 
 |  | 
 | 	AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); | 
 | 	AscWaitEEPRead(); | 
 | 	cmd_reg = addr | ASC_EEP_CMD_READ; | 
 | 	AscWriteEEPCmdReg(iop_base, cmd_reg); | 
 | 	AscWaitEEPRead(); | 
 | 	read_wval = AscGetChipEEPData(iop_base); | 
 | 	AscWaitEEPRead(); | 
 | 	return read_wval; | 
 | } | 
 |  | 
 | static ushort __devinit | 
 | AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type) | 
 | { | 
 | 	ushort wval; | 
 | 	ushort sum; | 
 | 	ushort *wbuf; | 
 | 	int cfg_beg; | 
 | 	int cfg_end; | 
 | 	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2; | 
 | 	int s_addr; | 
 |  | 
 | 	wbuf = (ushort *)cfg_buf; | 
 | 	sum = 0; | 
 | 	/* Read two config words; Byte-swapping done by AscReadEEPWord(). */ | 
 | 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { | 
 | 		*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr); | 
 | 		sum += *wbuf; | 
 | 	} | 
 | 	if (bus_type & ASC_IS_VL) { | 
 | 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; | 
 | 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; | 
 | 	} else { | 
 | 		cfg_beg = ASC_EEP_DVC_CFG_BEG; | 
 | 		cfg_end = ASC_EEP_MAX_DVC_ADDR; | 
 | 	} | 
 | 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { | 
 | 		wval = AscReadEEPWord(iop_base, (uchar)s_addr); | 
 | 		if (s_addr <= uchar_end_in_config) { | 
 | 			/* | 
 | 			 * Swap all char fields - must unswap bytes already swapped | 
 | 			 * by AscReadEEPWord(). | 
 | 			 */ | 
 | 			*wbuf = le16_to_cpu(wval); | 
 | 		} else { | 
 | 			/* Don't swap word field at the end - cntl field. */ | 
 | 			*wbuf = wval; | 
 | 		} | 
 | 		sum += wval;	/* Checksum treats all EEPROM data as words. */ | 
 | 	} | 
 | 	/* | 
 | 	 * Read the checksum word which will be compared against 'sum' | 
 | 	 * by the caller. Word field already swapped. | 
 | 	 */ | 
 | 	*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr); | 
 | 	return sum; | 
 | } | 
 |  | 
 | static int __devinit AscTestExternalLram(ASC_DVC_VAR *asc_dvc) | 
 | { | 
 | 	PortAddr iop_base; | 
 | 	ushort q_addr; | 
 | 	ushort saved_word; | 
 | 	int sta; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 | 	sta = 0; | 
 | 	q_addr = ASC_QNO_TO_QADDR(241); | 
 | 	saved_word = AscReadLramWord(iop_base, q_addr); | 
 | 	AscSetChipLramAddr(iop_base, q_addr); | 
 | 	AscSetChipLramData(iop_base, 0x55AA); | 
 | 	mdelay(10); | 
 | 	AscSetChipLramAddr(iop_base, q_addr); | 
 | 	if (AscGetChipLramData(iop_base) == 0x55AA) { | 
 | 		sta = 1; | 
 | 		AscWriteLramWord(iop_base, q_addr, saved_word); | 
 | 	} | 
 | 	return (sta); | 
 | } | 
 |  | 
 | static void __devinit AscWaitEEPWrite(void) | 
 | { | 
 | 	mdelay(20); | 
 | } | 
 |  | 
 | static int __devinit AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg) | 
 | { | 
 | 	ushort read_back; | 
 | 	int retry; | 
 |  | 
 | 	retry = 0; | 
 | 	while (TRUE) { | 
 | 		AscSetChipEEPData(iop_base, data_reg); | 
 | 		mdelay(1); | 
 | 		read_back = AscGetChipEEPData(iop_base); | 
 | 		if (read_back == data_reg) { | 
 | 			return (1); | 
 | 		} | 
 | 		if (retry++ > ASC_EEP_MAX_RETRY) { | 
 | 			return (0); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static ushort __devinit | 
 | AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val) | 
 | { | 
 | 	ushort read_wval; | 
 |  | 
 | 	read_wval = AscReadEEPWord(iop_base, addr); | 
 | 	if (read_wval != word_val) { | 
 | 		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE); | 
 | 		AscWaitEEPRead(); | 
 | 		AscWriteEEPDataReg(iop_base, word_val); | 
 | 		AscWaitEEPRead(); | 
 | 		AscWriteEEPCmdReg(iop_base, | 
 | 				  (uchar)((uchar)ASC_EEP_CMD_WRITE | addr)); | 
 | 		AscWaitEEPWrite(); | 
 | 		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); | 
 | 		AscWaitEEPRead(); | 
 | 		return (AscReadEEPWord(iop_base, addr)); | 
 | 	} | 
 | 	return (read_wval); | 
 | } | 
 |  | 
 | static int __devinit | 
 | AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type) | 
 | { | 
 | 	int n_error; | 
 | 	ushort *wbuf; | 
 | 	ushort word; | 
 | 	ushort sum; | 
 | 	int s_addr; | 
 | 	int cfg_beg; | 
 | 	int cfg_end; | 
 | 	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2; | 
 |  | 
 | 	wbuf = (ushort *)cfg_buf; | 
 | 	n_error = 0; | 
 | 	sum = 0; | 
 | 	/* Write two config words; AscWriteEEPWord() will swap bytes. */ | 
 | 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { | 
 | 		sum += *wbuf; | 
 | 		if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) { | 
 | 			n_error++; | 
 | 		} | 
 | 	} | 
 | 	if (bus_type & ASC_IS_VL) { | 
 | 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; | 
 | 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; | 
 | 	} else { | 
 | 		cfg_beg = ASC_EEP_DVC_CFG_BEG; | 
 | 		cfg_end = ASC_EEP_MAX_DVC_ADDR; | 
 | 	} | 
 | 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { | 
 | 		if (s_addr <= uchar_end_in_config) { | 
 | 			/* | 
 | 			 * This is a char field. Swap char fields before they are | 
 | 			 * swapped again by AscWriteEEPWord(). | 
 | 			 */ | 
 | 			word = cpu_to_le16(*wbuf); | 
 | 			if (word != | 
 | 			    AscWriteEEPWord(iop_base, (uchar)s_addr, word)) { | 
 | 				n_error++; | 
 | 			} | 
 | 		} else { | 
 | 			/* Don't swap word field at the end - cntl field. */ | 
 | 			if (*wbuf != | 
 | 			    AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) { | 
 | 				n_error++; | 
 | 			} | 
 | 		} | 
 | 		sum += *wbuf;	/* Checksum calculated from word values. */ | 
 | 	} | 
 | 	/* Write checksum word. It will be swapped by AscWriteEEPWord(). */ | 
 | 	*wbuf = sum; | 
 | 	if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) { | 
 | 		n_error++; | 
 | 	} | 
 |  | 
 | 	/* Read EEPROM back again. */ | 
 | 	wbuf = (ushort *)cfg_buf; | 
 | 	/* | 
 | 	 * Read two config words; Byte-swapping done by AscReadEEPWord(). | 
 | 	 */ | 
 | 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { | 
 | 		if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) { | 
 | 			n_error++; | 
 | 		} | 
 | 	} | 
 | 	if (bus_type & ASC_IS_VL) { | 
 | 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; | 
 | 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; | 
 | 	} else { | 
 | 		cfg_beg = ASC_EEP_DVC_CFG_BEG; | 
 | 		cfg_end = ASC_EEP_MAX_DVC_ADDR; | 
 | 	} | 
 | 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { | 
 | 		if (s_addr <= uchar_end_in_config) { | 
 | 			/* | 
 | 			 * Swap all char fields. Must unswap bytes already swapped | 
 | 			 * by AscReadEEPWord(). | 
 | 			 */ | 
 | 			word = | 
 | 			    le16_to_cpu(AscReadEEPWord | 
 | 					(iop_base, (uchar)s_addr)); | 
 | 		} else { | 
 | 			/* Don't swap word field at the end - cntl field. */ | 
 | 			word = AscReadEEPWord(iop_base, (uchar)s_addr); | 
 | 		} | 
 | 		if (*wbuf != word) { | 
 | 			n_error++; | 
 | 		} | 
 | 	} | 
 | 	/* Read checksum; Byte swapping not needed. */ | 
 | 	if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) { | 
 | 		n_error++; | 
 | 	} | 
 | 	return n_error; | 
 | } | 
 |  | 
 | static int __devinit | 
 | AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type) | 
 | { | 
 | 	int retry; | 
 | 	int n_error; | 
 |  | 
 | 	retry = 0; | 
 | 	while (TRUE) { | 
 | 		if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf, | 
 | 						   bus_type)) == 0) { | 
 | 			break; | 
 | 		} | 
 | 		if (++retry > ASC_EEP_MAX_RETRY) { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return n_error; | 
 | } | 
 |  | 
 | static ushort __devinit AscInitFromEEP(ASC_DVC_VAR *asc_dvc) | 
 | { | 
 | 	ASCEEP_CONFIG eep_config_buf; | 
 | 	ASCEEP_CONFIG *eep_config; | 
 | 	PortAddr iop_base; | 
 | 	ushort chksum; | 
 | 	ushort warn_code; | 
 | 	ushort cfg_msw, cfg_lsw; | 
 | 	int i; | 
 | 	int write_eep = 0; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 | 	warn_code = 0; | 
 | 	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE); | 
 | 	AscStopQueueExe(iop_base); | 
 | 	if ((AscStopChip(iop_base) == FALSE) || | 
 | 	    (AscGetChipScsiCtrl(iop_base) != 0)) { | 
 | 		asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE; | 
 | 		AscResetChipAndScsiBus(asc_dvc); | 
 | 		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ | 
 | 	} | 
 | 	if (AscIsChipHalted(iop_base) == FALSE) { | 
 | 		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; | 
 | 		return (warn_code); | 
 | 	} | 
 | 	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); | 
 | 	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { | 
 | 		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; | 
 | 		return (warn_code); | 
 | 	} | 
 | 	eep_config = (ASCEEP_CONFIG *)&eep_config_buf; | 
 | 	cfg_msw = AscGetChipCfgMsw(iop_base); | 
 | 	cfg_lsw = AscGetChipCfgLsw(iop_base); | 
 | 	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { | 
 | 		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; | 
 | 		warn_code |= ASC_WARN_CFG_MSW_RECOVER; | 
 | 		AscSetChipCfgMsw(iop_base, cfg_msw); | 
 | 	} | 
 | 	chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type); | 
 | 	ASC_DBG(1, "chksum 0x%x\n", chksum); | 
 | 	if (chksum == 0) { | 
 | 		chksum = 0xaa55; | 
 | 	} | 
 | 	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { | 
 | 		warn_code |= ASC_WARN_AUTO_CONFIG; | 
 | 		if (asc_dvc->cfg->chip_version == 3) { | 
 | 			if (eep_config->cfg_lsw != cfg_lsw) { | 
 | 				warn_code |= ASC_WARN_EEPROM_RECOVER; | 
 | 				eep_config->cfg_lsw = | 
 | 				    AscGetChipCfgLsw(iop_base); | 
 | 			} | 
 | 			if (eep_config->cfg_msw != cfg_msw) { | 
 | 				warn_code |= ASC_WARN_EEPROM_RECOVER; | 
 | 				eep_config->cfg_msw = | 
 | 				    AscGetChipCfgMsw(iop_base); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; | 
 | 	eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON; | 
 | 	ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum); | 
 | 	if (chksum != eep_config->chksum) { | 
 | 		if (AscGetChipVersion(iop_base, asc_dvc->bus_type) == | 
 | 		    ASC_CHIP_VER_PCI_ULTRA_3050) { | 
 | 			ASC_DBG(1, "chksum error ignored; EEPROM-less board\n"); | 
 | 			eep_config->init_sdtr = 0xFF; | 
 | 			eep_config->disc_enable = 0xFF; | 
 | 			eep_config->start_motor = 0xFF; | 
 | 			eep_config->use_cmd_qng = 0; | 
 | 			eep_config->max_total_qng = 0xF0; | 
 | 			eep_config->max_tag_qng = 0x20; | 
 | 			eep_config->cntl = 0xBFFF; | 
 | 			ASC_EEP_SET_CHIP_ID(eep_config, 7); | 
 | 			eep_config->no_scam = 0; | 
 | 			eep_config->adapter_info[0] = 0; | 
 | 			eep_config->adapter_info[1] = 0; | 
 | 			eep_config->adapter_info[2] = 0; | 
 | 			eep_config->adapter_info[3] = 0; | 
 | 			eep_config->adapter_info[4] = 0; | 
 | 			/* Indicate EEPROM-less board. */ | 
 | 			eep_config->adapter_info[5] = 0xBB; | 
 | 		} else { | 
 | 			ASC_PRINT | 
 | 			    ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n"); | 
 | 			write_eep = 1; | 
 | 			warn_code |= ASC_WARN_EEPROM_CHKSUM; | 
 | 		} | 
 | 	} | 
 | 	asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr; | 
 | 	asc_dvc->cfg->disc_enable = eep_config->disc_enable; | 
 | 	asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng; | 
 | 	asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config); | 
 | 	asc_dvc->start_motor = eep_config->start_motor; | 
 | 	asc_dvc->dvc_cntl = eep_config->cntl; | 
 | 	asc_dvc->no_scam = eep_config->no_scam; | 
 | 	asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0]; | 
 | 	asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1]; | 
 | 	asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2]; | 
 | 	asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3]; | 
 | 	asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4]; | 
 | 	asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5]; | 
 | 	if (!AscTestExternalLram(asc_dvc)) { | 
 | 		if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == | 
 | 		     ASC_IS_PCI_ULTRA)) { | 
 | 			eep_config->max_total_qng = | 
 | 			    ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG; | 
 | 			eep_config->max_tag_qng = | 
 | 			    ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG; | 
 | 		} else { | 
 | 			eep_config->cfg_msw |= 0x0800; | 
 | 			cfg_msw |= 0x0800; | 
 | 			AscSetChipCfgMsw(iop_base, cfg_msw); | 
 | 			eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG; | 
 | 			eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG; | 
 | 		} | 
 | 	} else { | 
 | 	} | 
 | 	if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) { | 
 | 		eep_config->max_total_qng = ASC_MIN_TOTAL_QNG; | 
 | 	} | 
 | 	if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) { | 
 | 		eep_config->max_total_qng = ASC_MAX_TOTAL_QNG; | 
 | 	} | 
 | 	if (eep_config->max_tag_qng > eep_config->max_total_qng) { | 
 | 		eep_config->max_tag_qng = eep_config->max_total_qng; | 
 | 	} | 
 | 	if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) { | 
 | 		eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC; | 
 | 	} | 
 | 	asc_dvc->max_total_qng = eep_config->max_total_qng; | 
 | 	if ((eep_config->use_cmd_qng & eep_config->disc_enable) != | 
 | 	    eep_config->use_cmd_qng) { | 
 | 		eep_config->disc_enable = eep_config->use_cmd_qng; | 
 | 		warn_code |= ASC_WARN_CMD_QNG_CONFLICT; | 
 | 	} | 
