| /* | 
 |  * Generic hugetlb support. | 
 |  * (C) William Irwin, April 2004 | 
 |  */ | 
 | #include <linux/gfp.h> | 
 | #include <linux/list.h> | 
 | #include <linux/init.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/sysctl.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/mmu_notifier.h> | 
 | #include <linux/nodemask.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/sysfs.h> | 
 |  | 
 | #include <asm/page.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/io.h> | 
 |  | 
 | #include <linux/hugetlb.h> | 
 | #include "internal.h" | 
 |  | 
 | const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; | 
 | static gfp_t htlb_alloc_mask = GFP_HIGHUSER; | 
 | unsigned long hugepages_treat_as_movable; | 
 |  | 
 | static int max_hstate; | 
 | unsigned int default_hstate_idx; | 
 | struct hstate hstates[HUGE_MAX_HSTATE]; | 
 |  | 
 | __initdata LIST_HEAD(huge_boot_pages); | 
 |  | 
 | /* for command line parsing */ | 
 | static struct hstate * __initdata parsed_hstate; | 
 | static unsigned long __initdata default_hstate_max_huge_pages; | 
 | static unsigned long __initdata default_hstate_size; | 
 |  | 
 | #define for_each_hstate(h) \ | 
 | 	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) | 
 |  | 
 | /* | 
 |  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages | 
 |  */ | 
 | static DEFINE_SPINLOCK(hugetlb_lock); | 
 |  | 
 | /* | 
 |  * Region tracking -- allows tracking of reservations and instantiated pages | 
 |  *                    across the pages in a mapping. | 
 |  * | 
 |  * The region data structures are protected by a combination of the mmap_sem | 
 |  * and the hugetlb_instantion_mutex.  To access or modify a region the caller | 
 |  * must either hold the mmap_sem for write, or the mmap_sem for read and | 
 |  * the hugetlb_instantiation mutex: | 
 |  * | 
 |  * 	down_write(&mm->mmap_sem); | 
 |  * or | 
 |  * 	down_read(&mm->mmap_sem); | 
 |  * 	mutex_lock(&hugetlb_instantiation_mutex); | 
 |  */ | 
 | struct file_region { | 
 | 	struct list_head link; | 
 | 	long from; | 
 | 	long to; | 
 | }; | 
 |  | 
 | static long region_add(struct list_head *head, long f, long t) | 
 | { | 
 | 	struct file_region *rg, *nrg, *trg; | 
 |  | 
 | 	/* Locate the region we are either in or before. */ | 
 | 	list_for_each_entry(rg, head, link) | 
 | 		if (f <= rg->to) | 
 | 			break; | 
 |  | 
 | 	/* Round our left edge to the current segment if it encloses us. */ | 
 | 	if (f > rg->from) | 
 | 		f = rg->from; | 
 |  | 
 | 	/* Check for and consume any regions we now overlap with. */ | 
 | 	nrg = rg; | 
 | 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | 
 | 		if (&rg->link == head) | 
 | 			break; | 
 | 		if (rg->from > t) | 
 | 			break; | 
 |  | 
 | 		/* If this area reaches higher then extend our area to | 
 | 		 * include it completely.  If this is not the first area | 
 | 		 * which we intend to reuse, free it. */ | 
 | 		if (rg->to > t) | 
 | 			t = rg->to; | 
 | 		if (rg != nrg) { | 
 | 			list_del(&rg->link); | 
 | 			kfree(rg); | 
 | 		} | 
 | 	} | 
 | 	nrg->from = f; | 
 | 	nrg->to = t; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static long region_chg(struct list_head *head, long f, long t) | 
 | { | 
 | 	struct file_region *rg, *nrg; | 
 | 	long chg = 0; | 
 |  | 
 | 	/* Locate the region we are before or in. */ | 
 | 	list_for_each_entry(rg, head, link) | 
 | 		if (f <= rg->to) | 
 | 			break; | 
 |  | 
 | 	/* If we are below the current region then a new region is required. | 
 | 	 * Subtle, allocate a new region at the position but make it zero | 
 | 	 * size such that we can guarantee to record the reservation. */ | 
 | 	if (&rg->link == head || t < rg->from) { | 
 | 		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | 
 | 		if (!nrg) | 
 | 			return -ENOMEM; | 
 | 		nrg->from = f; | 
 | 		nrg->to   = f; | 
 | 		INIT_LIST_HEAD(&nrg->link); | 
 | 		list_add(&nrg->link, rg->link.prev); | 
 |  | 
 | 		return t - f; | 
 | 	} | 
 |  | 
 | 	/* Round our left edge to the current segment if it encloses us. */ | 
 | 	if (f > rg->from) | 
 | 		f = rg->from; | 
 | 	chg = t - f; | 
 |  | 
 | 	/* Check for and consume any regions we now overlap with. */ | 
 | 	list_for_each_entry(rg, rg->link.prev, link) { | 
 | 		if (&rg->link == head) | 
 | 			break; | 
 | 		if (rg->from > t) | 
 | 			return chg; | 
 |  | 
 | 		/* We overlap with this area, if it extends futher than | 
 | 		 * us then we must extend ourselves.  Account for its | 
 | 		 * existing reservation. */ | 
 | 		if (rg->to > t) { | 
 | 			chg += rg->to - t; | 
 | 			t = rg->to; | 
 | 		} | 
 | 		chg -= rg->to - rg->from; | 
 | 	} | 
 | 	return chg; | 
 | } | 
 |  | 
 | static long region_truncate(struct list_head *head, long end) | 
 | { | 
 | 	struct file_region *rg, *trg; | 
 | 	long chg = 0; | 
 |  | 
 | 	/* Locate the region we are either in or before. */ | 
 | 	list_for_each_entry(rg, head, link) | 
 | 		if (end <= rg->to) | 
 | 			break; | 
 | 	if (&rg->link == head) | 
 | 		return 0; | 
 |  | 
 | 	/* If we are in the middle of a region then adjust it. */ | 
 | 	if (end > rg->from) { | 
 | 		chg = rg->to - end; | 
 | 		rg->to = end; | 
 | 		rg = list_entry(rg->link.next, typeof(*rg), link); | 
 | 	} | 
 |  | 
 | 	/* Drop any remaining regions. */ | 
 | 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | 
 | 		if (&rg->link == head) | 
 | 			break; | 
 | 		chg += rg->to - rg->from; | 
 | 		list_del(&rg->link); | 
 | 		kfree(rg); | 
 | 	} | 
 | 	return chg; | 
 | } | 
 |  | 
 | static long region_count(struct list_head *head, long f, long t) | 
 | { | 
 | 	struct file_region *rg; | 
 | 	long chg = 0; | 
 |  | 
 | 	/* Locate each segment we overlap with, and count that overlap. */ | 
 | 	list_for_each_entry(rg, head, link) { | 
 | 		int seg_from; | 
 | 		int seg_to; | 
 |  | 
 | 		if (rg->to <= f) | 
 | 			continue; | 
 | 		if (rg->from >= t) | 
 | 			break; | 
 |  | 
 | 		seg_from = max(rg->from, f); | 
 | 		seg_to = min(rg->to, t); | 
 |  | 
 | 		chg += seg_to - seg_from; | 
 | 	} | 
 |  | 
 | 	return chg; | 
 | } | 
 |  | 
 | /* | 
 |  * Convert the address within this vma to the page offset within | 
 |  * the mapping, in pagecache page units; huge pages here. | 
 |  */ | 
 | static pgoff_t vma_hugecache_offset(struct hstate *h, | 
 | 			struct vm_area_struct *vma, unsigned long address) | 
 | { | 
 | 	return ((address - vma->vm_start) >> huge_page_shift(h)) + | 
 | 			(vma->vm_pgoff >> huge_page_order(h)); | 
 | } | 
 |  | 
 | /* | 
 |  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom | 
 |  * bits of the reservation map pointer, which are always clear due to | 
 |  * alignment. | 
 |  */ | 
 | #define HPAGE_RESV_OWNER    (1UL << 0) | 
 | #define HPAGE_RESV_UNMAPPED (1UL << 1) | 
 | #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) | 
 |  | 
 | /* | 
 |  * These helpers are used to track how many pages are reserved for | 
 |  * faults in a MAP_PRIVATE mapping. Only the process that called mmap() | 
 |  * is guaranteed to have their future faults succeed. | 
 |  * | 
 |  * With the exception of reset_vma_resv_huge_pages() which is called at fork(), | 
 |  * the reserve counters are updated with the hugetlb_lock held. It is safe | 
 |  * to reset the VMA at fork() time as it is not in use yet and there is no | 
 |  * chance of the global counters getting corrupted as a result of the values. | 
 |  * | 
 |  * The private mapping reservation is represented in a subtly different | 
 |  * manner to a shared mapping.  A shared mapping has a region map associated | 
 |  * with the underlying file, this region map represents the backing file | 
 |  * pages which have ever had a reservation assigned which this persists even | 
 |  * after the page is instantiated.  A private mapping has a region map | 
 |  * associated with the original mmap which is attached to all VMAs which | 
 |  * reference it, this region map represents those offsets which have consumed | 
 |  * reservation ie. where pages have been instantiated. | 
 |  */ | 
 | static unsigned long get_vma_private_data(struct vm_area_struct *vma) | 
 | { | 
 | 	return (unsigned long)vma->vm_private_data; | 
 | } | 
 |  | 
 | static void set_vma_private_data(struct vm_area_struct *vma, | 
 | 							unsigned long value) | 
 | { | 
 | 	vma->vm_private_data = (void *)value; | 
 | } | 
 |  | 
 | struct resv_map { | 
 | 	struct kref refs; | 
 | 	struct list_head regions; | 
 | }; | 
 |  | 
 | static struct resv_map *resv_map_alloc(void) | 
 | { | 
 | 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); | 
 | 	if (!resv_map) | 
 | 		return NULL; | 
 |  | 
 | 	kref_init(&resv_map->refs); | 
 | 	INIT_LIST_HEAD(&resv_map->regions); | 
 |  | 
 | 	return resv_map; | 
 | } | 
 |  | 
 | static void resv_map_release(struct kref *ref) | 
 | { | 
 | 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs); | 
 |  | 
 | 	/* Clear out any active regions before we release the map. */ | 
 | 	region_truncate(&resv_map->regions, 0); | 
 | 	kfree(resv_map); | 
 | } | 
 |  | 
 | static struct resv_map *vma_resv_map(struct vm_area_struct *vma) | 
 | { | 
 | 	VM_BUG_ON(!is_vm_hugetlb_page(vma)); | 
 | 	if (!(vma->vm_flags & VM_SHARED)) | 
