| /* | 
 |  *  kernel/cpuset.c | 
 |  * | 
 |  *  Processor and Memory placement constraints for sets of tasks. | 
 |  * | 
 |  *  Copyright (C) 2003 BULL SA. | 
 |  *  Copyright (C) 2004 Silicon Graphics, Inc. | 
 |  * | 
 |  *  Portions derived from Patrick Mochel's sysfs code. | 
 |  *  sysfs is Copyright (c) 2001-3 Patrick Mochel | 
 |  *  Portions Copyright (c) 2004 Silicon Graphics, Inc. | 
 |  * | 
 |  *  2003-10-10 Written by Simon Derr <simon.derr@bull.net> | 
 |  *  2003-10-22 Updates by Stephen Hemminger. | 
 |  *  2004 May-July Rework by Paul Jackson <pj@sgi.com> | 
 |  * | 
 |  *  This file is subject to the terms and conditions of the GNU General Public | 
 |  *  License.  See the file COPYING in the main directory of the Linux | 
 |  *  distribution for more details. | 
 |  */ | 
 |  | 
 | #include <linux/config.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpumask.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/err.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/file.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/init.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/kmod.h> | 
 | #include <linux/list.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/namei.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/smp_lock.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/stat.h> | 
 | #include <linux/string.h> | 
 | #include <linux/time.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/sort.h> | 
 |  | 
 | #include <asm/uaccess.h> | 
 | #include <asm/atomic.h> | 
 | #include <asm/semaphore.h> | 
 |  | 
 | #define CPUSET_SUPER_MAGIC 		0x27e0eb | 
 |  | 
 | struct cpuset { | 
 | 	unsigned long flags;		/* "unsigned long" so bitops work */ | 
 | 	cpumask_t cpus_allowed;		/* CPUs allowed to tasks in cpuset */ | 
 | 	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */ | 
 |  | 
 | 	atomic_t count;			/* count tasks using this cpuset */ | 
 |  | 
 | 	/* | 
 | 	 * We link our 'sibling' struct into our parents 'children'. | 
 | 	 * Our children link their 'sibling' into our 'children'. | 
 | 	 */ | 
 | 	struct list_head sibling;	/* my parents children */ | 
 | 	struct list_head children;	/* my children */ | 
 |  | 
 | 	struct cpuset *parent;		/* my parent */ | 
 | 	struct dentry *dentry;		/* cpuset fs entry */ | 
 |  | 
 | 	/* | 
 | 	 * Copy of global cpuset_mems_generation as of the most | 
 | 	 * recent time this cpuset changed its mems_allowed. | 
 | 	 */ | 
 | 	 int mems_generation; | 
 | }; | 
 |  | 
 | /* bits in struct cpuset flags field */ | 
 | typedef enum { | 
 | 	CS_CPU_EXCLUSIVE, | 
 | 	CS_MEM_EXCLUSIVE, | 
 | 	CS_REMOVED, | 
 | 	CS_NOTIFY_ON_RELEASE | 
 | } cpuset_flagbits_t; | 
 |  | 
 | /* convenient tests for these bits */ | 
 | static inline int is_cpu_exclusive(const struct cpuset *cs) | 
 | { | 
 | 	return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags); | 
 | } | 
 |  | 
 | static inline int is_mem_exclusive(const struct cpuset *cs) | 
 | { | 
 | 	return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags); | 
 | } | 
 |  | 
 | static inline int is_removed(const struct cpuset *cs) | 
 | { | 
 | 	return !!test_bit(CS_REMOVED, &cs->flags); | 
 | } | 
 |  | 
 | static inline int notify_on_release(const struct cpuset *cs) | 
 | { | 
 | 	return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Increment this atomic integer everytime any cpuset changes its | 
 |  * mems_allowed value.  Users of cpusets can track this generation | 
 |  * number, and avoid having to lock and reload mems_allowed unless | 
 |  * the cpuset they're using changes generation. | 
 |  * | 