 | 	ASC_EEP_SET_CHIP_ID(eep_config, | 
 | 			    ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID); | 
 | 	asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config); | 
 | 	if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) && | 
 | 	    !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) { | 
 | 		asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i <= ASC_MAX_TID; i++) { | 
 | 		asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i]; | 
 | 		asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng; | 
 | 		asc_dvc->cfg->sdtr_period_offset[i] = | 
 | 		    (uchar)(ASC_DEF_SDTR_OFFSET | | 
 | 			    (asc_dvc->min_sdtr_index << 4)); | 
 | 	} | 
 | 	eep_config->cfg_msw = AscGetChipCfgMsw(iop_base); | 
 | 	if (write_eep) { | 
 | 		if ((i = AscSetEEPConfig(iop_base, eep_config, | 
 | 				     asc_dvc->bus_type)) != 0) { | 
 | 			ASC_PRINT1 | 
 | 			    ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n", | 
 | 			     i); | 
 | 		} else { | 
 | 			ASC_PRINT | 
 | 			    ("AscInitFromEEP: Successfully re-wrote EEPROM.\n"); | 
 | 		} | 
 | 	} | 
 | 	return (warn_code); | 
 | } | 
 |  | 
 | static int __devinit AscInitGetConfig(struct Scsi_Host *shost) | 
 | { | 
 | 	struct asc_board *board = shost_priv(shost); | 
 | 	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var; | 
 | 	unsigned short warn_code = 0; | 
 |  | 
 | 	asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG; | 
 | 	if (asc_dvc->err_code != 0) | 
 | 		return asc_dvc->err_code; | 
 |  | 
 | 	if (AscFindSignature(asc_dvc->iop_base)) { | 
 | 		warn_code |= AscInitAscDvcVar(asc_dvc); | 
 | 		warn_code |= AscInitFromEEP(asc_dvc); | 
 | 		asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG; | 
 | 		if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT) | 
 | 			asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT; | 
 | 	} else { | 
 | 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; | 
 | 	} | 
 |  | 
 | 	switch (warn_code) { | 
 | 	case 0:	/* No error */ | 
 | 		break; | 
 | 	case ASC_WARN_IO_PORT_ROTATE: | 
 | 		shost_printk(KERN_WARNING, shost, "I/O port address " | 
 | 				"modified\n"); | 
 | 		break; | 
 | 	case ASC_WARN_AUTO_CONFIG: | 
 | 		shost_printk(KERN_WARNING, shost, "I/O port increment switch " | 
 | 				"enabled\n"); | 
 | 		break; | 
 | 	case ASC_WARN_EEPROM_CHKSUM: | 
 | 		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n"); | 
 | 		break; | 
 | 	case ASC_WARN_IRQ_MODIFIED: | 
 | 		shost_printk(KERN_WARNING, shost, "IRQ modified\n"); | 
 | 		break; | 
 | 	case ASC_WARN_CMD_QNG_CONFLICT: | 
 | 		shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o " | 
 | 				"disconnects\n"); | 
 | 		break; | 
 | 	default: | 
 | 		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n", | 
 | 				warn_code); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (asc_dvc->err_code != 0) | 
 | 		shost_printk(KERN_ERR, shost, "error 0x%x at init_state " | 
 | 			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state); | 
 |  | 
 | 	return asc_dvc->err_code; | 
 | } | 
 |  | 
 | static int __devinit AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost) | 
 | { | 
 | 	struct asc_board *board = shost_priv(shost); | 
 | 	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var; | 
 | 	PortAddr iop_base = asc_dvc->iop_base; | 
 | 	unsigned short cfg_msw; | 
 | 	unsigned short warn_code = 0; | 
 |  | 
 | 	asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG; | 
 | 	if (asc_dvc->err_code != 0) | 
 | 		return asc_dvc->err_code; | 
 | 	if (!AscFindSignature(asc_dvc->iop_base)) { | 
 | 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; | 
 | 		return asc_dvc->err_code; | 
 | 	} | 
 |  | 
 | 	cfg_msw = AscGetChipCfgMsw(iop_base); | 
 | 	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { | 
 | 		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; | 
 | 		warn_code |= ASC_WARN_CFG_MSW_RECOVER; | 
 | 		AscSetChipCfgMsw(iop_base, cfg_msw); | 
 | 	} | 
 | 	if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) != | 
 | 	    asc_dvc->cfg->cmd_qng_enabled) { | 
 | 		asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled; | 
 | 		warn_code |= ASC_WARN_CMD_QNG_CONFLICT; | 
 | 	} | 
 | 	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { | 
 | 		warn_code |= ASC_WARN_AUTO_CONFIG; | 
 | 	} | 
 | #ifdef CONFIG_PCI | 
 | 	if (asc_dvc->bus_type & ASC_IS_PCI) { | 
 | 		cfg_msw &= 0xFFC0; | 
 | 		AscSetChipCfgMsw(iop_base, cfg_msw); | 
 | 		if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) { | 
 | 		} else { | 
 | 			if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) || | 
 | 			    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) { | 
 | 				asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB; | 
 | 				asc_dvc->bug_fix_cntl |= | 
 | 				    ASC_BUG_FIX_ASYN_USE_SYN; | 
 | 			} | 
 | 		} | 
 | 	} else | 
 | #endif /* CONFIG_PCI */ | 
 | 	if (asc_dvc->bus_type == ASC_IS_ISAPNP) { | 
 | 		if (AscGetChipVersion(iop_base, asc_dvc->bus_type) | 
 | 		    == ASC_CHIP_VER_ASYN_BUG) { | 
 | 			asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN; | 
 | 		} | 
 | 	} | 
 | 	if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) != | 
 | 	    asc_dvc->cfg->chip_scsi_id) { | 
 | 		asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID; | 
 | 	} | 
 | #ifdef CONFIG_ISA | 
 | 	if (asc_dvc->bus_type & ASC_IS_ISA) { | 
 | 		AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel); | 
 | 		AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed); | 
 | 	} | 
 | #endif /* CONFIG_ISA */ | 
 |  | 
 | 	asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG; | 
 |  | 
 | 	switch (warn_code) { | 
 | 	case 0:	/* No error. */ | 
 | 		break; | 
 | 	case ASC_WARN_IO_PORT_ROTATE: | 
 | 		shost_printk(KERN_WARNING, shost, "I/O port address " | 
 | 				"modified\n"); | 
 | 		break; | 
 | 	case ASC_WARN_AUTO_CONFIG: | 
 | 		shost_printk(KERN_WARNING, shost, "I/O port increment switch " | 
 | 				"enabled\n"); | 
 | 		break; | 
 | 	case ASC_WARN_EEPROM_CHKSUM: | 
 | 		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n"); | 
 | 		break; | 
 | 	case ASC_WARN_IRQ_MODIFIED: | 
 | 		shost_printk(KERN_WARNING, shost, "IRQ modified\n"); | 
 | 		break; | 
 | 	case ASC_WARN_CMD_QNG_CONFLICT: | 
 | 		shost_printk(KERN_WARNING, shost, "tag queuing w/o " | 
 | 				"disconnects\n"); | 
 | 		break; | 
 | 	default: | 
 | 		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n", | 
 | 				warn_code); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (asc_dvc->err_code != 0) | 
 | 		shost_printk(KERN_ERR, shost, "error 0x%x at init_state " | 
 | 			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state); | 
 |  | 
 | 	return asc_dvc->err_code; | 
 | } | 
 |  | 
 | /* | 
 |  * EEPROM Configuration. | 
 |  * | 
 |  * All drivers should use this structure to set the default EEPROM | 
 |  * configuration. The BIOS now uses this structure when it is built. | 
 |  * Additional structure information can be found in a_condor.h where | 
 |  * the structure is defined. | 
 |  * | 
 |  * The *_Field_IsChar structs are needed to correct for endianness. | 
 |  * These values are read from the board 16 bits at a time directly | 
 |  * into the structs. Because some fields are char, the values will be | 
 |  * in the wrong order. The *_Field_IsChar tells when to flip the | 
 |  * bytes. Data read and written to PCI memory is automatically swapped | 
 |  * on big-endian platforms so char fields read as words are actually being | 
 |  * unswapped on big-endian platforms. | 
 |  */ | 
 | static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config __devinitdata = { | 
 | 	ADV_EEPROM_BIOS_ENABLE,	/* cfg_lsw */ | 
 | 	0x0000,			/* cfg_msw */ | 
 | 	0xFFFF,			/* disc_enable */ | 
 | 	0xFFFF,			/* wdtr_able */ | 
 | 	0xFFFF,			/* sdtr_able */ | 
 | 	0xFFFF,			/* start_motor */ | 
 | 	0xFFFF,			/* tagqng_able */ | 
 | 	0xFFFF,			/* bios_scan */ | 
 | 	0,			/* scam_tolerant */ | 
 | 	7,			/* adapter_scsi_id */ | 
 | 	0,			/* bios_boot_delay */ | 
 | 	3,			/* scsi_reset_delay */ | 
 | 	0,			/* bios_id_lun */ | 
 | 	0,			/* termination */ | 
 | 	0,			/* reserved1 */ | 
 | 	0xFFE7,			/* bios_ctrl */ | 
 | 	0xFFFF,			/* ultra_able */ | 
 | 	0,			/* reserved2 */ | 
 | 	ASC_DEF_MAX_HOST_QNG,	/* max_host_qng */ | 
 | 	ASC_DEF_MAX_DVC_QNG,	/* max_dvc_qng */ | 
 | 	0,			/* dvc_cntl */ | 
 | 	0,			/* bug_fix */ | 
 | 	0,			/* serial_number_word1 */ | 
 | 	0,			/* serial_number_word2 */ | 
 | 	0,			/* serial_number_word3 */ | 
 | 	0,			/* check_sum */ | 
 | 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} | 
 | 	,			/* oem_name[16] */ | 
 | 	0,			/* dvc_err_code */ | 
 | 	0,			/* adv_err_code */ | 
 | 	0,			/* adv_err_addr */ | 
 | 	0,			/* saved_dvc_err_code */ | 
 | 	0,			/* saved_adv_err_code */ | 
 | 	0,			/* saved_adv_err_addr */ | 
 | 	0			/* num_of_err */ | 
 | }; | 
 |  | 
 | static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar __devinitdata = { | 
 | 	0,			/* cfg_lsw */ | 
 | 	0,			/* cfg_msw */ | 
 | 	0,			/* -disc_enable */ | 
 | 	0,			/* wdtr_able */ | 
 | 	0,			/* sdtr_able */ | 
 | 	0,			/* start_motor */ | 
 | 	0,			/* tagqng_able */ | 
 | 	0,			/* bios_scan */ | 
 | 	0,			/* scam_tolerant */ | 
 | 	1,			/* adapter_scsi_id */ | 
 | 	1,			/* bios_boot_delay */ | 
 | 	1,			/* scsi_reset_delay */ | 
 | 	1,			/* bios_id_lun */ | 
 | 	1,			/* termination */ | 
 | 	1,			/* reserved1 */ | 
 | 	0,			/* bios_ctrl */ | 
 | 	0,			/* ultra_able */ | 
 | 	0,			/* reserved2 */ | 
 | 	1,			/* max_host_qng */ | 
 | 	1,			/* max_dvc_qng */ | 
 | 	0,			/* dvc_cntl */ | 
 | 	0,			/* bug_fix */ | 
 | 	0,			/* serial_number_word1 */ | 
 | 	0,			/* serial_number_word2 */ | 
 | 	0,			/* serial_number_word3 */ | 
 | 	0,			/* check_sum */ | 
 | 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} | 
 | 	,			/* oem_name[16] */ | 
 | 	0,			/* dvc_err_code */ | 
 | 	0,			/* adv_err_code */ | 
 | 	0,			/* adv_err_addr */ | 
 | 	0,			/* saved_dvc_err_code */ | 
 | 	0,			/* saved_adv_err_code */ | 
 | 	0,			/* saved_adv_err_addr */ | 
 | 	0			/* num_of_err */ | 
 | }; | 
 |  | 
 | static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config __devinitdata = { | 
 | 	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */ | 
 | 	0x0000,			/* 01 cfg_msw */ | 
 | 	0xFFFF,			/* 02 disc_enable */ | 
 | 	0xFFFF,			/* 03 wdtr_able */ | 
 | 	0x4444,			/* 04 sdtr_speed1 */ | 
 | 	0xFFFF,			/* 05 start_motor */ | 
 | 	0xFFFF,			/* 06 tagqng_able */ | 
 | 	0xFFFF,			/* 07 bios_scan */ | 
 | 	0,			/* 08 scam_tolerant */ | 
 | 	7,			/* 09 adapter_scsi_id */ | 
 | 	0,			/*    bios_boot_delay */ | 
 | 	3,			/* 10 scsi_reset_delay */ | 
 | 	0,			/*    bios_id_lun */ | 
 | 	0,			/* 11 termination_se */ | 
 | 	0,			/*    termination_lvd */ | 
 | 	0xFFE7,			/* 12 bios_ctrl */ | 
 | 	0x4444,			/* 13 sdtr_speed2 */ | 
 | 	0x4444,			/* 14 sdtr_speed3 */ | 
 | 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */ | 
 | 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */ | 
 | 	0,			/* 16 dvc_cntl */ | 
 | 	0x4444,			/* 17 sdtr_speed4 */ | 
 | 	0,			/* 18 serial_number_word1 */ | 
 | 	0,			/* 19 serial_number_word2 */ | 
 | 	0,			/* 20 serial_number_word3 */ | 
 | 	0,			/* 21 check_sum */ | 
 | 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} | 
 | 	,			/* 22-29 oem_name[16] */ | 
 | 	0,			/* 30 dvc_err_code */ | 
 | 	0,			/* 31 adv_err_code */ | 
 | 	0,			/* 32 adv_err_addr */ | 
 | 	0,			/* 33 saved_dvc_err_code */ | 
 | 	0,			/* 34 saved_adv_err_code */ | 
 | 	0,			/* 35 saved_adv_err_addr */ | 
 | 	0,			/* 36 reserved */ | 
 | 	0,			/* 37 reserved */ | 
 | 	0,			/* 38 reserved */ | 
 | 	0,			/* 39 reserved */ | 
 | 	0,			/* 40 reserved */ | 
 | 	0,			/* 41 reserved */ | 
 | 	0,			/* 42 reserved */ | 
 | 	0,			/* 43 reserved */ | 
 | 	0,			/* 44 reserved */ | 
 | 	0,			/* 45 reserved */ | 
 | 	0,			/* 46 reserved */ | 
 | 	0,			/* 47 reserved */ | 
 | 	0,			/* 48 reserved */ | 
 | 	0,			/* 49 reserved */ | 
 | 	0,			/* 50 reserved */ | 
 | 	0,			/* 51 reserved */ | 
 | 	0,			/* 52 reserved */ | 
 | 	0,			/* 53 reserved */ | 
 | 	0,			/* 54 reserved */ | 
 | 	0,			/* 55 reserved */ | 
 | 	0,			/* 56 cisptr_lsw */ | 
 | 	0,			/* 57 cisprt_msw */ | 
 | 	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */ | 
 | 	PCI_DEVICE_ID_38C0800_REV1,	/* 59 subsysid */ | 
 | 	0,			/* 60 reserved */ | 
 | 	0,			/* 61 reserved */ | 
 | 	0,			/* 62 reserved */ | 
 | 	0			/* 63 reserved */ | 
 | }; | 
 |  | 
 | static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar __devinitdata = { | 
 | 	0,			/* 00 cfg_lsw */ | 
 | 	0,			/* 01 cfg_msw */ | 
 | 	0,			/* 02 disc_enable */ | 
 | 	0,			/* 03 wdtr_able */ | 
 | 	0,			/* 04 sdtr_speed1 */ | 
 | 	0,			/* 05 start_motor */ | 
 | 	0,			/* 06 tagqng_able */ | 
 | 	0,			/* 07 bios_scan */ | 
 | 	0,			/* 08 scam_tolerant */ | 
 | 	1,			/* 09 adapter_scsi_id */ | 
 | 	1,			/*    bios_boot_delay */ | 
 | 	1,			/* 10 scsi_reset_delay */ | 
 | 	1,			/*    bios_id_lun */ | 
 | 	1,			/* 11 termination_se */ | 
 | 	1,			/*    termination_lvd */ | 
 | 	0,			/* 12 bios_ctrl */ | 
 | 	0,			/* 13 sdtr_speed2 */ | 