 | 		return (struct resv_map *)(get_vma_private_data(vma) & | 
 | 							~HPAGE_RESV_MASK); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) | 
 | { | 
 | 	VM_BUG_ON(!is_vm_hugetlb_page(vma)); | 
 | 	VM_BUG_ON(vma->vm_flags & VM_SHARED); | 
 |  | 
 | 	set_vma_private_data(vma, (get_vma_private_data(vma) & | 
 | 				HPAGE_RESV_MASK) | (unsigned long)map); | 
 | } | 
 |  | 
 | static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) | 
 | { | 
 | 	VM_BUG_ON(!is_vm_hugetlb_page(vma)); | 
 | 	VM_BUG_ON(vma->vm_flags & VM_SHARED); | 
 |  | 
 | 	set_vma_private_data(vma, get_vma_private_data(vma) | flags); | 
 | } | 
 |  | 
 | static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) | 
 | { | 
 | 	VM_BUG_ON(!is_vm_hugetlb_page(vma)); | 
 |  | 
 | 	return (get_vma_private_data(vma) & flag) != 0; | 
 | } | 
 |  | 
 | /* Decrement the reserved pages in the hugepage pool by one */ | 
 | static void decrement_hugepage_resv_vma(struct hstate *h, | 
 | 			struct vm_area_struct *vma) | 
 | { | 
 | 	if (vma->vm_flags & VM_NORESERVE) | 
 | 		return; | 
 |  | 
 | 	if (vma->vm_flags & VM_SHARED) { | 
 | 		/* Shared mappings always use reserves */ | 
 | 		h->resv_huge_pages--; | 
 | 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | 
 | 		/* | 
 | 		 * Only the process that called mmap() has reserves for | 
 | 		 * private mappings. | 
 | 		 */ | 
 | 		h->resv_huge_pages--; | 
 | 	} | 
 | } | 
 |  | 
 | /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ | 
 | void reset_vma_resv_huge_pages(struct vm_area_struct *vma) | 
 | { | 
 | 	VM_BUG_ON(!is_vm_hugetlb_page(vma)); | 
 | 	if (!(vma->vm_flags & VM_SHARED)) | 
 | 		vma->vm_private_data = (void *)0; | 
 | } | 
 |  | 
 | /* Returns true if the VMA has associated reserve pages */ | 
 | static int vma_has_reserves(struct vm_area_struct *vma) | 
 | { | 
 | 	if (vma->vm_flags & VM_SHARED) | 
 | 		return 1; | 
 | 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void clear_gigantic_page(struct page *page, | 
 | 			unsigned long addr, unsigned long sz) | 
 | { | 
 | 	int i; | 
 | 	struct page *p = page; | 
 |  | 
 | 	might_sleep(); | 
 | 	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) { | 
 | 		cond_resched(); | 
 | 		clear_user_highpage(p, addr + i * PAGE_SIZE); | 
 | 	} | 
 | } | 
 | static void clear_huge_page(struct page *page, | 
 | 			unsigned long addr, unsigned long sz) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (unlikely(sz > MAX_ORDER_NR_PAGES)) | 
 | 		return clear_gigantic_page(page, addr, sz); | 
 |  | 
 | 	might_sleep(); | 
 | 	for (i = 0; i < sz/PAGE_SIZE; i++) { | 
 | 		cond_resched(); | 
 | 		clear_user_highpage(page + i, addr + i * PAGE_SIZE); | 
 | 	} | 
 | } | 
 |  | 
 | static void copy_gigantic_page(struct page *dst, struct page *src, | 
 | 			   unsigned long addr, struct vm_area_struct *vma) | 
 | { | 
 | 	int i; | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	struct page *dst_base = dst; | 
 | 	struct page *src_base = src; | 
 | 	might_sleep(); | 
 | 	for (i = 0; i < pages_per_huge_page(h); ) { | 
 | 		cond_resched(); | 
 | 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); | 
 |  | 
 | 		i++; | 
 | 		dst = mem_map_next(dst, dst_base, i); | 
 | 		src = mem_map_next(src, src_base, i); | 
 | 	} | 
 | } | 
 | static void copy_huge_page(struct page *dst, struct page *src, | 
 | 			   unsigned long addr, struct vm_area_struct *vma) | 
 | { | 
 | 	int i; | 
 | 	struct hstate *h = hstate_vma(vma); | 
 |  | 
 | 	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) | 
 | 		return copy_gigantic_page(dst, src, addr, vma); | 
 |  | 
 | 	might_sleep(); | 
 | 	for (i = 0; i < pages_per_huge_page(h); i++) { | 
 | 		cond_resched(); | 
 | 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); | 
 | 	} | 
 | } | 
 |  | 
 | static void enqueue_huge_page(struct hstate *h, struct page *page) | 
 | { | 
 | 	int nid = page_to_nid(page); | 
 | 	list_add(&page->lru, &h->hugepage_freelists[nid]); | 
 | 	h->free_huge_pages++; | 
 | 	h->free_huge_pages_node[nid]++; | 
 | } | 
 |  | 
 | static struct page *dequeue_huge_page(struct hstate *h) | 
 | { | 
 | 	int nid; | 
 | 	struct page *page = NULL; | 
 |  | 
 | 	for (nid = 0; nid < MAX_NUMNODES; ++nid) { | 
 | 		if (!list_empty(&h->hugepage_freelists[nid])) { | 
 | 			page = list_entry(h->hugepage_freelists[nid].next, | 
 | 					  struct page, lru); | 
 | 			list_del(&page->lru); | 
 | 			h->free_huge_pages--; | 
 | 			h->free_huge_pages_node[nid]--; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return page; | 
 | } | 
 |  | 
 | static struct page *dequeue_huge_page_vma(struct hstate *h, | 
 | 				struct vm_area_struct *vma, | 
 | 				unsigned long address, int avoid_reserve) | 
 | { | 
 | 	int nid; | 
 | 	struct page *page = NULL; | 
 | 	struct mempolicy *mpol; | 
 | 	nodemask_t *nodemask; | 
 | 	struct zonelist *zonelist = huge_zonelist(vma, address, | 
 | 					htlb_alloc_mask, &mpol, &nodemask); | 
 | 	struct zone *zone; | 
 | 	struct zoneref *z; | 
 |  | 
 | 	/* | 
 | 	 * A child process with MAP_PRIVATE mappings created by their parent | 
 | 	 * have no page reserves. This check ensures that reservations are | 
 | 	 * not "stolen". The child may still get SIGKILLed | 
 | 	 */ | 
 | 	if (!vma_has_reserves(vma) && | 
 | 			h->free_huge_pages - h->resv_huge_pages == 0) | 
 | 		return NULL; | 
 |  | 
 | 	/* If reserves cannot be used, ensure enough pages are in the pool */ | 
 | 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) | 
 | 		return NULL; | 
 |  | 
 | 	for_each_zone_zonelist_nodemask(zone, z, zonelist, | 
 | 						MAX_NR_ZONES - 1, nodemask) { | 
 | 		nid = zone_to_nid(zone); | 
 | 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && | 
 | 		    !list_empty(&h->hugepage_freelists[nid])) { | 
 | 			page = list_entry(h->hugepage_freelists[nid].next, | 
 | 					  struct page, lru); | 
 | 			list_del(&page->lru); | 
 | 			h->free_huge_pages--; | 
 | 			h->free_huge_pages_node[nid]--; | 
 |  | 
 | 			if (!avoid_reserve) | 
 | 				decrement_hugepage_resv_vma(h, vma); | 
 |  | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	mpol_cond_put(mpol); | 
 | 	return page; | 
 | } | 
 |  | 
 | static void update_and_free_page(struct hstate *h, struct page *page) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	VM_BUG_ON(h->order >= MAX_ORDER); | 
 |  | 
 | 	h->nr_huge_pages--; | 
 | 	h->nr_huge_pages_node[page_to_nid(page)]--; | 
 | 	for (i = 0; i < pages_per_huge_page(h); i++) { | 
 | 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | | 
 | 				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | | 
 | 				1 << PG_private | 1<< PG_writeback); | 
 | 	} | 
 | 	set_compound_page_dtor(page, NULL); | 
 | 	set_page_refcounted(page); | 
 | 	arch_release_hugepage(page); | 
 | 	__free_pages(page, huge_page_order(h)); | 
 | } | 
 |  | 
 | struct hstate *size_to_hstate(unsigned long size) | 
 | { | 
 | 	struct hstate *h; | 
 |  | 
 | 	for_each_hstate(h) { | 
 | 		if (huge_page_size(h) == size) | 
 | 			return h; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void free_huge_page(struct page *page) | 
 | { | 
 | 	/* | 
 | 	 * Can't pass hstate in here because it is called from the | 
 | 	 * compound page destructor. | 
 | 	 */ | 
 | 	struct hstate *h = page_hstate(page); | 
 | 	int nid = page_to_nid(page); | 
 | 	struct address_space *mapping; | 
 |  | 
 | 	mapping = (struct address_space *) page_private(page); | 
 | 	set_page_private(page, 0); | 
 | 	BUG_ON(page_count(page)); | 
 | 	INIT_LIST_HEAD(&page->lru); | 
 |  | 
 | 	spin_lock(&hugetlb_lock); | 
 | 	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { | 
 | 		update_and_free_page(h, page); | 
 | 		h->surplus_huge_pages--; | 
 | 		h->surplus_huge_pages_node[nid]--; | 
 | 	} else { | 
 | 		enqueue_huge_page(h, page); | 
 | 	} | 
 | 	spin_unlock(&hugetlb_lock); | 
 | 	if (mapping) | 
 | 		hugetlb_put_quota(mapping, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Increment or decrement surplus_huge_pages.  Keep node-specific counters | 
 |  * balanced by operating on them in a round-robin fashion. | 
 |  * Returns 1 if an adjustment was made. | 
 |  */ | 
 | static int adjust_pool_surplus(struct hstate *h, int delta) | 
 | { | 
 | 	static int prev_nid; | 
 | 	int nid = prev_nid; | 
 | 	int ret = 0; | 
 |  | 
 | 	VM_BUG_ON(delta != -1 && delta != 1); | 
 | 	do { | 
 | 		nid = next_node(nid, node_online_map); | 
 | 		if (nid == MAX_NUMNODES) | 
 | 			nid = first_node(node_online_map); | 
 |  | 
 | 		/* To shrink on this node, there must be a surplus page */ | 
 | 		if (delta < 0 && !h->surplus_huge_pages_node[nid]) | 
 | 			continue; | 
 | 		/* Surplus cannot exceed the total number of pages */ | 
 | 		if (delta > 0 && h->surplus_huge_pages_node[nid] >= | 
 | 						h->nr_huge_pages_node[nid]) | 
 | 			continue; | 
 |  | 
 | 		h->surplus_huge_pages += delta; | 
 | 		h->surplus_huge_pages_node[nid] += delta; | 
 | 		ret = 1; | 
 | 		break; | 
 | 	} while (nid != prev_nid); | 
 |  | 
 | 	prev_nid = nid; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) | 
 | { | 
 | 	set_compound_page_dtor(page, free_huge_page); | 
 | 	spin_lock(&hugetlb_lock); | 
 | 	h->nr_huge_pages++; | 
 | 	h->nr_huge_pages_node[nid]++; | 