 |  * A single, global generation is needed because attach_task() could | 
 |  * reattach a task to a different cpuset, which must not have its | 
 |  * generation numbers aliased with those of that tasks previous cpuset. | 
 |  * | 
 |  * Generations are needed for mems_allowed because one task cannot | 
 |  * modify anothers memory placement.  So we must enable every task, | 
 |  * on every visit to __alloc_pages(), to efficiently check whether | 
 |  * its current->cpuset->mems_allowed has changed, requiring an update | 
 |  * of its current->mems_allowed. | 
 |  */ | 
 | static atomic_t cpuset_mems_generation = ATOMIC_INIT(1); | 
 |  | 
 | static struct cpuset top_cpuset = { | 
 | 	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), | 
 | 	.cpus_allowed = CPU_MASK_ALL, | 
 | 	.mems_allowed = NODE_MASK_ALL, | 
 | 	.count = ATOMIC_INIT(0), | 
 | 	.sibling = LIST_HEAD_INIT(top_cpuset.sibling), | 
 | 	.children = LIST_HEAD_INIT(top_cpuset.children), | 
 | 	.parent = NULL, | 
 | 	.dentry = NULL, | 
 | 	.mems_generation = 0, | 
 | }; | 
 |  | 
 | static struct vfsmount *cpuset_mount; | 
 | static struct super_block *cpuset_sb = NULL; | 
 |  | 
 | /* | 
 |  * cpuset_sem should be held by anyone who is depending on the children | 
 |  * or sibling lists of any cpuset, or performing non-atomic operations | 
 |  * on the flags or *_allowed values of a cpuset, such as raising the | 
 |  * CS_REMOVED flag bit iff it is not already raised, or reading and | 
 |  * conditionally modifying the *_allowed values.  One kernel global | 
 |  * cpuset semaphore should be sufficient - these things don't change | 
 |  * that much. | 
 |  * | 
 |  * The code that modifies cpusets holds cpuset_sem across the entire | 
 |  * operation, from cpuset_common_file_write() down, single threading | 
 |  * all cpuset modifications (except for counter manipulations from | 
 |  * fork and exit) across the system.  This presumes that cpuset | 
 |  * modifications are rare - better kept simple and safe, even if slow. | 
 |  * | 
 |  * The code that reads cpusets, such as in cpuset_common_file_read() | 
 |  * and below, only holds cpuset_sem across small pieces of code, such | 
 |  * as when reading out possibly multi-word cpumasks and nodemasks, as | 
 |  * the risks are less, and the desire for performance a little greater. | 
 |  * The proc_cpuset_show() routine needs to hold cpuset_sem to insure | 
 |  * that no cs->dentry is NULL, as it walks up the cpuset tree to root. | 
 |  * | 
 |  * The hooks from fork and exit, cpuset_fork() and cpuset_exit(), don't | 
 |  * (usually) grab cpuset_sem.  These are the two most performance | 
 |  * critical pieces of code here.  The exception occurs on exit(), | 
 |  * when a task in a notify_on_release cpuset exits.  Then cpuset_sem | 
 |  * is taken, and if the cpuset count is zero, a usermode call made | 
 |  * to /sbin/cpuset_release_agent with the name of the cpuset (path | 
 |  * relative to the root of cpuset file system) as the argument. | 
 |  * | 
 |  * A cpuset can only be deleted if both its 'count' of using tasks is | 
 |  * zero, and its list of 'children' cpusets is empty.  Since all tasks | 
 |  * in the system use _some_ cpuset, and since there is always at least | 
 |  * one task in the system (init, pid == 1), therefore, top_cpuset | 
 |  * always has either children cpusets and/or using tasks.  So no need | 
 |  * for any special hack to ensure that top_cpuset cannot be deleted. | 
 |  */ | 
 |  | 
 | static DECLARE_MUTEX(cpuset_sem); | 
 |  | 
 | /* | 
 |  * A couple of forward declarations required, due to cyclic reference loop: | 