 | 	0,			/* 14 sdtr_speed3 */ | 
 | 	1,			/* 15 max_host_qng */ | 
 | 	1,			/*    max_dvc_qng */ | 
 | 	0,			/* 16 dvc_cntl */ | 
 | 	0,			/* 17 sdtr_speed4 */ | 
 | 	0,			/* 18 serial_number_word1 */ | 
 | 	0,			/* 19 serial_number_word2 */ | 
 | 	0,			/* 20 serial_number_word3 */ | 
 | 	0,			/* 21 check_sum */ | 
 | 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} | 
 | 	,			/* 22-29 oem_name[16] */ | 
 | 	0,			/* 30 dvc_err_code */ | 
 | 	0,			/* 31 adv_err_code */ | 
 | 	0,			/* 32 adv_err_addr */ | 
 | 	0,			/* 33 saved_dvc_err_code */ | 
 | 	0,			/* 34 saved_adv_err_code */ | 
 | 	0,			/* 35 saved_adv_err_addr */ | 
 | 	0,			/* 36 reserved */ | 
 | 	0,			/* 37 reserved */ | 
 | 	0,			/* 38 reserved */ | 
 | 	0,			/* 39 reserved */ | 
 | 	0,			/* 40 reserved */ | 
 | 	0,			/* 41 reserved */ | 
 | 	0,			/* 42 reserved */ | 
 | 	0,			/* 43 reserved */ | 
 | 	0,			/* 44 reserved */ | 
 | 	0,			/* 45 reserved */ | 
 | 	0,			/* 46 reserved */ | 
 | 	0,			/* 47 reserved */ | 
 | 	0,			/* 48 reserved */ | 
 | 	0,			/* 49 reserved */ | 
 | 	0,			/* 50 reserved */ | 
 | 	0,			/* 51 reserved */ | 
 | 	0,			/* 52 reserved */ | 
 | 	0,			/* 53 reserved */ | 
 | 	0,			/* 54 reserved */ | 
 | 	0,			/* 55 reserved */ | 
 | 	0,			/* 56 cisptr_lsw */ | 
 | 	0,			/* 57 cisprt_msw */ | 
 | 	0,			/* 58 subsysvid */ | 
 | 	0,			/* 59 subsysid */ | 
 | 	0,			/* 60 reserved */ | 
 | 	0,			/* 61 reserved */ | 
 | 	0,			/* 62 reserved */ | 
 | 	0			/* 63 reserved */ | 
 | }; | 
 |  | 
 | static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config __devinitdata = { | 
 | 	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */ | 
 | 	0x0000,			/* 01 cfg_msw */ | 
 | 	0xFFFF,			/* 02 disc_enable */ | 
 | 	0xFFFF,			/* 03 wdtr_able */ | 
 | 	0x5555,			/* 04 sdtr_speed1 */ | 
 | 	0xFFFF,			/* 05 start_motor */ | 
 | 	0xFFFF,			/* 06 tagqng_able */ | 
 | 	0xFFFF,			/* 07 bios_scan */ | 
 | 	0,			/* 08 scam_tolerant */ | 
 | 	7,			/* 09 adapter_scsi_id */ | 
 | 	0,			/*    bios_boot_delay */ | 
 | 	3,			/* 10 scsi_reset_delay */ | 
 | 	0,			/*    bios_id_lun */ | 
 | 	0,			/* 11 termination_se */ | 
 | 	0,			/*    termination_lvd */ | 
 | 	0xFFE7,			/* 12 bios_ctrl */ | 
 | 	0x5555,			/* 13 sdtr_speed2 */ | 
 | 	0x5555,			/* 14 sdtr_speed3 */ | 
 | 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */ | 
 | 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */ | 
 | 	0,			/* 16 dvc_cntl */ | 
 | 	0x5555,			/* 17 sdtr_speed4 */ | 
 | 	0,			/* 18 serial_number_word1 */ | 
 | 	0,			/* 19 serial_number_word2 */ | 
 | 	0,			/* 20 serial_number_word3 */ | 
 | 	0,			/* 21 check_sum */ | 
 | 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} | 
 | 	,			/* 22-29 oem_name[16] */ | 
 | 	0,			/* 30 dvc_err_code */ | 
 | 	0,			/* 31 adv_err_code */ | 
 | 	0,			/* 32 adv_err_addr */ | 
 | 	0,			/* 33 saved_dvc_err_code */ | 
 | 	0,			/* 34 saved_adv_err_code */ | 
 | 	0,			/* 35 saved_adv_err_addr */ | 
 | 	0,			/* 36 reserved */ | 
 | 	0,			/* 37 reserved */ | 
 | 	0,			/* 38 reserved */ | 
 | 	0,			/* 39 reserved */ | 
 | 	0,			/* 40 reserved */ | 
 | 	0,			/* 41 reserved */ | 
 | 	0,			/* 42 reserved */ | 
 | 	0,			/* 43 reserved */ | 
 | 	0,			/* 44 reserved */ | 
 | 	0,			/* 45 reserved */ | 
 | 	0,			/* 46 reserved */ | 
 | 	0,			/* 47 reserved */ | 
 | 	0,			/* 48 reserved */ | 
 | 	0,			/* 49 reserved */ | 
 | 	0,			/* 50 reserved */ | 
 | 	0,			/* 51 reserved */ | 
 | 	0,			/* 52 reserved */ | 
 | 	0,			/* 53 reserved */ | 
 | 	0,			/* 54 reserved */ | 
 | 	0,			/* 55 reserved */ | 
 | 	0,			/* 56 cisptr_lsw */ | 
 | 	0,			/* 57 cisprt_msw */ | 
 | 	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */ | 
 | 	PCI_DEVICE_ID_38C1600_REV1,	/* 59 subsysid */ | 
 | 	0,			/* 60 reserved */ | 
 | 	0,			/* 61 reserved */ | 
 | 	0,			/* 62 reserved */ | 
 | 	0			/* 63 reserved */ | 
 | }; | 
 |  | 
 | static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar __devinitdata = { | 
 | 	0,			/* 00 cfg_lsw */ | 
 | 	0,			/* 01 cfg_msw */ | 
 | 	0,			/* 02 disc_enable */ | 
 | 	0,			/* 03 wdtr_able */ | 
 | 	0,			/* 04 sdtr_speed1 */ | 
 | 	0,			/* 05 start_motor */ | 
 | 	0,			/* 06 tagqng_able */ | 
 | 	0,			/* 07 bios_scan */ | 
 | 	0,			/* 08 scam_tolerant */ | 
 | 	1,			/* 09 adapter_scsi_id */ | 
 | 	1,			/*    bios_boot_delay */ | 
 | 	1,			/* 10 scsi_reset_delay */ | 
 | 	1,			/*    bios_id_lun */ | 
 | 	1,			/* 11 termination_se */ | 
 | 	1,			/*    termination_lvd */ | 
 | 	0,			/* 12 bios_ctrl */ | 
 | 	0,			/* 13 sdtr_speed2 */ | 
 | 	0,			/* 14 sdtr_speed3 */ | 
 | 	1,			/* 15 max_host_qng */ | 
 | 	1,			/*    max_dvc_qng */ | 
 | 	0,			/* 16 dvc_cntl */ | 
 | 	0,			/* 17 sdtr_speed4 */ | 
 | 	0,			/* 18 serial_number_word1 */ | 
 | 	0,			/* 19 serial_number_word2 */ | 
 | 	0,			/* 20 serial_number_word3 */ | 
 | 	0,			/* 21 check_sum */ | 
 | 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} | 
 | 	,			/* 22-29 oem_name[16] */ | 
 | 	0,			/* 30 dvc_err_code */ | 
 | 	0,			/* 31 adv_err_code */ | 
 | 	0,			/* 32 adv_err_addr */ | 
 | 	0,			/* 33 saved_dvc_err_code */ | 
 | 	0,			/* 34 saved_adv_err_code */ | 
 | 	0,			/* 35 saved_adv_err_addr */ | 
 | 	0,			/* 36 reserved */ | 
 | 	0,			/* 37 reserved */ | 
 | 	0,			/* 38 reserved */ | 
 | 	0,			/* 39 reserved */ | 
 | 	0,			/* 40 reserved */ | 
 | 	0,			/* 41 reserved */ | 
 | 	0,			/* 42 reserved */ | 
 | 	0,			/* 43 reserved */ | 
 | 	0,			/* 44 reserved */ | 
 | 	0,			/* 45 reserved */ | 
 | 	0,			/* 46 reserved */ | 
 | 	0,			/* 47 reserved */ | 
 | 	0,			/* 48 reserved */ | 
 | 	0,			/* 49 reserved */ | 
 | 	0,			/* 50 reserved */ | 
 | 	0,			/* 51 reserved */ | 
 | 	0,			/* 52 reserved */ | 
 | 	0,			/* 53 reserved */ | 
 | 	0,			/* 54 reserved */ | 
 | 	0,			/* 55 reserved */ | 
 | 	0,			/* 56 cisptr_lsw */ | 
 | 	0,			/* 57 cisprt_msw */ | 
 | 	0,			/* 58 subsysvid */ | 
 | 	0,			/* 59 subsysid */ | 
 | 	0,			/* 60 reserved */ | 
 | 	0,			/* 61 reserved */ | 
 | 	0,			/* 62 reserved */ | 
 | 	0			/* 63 reserved */ | 
 | }; | 
 |  | 
 | #ifdef CONFIG_PCI | 
 | /* | 
 |  * Wait for EEPROM command to complete | 
 |  */ | 
 | static void __devinit AdvWaitEEPCmd(AdvPortAddr iop_base) | 
 | { | 
 | 	int eep_delay_ms; | 
 |  | 
 | 	for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) { | 
 | 		if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) & | 
 | 		    ASC_EEP_CMD_DONE) { | 
 | 			break; | 
 | 		} | 
 | 		mdelay(1); | 
 | 	} | 
 | 	if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) == | 
 | 	    0) | 
 | 		BUG(); | 
 | } | 
 |  | 
 | /* | 
 |  * Read the EEPROM from specified location | 
 |  */ | 
 | static ushort __devinit AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr) | 
 | { | 
 | 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, | 
 | 			     ASC_EEP_CMD_READ | eep_word_addr); | 
 | 	AdvWaitEEPCmd(iop_base); | 
 | 	return AdvReadWordRegister(iop_base, IOPW_EE_DATA); | 
 | } | 
 |  | 
 | /* | 
 |  * Write the EEPROM from 'cfg_buf'. | 
 |  */ | 
 | static void __devinit | 
 | AdvSet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf) | 
 | { | 
 | 	ushort *wbuf; | 
 | 	ushort addr, chksum; | 
 | 	ushort *charfields; | 
 |  | 
 | 	wbuf = (ushort *)cfg_buf; | 
 | 	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar; | 
 | 	chksum = 0; | 
 |  | 
 | 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); | 
 | 	AdvWaitEEPCmd(iop_base); | 
 |  | 
 | 	/* | 
 | 	 * Write EEPROM from word 0 to word 20. | 
 | 	 */ | 
 | 	for (addr = ADV_EEP_DVC_CFG_BEGIN; | 
 | 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { | 
 | 		ushort word; | 
 |  | 
 | 		if (*charfields++) { | 
 | 			word = cpu_to_le16(*wbuf); | 
 | 		} else { | 
 | 			word = *wbuf; | 
 | 		} | 
 | 		chksum += *wbuf;	/* Checksum is calculated from word values. */ | 
 | 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); | 
 | 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD, | 
 | 				     ASC_EEP_CMD_WRITE | addr); | 
 | 		AdvWaitEEPCmd(iop_base); | 
 | 		mdelay(ADV_EEP_DELAY_MS); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Write EEPROM checksum at word 21. | 
 | 	 */ | 
 | 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); | 
 | 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); | 
 | 	AdvWaitEEPCmd(iop_base); | 
 | 	wbuf++; | 
 | 	charfields++; | 
 |  | 
 | 	/* | 
 | 	 * Write EEPROM OEM name at words 22 to 29. | 
 | 	 */ | 
 | 	for (addr = ADV_EEP_DVC_CTL_BEGIN; | 
 | 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { | 
 | 		ushort word; | 
 |  | 
 | 		if (*charfields++) { | 
 | 			word = cpu_to_le16(*wbuf); | 
 | 		} else { | 
 | 			word = *wbuf; | 
 | 		} | 
 | 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); | 
 | 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD, | 
 | 				     ASC_EEP_CMD_WRITE | addr); | 
 | 		AdvWaitEEPCmd(iop_base); | 
 | 	} | 
 | 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); | 
 | 	AdvWaitEEPCmd(iop_base); | 
 | } | 
 |  | 
 | /* | 
 |  * Write the EEPROM from 'cfg_buf'. | 
 |  */ | 
 | static void __devinit | 
 | AdvSet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf) | 
 | { | 
 | 	ushort *wbuf; | 
 | 	ushort *charfields; | 
 | 	ushort addr, chksum; | 
 |  | 
 | 	wbuf = (ushort *)cfg_buf; | 
 | 	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar; | 
 | 	chksum = 0; | 
 |  | 
 | 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); | 
 | 	AdvWaitEEPCmd(iop_base); | 
 |  | 
 | 	/* | 
 | 	 * Write EEPROM from word 0 to word 20. | 
 | 	 */ | 
 | 	for (addr = ADV_EEP_DVC_CFG_BEGIN; | 
 | 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { | 
 | 		ushort word; | 
 |  | 
 | 		if (*charfields++) { | 
 | 			word = cpu_to_le16(*wbuf); | 
 | 		} else { | 
 | 			word = *wbuf; | 
 | 		} | 
 | 		chksum += *wbuf;	/* Checksum is calculated from word values. */ | 
 | 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); | 
 | 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD, | 
 | 				     ASC_EEP_CMD_WRITE | addr); | 
 | 		AdvWaitEEPCmd(iop_base); | 
 | 		mdelay(ADV_EEP_DELAY_MS); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Write EEPROM checksum at word 21. | 
 | 	 */ | 
 | 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); | 
 | 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); | 
 | 	AdvWaitEEPCmd(iop_base); | 
 | 	wbuf++; | 
 | 	charfields++; | 
 |  | 
 | 	/* | 
 | 	 * Write EEPROM OEM name at words 22 to 29. | 
 | 	 */ | 
 | 	for (addr = ADV_EEP_DVC_CTL_BEGIN; | 
 | 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { | 
 | 		ushort word; | 
 |  | 
 | 		if (*charfields++) { | 
 | 			word = cpu_to_le16(*wbuf); | 
 | 		} else { | 
 | 			word = *wbuf; | 
 | 		} | 
 | 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); | 
 | 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD, | 
 | 				     ASC_EEP_CMD_WRITE | addr); | 
 | 		AdvWaitEEPCmd(iop_base); | 
 | 	} | 
 | 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); | 
 | 	AdvWaitEEPCmd(iop_base); | 
 | } | 
 |  | 
 | /* | 
 |  * Write the EEPROM from 'cfg_buf'. | 
 |  */ | 
 | static void __devinit | 
 | AdvSet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf) | 
 | { | 
 | 	ushort *wbuf; | 
 | 	ushort *charfields; | 
 | 	ushort addr, chksum; | 
 |  | 
 | 	wbuf = (ushort *)cfg_buf; | 
 | 	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar; | 
 | 	chksum = 0; | 
 |  | 
 | 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); | 
 | 	AdvWaitEEPCmd(iop_base); | 
 |  | 
 | 	/* | 
 | 	 * Write EEPROM from word 0 to word 20. | 
 | 	 */ | 
 | 	for (addr = ADV_EEP_DVC_CFG_BEGIN; | 
 | 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { | 
 | 		ushort word; | 
 |  | 
 | 		if (*charfields++) { | 
 | 			word = cpu_to_le16(*wbuf); | 
 | 		} else { | 
 | 			word = *wbuf; | 
 | 		} | 
 | 		chksum += *wbuf;	/* Checksum is calculated from word values. */ | 
 | 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); | 
 | 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD, | 
 | 				     ASC_EEP_CMD_WRITE | addr); | 
 | 		AdvWaitEEPCmd(iop_base); | 
 | 		mdelay(ADV_EEP_DELAY_MS); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Write EEPROM checksum at word 21. | 
 | 	 */ | 
 | 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); | 
 | 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); | 
 | 	AdvWaitEEPCmd(iop_base); | 
 | 	wbuf++; | 
 | 	charfields++; | 
 |  | 
 | 	/* | 
 | 	 * Write EEPROM OEM name at words 22 to 29. | 
 | 	 */ | 
 | 	for (addr = ADV_EEP_DVC_CTL_BEGIN; | 
 | 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { | 
 | 		ushort word; | 
 |  | 
 | 		if (*charfields++) { | 
 | 			word = cpu_to_le16(*wbuf); | 
 | 		} else { | 
 | 			word = *wbuf; | 
 | 		} | 
 | 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); | 
 | 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD, | 
 | 				     ASC_EEP_CMD_WRITE | addr); | 
 | 		AdvWaitEEPCmd(iop_base); | 
 | 	} | 
 | 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); | 
 | 	AdvWaitEEPCmd(iop_base); | 
 | } | 
 |  | 
 | /* | 
 |  * Read EEPROM configuration into the specified buffer. | 
 |  * | 