 | 	spin_unlock(&hugetlb_lock); | 
 | 	put_page(page); /* free it into the hugepage allocator */ | 
 | } | 
 |  | 
 | static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	if (h->order >= MAX_ORDER) | 
 | 		return NULL; | 
 |  | 
 | 	page = alloc_pages_node(nid, | 
 | 		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| | 
 | 						__GFP_REPEAT|__GFP_NOWARN, | 
 | 		huge_page_order(h)); | 
 | 	if (page) { | 
 | 		if (arch_prepare_hugepage(page)) { | 
 | 			__free_pages(page, huge_page_order(h)); | 
 | 			return NULL; | 
 | 		} | 
 | 		prep_new_huge_page(h, page, nid); | 
 | 	} | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Use a helper variable to find the next node and then | 
 |  * copy it back to hugetlb_next_nid afterwards: | 
 |  * otherwise there's a window in which a racer might | 
 |  * pass invalid nid MAX_NUMNODES to alloc_pages_node. | 
 |  * But we don't need to use a spin_lock here: it really | 
 |  * doesn't matter if occasionally a racer chooses the | 
 |  * same nid as we do.  Move nid forward in the mask even | 
 |  * if we just successfully allocated a hugepage so that | 
 |  * the next caller gets hugepages on the next node. | 
 |  */ | 
 | static int hstate_next_node(struct hstate *h) | 
 | { | 
 | 	int next_nid; | 
 | 	next_nid = next_node(h->hugetlb_next_nid, node_online_map); | 
 | 	if (next_nid == MAX_NUMNODES) | 
 | 		next_nid = first_node(node_online_map); | 
 | 	h->hugetlb_next_nid = next_nid; | 
 | 	return next_nid; | 
 | } | 
 |  | 
 | static int alloc_fresh_huge_page(struct hstate *h) | 
 | { | 
 | 	struct page *page; | 
 | 	int start_nid; | 
 | 	int next_nid; | 
 | 	int ret = 0; | 
 |  | 
 | 	start_nid = h->hugetlb_next_nid; | 
 |  | 
 | 	do { | 
 | 		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid); | 
 | 		if (page) | 
 | 			ret = 1; | 
 | 		next_nid = hstate_next_node(h); | 
 | 	} while (!page && h->hugetlb_next_nid != start_nid); | 
 |  | 
 | 	if (ret) | 
 | 		count_vm_event(HTLB_BUDDY_PGALLOC); | 
 | 	else | 
 | 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct page *alloc_buddy_huge_page(struct hstate *h, | 
 | 			struct vm_area_struct *vma, unsigned long address) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned int nid; | 
 |  | 
 | 	if (h->order >= MAX_ORDER) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * Assume we will successfully allocate the surplus page to | 
 | 	 * prevent racing processes from causing the surplus to exceed | 
 | 	 * overcommit | 
 | 	 * | 
 | 	 * This however introduces a different race, where a process B | 
 | 	 * tries to grow the static hugepage pool while alloc_pages() is | 
 | 	 * called by process A. B will only examine the per-node | 
 | 	 * counters in determining if surplus huge pages can be | 
 | 	 * converted to normal huge pages in adjust_pool_surplus(). A | 
 | 	 * won't be able to increment the per-node counter, until the | 
 | 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until | 
 | 	 * no more huge pages can be converted from surplus to normal | 
 | 	 * state (and doesn't try to convert again). Thus, we have a | 
 | 	 * case where a surplus huge page exists, the pool is grown, and | 
 | 	 * the surplus huge page still exists after, even though it | 
 | 	 * should just have been converted to a normal huge page. This | 
 | 	 * does not leak memory, though, as the hugepage will be freed | 
 | 	 * once it is out of use. It also does not allow the counters to | 
 | 	 * go out of whack in adjust_pool_surplus() as we don't modify | 
 | 	 * the node values until we've gotten the hugepage and only the | 
 | 	 * per-node value is checked there. | 
 | 	 */ | 
 | 	spin_lock(&hugetlb_lock); | 
 | 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { | 
 | 		spin_unlock(&hugetlb_lock); | 
 | 		return NULL; | 
 | 	} else { | 
 | 		h->nr_huge_pages++; | 
 | 		h->surplus_huge_pages++; | 
 | 	} | 
 | 	spin_unlock(&hugetlb_lock); | 
 |  | 
 | 	page = alloc_pages(htlb_alloc_mask|__GFP_COMP| | 
 | 					__GFP_REPEAT|__GFP_NOWARN, | 
 | 					huge_page_order(h)); | 
 |  | 
 | 	if (page && arch_prepare_hugepage(page)) { | 
 | 		__free_pages(page, huge_page_order(h)); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	spin_lock(&hugetlb_lock); | 
 | 	if (page) { | 
 | 		/* | 
 | 		 * This page is now managed by the hugetlb allocator and has | 
 | 		 * no users -- drop the buddy allocator's reference. | 
 | 		 */ | 
 | 		put_page_testzero(page); | 
 | 		VM_BUG_ON(page_count(page)); | 
 | 		nid = page_to_nid(page); | 
 | 		set_compound_page_dtor(page, free_huge_page); | 
 | 		/* | 
 | 		 * We incremented the global counters already | 
 | 		 */ | 
 | 		h->nr_huge_pages_node[nid]++; | 
 | 		h->surplus_huge_pages_node[nid]++; | 
 | 		__count_vm_event(HTLB_BUDDY_PGALLOC); | 
 | 	} else { | 
 | 		h->nr_huge_pages--; | 
 | 		h->surplus_huge_pages--; | 
 | 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | 
 | 	} | 
 | 	spin_unlock(&hugetlb_lock); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Increase the hugetlb pool such that it can accomodate a reservation | 
 |  * of size 'delta'. | 
 |  */ | 
 | static int gather_surplus_pages(struct hstate *h, int delta) | 
 | { | 
 | 	struct list_head surplus_list; | 
 | 	struct page *page, *tmp; | 
 | 	int ret, i; | 
 | 	int needed, allocated; | 
 |  | 
 | 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages; | 
 | 	if (needed <= 0) { | 
 | 		h->resv_huge_pages += delta; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	allocated = 0; | 
 | 	INIT_LIST_HEAD(&surplus_list); | 
 |  | 
 | 	ret = -ENOMEM; | 
 | retry: | 
 | 	spin_unlock(&hugetlb_lock); | 
 | 	for (i = 0; i < needed; i++) { | 
 | 		page = alloc_buddy_huge_page(h, NULL, 0); | 
 | 		if (!page) { | 
 | 			/* | 
 | 			 * We were not able to allocate enough pages to | 
 | 			 * satisfy the entire reservation so we free what | 
 | 			 * we've allocated so far. | 
 | 			 */ | 
 | 			spin_lock(&hugetlb_lock); | 
 | 			needed = 0; | 
 | 			goto free; | 
 | 		} | 
 |  | 
 | 		list_add(&page->lru, &surplus_list); | 
 | 	} | 
 | 	allocated += needed; | 
 |  | 
 | 	/* | 
 | 	 * After retaking hugetlb_lock, we need to recalculate 'needed' | 
 | 	 * because either resv_huge_pages or free_huge_pages may have changed. | 
 | 	 */ | 
 | 	spin_lock(&hugetlb_lock); | 
 | 	needed = (h->resv_huge_pages + delta) - | 
 | 			(h->free_huge_pages + allocated); | 
 | 	if (needed > 0) | 
 | 		goto retry; | 
 |  | 
 | 	/* | 
 | 	 * The surplus_list now contains _at_least_ the number of extra pages | 
 | 	 * needed to accomodate the reservation.  Add the appropriate number | 
 | 	 * of pages to the hugetlb pool and free the extras back to the buddy | 
 | 	 * allocator.  Commit the entire reservation here to prevent another | 
 | 	 * process from stealing the pages as they are added to the pool but | 
 | 	 * before they are reserved. | 
 | 	 */ | 
 | 	needed += allocated; | 
 | 	h->resv_huge_pages += delta; | 
 | 	ret = 0; | 
 | free: | 
 | 	/* Free the needed pages to the hugetlb pool */ | 
 | 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) { | 
 | 		if ((--needed) < 0) | 
 | 			break; | 
 | 		list_del(&page->lru); | 
 | 		enqueue_huge_page(h, page); | 
 | 	} | 
 |  | 
 | 	/* Free unnecessary surplus pages to the buddy allocator */ | 
 | 	if (!list_empty(&surplus_list)) { | 
 | 		spin_unlock(&hugetlb_lock); | 
 | 		list_for_each_entry_safe(page, tmp, &surplus_list, lru) { | 
 | 			list_del(&page->lru); | 
 | 			/* | 
 | 			 * The page has a reference count of zero already, so | 
 | 			 * call free_huge_page directly instead of using | 
 | 			 * put_page.  This must be done with hugetlb_lock | 
 | 			 * unlocked which is safe because free_huge_page takes | 
 | 			 * hugetlb_lock before deciding how to free the page. | 
 | 			 */ | 
 | 			free_huge_page(page); | 
 | 		} | 
 | 		spin_lock(&hugetlb_lock); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * When releasing a hugetlb pool reservation, any surplus pages that were | 
 |  * allocated to satisfy the reservation must be explicitly freed if they were | 
 |  * never used. | 
 |  */ | 
 | static void return_unused_surplus_pages(struct hstate *h, | 
 | 					unsigned long unused_resv_pages) | 
 | { | 
 | 	static int nid = -1; | 
 | 	struct page *page; | 
 | 	unsigned long nr_pages; | 
 |  | 
 | 	/* | 
 | 	 * We want to release as many surplus pages as possible, spread | 
 | 	 * evenly across all nodes. Iterate across all nodes until we | 
 | 	 * can no longer free unreserved surplus pages. This occurs when | 
 | 	 * the nodes with surplus pages have no free pages. | 
 | 	 */ | 
 | 	unsigned long remaining_iterations = num_online_nodes(); | 
 |  | 
 | 	/* Uncommit the reservation */ | 
 | 	h->resv_huge_pages -= unused_resv_pages; | 
 |  | 
 | 	/* Cannot return gigantic pages currently */ | 
 | 	if (h->order >= MAX_ORDER) | 
 | 		return; | 
 |  | 
 | 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages); | 
 |  | 
 | 	while (remaining_iterations-- && nr_pages) { | 
 | 		nid = next_node(nid, node_online_map); | 
 | 		if (nid == MAX_NUMNODES) | 
 | 			nid = first_node(node_online_map); | 
 |  | 
 | 		if (!h->surplus_huge_pages_node[nid]) | 