 |  *  cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file | 
 |  *  -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir. | 
 |  */ | 
 |  | 
 | static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode); | 
 | static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry); | 
 |  | 
 | static struct backing_dev_info cpuset_backing_dev_info = { | 
 | 	.ra_pages = 0,		/* No readahead */ | 
 | 	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK, | 
 | }; | 
 |  | 
 | static struct inode *cpuset_new_inode(mode_t mode) | 
 | { | 
 | 	struct inode *inode = new_inode(cpuset_sb); | 
 |  | 
 | 	if (inode) { | 
 | 		inode->i_mode = mode; | 
 | 		inode->i_uid = current->fsuid; | 
 | 		inode->i_gid = current->fsgid; | 
 | 		inode->i_blksize = PAGE_CACHE_SIZE; | 
 | 		inode->i_blocks = 0; | 
 | 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; | 
 | 		inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info; | 
 | 	} | 
 | 	return inode; | 
 | } | 
 |  | 
 | static void cpuset_diput(struct dentry *dentry, struct inode *inode) | 
 | { | 
 | 	/* is dentry a directory ? if so, kfree() associated cpuset */ | 
 | 	if (S_ISDIR(inode->i_mode)) { | 
 | 		struct cpuset *cs = dentry->d_fsdata; | 
 | 		BUG_ON(!(is_removed(cs))); | 
 | 		kfree(cs); | 
 | 	} | 
 | 	iput(inode); | 
 | } | 
 |  | 
 | static struct dentry_operations cpuset_dops = { | 
 | 	.d_iput = cpuset_diput, | 
 | }; | 
 |  | 
 | static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name) | 
 | { | 
 | 	struct dentry *d = lookup_one_len(name, parent, strlen(name)); | 
 | 	if (!IS_ERR(d)) | 
 | 		d->d_op = &cpuset_dops; | 
 | 	return d; | 
 | } | 
 |  | 
 | static void remove_dir(struct dentry *d) | 
 | { | 
 | 	struct dentry *parent = dget(d->d_parent); | 
 |  | 
 | 	d_delete(d); | 
 | 	simple_rmdir(parent->d_inode, d); | 
 | 	dput(parent); | 
 | } | 
 |  | 
 | /* | 
 |  * NOTE : the dentry must have been dget()'ed | 
 |  */ | 
 | static void cpuset_d_remove_dir(struct dentry *dentry) | 
 | { | 
 | 	struct list_head *node; | 
 |  | 
 | 	spin_lock(&dcache_lock); | 
 | 	node = dentry->d_subdirs.next; | 
 | 	while (node != &dentry->d_subdirs) { | 
 | 		struct dentry *d = list_entry(node, struct dentry, d_child); | 
 | 		list_del_init(node); | 
 | 		if (d->d_inode) { | 
 | 			d = dget_locked(d); | 
 | 			spin_unlock(&dcache_lock); | 
 | 			d_delete(d); | 
 | 			simple_unlink(dentry->d_inode, d); | 
 | 			dput(d); | 
 | 			spin_lock(&dcache_lock); | 
 | 		} | 
 | 		node = dentry->d_subdirs.next; | 
 | 	} | 
 | 	list_del_init(&dentry->d_child); | 
 | 	spin_unlock(&dcache_lock); | 
 | 	remove_dir(dentry); | 
 | } | 
 |  | 
 | static struct super_operations cpuset_ops = { | 
 | 	.statfs = simple_statfs, | 
 | 	.drop_inode = generic_delete_inode, | 
 | }; | 
 |  | 
 | static int cpuset_fill_super(struct super_block *sb, void *unused_data, | 
 | 							int unused_silent) | 
 | { | 
 | 	struct inode *inode; | 
 | 	struct dentry *root; | 
 |  | 
 | 	sb->s_blocksize = PAGE_CACHE_SIZE; | 
 | 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT; | 
 | 	sb->s_magic = CPUSET_SUPER_MAGIC; | 
 | 	sb->s_op = &cpuset_ops; | 
 | 	cpuset_sb = sb; | 
 |  | 
 | 	inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR); | 
 | 	if (inode) { | 
 | 		inode->i_op = &simple_dir_inode_operations; | 
 | 		inode->i_fop = &simple_dir_operations; | 
 | 		/* directories start off with i_nlink == 2 (for "." entry) */ | 
 | 		inode->i_nlink++; | 
 | 	} else { | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	root = d_alloc_root(inode); | 
 | 	if (!root) { | 