 |  * Return a checksum based on the EEPROM configuration read. | 
 |  */ | 
 | static ushort __devinit | 
 | AdvGet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf) | 
 | { | 
 | 	ushort wval, chksum; | 
 | 	ushort *wbuf; | 
 | 	int eep_addr; | 
 | 	ushort *charfields; | 
 |  | 
 | 	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar; | 
 | 	wbuf = (ushort *)cfg_buf; | 
 | 	chksum = 0; | 
 |  | 
 | 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; | 
 | 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { | 
 | 		wval = AdvReadEEPWord(iop_base, eep_addr); | 
 | 		chksum += wval;	/* Checksum is calculated from word values. */ | 
 | 		if (*charfields++) { | 
 | 			*wbuf = le16_to_cpu(wval); | 
 | 		} else { | 
 | 			*wbuf = wval; | 
 | 		} | 
 | 	} | 
 | 	/* Read checksum word. */ | 
 | 	*wbuf = AdvReadEEPWord(iop_base, eep_addr); | 
 | 	wbuf++; | 
 | 	charfields++; | 
 |  | 
 | 	/* Read rest of EEPROM not covered by the checksum. */ | 
 | 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; | 
 | 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { | 
 | 		*wbuf = AdvReadEEPWord(iop_base, eep_addr); | 
 | 		if (*charfields++) { | 
 | 			*wbuf = le16_to_cpu(*wbuf); | 
 | 		} | 
 | 	} | 
 | 	return chksum; | 
 | } | 
 |  | 
 | /* | 
 |  * Read EEPROM configuration into the specified buffer. | 
 |  * | 
 |  * Return a checksum based on the EEPROM configuration read. | 
 |  */ | 
 | static ushort __devinit | 
 | AdvGet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf) | 
 | { | 
 | 	ushort wval, chksum; | 
 | 	ushort *wbuf; | 
 | 	int eep_addr; | 
 | 	ushort *charfields; | 
 |  | 
 | 	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar; | 
 | 	wbuf = (ushort *)cfg_buf; | 
 | 	chksum = 0; | 
 |  | 
 | 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; | 
 | 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { | 
 | 		wval = AdvReadEEPWord(iop_base, eep_addr); | 
 | 		chksum += wval;	/* Checksum is calculated from word values. */ | 
 | 		if (*charfields++) { | 
 | 			*wbuf = le16_to_cpu(wval); | 
 | 		} else { | 
 | 			*wbuf = wval; | 
 | 		} | 
 | 	} | 
 | 	/* Read checksum word. */ | 
 | 	*wbuf = AdvReadEEPWord(iop_base, eep_addr); | 
 | 	wbuf++; | 
 | 	charfields++; | 
 |  | 
 | 	/* Read rest of EEPROM not covered by the checksum. */ | 
 | 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; | 
 | 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { | 
 | 		*wbuf = AdvReadEEPWord(iop_base, eep_addr); | 
 | 		if (*charfields++) { | 
 | 			*wbuf = le16_to_cpu(*wbuf); | 
 | 		} | 
 | 	} | 
 | 	return chksum; | 
 | } | 
 |  | 
 | /* | 
 |  * Read EEPROM configuration into the specified buffer. | 
 |  * | 
 |  * Return a checksum based on the EEPROM configuration read. | 
 |  */ | 
 | static ushort __devinit | 
 | AdvGet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf) | 
 | { | 
 | 	ushort wval, chksum; | 
 | 	ushort *wbuf; | 
 | 	int eep_addr; | 
 | 	ushort *charfields; | 
 |  | 
 | 	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar; | 
 | 	wbuf = (ushort *)cfg_buf; | 
 | 	chksum = 0; | 
 |  | 
 | 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; | 
 | 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { | 
 | 		wval = AdvReadEEPWord(iop_base, eep_addr); | 
 | 		chksum += wval;	/* Checksum is calculated from word values. */ | 
 | 		if (*charfields++) { | 
 | 			*wbuf = le16_to_cpu(wval); | 
 | 		} else { | 
 | 			*wbuf = wval; | 
 | 		} | 
 | 	} | 
 | 	/* Read checksum word. */ | 
 | 	*wbuf = AdvReadEEPWord(iop_base, eep_addr); | 
 | 	wbuf++; | 
 | 	charfields++; | 
 |  | 
 | 	/* Read rest of EEPROM not covered by the checksum. */ | 
 | 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; | 
 | 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { | 
 | 		*wbuf = AdvReadEEPWord(iop_base, eep_addr); | 
 | 		if (*charfields++) { | 
 | 			*wbuf = le16_to_cpu(*wbuf); | 
 | 		} | 
 | 	} | 
 | 	return chksum; | 
 | } | 
 |  | 
 | /* | 
 |  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and | 
 |  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while | 
 |  * all of this is done. | 
 |  * | 
 |  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. | 
 |  * | 
 |  * For a non-fatal error return a warning code. If there are no warnings | 
 |  * then 0 is returned. | 
 |  * | 
 |  * Note: Chip is stopped on entry. | 
 |  */ | 
 | static int __devinit AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc) | 
 | { | 
 | 	AdvPortAddr iop_base; | 
 | 	ushort warn_code; | 
 | 	ADVEEP_3550_CONFIG eep_config; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 |  | 
 | 	warn_code = 0; | 
 |  | 
 | 	/* | 
 | 	 * Read the board's EEPROM configuration. | 
 | 	 * | 
 | 	 * Set default values if a bad checksum is found. | 
 | 	 */ | 
 | 	if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) { | 
 | 		warn_code |= ASC_WARN_EEPROM_CHKSUM; | 
 |  | 
 | 		/* | 
 | 		 * Set EEPROM default values. | 
 | 		 */ | 
 | 		memcpy(&eep_config, &Default_3550_EEPROM_Config, | 
 | 			sizeof(ADVEEP_3550_CONFIG)); | 
 |  | 
 | 		/* | 
 | 		 * Assume the 6 byte board serial number that was read from | 
 | 		 * EEPROM is correct even if the EEPROM checksum failed. | 
 | 		 */ | 
 | 		eep_config.serial_number_word3 = | 
 | 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); | 
 |  | 
 | 		eep_config.serial_number_word2 = | 
 | 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); | 
 |  | 
 | 		eep_config.serial_number_word1 = | 
 | 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); | 
 |  | 
 | 		AdvSet3550EEPConfig(iop_base, &eep_config); | 
 | 	} | 
 | 	/* | 
 | 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the | 
 | 	 * EEPROM configuration that was read. | 
 | 	 * | 
 | 	 * This is the mapping of EEPROM fields to Adv Library fields. | 
 | 	 */ | 
 | 	asc_dvc->wdtr_able = eep_config.wdtr_able; | 
 | 	asc_dvc->sdtr_able = eep_config.sdtr_able; | 
 | 	asc_dvc->ultra_able = eep_config.ultra_able; | 
 | 	asc_dvc->tagqng_able = eep_config.tagqng_able; | 
 | 	asc_dvc->cfg->disc_enable = eep_config.disc_enable; | 
 | 	asc_dvc->max_host_qng = eep_config.max_host_qng; | 
 | 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; | 
 | 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); | 
 | 	asc_dvc->start_motor = eep_config.start_motor; | 
 | 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; | 
 | 	asc_dvc->bios_ctrl = eep_config.bios_ctrl; | 
 | 	asc_dvc->no_scam = eep_config.scam_tolerant; | 
 | 	asc_dvc->cfg->serial1 = eep_config.serial_number_word1; | 
 | 	asc_dvc->cfg->serial2 = eep_config.serial_number_word2; | 
 | 	asc_dvc->cfg->serial3 = eep_config.serial_number_word3; | 
 |  | 
 | 	/* | 
 | 	 * Set the host maximum queuing (max. 253, min. 16) and the per device | 
 | 	 * maximum queuing (max. 63, min. 4). | 
 | 	 */ | 
 | 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { | 
 | 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; | 
 | 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { | 
 | 		/* If the value is zero, assume it is uninitialized. */ | 
 | 		if (eep_config.max_host_qng == 0) { | 
 | 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; | 
 | 		} else { | 
 | 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { | 
 | 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; | 
 | 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { | 
 | 		/* If the value is zero, assume it is uninitialized. */ | 
 | 		if (eep_config.max_dvc_qng == 0) { | 
 | 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; | 
 | 		} else { | 
 | 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then | 
 | 	 * set 'max_dvc_qng' to 'max_host_qng'. | 
 | 	 */ | 
 | 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) { | 
 | 		eep_config.max_dvc_qng = eep_config.max_host_qng; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' | 
 | 	 * values based on possibly adjusted EEPROM values. | 
 | 	 */ | 
 | 	asc_dvc->max_host_qng = eep_config.max_host_qng; | 
 | 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; | 
 |  | 
 | 	/* | 
 | 	 * If the EEPROM 'termination' field is set to automatic (0), then set | 
 | 	 * the ADV_DVC_CFG 'termination' field to automatic also. | 
 | 	 * | 
 | 	 * If the termination is specified with a non-zero 'termination' | 
 | 	 * value check that a legal value is set and set the ADV_DVC_CFG | 
 | 	 * 'termination' field appropriately. | 
 | 	 */ | 
 | 	if (eep_config.termination == 0) { | 
 | 		asc_dvc->cfg->termination = 0;	/* auto termination */ | 
 | 	} else { | 
 | 		/* Enable manual control with low off / high off. */ | 
 | 		if (eep_config.termination == 1) { | 
 | 			asc_dvc->cfg->termination = TERM_CTL_SEL; | 
 |  | 
 | 			/* Enable manual control with low off / high on. */ | 
 | 		} else if (eep_config.termination == 2) { | 
 | 			asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H; | 
 |  | 
 | 			/* Enable manual control with low on / high on. */ | 
 | 		} else if (eep_config.termination == 3) { | 
 | 			asc_dvc->cfg->termination = | 
 | 			    TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L; | 
 | 		} else { | 
 | 			/* | 
 | 			 * The EEPROM 'termination' field contains a bad value. Use | 
 | 			 * automatic termination instead. | 
 | 			 */ | 
 | 			asc_dvc->cfg->termination = 0; | 
 | 			warn_code |= ASC_WARN_EEPROM_TERMINATION; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return warn_code; | 
 | } | 
 |  | 
 | /* | 
 |  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and | 
 |  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while | 
 |  * all of this is done. | 
 |  * | 
 |  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. | 
 |  * | 
 |  * For a non-fatal error return a warning code. If there are no warnings | 
 |  * then 0 is returned. | 
 |  * | 
 |  * Note: Chip is stopped on entry. | 
 |  */ | 
 | static int __devinit AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc) | 
 | { | 
 | 	AdvPortAddr iop_base; | 
 | 	ushort warn_code; | 
 | 	ADVEEP_38C0800_CONFIG eep_config; | 
 | 	uchar tid, termination; | 
 | 	ushort sdtr_speed = 0; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 |  | 
 | 	warn_code = 0; | 
 |  | 
 | 	/* | 
 | 	 * Read the board's EEPROM configuration. | 
 | 	 * | 
 | 	 * Set default values if a bad checksum is found. | 
 | 	 */ | 
 | 	if (AdvGet38C0800EEPConfig(iop_base, &eep_config) != | 
 | 	    eep_config.check_sum) { | 
 | 		warn_code |= ASC_WARN_EEPROM_CHKSUM; | 
 |  | 
 | 		/* | 
 | 		 * Set EEPROM default values. | 
 | 		 */ | 
 | 		memcpy(&eep_config, &Default_38C0800_EEPROM_Config, | 
 | 			sizeof(ADVEEP_38C0800_CONFIG)); | 
 |  | 
 | 		/* | 
 | 		 * Assume the 6 byte board serial number that was read from | 
 | 		 * EEPROM is correct even if the EEPROM checksum failed. | 
 | 		 */ | 
 | 		eep_config.serial_number_word3 = | 
 | 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); | 
 |  | 
 | 		eep_config.serial_number_word2 = | 
 | 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); | 
 |  | 
 | 		eep_config.serial_number_word1 = | 
 | 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); | 
 |  | 
 | 		AdvSet38C0800EEPConfig(iop_base, &eep_config); | 
 | 	} | 
 | 	/* | 
 | 	 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the | 
 | 	 * EEPROM configuration that was read. | 
 | 	 * | 
 | 	 * This is the mapping of EEPROM fields to Adv Library fields. | 
 | 	 */ | 
 | 	asc_dvc->wdtr_able = eep_config.wdtr_able; | 
 | 	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; | 
 | 	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; | 
 | 	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; | 
 | 	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; | 
 | 	asc_dvc->tagqng_able = eep_config.tagqng_able; | 
 | 	asc_dvc->cfg->disc_enable = eep_config.disc_enable; | 
 | 	asc_dvc->max_host_qng = eep_config.max_host_qng; | 
 | 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; | 
 | 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); | 
 | 	asc_dvc->start_motor = eep_config.start_motor; | 
 | 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; | 
 | 	asc_dvc->bios_ctrl = eep_config.bios_ctrl; | 
 | 	asc_dvc->no_scam = eep_config.scam_tolerant; | 
 | 	asc_dvc->cfg->serial1 = eep_config.serial_number_word1; | 
 | 	asc_dvc->cfg->serial2 = eep_config.serial_number_word2; | 
 | 	asc_dvc->cfg->serial3 = eep_config.serial_number_word3; | 
 |  | 
 | 	/* | 
 | 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits | 
 | 	 * are set, then set an 'sdtr_able' bit for it. | 
 | 	 */ | 
 | 	asc_dvc->sdtr_able = 0; | 
 | 	for (tid = 0; tid <= ADV_MAX_TID; tid++) { | 
 | 		if (tid == 0) { | 
 | 			sdtr_speed = asc_dvc->sdtr_speed1; | 
 | 		} else if (tid == 4) { | 
 | 			sdtr_speed = asc_dvc->sdtr_speed2; | 
 | 		} else if (tid == 8) { | 
 | 			sdtr_speed = asc_dvc->sdtr_speed3; | 
 | 		} else if (tid == 12) { | 
 | 			sdtr_speed = asc_dvc->sdtr_speed4; | 
 | 		} | 
 | 		if (sdtr_speed & ADV_MAX_TID) { | 
 | 			asc_dvc->sdtr_able |= (1 << tid); | 
 | 		} | 
 | 		sdtr_speed >>= 4; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set the host maximum queuing (max. 253, min. 16) and the per device | 