 | 			continue; | 
 |  | 
 | 		if (!list_empty(&h->hugepage_freelists[nid])) { | 
 | 			page = list_entry(h->hugepage_freelists[nid].next, | 
 | 					  struct page, lru); | 
 | 			list_del(&page->lru); | 
 | 			update_and_free_page(h, page); | 
 | 			h->free_huge_pages--; | 
 | 			h->free_huge_pages_node[nid]--; | 
 | 			h->surplus_huge_pages--; | 
 | 			h->surplus_huge_pages_node[nid]--; | 
 | 			nr_pages--; | 
 | 			remaining_iterations = num_online_nodes(); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Determine if the huge page at addr within the vma has an associated | 
 |  * reservation.  Where it does not we will need to logically increase | 
 |  * reservation and actually increase quota before an allocation can occur. | 
 |  * Where any new reservation would be required the reservation change is | 
 |  * prepared, but not committed.  Once the page has been quota'd allocated | 
 |  * an instantiated the change should be committed via vma_commit_reservation. | 
 |  * No action is required on failure. | 
 |  */ | 
 | static int vma_needs_reservation(struct hstate *h, | 
 | 			struct vm_area_struct *vma, unsigned long addr) | 
 | { | 
 | 	struct address_space *mapping = vma->vm_file->f_mapping; | 
 | 	struct inode *inode = mapping->host; | 
 |  | 
 | 	if (vma->vm_flags & VM_SHARED) { | 
 | 		pgoff_t idx = vma_hugecache_offset(h, vma, addr); | 
 | 		return region_chg(&inode->i_mapping->private_list, | 
 | 							idx, idx + 1); | 
 |  | 
 | 	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | 
 | 		return 1; | 
 |  | 
 | 	} else  { | 
 | 		int err; | 
 | 		pgoff_t idx = vma_hugecache_offset(h, vma, addr); | 
 | 		struct resv_map *reservations = vma_resv_map(vma); | 
 |  | 
 | 		err = region_chg(&reservations->regions, idx, idx + 1); | 
 | 		if (err < 0) | 
 | 			return err; | 
 | 		return 0; | 
 | 	} | 
 | } | 
 | static void vma_commit_reservation(struct hstate *h, | 
 | 			struct vm_area_struct *vma, unsigned long addr) | 
 | { | 
 | 	struct address_space *mapping = vma->vm_file->f_mapping; | 
 | 	struct inode *inode = mapping->host; | 
 |  | 
 | 	if (vma->vm_flags & VM_SHARED) { | 
 | 		pgoff_t idx = vma_hugecache_offset(h, vma, addr); | 
 | 		region_add(&inode->i_mapping->private_list, idx, idx + 1); | 
 |  | 
 | 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | 
 | 		pgoff_t idx = vma_hugecache_offset(h, vma, addr); | 
 | 		struct resv_map *reservations = vma_resv_map(vma); | 
 |  | 
 | 		/* Mark this page used in the map. */ | 
 | 		region_add(&reservations->regions, idx, idx + 1); | 
 | 	} | 
 | } | 
 |  | 
 | static struct page *alloc_huge_page(struct vm_area_struct *vma, | 
 | 				    unsigned long addr, int avoid_reserve) | 
 | { | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	struct page *page; | 
 | 	struct address_space *mapping = vma->vm_file->f_mapping; | 
 | 	struct inode *inode = mapping->host; | 
 | 	unsigned int chg; | 
 |  | 
 | 	/* | 
 | 	 * Processes that did not create the mapping will have no reserves and | 
 | 	 * will not have accounted against quota. Check that the quota can be | 
 | 	 * made before satisfying the allocation | 
 | 	 * MAP_NORESERVE mappings may also need pages and quota allocated | 
 | 	 * if no reserve mapping overlaps. | 
 | 	 */ | 
 | 	chg = vma_needs_reservation(h, vma, addr); | 
 | 	if (chg < 0) | 
 | 		return ERR_PTR(chg); | 
 | 	if (chg) | 
 | 		if (hugetlb_get_quota(inode->i_mapping, chg)) | 
 | 			return ERR_PTR(-ENOSPC); | 
 |  | 
 | 	spin_lock(&hugetlb_lock); | 
 | 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); | 
 | 	spin_unlock(&hugetlb_lock); | 
 |  | 
 | 	if (!page) { | 
 | 		page = alloc_buddy_huge_page(h, vma, addr); | 
 | 		if (!page) { | 
 | 			hugetlb_put_quota(inode->i_mapping, chg); | 
 | 			return ERR_PTR(-VM_FAULT_OOM); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	set_page_refcounted(page); | 
 | 	set_page_private(page, (unsigned long) mapping); | 
 |  | 
 | 	vma_commit_reservation(h, vma, addr); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | __attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h) | 
 | { | 
 | 	struct huge_bootmem_page *m; | 
 | 	int nr_nodes = nodes_weight(node_online_map); | 
 |  | 
 | 	while (nr_nodes) { | 
 | 		void *addr; | 
 |  | 
 | 		addr = __alloc_bootmem_node_nopanic( | 
 | 				NODE_DATA(h->hugetlb_next_nid), | 
 | 				huge_page_size(h), huge_page_size(h), 0); | 
 |  | 
 | 		if (addr) { | 
 | 			/* | 
 | 			 * Use the beginning of the huge page to store the | 
 | 			 * huge_bootmem_page struct (until gather_bootmem | 
 | 			 * puts them into the mem_map). | 
 | 			 */ | 
 | 			m = addr; | 
 | 			if (m) | 
 | 				goto found; | 
 | 		} | 
 | 		hstate_next_node(h); | 
 | 		nr_nodes--; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | found: | 
 | 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); | 
 | 	/* Put them into a private list first because mem_map is not up yet */ | 
 | 	list_add(&m->list, &huge_boot_pages); | 
 | 	m->hstate = h; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void prep_compound_huge_page(struct page *page, int order) | 
 | { | 
 | 	if (unlikely(order > (MAX_ORDER - 1))) | 
 | 		prep_compound_gigantic_page(page, order); | 
 | 	else | 
 | 		prep_compound_page(page, order); | 
 | } | 
 |  | 
 | /* Put bootmem huge pages into the standard lists after mem_map is up */ | 
 | static void __init gather_bootmem_prealloc(void) | 
 | { | 
 | 	struct huge_bootmem_page *m; | 
 |  | 
 | 	list_for_each_entry(m, &huge_boot_pages, list) { | 
 | 		struct page *page = virt_to_page(m); | 
 | 		struct hstate *h = m->hstate; | 
 | 		__ClearPageReserved(page); | 
 | 		WARN_ON(page_count(page) != 1); | 
 | 		prep_compound_huge_page(page, h->order); | 
 | 		prep_new_huge_page(h, page, page_to_nid(page)); | 
 | 	} | 
 | } | 
 |  | 
 | static void __init hugetlb_hstate_alloc_pages(struct hstate *h) | 
 | { | 
 | 	unsigned long i; | 
 |  | 
 | 	for (i = 0; i < h->max_huge_pages; ++i) { | 
 | 		if (h->order >= MAX_ORDER) { | 
 | 			if (!alloc_bootmem_huge_page(h)) | 
 | 				break; | 
 | 		} else if (!alloc_fresh_huge_page(h)) | 
 | 			break; | 
 | 	} | 
 | 	h->max_huge_pages = i; | 
 | } | 
 |  | 
 | static void __init hugetlb_init_hstates(void) | 
 | { | 
 | 	struct hstate *h; | 
 |  | 
 | 	for_each_hstate(h) { | 
 | 		/* oversize hugepages were init'ed in early boot */ | 
 | 		if (h->order < MAX_ORDER) | 
 | 			hugetlb_hstate_alloc_pages(h); | 
 | 	} | 
 | } | 
 |  | 
 | static char * __init memfmt(char *buf, unsigned long n) | 
 | { | 
 | 	if (n >= (1UL << 30)) | 
 | 		sprintf(buf, "%lu GB", n >> 30); | 
 | 	else if (n >= (1UL << 20)) | 
 | 		sprintf(buf, "%lu MB", n >> 20); | 
 | 	else | 
 | 		sprintf(buf, "%lu KB", n >> 10); | 
 | 	return buf; | 
 | } | 
 |  | 
 | static void __init report_hugepages(void) | 
 | { | 
 | 	struct hstate *h; | 
 |  | 
 | 	for_each_hstate(h) { | 
 | 		char buf[32]; | 
 | 		printk(KERN_INFO "HugeTLB registered %s page size, " | 
 | 				 "pre-allocated %ld pages\n", | 
 | 			memfmt(buf, huge_page_size(h)), | 
 | 			h->free_huge_pages); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_HIGHMEM | 
 | static void try_to_free_low(struct hstate *h, unsigned long count) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (h->order >= MAX_ORDER) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < MAX_NUMNODES; ++i) { | 
 | 		struct page *page, *next; | 
 | 		struct list_head *freel = &h->hugepage_freelists[i]; | 
 | 		list_for_each_entry_safe(page, next, freel, lru) { | 
 | 			if (count >= h->nr_huge_pages) | 
 | 				return; | 
 | 			if (PageHighMem(page)) | 
 | 				continue; | 
 | 			list_del(&page->lru); | 
 | 			update_and_free_page(h, page); | 
 | 			h->free_huge_pages--; | 
 | 			h->free_huge_pages_node[page_to_nid(page)]--; | 
 | 		} | 
 | 	} | 
 | } | 
 | #else | 
 | static inline void try_to_free_low(struct hstate *h, unsigned long count) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) | 
 | static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count) | 
 | { | 
 | 	unsigned long min_count, ret; | 
 |  | 
 | 	if (h->order >= MAX_ORDER) | 
 | 		return h->max_huge_pages; | 
 |  | 
 | 	/* | 
 | 	 * Increase the pool size | 
 | 	 * First take pages out of surplus state.  Then make up the | 
 | 	 * remaining difference by allocating fresh huge pages. | 
 | 	 * | 
 | 	 * We might race with alloc_buddy_huge_page() here and be unable | 
 | 	 * to convert a surplus huge page to a normal huge page. That is | 
 | 	 * not critical, though, it just means the overall size of the | 
 | 	 * pool might be one hugepage larger than it needs to be, but | 
 | 	 * within all the constraints specified by the sysctls. | 
 | 	 */ | 
 | 	spin_lock(&hugetlb_lock); | 
 | 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { | 
 | 		if (!adjust_pool_surplus(h, -1)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	while (count > persistent_huge_pages(h)) { | 
 | 		/* | 
 | 		 * If this allocation races such that we no longer need the | 
 | 		 * page, free_huge_page will handle it by freeing the page | 
 | 		 * and reducing the surplus. | 
 | 		 */ | 
 | 		spin_unlock(&hugetlb_lock); | 
 | 		ret = alloc_fresh_huge_page(h); | 