 | 		iput(inode); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	sb->s_root = root; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct super_block *cpuset_get_sb(struct file_system_type *fs_type, | 
 | 					int flags, const char *unused_dev_name, | 
 | 					void *data) | 
 | { | 
 | 	return get_sb_single(fs_type, flags, data, cpuset_fill_super); | 
 | } | 
 |  | 
 | static struct file_system_type cpuset_fs_type = { | 
 | 	.name = "cpuset", | 
 | 	.get_sb = cpuset_get_sb, | 
 | 	.kill_sb = kill_litter_super, | 
 | }; | 
 |  | 
 | /* struct cftype: | 
 |  * | 
 |  * The files in the cpuset filesystem mostly have a very simple read/write | 
 |  * handling, some common function will take care of it. Nevertheless some cases | 
 |  * (read tasks) are special and therefore I define this structure for every | 
 |  * kind of file. | 
 |  * | 
 |  * | 
 |  * When reading/writing to a file: | 
 |  *	- the cpuset to use in file->f_dentry->d_parent->d_fsdata | 
 |  *	- the 'cftype' of the file is file->f_dentry->d_fsdata | 
 |  */ | 
 |  | 
 | struct cftype { | 
 | 	char *name; | 
 | 	int private; | 
 | 	int (*open) (struct inode *inode, struct file *file); | 
 | 	ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes, | 
 | 							loff_t *ppos); | 
 | 	int (*write) (struct file *file, const char __user *buf, size_t nbytes, | 
 | 							loff_t *ppos); | 
 | 	int (*release) (struct inode *inode, struct file *file); | 
 | }; | 
 |  | 
 | static inline struct cpuset *__d_cs(struct dentry *dentry) | 
 | { | 
 | 	return dentry->d_fsdata; | 
 | } | 
 |  | 
 | static inline struct cftype *__d_cft(struct dentry *dentry) | 
 | { | 
 | 	return dentry->d_fsdata; | 
 | } | 
 |  | 
 | /* | 
 |  * Call with cpuset_sem held.  Writes path of cpuset into buf. | 
 |  * Returns 0 on success, -errno on error. | 
 |  */ | 
 |  | 
 | static int cpuset_path(const struct cpuset *cs, char *buf, int buflen) | 
 | { | 
 | 	char *start; | 
 |  | 
 | 	start = buf + buflen; | 
 |  | 
 | 	*--start = '\0'; | 
 | 	for (;;) { | 
 | 		int len = cs->dentry->d_name.len; | 
 | 		if ((start -= len) < buf) | 
 | 			return -ENAMETOOLONG; | 
 | 		memcpy(start, cs->dentry->d_name.name, len); | 
 | 		cs = cs->parent; | 
 | 		if (!cs) | 
 | 			break; | 
 | 		if (!cs->parent) | 
 | 			continue; | 
 | 		if (--start < buf) | 
 | 			return -ENAMETOOLONG; | 
 | 		*start = '/'; | 
 | 	} | 
 | 	memmove(buf, start, buf + buflen - start); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Notify userspace when a cpuset is released, by running | 
 |  * /sbin/cpuset_release_agent with the name of the cpuset (path | 
 |  * relative to the root of cpuset file system) as the argument. | 
 |  * | 
 |  * Most likely, this user command will try to rmdir this cpuset. | 
 |  * | 
 |  * This races with the possibility that some other task will be | 
 |  * attached to this cpuset before it is removed, or that some other | 
 |  * user task will 'mkdir' a child cpuset of this cpuset.  That's ok. | 
 |  * The presumed 'rmdir' will fail quietly if this cpuset is no longer | 
 |  * unused, and this cpuset will be reprieved from its death sentence, | 
 |  * to continue to serve a useful existence.  Next time it's released, | 
 |  * we will get notified again, if it still has 'notify_on_release' set. | 
 |  * | 
 |  * The final arg to call_usermodehelper() is 0, which means don't | 
 |  * wait.  The separate /sbin/cpuset_release_agent task is forked by | 
 |  * call_usermodehelper(), then control in this thread returns here, | 
 |  * without waiting for the release agent task.  We don't bother to | 
 |  * wait because the caller of this routine has no use for the exit | 
 |  * status of the /sbin/cpuset_release_agent task, so no sense holding | 