 | 	 * maximum queuing (max. 63, min. 4). | 
 | 	 */ | 
 | 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { | 
 | 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; | 
 | 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { | 
 | 		/* If the value is zero, assume it is uninitialized. */ | 
 | 		if (eep_config.max_host_qng == 0) { | 
 | 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; | 
 | 		} else { | 
 | 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { | 
 | 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; | 
 | 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { | 
 | 		/* If the value is zero, assume it is uninitialized. */ | 
 | 		if (eep_config.max_dvc_qng == 0) { | 
 | 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; | 
 | 		} else { | 
 | 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then | 
 | 	 * set 'max_dvc_qng' to 'max_host_qng'. | 
 | 	 */ | 
 | 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) { | 
 | 		eep_config.max_dvc_qng = eep_config.max_host_qng; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' | 
 | 	 * values based on possibly adjusted EEPROM values. | 
 | 	 */ | 
 | 	asc_dvc->max_host_qng = eep_config.max_host_qng; | 
 | 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; | 
 |  | 
 | 	/* | 
 | 	 * If the EEPROM 'termination' field is set to automatic (0), then set | 
 | 	 * the ADV_DVC_CFG 'termination' field to automatic also. | 
 | 	 * | 
 | 	 * If the termination is specified with a non-zero 'termination' | 
 | 	 * value check that a legal value is set and set the ADV_DVC_CFG | 
 | 	 * 'termination' field appropriately. | 
 | 	 */ | 
 | 	if (eep_config.termination_se == 0) { | 
 | 		termination = 0;	/* auto termination for SE */ | 
 | 	} else { | 
 | 		/* Enable manual control with low off / high off. */ | 
 | 		if (eep_config.termination_se == 1) { | 
 | 			termination = 0; | 
 |  | 
 | 			/* Enable manual control with low off / high on. */ | 
 | 		} else if (eep_config.termination_se == 2) { | 
 | 			termination = TERM_SE_HI; | 
 |  | 
 | 			/* Enable manual control with low on / high on. */ | 
 | 		} else if (eep_config.termination_se == 3) { | 
 | 			termination = TERM_SE; | 
 | 		} else { | 
 | 			/* | 
 | 			 * The EEPROM 'termination_se' field contains a bad value. | 
 | 			 * Use automatic termination instead. | 
 | 			 */ | 
 | 			termination = 0; | 
 | 			warn_code |= ASC_WARN_EEPROM_TERMINATION; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (eep_config.termination_lvd == 0) { | 
 | 		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */ | 
 | 	} else { | 
 | 		/* Enable manual control with low off / high off. */ | 
 | 		if (eep_config.termination_lvd == 1) { | 
 | 			asc_dvc->cfg->termination = termination; | 
 |  | 
 | 			/* Enable manual control with low off / high on. */ | 
 | 		} else if (eep_config.termination_lvd == 2) { | 
 | 			asc_dvc->cfg->termination = termination | TERM_LVD_HI; | 
 |  | 
 | 			/* Enable manual control with low on / high on. */ | 
 | 		} else if (eep_config.termination_lvd == 3) { | 
 | 			asc_dvc->cfg->termination = termination | TERM_LVD; | 
 | 		} else { | 
 | 			/* | 
 | 			 * The EEPROM 'termination_lvd' field contains a bad value. | 
 | 			 * Use automatic termination instead. | 
 | 			 */ | 
 | 			asc_dvc->cfg->termination = termination; | 
 | 			warn_code |= ASC_WARN_EEPROM_TERMINATION; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return warn_code; | 
 | } | 
 |  | 
 | /* | 
 |  * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and | 
 |  * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while | 
 |  * all of this is done. | 
 |  * | 
 |  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR. | 
 |  * | 
 |  * For a non-fatal error return a warning code. If there are no warnings | 
 |  * then 0 is returned. | 
 |  * | 
 |  * Note: Chip is stopped on entry. | 
 |  */ | 
 | static int __devinit AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc) | 
 | { | 
 | 	AdvPortAddr iop_base; | 
 | 	ushort warn_code; | 
 | 	ADVEEP_38C1600_CONFIG eep_config; | 
 | 	uchar tid, termination; | 
 | 	ushort sdtr_speed = 0; | 
 |  | 
 | 	iop_base = asc_dvc->iop_base; | 
 |  | 
 | 	warn_code = 0; | 
 |  | 
 | 	/* | 
 | 	 * Read the board's EEPROM configuration. | 
 | 	 * | 
 | 	 * Set default values if a bad checksum is found. | 
 | 	 */ | 
 | 	if (AdvGet38C1600EEPConfig(iop_base, &eep_config) != | 
 | 	    eep_config.check_sum) { | 
 | 		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc); | 
 | 		warn_code |= ASC_WARN_EEPROM_CHKSUM; | 
 |  | 
 | 		/* | 
 | 		 * Set EEPROM default values. | 
 | 		 */ | 
 | 		memcpy(&eep_config, &Default_38C1600_EEPROM_Config, | 
 | 			sizeof(ADVEEP_38C1600_CONFIG)); | 
 |  | 
 | 		if (PCI_FUNC(pdev->devfn) != 0) { | 
 | 			u8 ints; | 
 | 			/* | 
 | 			 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60 | 
 | 			 * and old Mac system booting problem. The Expansion | 
 | 			 * ROM must be disabled in Function 1 for these systems | 
 | 			 */ | 
 | 			eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE; | 
 | 			/* | 
 | 			 * Clear the INTAB (bit 11) if the GPIO 0 input | 
 | 			 * indicates the Function 1 interrupt line is wired | 
 | 			 * to INTB. | 
 | 			 * | 
 | 			 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input: | 
 | 			 *   1 - Function 1 interrupt line wired to INT A. | 
 | 			 *   0 - Function 1 interrupt line wired to INT B. | 
 | 			 * | 
 | 			 * Note: Function 0 is always wired to INTA. | 
 | 			 * Put all 5 GPIO bits in input mode and then read | 
 | 			 * their input values. | 
 | 			 */ | 
 | 			AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0); | 
 | 			ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA); | 
 | 			if ((ints & 0x01) == 0) | 
 | 				eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Assume the 6 byte board serial number that was read from | 
 | 		 * EEPROM is correct even if the EEPROM checksum failed. | 
 | 		 */ | 
 | 		eep_config.serial_number_word3 = | 
 | 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); | 
 | 		eep_config.serial_number_word2 = | 
 | 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); | 
 | 		eep_config.serial_number_word1 = | 
 | 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); | 
 |  | 
 | 		AdvSet38C1600EEPConfig(iop_base, &eep_config); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the | 
 | 	 * EEPROM configuration that was read. | 
 | 	 * | 
 | 	 * This is the mapping of EEPROM fields to Adv Library fields. | 
 | 	 */ | 
 | 	asc_dvc->wdtr_able = eep_config.wdtr_able; | 
 | 	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; | 
 | 	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; | 
 | 	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; | 
 | 	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; | 
 | 	asc_dvc->ppr_able = 0; | 
 | 	asc_dvc->tagqng_able = eep_config.tagqng_able; | 
 | 	asc_dvc->cfg->disc_enable = eep_config.disc_enable; | 
 | 	asc_dvc->max_host_qng = eep_config.max_host_qng; | 
 | 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; | 
 | 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID); | 
 | 	asc_dvc->start_motor = eep_config.start_motor; | 
 | 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; | 
 | 	asc_dvc->bios_ctrl = eep_config.bios_ctrl; | 
 | 	asc_dvc->no_scam = eep_config.scam_tolerant; | 
 |  | 
 | 	/* | 
 | 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits | 
 | 	 * are set, then set an 'sdtr_able' bit for it. | 
 | 	 */ | 
 | 	asc_dvc->sdtr_able = 0; | 
 | 	for (tid = 0; tid <= ASC_MAX_TID; tid++) { | 
 | 		if (tid == 0) { | 
 | 			sdtr_speed = asc_dvc->sdtr_speed1; | 
 | 		} else if (tid == 4) { | 
 | 			sdtr_speed = asc_dvc->sdtr_speed2; | 
 | 		} else if (tid == 8) { | 
 | 			sdtr_speed = asc_dvc->sdtr_speed3; | 
 | 		} else if (tid == 12) { | 
 | 			sdtr_speed = asc_dvc->sdtr_speed4; | 
 | 		} | 
 | 		if (sdtr_speed & ASC_MAX_TID) { | 
 | 			asc_dvc->sdtr_able |= (1 << tid); | 
 | 		} | 
 | 		sdtr_speed >>= 4; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set the host maximum queuing (max. 253, min. 16) and the per device | 
 | 	 * maximum queuing (max. 63, min. 4). | 
 | 	 */ | 
 | 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { | 
 | 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; | 
 | 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { | 
 | 		/* If the value is zero, assume it is uninitialized. */ | 
 | 		if (eep_config.max_host_qng == 0) { | 
 | 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; | 
 | 		} else { | 
 | 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { | 
 | 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; | 
 | 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { | 
 | 		/* If the value is zero, assume it is uninitialized. */ | 
 | 		if (eep_config.max_dvc_qng == 0) { | 
 | 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; | 
 | 		} else { | 
 | 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then | 
 | 	 * set 'max_dvc_qng' to 'max_host_qng'. | 
 | 	 */ | 
 | 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) { | 
 | 		eep_config.max_dvc_qng = eep_config.max_host_qng; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng' | 
 | 	 * values based on possibly adjusted EEPROM values. | 
 | 	 */ | 
 | 	asc_dvc->max_host_qng = eep_config.max_host_qng; | 
 | 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; | 
 |  | 
 | 	/* | 
 | 	 * If the EEPROM 'termination' field is set to automatic (0), then set | 
 | 	 * the ASC_DVC_CFG 'termination' field to automatic also. | 
 | 	 * | 
 | 	 * If the termination is specified with a non-zero 'termination' | 
 | 	 * value check that a legal value is set and set the ASC_DVC_CFG | 
 | 	 * 'termination' field appropriately. | 
 | 	 */ | 
 | 	if (eep_config.termination_se == 0) { | 
 | 		termination = 0;	/* auto termination for SE */ | 
 | 	} else { | 
 | 		/* Enable manual control with low off / high off. */ | 
 | 		if (eep_config.termination_se == 1) { | 
 | 			termination = 0; | 
 |  | 
 | 			/* Enable manual control with low off / high on. */ | 
 | 		} else if (eep_config.termination_se == 2) { | 
 | 			termination = TERM_SE_HI; | 
 |  | 
 | 			/* Enable manual control with low on / high on. */ | 
 | 		} else if (eep_config.termination_se == 3) { | 
 | 			termination = TERM_SE; | 
 | 		} else { | 
 | 			/* | 
 | 			 * The EEPROM 'termination_se' field contains a bad value. | 
 | 			 * Use automatic termination instead. | 
 | 			 */ | 
 | 			termination = 0; | 
 | 			warn_code |= ASC_WARN_EEPROM_TERMINATION; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (eep_config.termination_lvd == 0) { | 
 | 		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */ | 
 | 	} else { | 
 | 		/* Enable manual control with low off / high off. */ | 
 | 		if (eep_config.termination_lvd == 1) { | 
 | 			asc_dvc->cfg->termination = termination; | 
 |  | 
 | 			/* Enable manual control with low off / high on. */ | 
 | 		} else if (eep_config.termination_lvd == 2) { | 
 | 			asc_dvc->cfg->termination = termination | TERM_LVD_HI; | 
 |  | 
 | 			/* Enable manual control with low on / high on. */ | 
 | 		} else if (eep_config.termination_lvd == 3) { | 
 | 			asc_dvc->cfg->termination = termination | TERM_LVD; | 
 | 		} else { | 
 | 			/* | 
 | 			 * The EEPROM 'termination_lvd' field contains a bad value. | 
 | 			 * Use automatic termination instead. | 
 | 			 */ | 
 | 			asc_dvc->cfg->termination = termination; | 
 | 			warn_code |= ASC_WARN_EEPROM_TERMINATION; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return warn_code; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the ADV_DVC_VAR structure. | 
 |  * | 
 |  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. | 
 |  * | 
 |  * For a non-fatal error return a warning code. If there are no warnings | 
 |  * then 0 is returned. | 
 |  */ | 
 | static int __devinit | 
 | AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost) | 
 | { | 
 | 	struct asc_board *board = shost_priv(shost); | 
 | 	ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var; | 
 | 	unsigned short warn_code = 0; | 
 | 	AdvPortAddr iop_base = asc_dvc->iop_base; | 
 | 	u16 cmd; | 
 | 	int status; | 
 |  | 
 | 	asc_dvc->err_code = 0; | 
 |  | 
 | 	/* | 
 | 	 * Save the state of the PCI Configuration Command Register | 
 | 	 * "Parity Error Response Control" Bit. If the bit is clear (0), | 
 | 	 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore | 
 | 	 * DMA parity errors. | 
 | 	 */ | 
 | 	asc_dvc->cfg->control_flag = 0; | 
 | 	pci_read_config_word(pdev, PCI_COMMAND, &cmd); | 
 | 	if ((cmd & PCI_COMMAND_PARITY) == 0) | 
 | 		asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR; | 
 |  | 
 | 	asc_dvc->cfg->chip_version = | 
 | 	    AdvGetChipVersion(iop_base, asc_dvc->bus_type); | 
 |  | 
 | 	ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n", | 
 | 		 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1), | 
 | 		 (ushort)ADV_CHIP_ID_BYTE); | 