 | 		spin_lock(&hugetlb_lock); | 
 | 		if (!ret) | 
 | 			goto out; | 
 |  | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Decrease the pool size | 
 | 	 * First return free pages to the buddy allocator (being careful | 
 | 	 * to keep enough around to satisfy reservations).  Then place | 
 | 	 * pages into surplus state as needed so the pool will shrink | 
 | 	 * to the desired size as pages become free. | 
 | 	 * | 
 | 	 * By placing pages into the surplus state independent of the | 
 | 	 * overcommit value, we are allowing the surplus pool size to | 
 | 	 * exceed overcommit. There are few sane options here. Since | 
 | 	 * alloc_buddy_huge_page() is checking the global counter, | 
 | 	 * though, we'll note that we're not allowed to exceed surplus | 
 | 	 * and won't grow the pool anywhere else. Not until one of the | 
 | 	 * sysctls are changed, or the surplus pages go out of use. | 
 | 	 */ | 
 | 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; | 
 | 	min_count = max(count, min_count); | 
 | 	try_to_free_low(h, min_count); | 
 | 	while (min_count < persistent_huge_pages(h)) { | 
 | 		struct page *page = dequeue_huge_page(h); | 
 | 		if (!page) | 
 | 			break; | 
 | 		update_and_free_page(h, page); | 
 | 	} | 
 | 	while (count < persistent_huge_pages(h)) { | 
 | 		if (!adjust_pool_surplus(h, 1)) | 
 | 			break; | 
 | 	} | 
 | out: | 
 | 	ret = persistent_huge_pages(h); | 
 | 	spin_unlock(&hugetlb_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #define HSTATE_ATTR_RO(_name) \ | 
 | 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | 
 |  | 
 | #define HSTATE_ATTR(_name) \ | 
 | 	static struct kobj_attribute _name##_attr = \ | 
 | 		__ATTR(_name, 0644, _name##_show, _name##_store) | 
 |  | 
 | static struct kobject *hugepages_kobj; | 
 | static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | 
 |  | 
 | static struct hstate *kobj_to_hstate(struct kobject *kobj) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; i < HUGE_MAX_HSTATE; i++) | 
 | 		if (hstate_kobjs[i] == kobj) | 
 | 			return &hstates[i]; | 
 | 	BUG(); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static ssize_t nr_hugepages_show(struct kobject *kobj, | 
 | 					struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	struct hstate *h = kobj_to_hstate(kobj); | 
 | 	return sprintf(buf, "%lu\n", h->nr_huge_pages); | 
 | } | 
 | static ssize_t nr_hugepages_store(struct kobject *kobj, | 
 | 		struct kobj_attribute *attr, const char *buf, size_t count) | 
 | { | 
 | 	int err; | 
 | 	unsigned long input; | 
 | 	struct hstate *h = kobj_to_hstate(kobj); | 
 |  | 
 | 	err = strict_strtoul(buf, 10, &input); | 
 | 	if (err) | 
 | 		return 0; | 
 |  | 
 | 	h->max_huge_pages = set_max_huge_pages(h, input); | 
 |  | 
 | 	return count; | 
 | } | 
 | HSTATE_ATTR(nr_hugepages); | 
 |  | 
 | static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, | 
 | 					struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	struct hstate *h = kobj_to_hstate(kobj); | 
 | 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); | 
 | } | 
 | static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, | 
 | 		struct kobj_attribute *attr, const char *buf, size_t count) | 
 | { | 
 | 	int err; | 
 | 	unsigned long input; | 
 | 	struct hstate *h = kobj_to_hstate(kobj); | 
 |  | 
 | 	err = strict_strtoul(buf, 10, &input); | 
 | 	if (err) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock(&hugetlb_lock); | 
 | 	h->nr_overcommit_huge_pages = input; | 
 | 	spin_unlock(&hugetlb_lock); | 
 |  | 
 | 	return count; | 
 | } | 
 | HSTATE_ATTR(nr_overcommit_hugepages); | 
 |  | 
 | static ssize_t free_hugepages_show(struct kobject *kobj, | 
 | 					struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	struct hstate *h = kobj_to_hstate(kobj); | 
 | 	return sprintf(buf, "%lu\n", h->free_huge_pages); | 
 | } | 
 | HSTATE_ATTR_RO(free_hugepages); | 
 |  | 
 | static ssize_t resv_hugepages_show(struct kobject *kobj, | 
 | 					struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	struct hstate *h = kobj_to_hstate(kobj); | 
 | 	return sprintf(buf, "%lu\n", h->resv_huge_pages); | 
 | } | 
 | HSTATE_ATTR_RO(resv_hugepages); | 
 |  | 
 | static ssize_t surplus_hugepages_show(struct kobject *kobj, | 
 | 					struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	struct hstate *h = kobj_to_hstate(kobj); | 
 | 	return sprintf(buf, "%lu\n", h->surplus_huge_pages); | 
 | } | 
 | HSTATE_ATTR_RO(surplus_hugepages); | 
 |  | 
 | static struct attribute *hstate_attrs[] = { | 
 | 	&nr_hugepages_attr.attr, | 
 | 	&nr_overcommit_hugepages_attr.attr, | 
 | 	&free_hugepages_attr.attr, | 
 | 	&resv_hugepages_attr.attr, | 
 | 	&surplus_hugepages_attr.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static struct attribute_group hstate_attr_group = { | 
 | 	.attrs = hstate_attrs, | 
 | }; | 
 |  | 
 | static int __init hugetlb_sysfs_add_hstate(struct hstate *h) | 
 | { | 
 | 	int retval; | 
 |  | 
 | 	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name, | 
 | 							hugepages_kobj); | 
 | 	if (!hstate_kobjs[h - hstates]) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	retval = sysfs_create_group(hstate_kobjs[h - hstates], | 
 | 							&hstate_attr_group); | 
 | 	if (retval) | 
 | 		kobject_put(hstate_kobjs[h - hstates]); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | static void __init hugetlb_sysfs_init(void) | 
 | { | 
 | 	struct hstate *h; | 
 | 	int err; | 
 |  | 
 | 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); | 
 | 	if (!hugepages_kobj) | 
 | 		return; | 
 |  | 
 | 	for_each_hstate(h) { | 
 | 		err = hugetlb_sysfs_add_hstate(h); | 
 | 		if (err) | 
 | 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s", | 
 | 								h->name); | 
 | 	} | 
 | } | 
 |  | 
 | static void __exit hugetlb_exit(void) | 
 | { | 
 | 	struct hstate *h; | 
 |  | 
 | 	for_each_hstate(h) { | 
 | 		kobject_put(hstate_kobjs[h - hstates]); | 
 | 	} | 
 |  | 
 | 	kobject_put(hugepages_kobj); | 
 | } | 
 | module_exit(hugetlb_exit); | 
 |  | 
 | static int __init hugetlb_init(void) | 
 | { | 
 | 	/* Some platform decide whether they support huge pages at boot | 
 | 	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when | 
 | 	 * there is no such support | 
 | 	 */ | 
 | 	if (HPAGE_SHIFT == 0) | 
 | 		return 0; | 
 |  | 
 | 	if (!size_to_hstate(default_hstate_size)) { | 
 | 		default_hstate_size = HPAGE_SIZE; | 
 | 		if (!size_to_hstate(default_hstate_size)) | 
 | 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER); | 
 | 	} | 
 | 	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; | 
 | 	if (default_hstate_max_huge_pages) | 
 | 		default_hstate.max_huge_pages = default_hstate_max_huge_pages; | 
 |  | 
 | 	hugetlb_init_hstates(); | 
 |  | 
 | 	gather_bootmem_prealloc(); | 
 |  | 
 | 	report_hugepages(); | 
 |  | 
 | 	hugetlb_sysfs_init(); | 
 |  | 
 | 	return 0; | 
 | } | 
 | module_init(hugetlb_init); | 
 |  | 
 | /* Should be called on processing a hugepagesz=... option */ | 
 | void __init hugetlb_add_hstate(unsigned order) | 
 | { | 
 | 	struct hstate *h; | 
 | 	unsigned long i; | 
 |  | 
 | 	if (size_to_hstate(PAGE_SIZE << order)) { | 
 | 		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); | 
 | 		return; | 
 | 	} | 
 | 	BUG_ON(max_hstate >= HUGE_MAX_HSTATE); | 
 | 	BUG_ON(order == 0); | 
 | 	h = &hstates[max_hstate++]; | 
 | 	h->order = order; | 
 | 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); | 
 | 	h->nr_huge_pages = 0; | 
 | 	h->free_huge_pages = 0; | 
 | 	for (i = 0; i < MAX_NUMNODES; ++i) | 
 | 		INIT_LIST_HEAD(&h->hugepage_freelists[i]); | 
 | 	h->hugetlb_next_nid = first_node(node_online_map); | 
 | 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", | 
 | 					huge_page_size(h)/1024); | 
 |  | 
 | 	parsed_hstate = h; | 
 | } | 
 |  | 
 | static int __init hugetlb_nrpages_setup(char *s) | 
 | { | 
 | 	unsigned long *mhp; | 
 | 	static unsigned long *last_mhp; | 
 |  | 
 | 	/* | 
 | 	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet, | 
 | 	 * so this hugepages= parameter goes to the "default hstate". | 
 | 	 */ | 
 | 	if (!max_hstate) | 
 | 		mhp = &default_hstate_max_huge_pages; | 
 | 	else | 
 | 		mhp = &parsed_hstate->max_huge_pages; | 
 |  | 
 | 	if (mhp == last_mhp) { | 
 | 		printk(KERN_WARNING "hugepages= specified twice without " | 
 | 			"interleaving hugepagesz=, ignoring\n"); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (sscanf(s, "%lu", mhp) <= 0) | 
 | 		*mhp = 0; | 
 |  | 
 | 	/* | 
 | 	 * Global state is always initialized later in hugetlb_init. | 
 | 	 * But we need to allocate >= MAX_ORDER hstates here early to still | 
 | 	 * use the bootmem allocator. | 
 | 	 */ | 
 | 	if (max_hstate && parsed_hstate->order >= MAX_ORDER) | 
 | 		hugetlb_hstate_alloc_pages(parsed_hstate); | 
 |  | 
 | 	last_mhp = mhp; | 
 |  | 
 | 	return 1; | 
 | } | 
 | __setup("hugepages=", hugetlb_nrpages_setup); | 
 |  | 
 | static int __init hugetlb_default_setup(char *s) | 
 | { | 
 | 	default_hstate_size = memparse(s, &s); | 
 | 	return 1; | 
 | } | 
 | __setup("default_hugepagesz=", hugetlb_default_setup); | 
 |  | 
 | static unsigned int cpuset_mems_nr(unsigned int *array) | 
 | { | 
 | 	int node; | 