 |  * our caller up for that. | 
 |  * | 
 |  * The simple act of forking that task might require more memory, | 
 |  * which might need cpuset_sem.  So this routine must be called while | 
 |  * cpuset_sem is not held, to avoid a possible deadlock.  See also | 
 |  * comments for check_for_release(), below. | 
 |  */ | 
 |  | 
 | static void cpuset_release_agent(const char *pathbuf) | 
 | { | 
 | 	char *argv[3], *envp[3]; | 
 | 	int i; | 
 |  | 
 | 	if (!pathbuf) | 
 | 		return; | 
 |  | 
 | 	i = 0; | 
 | 	argv[i++] = "/sbin/cpuset_release_agent"; | 
 | 	argv[i++] = (char *)pathbuf; | 
 | 	argv[i] = NULL; | 
 |  | 
 | 	i = 0; | 
 | 	/* minimal command environment */ | 
 | 	envp[i++] = "HOME=/"; | 
 | 	envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; | 
 | 	envp[i] = NULL; | 
 |  | 
 | 	call_usermodehelper(argv[0], argv, envp, 0); | 
 | 	kfree(pathbuf); | 
 | } | 
 |  | 
 | /* | 
 |  * Either cs->count of using tasks transitioned to zero, or the | 
 |  * cs->children list of child cpusets just became empty.  If this | 
 |  * cs is notify_on_release() and now both the user count is zero and | 
 |  * the list of children is empty, prepare cpuset path in a kmalloc'd | 
 |  * buffer, to be returned via ppathbuf, so that the caller can invoke | 
 |  * cpuset_release_agent() with it later on, once cpuset_sem is dropped. | 
 |  * Call here with cpuset_sem held. | 
 |  * | 
 |  * This check_for_release() routine is responsible for kmalloc'ing | 
 |  * pathbuf.  The above cpuset_release_agent() is responsible for | 
 |  * kfree'ing pathbuf.  The caller of these routines is responsible | 
 |  * for providing a pathbuf pointer, initialized to NULL, then | 
 |  * calling check_for_release() with cpuset_sem held and the address | 
 |  * of the pathbuf pointer, then dropping cpuset_sem, then calling | 
 |  * cpuset_release_agent() with pathbuf, as set by check_for_release(). | 
 |  */ | 
 |  | 
 | static void check_for_release(struct cpuset *cs, char **ppathbuf) | 
 | { | 
 | 	if (notify_on_release(cs) && atomic_read(&cs->count) == 0 && | 
 | 	    list_empty(&cs->children)) { | 
 | 		char *buf; | 
 |  | 
 | 		buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
 | 		if (!buf) | 
 | 			return; | 
 | 		if (cpuset_path(cs, buf, PAGE_SIZE) < 0) | 
 | 			kfree(buf); | 
 | 		else | 
 | 			*ppathbuf = buf; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Return in *pmask the portion of a cpusets's cpus_allowed that | 
 |  * are online.  If none are online, walk up the cpuset hierarchy | 
 |  * until we find one that does have some online cpus.  If we get | 
 |  * all the way to the top and still haven't found any online cpus, | 
 |  * return cpu_online_map.  Or if passed a NULL cs from an exit'ing | 
 |  * task, return cpu_online_map. | 
 |  * | 
 |  * One way or another, we guarantee to return some non-empty subset | 
 |  * of cpu_online_map. | 
 |  * | 
 |  * Call with cpuset_sem held. | 
 |  */ | 
 |  | 
 | static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask) | 
 | { | 
 | 	while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map)) | 
 | 		cs = cs->parent; | 
 | 	if (cs) | 
 | 		cpus_and(*pmask, cs->cpus_allowed, cpu_online_map); | 
 | 	else | 
 | 		*pmask = cpu_online_map; | 
 | 	BUG_ON(!cpus_intersects(*pmask, cpu_online_map)); | 
 | } | 
 |  | 
 | /* | 
 |  * Return in *pmask the portion of a cpusets's mems_allowed that | 
 |  * are online.  If none are online, walk up the cpuset hierarchy | 
 |  * until we find one that does have some online mems.  If we get | 
 |  * all the way to the top and still haven't found any online mems, | 