 |  | 
 | 	ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n", | 
 | 		 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0), | 
 | 		 (ushort)ADV_CHIP_ID_WORD); | 
 |  | 
 | 	/* | 
 | 	 * Reset the chip to start and allow register writes. | 
 | 	 */ | 
 | 	if (AdvFindSignature(iop_base) == 0) { | 
 | 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; | 
 | 		return ADV_ERROR; | 
 | 	} else { | 
 | 		/* | 
 | 		 * The caller must set 'chip_type' to a valid setting. | 
 | 		 */ | 
 | 		if (asc_dvc->chip_type != ADV_CHIP_ASC3550 && | 
 | 		    asc_dvc->chip_type != ADV_CHIP_ASC38C0800 && | 
 | 		    asc_dvc->chip_type != ADV_CHIP_ASC38C1600) { | 
 | 			asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE; | 
 | 			return ADV_ERROR; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Reset Chip. | 
 | 		 */ | 
 | 		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, | 
 | 				     ADV_CTRL_REG_CMD_RESET); | 
 | 		mdelay(100); | 
 | 		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, | 
 | 				     ADV_CTRL_REG_CMD_WR_IO_REG); | 
 |  | 
 | 		if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { | 
 | 			status = AdvInitFrom38C1600EEP(asc_dvc); | 
 | 		} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { | 
 | 			status = AdvInitFrom38C0800EEP(asc_dvc); | 
 | 		} else { | 
 | 			status = AdvInitFrom3550EEP(asc_dvc); | 
 | 		} | 
 | 		warn_code |= status; | 
 | 	} | 
 |  | 
 | 	if (warn_code != 0) | 
 | 		shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code); | 
 |  | 
 | 	if (asc_dvc->err_code) | 
 | 		shost_printk(KERN_ERR, shost, "error code 0x%x\n", | 
 | 				asc_dvc->err_code); | 
 |  | 
 | 	return asc_dvc->err_code; | 
 | } | 
 | #endif | 
 |  | 
 | static struct scsi_host_template advansys_template = { | 
 | 	.proc_name = DRV_NAME, | 
 | #ifdef CONFIG_PROC_FS | 
 | 	.proc_info = advansys_proc_info, | 
 | #endif | 
 | 	.name = DRV_NAME, | 
 | 	.info = advansys_info, | 
 | 	.queuecommand = advansys_queuecommand, | 
 | 	.eh_bus_reset_handler = advansys_reset, | 
 | 	.bios_param = advansys_biosparam, | 
 | 	.slave_configure = advansys_slave_configure, | 
 | 	/* | 
 | 	 * Because the driver may control an ISA adapter 'unchecked_isa_dma' | 
 | 	 * must be set. The flag will be cleared in advansys_board_found | 
 | 	 * for non-ISA adapters. | 
 | 	 */ | 
 | 	.unchecked_isa_dma = 1, | 
 | 	/* | 
 | 	 * All adapters controlled by this driver are capable of large | 
 | 	 * scatter-gather lists. According to the mid-level SCSI documentation | 
 | 	 * this obviates any performance gain provided by setting | 
 | 	 * 'use_clustering'. But empirically while CPU utilization is increased | 
 | 	 * by enabling clustering, I/O throughput increases as well. | 
 | 	 */ | 
 | 	.use_clustering = ENABLE_CLUSTERING, | 
 | }; | 
 |  | 
 | static int __devinit advansys_wide_init_chip(struct Scsi_Host *shost) | 
 | { | 
 | 	struct asc_board *board = shost_priv(shost); | 
 | 	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var; | 
 | 	int req_cnt = 0; | 
 | 	adv_req_t *reqp = NULL; | 
 | 	int sg_cnt = 0; | 
 | 	adv_sgblk_t *sgp; | 
 | 	int warn_code, err_code; | 
 |  | 
 | 	/* | 
 | 	 * Allocate buffer carrier structures. The total size | 
 | 	 * is about 4 KB, so allocate all at once. | 
 | 	 */ | 
 | 	adv_dvc->carrier_buf = kmalloc(ADV_CARRIER_BUFSIZE, GFP_KERNEL); | 
 | 	ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc->carrier_buf); | 
 |  | 
 | 	if (!adv_dvc->carrier_buf) | 
 | 		goto kmalloc_failed; | 
 |  | 
 | 	/* | 
 | 	 * Allocate up to 'max_host_qng' request structures for the Wide | 
 | 	 * board. The total size is about 16 KB, so allocate all at once. | 
 | 	 * If the allocation fails decrement and try again. | 
 | 	 */ | 
 | 	for (req_cnt = adv_dvc->max_host_qng; req_cnt > 0; req_cnt--) { | 
 | 		reqp = kmalloc(sizeof(adv_req_t) * req_cnt, GFP_KERNEL); | 
 |  | 
 | 		ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp, req_cnt, | 
 | 			 (ulong)sizeof(adv_req_t) * req_cnt); | 
 |  | 
 | 		if (reqp) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (!reqp) | 
 | 		goto kmalloc_failed; | 
 |  | 
 | 	adv_dvc->orig_reqp = reqp; | 
 |  | 
 | 	/* | 
 | 	 * Allocate up to ADV_TOT_SG_BLOCK request structures for | 
 | 	 * the Wide board. Each structure is about 136 bytes. | 
 | 	 */ | 
 | 	board->adv_sgblkp = NULL; | 
 | 	for (sg_cnt = 0; sg_cnt < ADV_TOT_SG_BLOCK; sg_cnt++) { | 
 | 		sgp = kmalloc(sizeof(adv_sgblk_t), GFP_KERNEL); | 
 |  | 
 | 		if (!sgp) | 
 | 			break; | 
 |  | 
 | 		sgp->next_sgblkp = board->adv_sgblkp; | 
 | 		board->adv_sgblkp = sgp; | 
 |  | 
 | 	} | 
 |  | 
 | 	ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt, sizeof(adv_sgblk_t), | 
 | 		 sizeof(adv_sgblk_t) * sg_cnt); | 
 |  | 
 | 	if (!board->adv_sgblkp) | 
 | 		goto kmalloc_failed; | 
 |  | 
 | 	/* | 
 | 	 * Point 'adv_reqp' to the request structures and | 
 | 	 * link them together. | 
 | 	 */ | 
 | 	req_cnt--; | 
 | 	reqp[req_cnt].next_reqp = NULL; | 
 | 	for (; req_cnt > 0; req_cnt--) { | 
 | 		reqp[req_cnt - 1].next_reqp = &reqp[req_cnt]; | 
 | 	} | 
 | 	board->adv_reqp = &reqp[0]; | 
 |  | 
 | 	if (adv_dvc->chip_type == ADV_CHIP_ASC3550) { | 
 | 		ASC_DBG(2, "AdvInitAsc3550Driver()\n"); | 
 | 		warn_code = AdvInitAsc3550Driver(adv_dvc); | 
 | 	} else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) { | 
 | 		ASC_DBG(2, "AdvInitAsc38C0800Driver()\n"); | 
 | 		warn_code = AdvInitAsc38C0800Driver(adv_dvc); | 
 | 	} else { | 
 | 		ASC_DBG(2, "AdvInitAsc38C1600Driver()\n"); | 
 | 		warn_code = AdvInitAsc38C1600Driver(adv_dvc); | 
 | 	} | 
 | 	err_code = adv_dvc->err_code; | 
 |  | 
 | 	if (warn_code || err_code) { | 
 | 		shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error " | 
 | 			"0x%x\n", warn_code, err_code); | 
 | 	} | 
 |  | 
 | 	goto exit; | 
 |  | 
 |  kmalloc_failed: | 
 | 	shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n"); | 
 | 	err_code = ADV_ERROR; | 
 |  exit: | 
 | 	return err_code; | 
 | } | 
 |  | 
 | static void advansys_wide_free_mem(struct asc_board *board) | 
 | { | 
 | 	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var; | 
 | 	kfree(adv_dvc->carrier_buf); | 
 | 	adv_dvc->carrier_buf = NULL; | 
 | 	kfree(adv_dvc->orig_reqp); | 
 | 	adv_dvc->orig_reqp = board->adv_reqp = NULL; | 
 | 	while (board->adv_sgblkp) { | 
 | 		adv_sgblk_t *sgp = board->adv_sgblkp; | 
 | 		board->adv_sgblkp = sgp->next_sgblkp; | 
 | 		kfree(sgp); | 
 | 	} | 
 | } | 
 |  | 
 | static int __devinit advansys_board_found(struct Scsi_Host *shost, | 
 | 					  unsigned int iop, int bus_type) | 
 | { | 
 | 	struct pci_dev *pdev; | 
 | 	struct asc_board *boardp = shost_priv(shost); | 
 | 	ASC_DVC_VAR *asc_dvc_varp = NULL; | 
 | 	ADV_DVC_VAR *adv_dvc_varp = NULL; | 
 | 	int share_irq, warn_code, ret; | 
 |  | 
 | 	pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL; | 
 |  | 
 | 	if (ASC_NARROW_BOARD(boardp)) { | 
 | 		ASC_DBG(1, "narrow board\n"); | 
 | 		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; | 
 | 		asc_dvc_varp->bus_type = bus_type; | 
 | 		asc_dvc_varp->drv_ptr = boardp; | 
 | 		asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg; | 
 | 		asc_dvc_varp->iop_base = iop; | 
 | 	} else { | 
 | #ifdef CONFIG_PCI | 
 | 		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; | 
 | 		adv_dvc_varp->drv_ptr = boardp; | 
 | 		adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg; | 
 | 		if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) { | 
 | 			ASC_DBG(1, "wide board ASC-3550\n"); | 
 | 			adv_dvc_varp->chip_type = ADV_CHIP_ASC3550; | 
 | 		} else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) { | 
 | 			ASC_DBG(1, "wide board ASC-38C0800\n"); | 
 | 			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800; | 
 | 		} else { | 
 | 			ASC_DBG(1, "wide board ASC-38C1600\n"); | 
 | 			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600; | 
 | 		} | 
 |  | 
 | 		boardp->asc_n_io_port = pci_resource_len(pdev, 1); | 
 | 		boardp->ioremap_addr = pci_ioremap_bar(pdev, 1); | 
 | 		if (!boardp->ioremap_addr) { | 
 | 			shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) " | 
 | 					"returned NULL\n", | 
 | 					(long)pci_resource_start(pdev, 1), | 
 | 					boardp->asc_n_io_port); | 
 | 			ret = -ENODEV; | 
 | 			goto err_shost; | 
 | 		} | 
 | 		adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr; | 
 | 		ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base); | 
 |  | 
 | 		/* | 
 | 		 * Even though it isn't used to access wide boards, other | 
 | 		 * than for the debug line below, save I/O Port address so | 
 | 		 * that it can be reported. | 
 | 		 */ | 
 | 		boardp->ioport = iop; | 
 |  | 
 | 		ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n", | 
 | 				(ushort)inp(iop + 1), (ushort)inpw(iop)); | 
 | #endif /* CONFIG_PCI */ | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | 	/* | 
 | 	 * Allocate buffer for printing information from | 
 | 	 * /proc/scsi/advansys/[0...]. | 
 | 	 */ | 
 | 	boardp->prtbuf = kmalloc(ASC_PRTBUF_SIZE, GFP_KERNEL); | 
 | 	if (!boardp->prtbuf) { | 
 | 		shost_printk(KERN_ERR, shost, "kmalloc(%d) returned NULL\n", | 
 | 				ASC_PRTBUF_SIZE); | 
 | 		ret = -ENOMEM; | 
 | 		goto err_unmap; | 
 | 	} | 
 | #endif /* CONFIG_PROC_FS */ | 
 |  | 
 | 	if (ASC_NARROW_BOARD(boardp)) { | 
 | 		/* | 
 | 		 * Set the board bus type and PCI IRQ before | 
 | 		 * calling AscInitGetConfig(). | 
 | 		 */ | 
 | 		switch (asc_dvc_varp->bus_type) { | 
 | #ifdef CONFIG_ISA | 
 | 		case ASC_IS_ISA: | 
 | 			shost->unchecked_isa_dma = TRUE; | 
 | 			share_irq = 0; | 
 | 			break; | 
 | 		case ASC_IS_VL: | 
 | 			shost->unchecked_isa_dma = FALSE; | 
 | 			share_irq = 0; | 
 | 			break; | 
 | 		case ASC_IS_EISA: | 
 | 			shost->unchecked_isa_dma = FALSE; | 
 | 			share_irq = IRQF_SHARED; | 
 | 			break; | 
 | #endif /* CONFIG_ISA */ | 
 | #ifdef CONFIG_PCI | 
 | 		case ASC_IS_PCI: | 
 | 			shost->unchecked_isa_dma = FALSE; | 
 | 			share_irq = IRQF_SHARED; | 
 | 			break; | 
 | #endif /* CONFIG_PCI */ | 
 | 		default: | 
 | 			shost_printk(KERN_ERR, shost, "unknown adapter type: " | 
 | 					"%d\n", asc_dvc_varp->bus_type); | 
 | 			shost->unchecked_isa_dma = TRUE; | 
 | 			share_irq = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * NOTE: AscInitGetConfig() may change the board's | 
 | 		 * bus_type value. The bus_type value should no | 
 | 		 * longer be used. If the bus_type field must be | 
 | 		 * referenced only use the bit-wise AND operator "&". | 
 | 		 */ | 
 | 		ASC_DBG(2, "AscInitGetConfig()\n"); | 
 | 		ret = AscInitGetConfig(shost) ? -ENODEV : 0; | 
 | 	} else { | 
 | #ifdef CONFIG_PCI | 
 | 		/* | 
 | 		 * For Wide boards set PCI information before calling | 
 | 		 * AdvInitGetConfig(). | 
 | 		 */ | 
 | 		shost->unchecked_isa_dma = FALSE; | 
 | 		share_irq = IRQF_SHARED; | 
 | 		ASC_DBG(2, "AdvInitGetConfig()\n"); | 
 |  | 
 | 		ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0; | 
 | #endif /* CONFIG_PCI */ | 
 | 	} | 
 |  | 
 | 	if (ret) | 
 | 		goto err_free_proc; | 
 |  | 
 | 	/* | 
 | 	 * Save the EEPROM configuration so that it can be displayed | 
 | 	 * from /proc/scsi/advansys/[0...]. | 
 | 	 */ | 
 | 	if (ASC_NARROW_BOARD(boardp)) { | 
 |  | 
 | 		ASCEEP_CONFIG *ep; | 
 |  | 
 | 		/* | 
 | 		 * Set the adapter's target id bit in the 'init_tidmask' field. | 
 | 		 */ | 
 | 		boardp->init_tidmask |= | 
 | 		    ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id); | 
 |  | 
 | 		/* | 
 | 		 * Save EEPROM settings for the board. | 
 | 		 */ | 
 | 		ep = &boardp->eep_config.asc_eep; | 
 |  | 
 | 		ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable; | 
 | 		ep->disc_enable = asc_dvc_varp->cfg->disc_enable; | 
 | 		ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled; | 
 | 		ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed); | 
 | 		ep->start_motor = asc_dvc_varp->start_motor; | 
 | 		ep->cntl = asc_dvc_varp->dvc_cntl; | 
 | 		ep->no_scam = asc_dvc_varp->no_scam; | 
 | 		ep->max_total_qng = asc_dvc_varp->max_total_qng; | 
 | 		ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id); | 
 | 		/* 'max_tag_qng' is set to the same value for every device. */ | 
 | 		ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0]; | 
 | 		ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0]; | 
 | 		ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1]; | 
 | 		ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2]; | 
 | 		ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3]; | 
 | 		ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4]; | 
 | 		ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5]; | 
 |  | 
 | 		/* | 
 | 		 * Modify board configuration. | 
 | 		 */ | 
 | 		ASC_DBG(2, "AscInitSetConfig()\n"); | 
 | 		ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0; | 
 | 		if (ret) | 
 | 			goto err_free_proc; | 
 | 	} else { | 
 | 		ADVEEP_3550_CONFIG *ep_3550; | 
 | 		ADVEEP_38C0800_CONFIG *ep_38C0800; | 
 | 		ADVEEP_38C1600_CONFIG *ep_38C1600; | 
 |  | 
 | 		/* | 
 | 		 * Save Wide EEP Configuration Information. | 
 | 		 */ | 