 | 	unsigned int nr = 0; | 
 |  | 
 | 	for_each_node_mask(node, cpuset_current_mems_allowed) | 
 | 		nr += array[node]; | 
 |  | 
 | 	return nr; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SYSCTL | 
 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, | 
 | 			   struct file *file, void __user *buffer, | 
 | 			   size_t *length, loff_t *ppos) | 
 | { | 
 | 	struct hstate *h = &default_hstate; | 
 | 	unsigned long tmp; | 
 |  | 
 | 	if (!write) | 
 | 		tmp = h->max_huge_pages; | 
 |  | 
 | 	table->data = &tmp; | 
 | 	table->maxlen = sizeof(unsigned long); | 
 | 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos); | 
 |  | 
 | 	if (write) | 
 | 		h->max_huge_pages = set_max_huge_pages(h, tmp); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int hugetlb_treat_movable_handler(struct ctl_table *table, int write, | 
 | 			struct file *file, void __user *buffer, | 
 | 			size_t *length, loff_t *ppos) | 
 | { | 
 | 	proc_dointvec(table, write, file, buffer, length, ppos); | 
 | 	if (hugepages_treat_as_movable) | 
 | 		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; | 
 | 	else | 
 | 		htlb_alloc_mask = GFP_HIGHUSER; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int hugetlb_overcommit_handler(struct ctl_table *table, int write, | 
 | 			struct file *file, void __user *buffer, | 
 | 			size_t *length, loff_t *ppos) | 
 | { | 
 | 	struct hstate *h = &default_hstate; | 
 | 	unsigned long tmp; | 
 |  | 
 | 	if (!write) | 
 | 		tmp = h->nr_overcommit_huge_pages; | 
 |  | 
 | 	table->data = &tmp; | 
 | 	table->maxlen = sizeof(unsigned long); | 
 | 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos); | 
 |  | 
 | 	if (write) { | 
 | 		spin_lock(&hugetlb_lock); | 
 | 		h->nr_overcommit_huge_pages = tmp; | 
 | 		spin_unlock(&hugetlb_lock); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif /* CONFIG_SYSCTL */ | 
 |  | 
 | void hugetlb_report_meminfo(struct seq_file *m) | 
 | { | 
 | 	struct hstate *h = &default_hstate; | 
 | 	seq_printf(m, | 
 | 			"HugePages_Total:   %5lu\n" | 
 | 			"HugePages_Free:    %5lu\n" | 
 | 			"HugePages_Rsvd:    %5lu\n" | 
 | 			"HugePages_Surp:    %5lu\n" | 
 | 			"Hugepagesize:   %8lu kB\n", | 
 | 			h->nr_huge_pages, | 
 | 			h->free_huge_pages, | 
 | 			h->resv_huge_pages, | 
 | 			h->surplus_huge_pages, | 
 | 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); | 
 | } | 
 |  | 
 | int hugetlb_report_node_meminfo(int nid, char *buf) | 
 | { | 
 | 	struct hstate *h = &default_hstate; | 
 | 	return sprintf(buf, | 
 | 		"Node %d HugePages_Total: %5u\n" | 
 | 		"Node %d HugePages_Free:  %5u\n" | 
 | 		"Node %d HugePages_Surp:  %5u\n", | 
 | 		nid, h->nr_huge_pages_node[nid], | 
 | 		nid, h->free_huge_pages_node[nid], | 
 | 		nid, h->surplus_huge_pages_node[nid]); | 
 | } | 
 |  | 
 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ | 
 | unsigned long hugetlb_total_pages(void) | 
 | { | 
 | 	struct hstate *h = &default_hstate; | 
 | 	return h->nr_huge_pages * pages_per_huge_page(h); | 
 | } | 
 |  | 
 | static int hugetlb_acct_memory(struct hstate *h, long delta) | 
 | { | 
 | 	int ret = -ENOMEM; | 
 |  | 
 | 	spin_lock(&hugetlb_lock); | 
 | 	/* | 
 | 	 * When cpuset is configured, it breaks the strict hugetlb page | 
 | 	 * reservation as the accounting is done on a global variable. Such | 
 | 	 * reservation is completely rubbish in the presence of cpuset because | 
 | 	 * the reservation is not checked against page availability for the | 
 | 	 * current cpuset. Application can still potentially OOM'ed by kernel | 
 | 	 * with lack of free htlb page in cpuset that the task is in. | 
 | 	 * Attempt to enforce strict accounting with cpuset is almost | 
 | 	 * impossible (or too ugly) because cpuset is too fluid that | 
 | 	 * task or memory node can be dynamically moved between cpusets. | 
 | 	 * | 
 | 	 * The change of semantics for shared hugetlb mapping with cpuset is | 
 | 	 * undesirable. However, in order to preserve some of the semantics, | 
 | 	 * we fall back to check against current free page availability as | 
 | 	 * a best attempt and hopefully to minimize the impact of changing | 
 | 	 * semantics that cpuset has. | 
 | 	 */ | 
 | 	if (delta > 0) { | 
 | 		if (gather_surplus_pages(h, delta) < 0) | 
 | 			goto out; | 
 |  | 
 | 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { | 
 | 			return_unused_surplus_pages(h, delta); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 | 	if (delta < 0) | 
 | 		return_unused_surplus_pages(h, (unsigned long) -delta); | 
 |  | 
 | out: | 
 | 	spin_unlock(&hugetlb_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void hugetlb_vm_op_open(struct vm_area_struct *vma) | 
 | { | 
 | 	struct resv_map *reservations = vma_resv_map(vma); | 
 |  | 
 | 	/* | 
 | 	 * This new VMA should share its siblings reservation map if present. | 
 | 	 * The VMA will only ever have a valid reservation map pointer where | 
 | 	 * it is being copied for another still existing VMA.  As that VMA | 
 | 	 * has a reference to the reservation map it cannot dissappear until | 
 | 	 * after this open call completes.  It is therefore safe to take a | 
 | 	 * new reference here without additional locking. | 
 | 	 */ | 
 | 	if (reservations) | 
 | 		kref_get(&reservations->refs); | 
 | } | 
 |  | 
 | static void hugetlb_vm_op_close(struct vm_area_struct *vma) | 
 | { | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	struct resv_map *reservations = vma_resv_map(vma); | 
 | 	unsigned long reserve; | 
 | 	unsigned long start; | 
 | 	unsigned long end; | 
 |  | 
 | 	if (reservations) { | 
 | 		start = vma_hugecache_offset(h, vma, vma->vm_start); | 
 | 		end = vma_hugecache_offset(h, vma, vma->vm_end); | 
 |  | 
 | 		reserve = (end - start) - | 
 | 			region_count(&reservations->regions, start, end); | 
 |  | 
 | 		kref_put(&reservations->refs, resv_map_release); | 
 |  | 
 | 		if (reserve) { | 
 | 			hugetlb_acct_memory(h, -reserve); | 
 | 			hugetlb_put_quota(vma->vm_file->f_mapping, reserve); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * We cannot handle pagefaults against hugetlb pages at all.  They cause | 
 |  * handle_mm_fault() to try to instantiate regular-sized pages in the | 
 |  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get | 
 |  * this far. | 
 |  */ | 
 | static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | 
 | { | 
 | 	BUG(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct vm_operations_struct hugetlb_vm_ops = { | 
 | 	.fault = hugetlb_vm_op_fault, | 
 | 	.open = hugetlb_vm_op_open, | 
 | 	.close = hugetlb_vm_op_close, | 
 | }; | 
 |  | 
 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, | 
 | 				int writable) | 
 | { | 
 | 	pte_t entry; | 
 |  | 
 | 	if (writable) { | 
 | 		entry = | 
 | 		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); | 
 | 	} else { | 
 | 		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot)); | 
 | 	} | 
 | 	entry = pte_mkyoung(entry); | 
 | 	entry = pte_mkhuge(entry); | 
 |  | 
 | 	return entry; | 
 | } | 
 |  | 
 | static void set_huge_ptep_writable(struct vm_area_struct *vma, | 
 | 				   unsigned long address, pte_t *ptep) | 
 | { | 
 | 	pte_t entry; | 
 |  | 
 | 	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep))); | 
 | 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) { | 
 | 		update_mmu_cache(vma, address, entry); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, | 
 | 			    struct vm_area_struct *vma) | 
 | { | 
 | 	pte_t *src_pte, *dst_pte, entry; | 
 | 	struct page *ptepage; | 
 | 	unsigned long addr; | 
 | 	int cow; | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	unsigned long sz = huge_page_size(h); | 
 |  | 
 | 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | 
 |  | 
 | 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { | 
 | 		src_pte = huge_pte_offset(src, addr); | 
 | 		if (!src_pte) | 
 | 			continue; | 
 | 		dst_pte = huge_pte_alloc(dst, addr, sz); | 
 | 		if (!dst_pte) | 
 | 			goto nomem; | 
 |  | 
 | 		/* If the pagetables are shared don't copy or take references */ | 
 | 		if (dst_pte == src_pte) | 
 | 			continue; | 
 |  | 
 | 		spin_lock(&dst->page_table_lock); | 
 | 		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); | 
 | 		if (!huge_pte_none(huge_ptep_get(src_pte))) { | 
 | 			if (cow) | 
 | 				huge_ptep_set_wrprotect(src, addr, src_pte); | 
 | 			entry = huge_ptep_get(src_pte); | 
 | 			ptepage = pte_page(entry); | 
 | 			get_page(ptepage); | 
 | 			set_huge_pte_at(dst, addr, dst_pte, entry); | 
 | 		} | 
 | 		spin_unlock(&src->page_table_lock); | 
 | 		spin_unlock(&dst->page_table_lock); | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | nomem: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 
 | 			    unsigned long end, struct page *ref_page) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	unsigned long address; | 
 | 	pte_t *ptep; | 
 | 	pte_t pte; | 
 | 	struct page *page; | 
 | 	struct page *tmp; | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	unsigned long sz = huge_page_size(h); | 
 |  | 
 | 	/* | 
 | 	 * A page gathering list, protected by per file i_mmap_lock. The | 
 | 	 * lock is used to avoid list corruption from multiple unmapping | 
 | 	 * of the same page since we are using page->lru. | 
 | 	 */ | 
 | 	LIST_HEAD(page_list); | 
 |  | 
 | 	WARN_ON(!is_vm_hugetlb_page(vma)); | 
 | 	BUG_ON(start & ~huge_page_mask(h)); | 
 | 	BUG_ON(end & ~huge_page_mask(h)); | 
 |  | 
 | 	mmu_notifier_invalidate_range_start(mm, start, end); | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	for (address = start; address < end; address += sz) { | 
 | 		ptep = huge_pte_offset(mm, address); | 
 | 		if (!ptep) | 
 | 			continue; | 
 |  | 
 | 		if (huge_pmd_unshare(mm, &address, ptep)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * If a reference page is supplied, it is because a specific | 
 | 		 * page is being unmapped, not a range. Ensure the page we | 
 | 		 * are about to unmap is the actual page of interest. | 
 | 		 */ | 
 | 		if (ref_page) { | 
 | 			pte = huge_ptep_get(ptep); | 
 | 			if (huge_pte_none(pte)) | 
 | 				continue; | 
 | 			page = pte_page(pte); | 
 | 			if (page != ref_page) | 
 | 				continue; | 
 |  | 
 | 			/* | 
 | 			 * Mark the VMA as having unmapped its page so that | 
 | 			 * future faults in this VMA will fail rather than | 
 | 			 * looking like data was lost | 
 | 			 */ | 
 | 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); | 
 | 		} | 
 |  | 
 | 		pte = huge_ptep_get_and_clear(mm, address, ptep); | 
 | 		if (huge_pte_none(pte)) | 
 | 			continue; | 
 |  | 
 | 		page = pte_page(pte); | 
 | 		if (pte_dirty(pte)) | 
 | 			set_page_dirty(page); | 
 | 		list_add(&page->lru, &page_list); | 
 | 	} | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | 	flush_tlb_range(vma, start, end); | 
 | 	mmu_notifier_invalidate_range_end(mm, start, end); | 
 | 	list_for_each_entry_safe(page, tmp, &page_list, lru) { | 
 | 		list_del(&page->lru); | 
 | 		put_page(page); | 
 | 	} | 
 | } | 
 |  | 
 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 
 | 			  unsigned long end, struct page *ref_page) | 
 | { | 
 | 	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); | 
 | 	__unmap_hugepage_range(vma, start, end, ref_page); | 
 | 	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * This is called when the original mapper is failing to COW a MAP_PRIVATE | 
 |  * mappping it owns the reserve page for. The intention is to unmap the page | 
 |  * from other VMAs and let the children be SIGKILLed if they are faulting the | 
 |  * same region. | 
 |  */ | 
 | static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 				struct page *page, unsigned long address) | 
 | { | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	struct vm_area_struct *iter_vma; | 
 | 	struct address_space *mapping; | 
 | 	struct prio_tree_iter iter; | 
 | 	pgoff_t pgoff; | 
 |  | 
 | 	/* | 
 | 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation | 
 | 	 * from page cache lookup which is in HPAGE_SIZE units. | 
 | 	 */ | 
 | 	address = address & huge_page_mask(h); | 
 | 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) | 
 | 		+ (vma->vm_pgoff >> PAGE_SHIFT); | 
 | 	mapping = (struct address_space *)page_private(page); | 
 |  | 
 | 	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | 
 | 		/* Do not unmap the current VMA */ | 
 | 		if (iter_vma == vma) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Unmap the page from other VMAs without their own reserves. | 
 | 		 * They get marked to be SIGKILLed if they fault in these | 
 | 		 * areas. This is because a future no-page fault on this VMA | 
 | 		 * could insert a zeroed page instead of the data existing | 
 | 		 * from the time of fork. This would look like data corruption | 
 | 		 */ | 
 | 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) | 
 | 			unmap_hugepage_range(iter_vma, | 
 | 				address, address + huge_page_size(h), | 
 | 				page); | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 			unsigned long address, pte_t *ptep, pte_t pte, | 
 | 			struct page *pagecache_page) | 
 | { | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	struct page *old_page, *new_page; | 
 | 	int avoidcopy; | 
 | 	int outside_reserve = 0; | 
 |  | 
 | 	old_page = pte_page(pte); | 
 |  | 
 | retry_avoidcopy: | 
 | 	/* If no-one else is actually using this page, avoid the copy | 
 | 	 * and just make the page writable */ | 
 | 	avoidcopy = (page_count(old_page) == 1); | 
 | 	if (avoidcopy) { | 
 | 		set_huge_ptep_writable(vma, address, ptep); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the process that created a MAP_PRIVATE mapping is about to | 
 | 	 * perform a COW due to a shared page count, attempt to satisfy | 
 | 	 * the allocation without using the existing reserves. The pagecache | 
 | 	 * page is used to determine if the reserve at this address was | 
 | 	 * consumed or not. If reserves were used, a partial faulted mapping | 
 | 	 * at the time of fork() could consume its reserves on COW instead | 
 | 	 * of the full address range. | 
 | 	 */ | 
 | 	if (!(vma->vm_flags & VM_SHARED) && | 
 | 			is_vma_resv_set(vma, HPAGE_RESV_OWNER) && | 
 | 			old_page != pagecache_page) | 
 | 		outside_reserve = 1; | 
 |  | 
 | 	page_cache_get(old_page); | 
 | 	new_page = alloc_huge_page(vma, address, outside_reserve); | 
 |  | 
 | 	if (IS_ERR(new_page)) { | 
 | 		page_cache_release(old_page); | 
 |  | 
 | 		/* | 
 | 		 * If a process owning a MAP_PRIVATE mapping fails to COW, | 
 | 		 * it is due to references held by a child and an insufficient | 
 | 		 * huge page pool. To guarantee the original mappers | 
 | 		 * reliability, unmap the page from child processes. The child | 
 | 		 * may get SIGKILLed if it later faults. | 
 | 		 */ | 
 | 		if (outside_reserve) { | 
 | 			BUG_ON(huge_pte_none(pte)); | 
 | 			if (unmap_ref_private(mm, vma, old_page, address)) { | 
 | 				BUG_ON(page_count(old_page) != 1); | 
 | 				BUG_ON(huge_pte_none(pte)); | 
 | 				goto retry_avoidcopy; | 
 | 			} | 
 | 			WARN_ON_ONCE(1); | 
 | 		} | 
 |  | 
 | 		return -PTR_ERR(new_page); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | 	copy_huge_page(new_page, old_page, address, vma); | 
 | 	__SetPageUptodate(new_page); | 
 | 	spin_lock(&mm->page_table_lock); | 
 |  | 
 | 	ptep = huge_pte_offset(mm, address & huge_page_mask(h)); | 
 | 	if (likely(pte_same(huge_ptep_get(ptep), pte))) { | 
 | 		/* Break COW */ | 
 | 		huge_ptep_clear_flush(vma, address, ptep); | 
 | 		set_huge_pte_at(mm, address, ptep, | 
 | 				make_huge_pte(vma, new_page, 1)); | 
 | 		/* Make the old page be freed below */ | 
 | 		new_page = old_page; | 
 | 	} | 
 | 	page_cache_release(new_page); | 
 | 	page_cache_release(old_page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Return the pagecache page at a given address within a VMA */ | 
 | static struct page *hugetlbfs_pagecache_page(struct hstate *h, | 
 | 			struct vm_area_struct *vma, unsigned long address) | 
 | { | 
 | 	struct address_space *mapping; | 
 | 	pgoff_t idx; | 
 |  | 
 | 	mapping = vma->vm_file->f_mapping; | 
 | 	idx = vma_hugecache_offset(h, vma, address); | 
 |  | 
 | 	return find_lock_page(mapping, idx); | 
 | } | 
 |  | 
 | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 			unsigned long address, pte_t *ptep, int write_access) | 
 | { | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	int ret = VM_FAULT_SIGBUS; | 
 | 	pgoff_t idx; | 
 | 	unsigned long size; | 
 | 	struct page *page; | 
 | 	struct address_space *mapping; | 
 | 	pte_t new_pte; | 
 |  | 
 | 	/* | 
 | 	 * Currently, we are forced to kill the process in the event the | 
 | 	 * original mapper has unmapped pages from the child due to a failed | 
 | 	 * COW. Warn that such a situation has occured as it may not be obvious | 
 | 	 */ | 
 | 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { | 
 | 		printk(KERN_WARNING | 
 | 			"PID %d killed due to inadequate hugepage pool\n", | 
 | 			current->pid); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	mapping = vma->vm_file->f_mapping; | 
 | 	idx = vma_hugecache_offset(h, vma, address); | 
 |  | 
 | 	/* | 
 | 	 * Use page lock to guard against racing truncation | 
 | 	 * before we get page_table_lock. | 
 | 	 */ | 
 | retry: | 
 | 	page = find_lock_page(mapping, idx); | 
 | 	if (!page) { | 
 | 		size = i_size_read(mapping->host) >> huge_page_shift(h); | 
 | 		if (idx >= size) | 
 | 			goto out; | 
 | 		page = alloc_huge_page(vma, address, 0); | 
 | 		if (IS_ERR(page)) { | 
 | 			ret = -PTR_ERR(page); | 
 | 			goto out; | 
 | 		} | 
 | 		clear_huge_page(page, address, huge_page_size(h)); | 
 | 		__SetPageUptodate(page); | 
 |  | 
 | 		if (vma->vm_flags & VM_SHARED) { | 
 | 			int err; | 
 | 			struct inode *inode = mapping->host; | 
 |  | 
 | 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); | 
 | 			if (err) { | 
 | 				put_page(page); | 
 | 				if (err == -EEXIST) | 
 | 					goto retry; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			spin_lock(&inode->i_lock); | 
 | 			inode->i_blocks += blocks_per_huge_page(h); | 
 | 			spin_unlock(&inode->i_lock); | 
 | 		} else | 
 | 			lock_page(page); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we are going to COW a private mapping later, we examine the | 
 | 	 * pending reservations for this page now. This will ensure that | 