 | 		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { | 
 | 			ep_3550 = &boardp->eep_config.adv_3550_eep; | 
 |  | 
 | 			ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id; | 
 | 			ep_3550->max_host_qng = adv_dvc_varp->max_host_qng; | 
 | 			ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng; | 
 | 			ep_3550->termination = adv_dvc_varp->cfg->termination; | 
 | 			ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable; | 
 | 			ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl; | 
 | 			ep_3550->wdtr_able = adv_dvc_varp->wdtr_able; | 
 | 			ep_3550->sdtr_able = adv_dvc_varp->sdtr_able; | 
 | 			ep_3550->ultra_able = adv_dvc_varp->ultra_able; | 
 | 			ep_3550->tagqng_able = adv_dvc_varp->tagqng_able; | 
 | 			ep_3550->start_motor = adv_dvc_varp->start_motor; | 
 | 			ep_3550->scsi_reset_delay = | 
 | 			    adv_dvc_varp->scsi_reset_wait; | 
 | 			ep_3550->serial_number_word1 = | 
 | 			    adv_dvc_varp->cfg->serial1; | 
 | 			ep_3550->serial_number_word2 = | 
 | 			    adv_dvc_varp->cfg->serial2; | 
 | 			ep_3550->serial_number_word3 = | 
 | 			    adv_dvc_varp->cfg->serial3; | 
 | 		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { | 
 | 			ep_38C0800 = &boardp->eep_config.adv_38C0800_eep; | 
 |  | 
 | 			ep_38C0800->adapter_scsi_id = | 
 | 			    adv_dvc_varp->chip_scsi_id; | 
 | 			ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng; | 
 | 			ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng; | 
 | 			ep_38C0800->termination_lvd = | 
 | 			    adv_dvc_varp->cfg->termination; | 
 | 			ep_38C0800->disc_enable = | 
 | 			    adv_dvc_varp->cfg->disc_enable; | 
 | 			ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl; | 
 | 			ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able; | 
 | 			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; | 
 | 			ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; | 
 | 			ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; | 
 | 			ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; | 
 | 			ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; | 
 | 			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; | 
 | 			ep_38C0800->start_motor = adv_dvc_varp->start_motor; | 
 | 			ep_38C0800->scsi_reset_delay = | 
 | 			    adv_dvc_varp->scsi_reset_wait; | 
 | 			ep_38C0800->serial_number_word1 = | 
 | 			    adv_dvc_varp->cfg->serial1; | 
 | 			ep_38C0800->serial_number_word2 = | 
 | 			    adv_dvc_varp->cfg->serial2; | 
 | 			ep_38C0800->serial_number_word3 = | 
 | 			    adv_dvc_varp->cfg->serial3; | 
 | 		} else { | 
 | 			ep_38C1600 = &boardp->eep_config.adv_38C1600_eep; | 
 |  | 
 | 			ep_38C1600->adapter_scsi_id = | 
 | 			    adv_dvc_varp->chip_scsi_id; | 
 | 			ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng; | 
 | 			ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng; | 
 | 			ep_38C1600->termination_lvd = | 
 | 			    adv_dvc_varp->cfg->termination; | 
 | 			ep_38C1600->disc_enable = | 
 | 			    adv_dvc_varp->cfg->disc_enable; | 
 | 			ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl; | 
 | 			ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able; | 
 | 			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; | 
 | 			ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; | 
 | 			ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; | 
 | 			ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; | 
 | 			ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; | 
 | 			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; | 
 | 			ep_38C1600->start_motor = adv_dvc_varp->start_motor; | 
 | 			ep_38C1600->scsi_reset_delay = | 
 | 			    adv_dvc_varp->scsi_reset_wait; | 
 | 			ep_38C1600->serial_number_word1 = | 
 | 			    adv_dvc_varp->cfg->serial1; | 
 | 			ep_38C1600->serial_number_word2 = | 
 | 			    adv_dvc_varp->cfg->serial2; | 
 | 			ep_38C1600->serial_number_word3 = | 
 | 			    adv_dvc_varp->cfg->serial3; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Set the adapter's target id bit in the 'init_tidmask' field. | 
 | 		 */ | 
 | 		boardp->init_tidmask |= | 
 | 		    ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Channels are numbered beginning with 0. For AdvanSys one host | 
 | 	 * structure supports one channel. Multi-channel boards have a | 
 | 	 * separate host structure for each channel. | 
 | 	 */ | 
 | 	shost->max_channel = 0; | 
 | 	if (ASC_NARROW_BOARD(boardp)) { | 
 | 		shost->max_id = ASC_MAX_TID + 1; | 
 | 		shost->max_lun = ASC_MAX_LUN + 1; | 
 | 		shost->max_cmd_len = ASC_MAX_CDB_LEN; | 
 |  | 
 | 		shost->io_port = asc_dvc_varp->iop_base; | 
 | 		boardp->asc_n_io_port = ASC_IOADR_GAP; | 
 | 		shost->this_id = asc_dvc_varp->cfg->chip_scsi_id; | 
 |  | 
 | 		/* Set maximum number of queues the adapter can handle. */ | 
 | 		shost->can_queue = asc_dvc_varp->max_total_qng; | 
 | 	} else { | 
 | 		shost->max_id = ADV_MAX_TID + 1; | 
 | 		shost->max_lun = ADV_MAX_LUN + 1; | 
 | 		shost->max_cmd_len = ADV_MAX_CDB_LEN; | 
 |  | 
 | 		/* | 
 | 		 * Save the I/O Port address and length even though | 
 | 		 * I/O ports are not used to access Wide boards. | 
 | 		 * Instead the Wide boards are accessed with | 
 | 		 * PCI Memory Mapped I/O. | 
 | 		 */ | 
 | 		shost->io_port = iop; | 
 |  | 
 | 		shost->this_id = adv_dvc_varp->chip_scsi_id; | 
 |  | 
 | 		/* Set maximum number of queues the adapter can handle. */ | 
 | 		shost->can_queue = adv_dvc_varp->max_host_qng; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Following v1.3.89, 'cmd_per_lun' is no longer needed | 
 | 	 * and should be set to zero. | 
 | 	 * | 
 | 	 * But because of a bug introduced in v1.3.89 if the driver is | 
 | 	 * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level | 
 | 	 * SCSI function 'allocate_device' will panic. To allow the driver | 
 | 	 * to work as a module in these kernels set 'cmd_per_lun' to 1. | 
 | 	 * | 
 | 	 * Note: This is wrong.  cmd_per_lun should be set to the depth | 
 | 	 * you want on untagged devices always. | 
 | 	 #ifdef MODULE | 
 | 	 */ | 
 | 	shost->cmd_per_lun = 1; | 
 | /* #else | 
 |             shost->cmd_per_lun = 0; | 
 | #endif */ | 
 |  | 
 | 	/* | 
 | 	 * Set the maximum number of scatter-gather elements the | 
 | 	 * adapter can handle. | 
 | 	 */ | 
 | 	if (ASC_NARROW_BOARD(boardp)) { | 
 | 		/* | 
 | 		 * Allow two commands with 'sg_tablesize' scatter-gather | 
 | 		 * elements to be executed simultaneously. This value is | 
 | 		 * the theoretical hardware limit. It may be decreased | 
 | 		 * below. | 
 | 		 */ | 
 | 		shost->sg_tablesize = | 
 | 		    (((asc_dvc_varp->max_total_qng - 2) / 2) * | 
 | 		     ASC_SG_LIST_PER_Q) + 1; | 
 | 	} else { | 
 | 		shost->sg_tablesize = ADV_MAX_SG_LIST; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The value of 'sg_tablesize' can not exceed the SCSI | 
 | 	 * mid-level driver definition of SG_ALL. SG_ALL also | 
 | 	 * must not be exceeded, because it is used to define the | 
 | 	 * size of the scatter-gather table in 'struct asc_sg_head'. | 
 | 	 */ | 
 | 	if (shost->sg_tablesize > SG_ALL) { | 
 | 		shost->sg_tablesize = SG_ALL; | 
 | 	} | 
 |  | 
 | 	ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize); | 
 |  | 
 | 	/* BIOS start address. */ | 
 | 	if (ASC_NARROW_BOARD(boardp)) { | 
 | 		shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base, | 
 | 						    asc_dvc_varp->bus_type); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Fill-in BIOS board variables. The Wide BIOS saves | 
 | 		 * information in LRAM that is used by the driver. | 
 | 		 */ | 
 | 		AdvReadWordLram(adv_dvc_varp->iop_base, | 
 | 				BIOS_SIGNATURE, boardp->bios_signature); | 
 | 		AdvReadWordLram(adv_dvc_varp->iop_base, | 
 | 				BIOS_VERSION, boardp->bios_version); | 
 | 		AdvReadWordLram(adv_dvc_varp->iop_base, | 
 | 				BIOS_CODESEG, boardp->bios_codeseg); | 
 | 		AdvReadWordLram(adv_dvc_varp->iop_base, | 
 | 				BIOS_CODELEN, boardp->bios_codelen); | 
 |  | 
 | 		ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n", | 
 | 			 boardp->bios_signature, boardp->bios_version); | 
 |  | 
 | 		ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n", | 
 | 			 boardp->bios_codeseg, boardp->bios_codelen); | 
 |  | 
 | 		/* | 
 | 		 * If the BIOS saved a valid signature, then fill in | 
 | 		 * the BIOS code segment base address. | 
 | 		 */ | 
 | 		if (boardp->bios_signature == 0x55AA) { | 
 | 			/* | 
 | 			 * Convert x86 realmode code segment to a linear | 
 | 			 * address by shifting left 4. | 
 | 			 */ | 
 | 			shost->base = ((ulong)boardp->bios_codeseg << 4); | 
 | 		} else { | 
 | 			shost->base = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Register Board Resources - I/O Port, DMA, IRQ | 
 | 	 */ | 
 |  | 
 | 	/* Register DMA Channel for Narrow boards. */ | 
 | 	shost->dma_channel = NO_ISA_DMA;	/* Default to no ISA DMA. */ | 
 | #ifdef CONFIG_ISA | 
 | 	if (ASC_NARROW_BOARD(boardp)) { | 
 | 		/* Register DMA channel for ISA bus. */ | 
 | 		if (asc_dvc_varp->bus_type & ASC_IS_ISA) { | 
 | 			shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel; | 
 | 			ret = request_dma(shost->dma_channel, DRV_NAME); | 
 | 			if (ret) { | 
 | 				shost_printk(KERN_ERR, shost, "request_dma() " | 
 | 						"%d failed %d\n", | 
 | 						shost->dma_channel, ret); | 
 | 				goto err_free_proc; | 
 | 			} | 
 | 			AscEnableIsaDma(shost->dma_channel); | 
 | 		} | 
 | 	} | 
 | #endif /* CONFIG_ISA */ | 
 |  | 
 | 	/* Register IRQ Number. */ | 
 | 	ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost); | 
 |  | 
 | 	ret = request_irq(boardp->irq, advansys_interrupt, share_irq, | 
 | 			  DRV_NAME, shost); | 
 |  | 
 | 	if (ret) { | 
 | 		if (ret == -EBUSY) { | 
 | 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " | 
 | 					"already in use\n", boardp->irq); | 
 | 		} else if (ret == -EINVAL) { | 
 | 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " | 
 | 					"not valid\n", boardp->irq); | 
 | 		} else { | 
 | 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " | 
 | 					"failed with %d\n", boardp->irq, ret); | 
 | 		} | 
 | 		goto err_free_dma; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Initialize board RISC chip and enable interrupts. | 
 | 	 */ | 
 | 	if (ASC_NARROW_BOARD(boardp)) { | 
 | 		ASC_DBG(2, "AscInitAsc1000Driver()\n"); | 
 |  | 
 | 		asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL); | 
 | 		if (!asc_dvc_varp->overrun_buf) { | 
 | 			ret = -ENOMEM; | 
 | 			goto err_free_irq; | 
 | 		} | 
 | 		warn_code = AscInitAsc1000Driver(asc_dvc_varp); | 
 |  | 
 | 		if (warn_code || asc_dvc_varp->err_code) { | 
 | 			shost_printk(KERN_ERR, shost, "error: init_state 0x%x, " | 
 | 					"warn 0x%x, error 0x%x\n", | 
 | 					asc_dvc_varp->init_state, warn_code, | 
 | 					asc_dvc_varp->err_code); | 
 | 			if (!asc_dvc_varp->overrun_dma) { | 
 | 				ret = -ENODEV; | 
 | 				goto err_free_mem; | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		if (advansys_wide_init_chip(shost)) { | 
 | 			ret = -ENODEV; | 
 | 			goto err_free_mem; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ASC_DBG_PRT_SCSI_HOST(2, shost); | 
 |  | 
 | 	ret = scsi_add_host(shost, boardp->dev); | 
 | 	if (ret) | 
 | 		goto err_free_mem; | 
 |  | 
 | 	scsi_scan_host(shost); | 
 | 	return 0; | 
 |  | 
 |  err_free_mem: | 
 | 	if (ASC_NARROW_BOARD(boardp)) { | 
 | 		if (asc_dvc_varp->overrun_dma) | 
 | 			dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma, | 
 | 					 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); | 
 | 		kfree(asc_dvc_varp->overrun_buf); | 
 | 	} else | 
 | 		advansys_wide_free_mem(boardp); | 
 |  err_free_irq: | 
 | 	free_irq(boardp->irq, shost); | 
 |  err_free_dma: | 
 | #ifdef CONFIG_ISA | 
 | 	if (shost->dma_channel != NO_ISA_DMA) | 
 | 		free_dma(shost->dma_channel); | 
 | #endif | 
 |  err_free_proc: | 
 | 	kfree(boardp->prtbuf); | 
 |  err_unmap: | 
 | 	if (boardp->ioremap_addr) | 
 | 		iounmap(boardp->ioremap_addr); | 
 |  err_shost: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * advansys_release() | 
 |  * | 
 |  * Release resources allocated for a single AdvanSys adapter. | 
 |  */ | 
 | static int advansys_release(struct Scsi_Host *shost) | 
 | { | 
 | 	struct asc_board *board = shost_priv(shost); | 
 | 	ASC_DBG(1, "begin\n"); | 
 | 	scsi_remove_host(shost); | 
 | 	free_irq(board->irq, shost); | 
 | #ifdef CONFIG_ISA | 
 | 	if (shost->dma_channel != NO_ISA_DMA) { | 
 | 		ASC_DBG(1, "free_dma()\n"); | 
 | 		free_dma(shost->dma_channel); | 
 | 	} | 
 | #endif | 
 | 	if (ASC_NARROW_BOARD(board)) { | 
 | 		dma_unmap_single(board->dev, | 
 | 					board->dvc_var.asc_dvc_var.overrun_dma, | 
 | 					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); | 
 | 		kfree(board->dvc_var.asc_dvc_var.overrun_buf); | 
 | 	} else { | 
 | 		iounmap(board->ioremap_addr); | 
 | 		advansys_wide_free_mem(board); | 
 | 	} | 
 | 	kfree(board->prtbuf); | 
 | 	scsi_host_put(shost); | 
 | 	ASC_DBG(1, "end\n"); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define ASC_IOADR_TABLE_MAX_IX  11 | 
 |  | 
 | static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = { | 