 | 	 * any allocations necessary to record that reservation occur outside | 
 | 	 * the spinlock. | 
 | 	 */ | 
 | 	if (write_access && !(vma->vm_flags & VM_SHARED)) | 
 | 		if (vma_needs_reservation(h, vma, address) < 0) { | 
 | 			ret = VM_FAULT_OOM; | 
 | 			goto backout_unlocked; | 
 | 		} | 
 |  | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	size = i_size_read(mapping->host) >> huge_page_shift(h); | 
 | 	if (idx >= size) | 
 | 		goto backout; | 
 |  | 
 | 	ret = 0; | 
 | 	if (!huge_pte_none(huge_ptep_get(ptep))) | 
 | 		goto backout; | 
 |  | 
 | 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) | 
 | 				&& (vma->vm_flags & VM_SHARED))); | 
 | 	set_huge_pte_at(mm, address, ptep, new_pte); | 
 |  | 
 | 	if (write_access && !(vma->vm_flags & VM_SHARED)) { | 
 | 		/* Optimization, do the COW without a second fault */ | 
 | 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | 	unlock_page(page); | 
 | out: | 
 | 	return ret; | 
 |  | 
 | backout: | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | backout_unlocked: | 
 | 	unlock_page(page); | 
 | 	put_page(page); | 
 | 	goto out; | 
 | } | 
 |  | 
 | int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 			unsigned long address, int write_access) | 
 | { | 
 | 	pte_t *ptep; | 
 | 	pte_t entry; | 
 | 	int ret; | 
 | 	struct page *pagecache_page = NULL; | 
 | 	static DEFINE_MUTEX(hugetlb_instantiation_mutex); | 
 | 	struct hstate *h = hstate_vma(vma); | 
 |  | 
 | 	ptep = huge_pte_alloc(mm, address, huge_page_size(h)); | 
 | 	if (!ptep) | 
 | 		return VM_FAULT_OOM; | 
 |  | 
 | 	/* | 
 | 	 * Serialize hugepage allocation and instantiation, so that we don't | 
 | 	 * get spurious allocation failures if two CPUs race to instantiate | 
 | 	 * the same page in the page cache. | 
 | 	 */ | 
 | 	mutex_lock(&hugetlb_instantiation_mutex); | 
 | 	entry = huge_ptep_get(ptep); | 
 | 	if (huge_pte_none(entry)) { | 
 | 		ret = hugetlb_no_page(mm, vma, address, ptep, write_access); | 
 | 		goto out_mutex; | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * If we are going to COW the mapping later, we examine the pending | 
 | 	 * reservations for this page now. This will ensure that any | 
 | 	 * allocations necessary to record that reservation occur outside the | 
 | 	 * spinlock. For private mappings, we also lookup the pagecache | 
 | 	 * page now as it is used to determine if a reservation has been | 
 | 	 * consumed. | 
 | 	 */ | 
 | 	if (write_access && !pte_write(entry)) { | 
 | 		if (vma_needs_reservation(h, vma, address) < 0) { | 
 | 			ret = VM_FAULT_OOM; | 
 | 			goto out_mutex; | 
 | 		} | 
 |  | 
 | 		if (!(vma->vm_flags & VM_SHARED)) | 
 | 			pagecache_page = hugetlbfs_pagecache_page(h, | 
 | 								vma, address); | 
 | 	} | 
 |  | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	/* Check for a racing update before calling hugetlb_cow */ | 
 | 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) | 
 | 		goto out_page_table_lock; | 
 |  | 
 |  | 
 | 	if (write_access) { | 
 | 		if (!pte_write(entry)) { | 
 | 			ret = hugetlb_cow(mm, vma, address, ptep, entry, | 
 | 							pagecache_page); | 
 | 			goto out_page_table_lock; | 
 | 		} | 
 | 		entry = pte_mkdirty(entry); | 
 | 	} | 
 | 	entry = pte_mkyoung(entry); | 
 | 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access)) | 
 | 		update_mmu_cache(vma, address, entry); | 
 |  | 
 | out_page_table_lock: | 
 | 	spin_unlock(&mm->page_table_lock); | 
 |  | 
 | 	if (pagecache_page) { | 
 | 		unlock_page(pagecache_page); | 
 | 		put_page(pagecache_page); | 
 | 	} | 
 |  | 
 | out_mutex: | 
 | 	mutex_unlock(&hugetlb_instantiation_mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Can be overriden by architectures */ | 
 | __attribute__((weak)) struct page * | 
 | follow_huge_pud(struct mm_struct *mm, unsigned long address, | 
 | 	       pud_t *pud, int write) | 
 | { | 
 | 	BUG(); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int huge_zeropage_ok(pte_t *ptep, int write, int shared) | 
 | { | 
 | 	if (!ptep || write || shared) | 
 | 		return 0; | 
 | 	else | 
 | 		return huge_pte_none(huge_ptep_get(ptep)); | 
 | } | 
 |  | 
 | int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 			struct page **pages, struct vm_area_struct **vmas, | 
 | 			unsigned long *position, int *length, int i, | 
 | 			int write) | 
 | { | 
 | 	unsigned long pfn_offset; | 
 | 	unsigned long vaddr = *position; | 
 | 	int remainder = *length; | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	int zeropage_ok = 0; | 
 | 	int shared = vma->vm_flags & VM_SHARED; | 
 |  | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	while (vaddr < vma->vm_end && remainder) { | 
 | 		pte_t *pte; | 
 | 		struct page *page; | 
 |  | 
 | 		/* | 
 | 		 * Some archs (sparc64, sh*) have multiple pte_ts to | 
 | 		 * each hugepage.  We have to make * sure we get the | 
 | 		 * first, for the page indexing below to work. | 
 | 		 */ | 
 | 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); | 
 | 		if (huge_zeropage_ok(pte, write, shared)) | 
 | 			zeropage_ok = 1; | 
 |  | 
 | 		if (!pte || | 
 | 		    (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) || | 
 | 		    (write && !pte_write(huge_ptep_get(pte)))) { | 
 | 			int ret; | 
 |  | 
 | 			spin_unlock(&mm->page_table_lock); | 
 | 			ret = hugetlb_fault(mm, vma, vaddr, write); | 
 | 			spin_lock(&mm->page_table_lock); | 
 | 			if (!(ret & VM_FAULT_ERROR)) | 
 | 				continue; | 
 |  | 
 | 			remainder = 0; | 
 | 			if (!i) | 
 | 				i = -EFAULT; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; | 
 | 		page = pte_page(huge_ptep_get(pte)); | 
 | same_page: | 
 | 		if (pages) { | 
 | 			if (zeropage_ok) | 
 | 				pages[i] = ZERO_PAGE(0); | 
 | 			else | 
 | 				pages[i] = mem_map_offset(page, pfn_offset); | 
 | 			get_page(pages[i]); | 
 | 		} | 
 |  | 
 | 		if (vmas) | 
 | 			vmas[i] = vma; | 
 |  | 
 | 		vaddr += PAGE_SIZE; | 
 | 		++pfn_offset; | 
 | 		--remainder; | 
 | 		++i; | 
 | 		if (vaddr < vma->vm_end && remainder && | 
 | 				pfn_offset < pages_per_huge_page(h)) { | 
 | 			/* | 
 | 			 * We use pfn_offset to avoid touching the pageframes | 
 | 			 * of this compound page. | 
 | 			 */ | 
 | 			goto same_page; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | 	*length = remainder; | 
 | 	*position = vaddr; | 
 |  | 
 | 	return i; | 
 | } | 
 |  | 
 | void hugetlb_change_protection(struct vm_area_struct *vma, | 
 | 		unsigned long address, unsigned long end, pgprot_t newprot) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	unsigned long start = address; | 
 | 	pte_t *ptep; | 
 | 	pte_t pte; | 
 | 	struct hstate *h = hstate_vma(vma); | 
 |  | 
 | 	BUG_ON(address >= end); | 
 | 	flush_cache_range(vma, address, end); | 
 |  | 
 | 	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	for (; address < end; address += huge_page_size(h)) { | 
 | 		ptep = huge_pte_offset(mm, address); | 
 | 		if (!ptep) | 
 | 			continue; | 
 | 		if (huge_pmd_unshare(mm, &address, ptep)) | 
 | 			continue; | 
 | 		if (!huge_pte_none(huge_ptep_get(ptep))) { | 
 | 			pte = huge_ptep_get_and_clear(mm, address, ptep); | 
 | 			pte = pte_mkhuge(pte_modify(pte, newprot)); | 
 | 			set_huge_pte_at(mm, address, ptep, pte); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | 	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); | 
 |  | 
 | 	flush_tlb_range(vma, start, end); | 
 | } | 
 |  | 
 | int hugetlb_reserve_pages(struct inode *inode, | 
 | 					long from, long to, | 
 | 					struct vm_area_struct *vma) | 
 | { | 
 | 	long ret, chg; | 
 | 	struct hstate *h = hstate_inode(inode); | 
 |  | 
 | 	if (vma && vma->vm_flags & VM_NORESERVE) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Shared mappings base their reservation on the number of pages that | 
 | 	 * are already allocated on behalf of the file. Private mappings need | 
 | 	 * to reserve the full area even if read-only as mprotect() may be | 
 | 	 * called to make the mapping read-write. Assume !vma is a shm mapping | 
 | 	 */ | 
 | 	if (!vma || vma->vm_flags & VM_SHARED) | 
 | 		chg = region_chg(&inode->i_mapping->private_list, from, to); | 
 | 	else { | 
 | 		struct resv_map *resv_map = resv_map_alloc(); | 
 | 		if (!resv_map) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		chg = to - from; | 
 |  | 
 | 		set_vma_resv_map(vma, resv_map); | 
 | 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER); | 
 | 	} | 
 |  | 
 | 	if (chg < 0) | 
 | 		return chg; | 
 |  | 
 | 	if (hugetlb_get_quota(inode->i_mapping, chg)) | 
 | 		return -ENOSPC; | 
 | 	ret = hugetlb_acct_memory(h, chg); | 
 | 	if (ret < 0) { | 
 | 		hugetlb_put_quota(inode->i_mapping, chg); | 
 | 		return ret; | 
 | 	} | 
 | 	if (!vma || vma->vm_flags & VM_SHARED) | 
 | 		region_add(&inode->i_mapping->private_list, from, to); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) | 
 | { | 
 | 	struct hstate *h = hstate_inode(inode); | 
 | 	long chg = region_truncate(&inode->i_mapping->private_list, offset); | 
 |  | 
 | 	spin_lock(&inode->i_lock); | 
 | 	inode->i_blocks -= blocks_per_huge_page(h); | 
 | 	spin_unlock(&inode->i_lock); | 
 |  | 
 | 	hugetlb_put_quota(inode->i_mapping, (chg - freed)); | 
 | 	hugetlb_acct_memory(h, -(chg - freed)); | 
 | } |