 | 	0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190, | 
 | 	0x0210, 0x0230, 0x0250, 0x0330 | 
 | }; | 
 |  | 
 | /* | 
 |  * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw.  It decodes as: | 
 |  * 00: 10 | 
 |  * 01: 11 | 
 |  * 10: 12 | 
 |  * 11: 15 | 
 |  */ | 
 | static unsigned int __devinit advansys_isa_irq_no(PortAddr iop_base) | 
 | { | 
 | 	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base); | 
 | 	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10; | 
 | 	if (chip_irq == 13) | 
 | 		chip_irq = 15; | 
 | 	return chip_irq; | 
 | } | 
 |  | 
 | static int __devinit advansys_isa_probe(struct device *dev, unsigned int id) | 
 | { | 
 | 	int err = -ENODEV; | 
 | 	PortAddr iop_base = _asc_def_iop_base[id]; | 
 | 	struct Scsi_Host *shost; | 
 | 	struct asc_board *board; | 
 |  | 
 | 	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) { | 
 | 		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base); | 
 | 	if (!AscFindSignature(iop_base)) | 
 | 		goto release_region; | 
 | 	if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT)) | 
 | 		goto release_region; | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	shost = scsi_host_alloc(&advansys_template, sizeof(*board)); | 
 | 	if (!shost) | 
 | 		goto release_region; | 
 |  | 
 | 	board = shost_priv(shost); | 
 | 	board->irq = advansys_isa_irq_no(iop_base); | 
 | 	board->dev = dev; | 
 |  | 
 | 	err = advansys_board_found(shost, iop_base, ASC_IS_ISA); | 
 | 	if (err) | 
 | 		goto free_host; | 
 |  | 
 | 	dev_set_drvdata(dev, shost); | 
 | 	return 0; | 
 |  | 
 |  free_host: | 
 | 	scsi_host_put(shost); | 
 |  release_region: | 
 | 	release_region(iop_base, ASC_IOADR_GAP); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int __devexit advansys_isa_remove(struct device *dev, unsigned int id) | 
 | { | 
 | 	int ioport = _asc_def_iop_base[id]; | 
 | 	advansys_release(dev_get_drvdata(dev)); | 
 | 	release_region(ioport, ASC_IOADR_GAP); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct isa_driver advansys_isa_driver = { | 
 | 	.probe		= advansys_isa_probe, | 
 | 	.remove		= __devexit_p(advansys_isa_remove), | 
 | 	.driver = { | 
 | 		.owner	= THIS_MODULE, | 
 | 		.name	= DRV_NAME, | 
 | 	}, | 
 | }; | 
 |  | 
 | /* | 
 |  * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as: | 
 |  * 000: invalid | 
 |  * 001: 10 | 
 |  * 010: 11 | 
 |  * 011: 12 | 
 |  * 100: invalid | 
 |  * 101: 14 | 
 |  * 110: 15 | 
 |  * 111: invalid | 
 |  */ | 
 | static unsigned int __devinit advansys_vlb_irq_no(PortAddr iop_base) | 
 | { | 
 | 	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base); | 
 | 	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9; | 
 | 	if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15)) | 
 | 		return 0; | 
 | 	return chip_irq; | 
 | } | 
 |  | 
 | static int __devinit advansys_vlb_probe(struct device *dev, unsigned int id) | 
 | { | 
 | 	int err = -ENODEV; | 
 | 	PortAddr iop_base = _asc_def_iop_base[id]; | 
 | 	struct Scsi_Host *shost; | 
 | 	struct asc_board *board; | 
 |  | 
 | 	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) { | 
 | 		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base); | 
 | 	if (!AscFindSignature(iop_base)) | 
 | 		goto release_region; | 
 | 	/* | 
 | 	 * I don't think this condition can actually happen, but the old | 
 | 	 * driver did it, and the chances of finding a VLB setup in 2007 | 
 | 	 * to do testing with is slight to none. | 
 | 	 */ | 
 | 	if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL) | 
 | 		goto release_region; | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	shost = scsi_host_alloc(&advansys_template, sizeof(*board)); | 
 | 	if (!shost) | 
 | 		goto release_region; | 
 |  | 
 | 	board = shost_priv(shost); | 
 | 	board->irq = advansys_vlb_irq_no(iop_base); | 
 | 	board->dev = dev; | 
 |  | 
 | 	err = advansys_board_found(shost, iop_base, ASC_IS_VL); | 
 | 	if (err) | 
 | 		goto free_host; | 
 |  | 
 | 	dev_set_drvdata(dev, shost); | 
 | 	return 0; | 
 |  | 
 |  free_host: | 
 | 	scsi_host_put(shost); | 
 |  release_region: | 
 | 	release_region(iop_base, ASC_IOADR_GAP); | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static struct isa_driver advansys_vlb_driver = { | 
 | 	.probe		= advansys_vlb_probe, | 
 | 	.remove		= __devexit_p(advansys_isa_remove), | 
 | 	.driver = { | 
 | 		.owner	= THIS_MODULE, | 
 | 		.name	= "advansys_vlb", | 
 | 	}, | 
 | }; | 
 |  | 
 | static struct eisa_device_id advansys_eisa_table[] __devinitdata = { | 
 | 	{ "ABP7401" }, | 
 | 	{ "ABP7501" }, | 
 | 	{ "" } | 
 | }; | 
 |  | 
 | MODULE_DEVICE_TABLE(eisa, advansys_eisa_table); | 
 |  | 
 | /* | 
 |  * EISA is a little more tricky than PCI; each EISA device may have two | 
 |  * channels, and this driver is written to make each channel its own Scsi_Host | 
 |  */ | 
 | struct eisa_scsi_data { | 
 | 	struct Scsi_Host *host[2]; | 
 | }; | 
 |  | 
 | /* | 
 |  * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as: | 
 |  * 000: 10 | 
 |  * 001: 11 | 
 |  * 010: 12 | 
 |  * 011: invalid | 
 |  * 100: 14 | 
 |  * 101: 15 | 
 |  * 110: invalid | 
 |  * 111: invalid | 
 |  */ | 
 | static unsigned int __devinit advansys_eisa_irq_no(struct eisa_device *edev) | 
 | { | 
 | 	unsigned short cfg_lsw = inw(edev->base_addr + 0xc86); | 
 | 	unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10; | 
 | 	if ((chip_irq == 13) || (chip_irq > 15)) | 
 | 		return 0; | 
 | 	return chip_irq; | 
 | } | 
 |  | 
 | static int __devinit advansys_eisa_probe(struct device *dev) | 
 | { | 
 | 	int i, ioport, irq = 0; | 
 | 	int err; | 
 | 	struct eisa_device *edev = to_eisa_device(dev); | 
 | 	struct eisa_scsi_data *data; | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	data = kzalloc(sizeof(*data), GFP_KERNEL); | 
 | 	if (!data) | 
 | 		goto fail; | 
 | 	ioport = edev->base_addr + 0xc30; | 
 |  | 
 | 	err = -ENODEV; | 
 | 	for (i = 0; i < 2; i++, ioport += 0x20) { | 
 | 		struct asc_board *board; | 
 | 		struct Scsi_Host *shost; | 
 | 		if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) { | 
 | 			printk(KERN_WARNING "Region %x-%x busy\n", ioport, | 
 | 			       ioport + ASC_IOADR_GAP - 1); | 
 | 			continue; | 
 | 		} | 
 | 		if (!AscFindSignature(ioport)) { | 
 | 			release_region(ioport, ASC_IOADR_GAP); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * I don't know why we need to do this for EISA chips, but | 
 | 		 * not for any others.  It looks to be equivalent to | 
 | 		 * AscGetChipCfgMsw, but I may have overlooked something, | 
 | 		 * so I'm not converting it until I get an EISA board to | 
 | 		 * test with. | 
 | 		 */ | 
 | 		inw(ioport + 4); | 
 |  | 
 | 		if (!irq) | 
 | 			irq = advansys_eisa_irq_no(edev); | 
 |  | 
 | 		err = -ENOMEM; | 
 | 		shost = scsi_host_alloc(&advansys_template, sizeof(*board)); | 
 | 		if (!shost) | 
 | 			goto release_region; | 
 |  | 
 | 		board = shost_priv(shost); | 
 | 		board->irq = irq; | 
 | 		board->dev = dev; | 
 |  | 
 | 		err = advansys_board_found(shost, ioport, ASC_IS_EISA); | 
 | 		if (!err) { | 
 | 			data->host[i] = shost; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		scsi_host_put(shost); | 
 |  release_region: | 
 | 		release_region(ioport, ASC_IOADR_GAP); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (err) | 
 | 		goto free_data; | 
 | 	dev_set_drvdata(dev, data); | 
 | 	return 0; | 
 |  | 
 |  free_data: | 
 | 	kfree(data->host[0]); | 
 | 	kfree(data->host[1]); | 
 | 	kfree(data); | 
 |  fail: | 
 | 	return err; | 
 | } | 
 |  | 
 | static __devexit int advansys_eisa_remove(struct device *dev) | 
 | { | 
 | 	int i; | 
 | 	struct eisa_scsi_data *data = dev_get_drvdata(dev); | 
 |  | 
 | 	for (i = 0; i < 2; i++) { | 
 | 		int ioport; | 
 | 		struct Scsi_Host *shost = data->host[i]; | 
 | 		if (!shost) | 
 | 			continue; | 
 | 		ioport = shost->io_port; | 
 | 		advansys_release(shost); | 
 | 		release_region(ioport, ASC_IOADR_GAP); | 
 | 	} | 
 |  | 
 | 	kfree(data); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct eisa_driver advansys_eisa_driver = { | 
 | 	.id_table =		advansys_eisa_table, | 
 | 	.driver = { | 
 | 		.name =		DRV_NAME, | 
 | 		.probe =	advansys_eisa_probe, | 
 | 		.remove =	__devexit_p(advansys_eisa_remove), | 
 | 	} | 
 | }; | 
 |  | 
 | /* PCI Devices supported by this driver */ | 
 | static struct pci_device_id advansys_pci_tbl[] __devinitdata = { | 
 | 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A, | 
 | 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, | 
 | 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940, | 
 | 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, | 
 | 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U, | 
 | 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, | 
 | 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW, | 
 | 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, | 
 | 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1, | 
 | 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, | 
 | 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1, | 
 | 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, | 
 | 	{} | 
 | }; | 
 |  | 
 | MODULE_DEVICE_TABLE(pci, advansys_pci_tbl); | 
 |  | 
 | static void __devinit advansys_set_latency(struct pci_dev *pdev) | 
 | { | 
 | 	if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) || | 
 | 	    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) { | 
 | 		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0); | 
 | 	} else { | 
 | 		u8 latency; | 
 | 		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency); | 
 | 		if (latency < 0x20) | 
 | 			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20); | 
 | 	} | 
 | } | 
 |  | 
 | static int __devinit | 
 | advansys_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) | 
 | { | 
 | 	int err, ioport; | 
 | 	struct Scsi_Host *shost; | 
 | 	struct asc_board *board; | 
 |  | 
 | 	err = pci_enable_device(pdev); | 
 | 	if (err) | 
 | 		goto fail; | 
 | 	err = pci_request_regions(pdev, DRV_NAME); | 
 | 	if (err) | 
 | 		goto disable_device; | 
 | 	pci_set_master(pdev); | 
 | 	advansys_set_latency(pdev); | 
 |  | 
 | 	err = -ENODEV; | 
 | 	if (pci_resource_len(pdev, 0) == 0) | 
 | 		goto release_region; | 
 |  | 
 | 	ioport = pci_resource_start(pdev, 0); | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	shost = scsi_host_alloc(&advansys_template, sizeof(*board)); | 
 | 	if (!shost) | 
 | 		goto release_region; | 
 |  | 
 | 	board = shost_priv(shost); | 
 | 	board->irq = pdev->irq; | 
 | 	board->dev = &pdev->dev; | 
 |  | 
 | 	if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW || | 
 | 	    pdev->device == PCI_DEVICE_ID_38C0800_REV1 || | 
 | 	    pdev->device == PCI_DEVICE_ID_38C1600_REV1) { | 
 | 		board->flags |= ASC_IS_WIDE_BOARD; | 
 | 	} | 
 |  | 
 | 	err = advansys_board_found(shost, ioport, ASC_IS_PCI); | 
 | 	if (err) | 
 | 		goto free_host; | 
 |  | 
 | 	pci_set_drvdata(pdev, shost); | 
 | 	return 0; | 
 |  | 
 |  free_host: | 
 | 	scsi_host_put(shost); | 
 |  release_region: | 
 | 	pci_release_regions(pdev); | 
 |  disable_device: | 
 | 	pci_disable_device(pdev); | 
 |  fail: | 
 | 	return err; | 
 | } | 
 |  | 
 | static void __devexit advansys_pci_remove(struct pci_dev *pdev) | 
 | { | 
 | 	advansys_release(pci_get_drvdata(pdev)); | 
 | 	pci_release_regions(pdev); | 
 | 	pci_disable_device(pdev); | 
 | } | 
 |  | 
 | static struct pci_driver advansys_pci_driver = { | 
 | 	.name =		DRV_NAME, | 
 | 	.id_table =	advansys_pci_tbl, | 
 | 	.probe =	advansys_pci_probe, | 
 | 	.remove =	__devexit_p(advansys_pci_remove), | 
 | }; | 
 |  | 
 | static int __init advansys_init(void) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	error = isa_register_driver(&advansys_isa_driver, | 
 | 				    ASC_IOADR_TABLE_MAX_IX); | 
 | 	if (error) | 
 | 		goto fail; | 
 |  | 
 | 	error = isa_register_driver(&advansys_vlb_driver, | 
 | 				    ASC_IOADR_TABLE_MAX_IX); | 
 | 	if (error) | 
 | 		goto unregister_isa; | 
 |  | 
 | 	error = eisa_driver_register(&advansys_eisa_driver); | 
 | 	if (error) | 
 | 		goto unregister_vlb; | 
 |  | 
 | 	error = pci_register_driver(&advansys_pci_driver); | 
 | 	if (error) | 
 | 		goto unregister_eisa; | 
 |  | 
 | 	return 0; | 
 |  | 
 |  unregister_eisa: | 
 | 	eisa_driver_unregister(&advansys_eisa_driver); | 
 |  unregister_vlb: | 
 | 	isa_unregister_driver(&advansys_vlb_driver); | 
 |  unregister_isa: | 
 | 	isa_unregister_driver(&advansys_isa_driver); | 
 |  fail: | 
 | 	return error; | 
 | } | 
 |  | 
 | static void __exit advansys_exit(void) | 
 | { | 
 | 	pci_unregister_driver(&advansys_pci_driver); | 
 | 	eisa_driver_unregister(&advansys_eisa_driver); | 
 | 	isa_unregister_driver(&advansys_vlb_driver); | 
 | 	isa_unregister_driver(&advansys_isa_driver); | 
 | } | 
 |  | 
 | module_init(advansys_init); | 
 | module_exit(advansys_exit); | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_FIRMWARE("advansys/mcode.bin"); | 
 | MODULE_FIRMWARE("advansys/3550.bin"); | 
 | MODULE_FIRMWARE("advansys/38C0800.bin"); | 
 | MODULE_FIRMWARE("advansys/38C1600.bin"); |