 |  * return node_online_map. | 
 |  * | 
 |  * One way or another, we guarantee to return some non-empty subset | 
 |  * of node_online_map. | 
 |  * | 
 |  * Call with cpuset_sem held. | 
 |  */ | 
 |  | 
 | static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask) | 
 | { | 
 | 	while (cs && !nodes_intersects(cs->mems_allowed, node_online_map)) | 
 | 		cs = cs->parent; | 
 | 	if (cs) | 
 | 		nodes_and(*pmask, cs->mems_allowed, node_online_map); | 
 | 	else | 
 | 		*pmask = node_online_map; | 
 | 	BUG_ON(!nodes_intersects(*pmask, node_online_map)); | 
 | } | 
 |  | 
 | /* | 
 |  * Refresh current tasks mems_allowed and mems_generation from | 
 |  * current tasks cpuset.  Call with cpuset_sem held. | 
 |  * | 
 |  * Be sure to call refresh_mems() on any cpuset operation which | 
 |  * (1) holds cpuset_sem, and (2) might possibly alloc memory. | 
 |  * Call after obtaining cpuset_sem lock, before any possible | 
 |  * allocation.  Otherwise one risks trying to allocate memory | 
 |  * while the task cpuset_mems_generation is not the same as | 
 |  * the mems_generation in its cpuset, which would deadlock on | 
 |  * cpuset_sem in cpuset_update_current_mems_allowed(). | 
 |  * | 
 |  * Since we hold cpuset_sem, once refresh_mems() is called, the | 
 |  * test (current->cpuset_mems_generation != cs->mems_generation) | 
 |  * in cpuset_update_current_mems_allowed() will remain false, | 
 |  * until we drop cpuset_sem.  Anyone else who would change our | 
 |  * cpusets mems_generation needs to lock cpuset_sem first. | 
 |  */ | 
 |  | 
 | static void refresh_mems(void) | 
 | { | 
 | 	struct cpuset *cs = current->cpuset; | 
 |  | 
 | 	if (current->cpuset_mems_generation != cs->mems_generation) { | 
 | 		guarantee_online_mems(cs, ¤t->mems_allowed); | 
 | 		current->cpuset_mems_generation = cs->mems_generation; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? | 
 |  * | 
 |  * One cpuset is a subset of another if all its allowed CPUs and | 
 |  * Memory Nodes are a subset of the other, and its exclusive flags | 
 |  * are only set if the other's are set. | 
 |  */ | 
 |  | 
 | static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) | 
 | { | 
 | 	return	cpus_subset(p->cpus_allowed, q->cpus_allowed) && | 
 | 		nodes_subset(p->mems_allowed, q->mems_allowed) && | 
 | 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) && | 
 | 		is_mem_exclusive(p) <= is_mem_exclusive(q); | 
 | } | 
 |  | 
 | /* | 
 |  * validate_change() - Used to validate that any proposed cpuset change | 
 |  *		       follows the structural rules for cpusets. | 
 |  * | 
 |  * If we replaced the flag and mask values of the current cpuset | 
 |  * (cur) with those values in the trial cpuset (trial), would | 
 |  * our various subset and exclusive rules still be valid?  Presumes | 
 |  * cpuset_sem held. | 
 |  * | 
 |  * 'cur' is the address of an actual, in-use cpuset.  Operations | 
 |  * such as list traversal that depend on the actual address of the | 
 |  * cpuset in the list must use cur below, not trial. | 
 |  * | 
 |  * 'trial' is the address of bulk structure copy of cur, with | 
 |  * perhaps one or more of the fields cpus_allowed, mems_allowed, | 
 |  * or flags changed to new, trial values. | 
 |  * | 
 |  * Return 0 if valid, -errno if not. | 
 |  */ | 
 |  | 
 | static int validate_change(const struct cpuset *cur, const struct cpuset *trial) | 
 | { | 
 | 	struct cpuset *c, *par; | 
 |  | 
 | 	/* Each of our child cpusets must be a subset of us */ | 
 | 	list_for_each_entry(c, &cur->children, sibling) { | 
 | 		if (!is_cpuset_subset(c, trial)) | 
 | 			return -EBUSY; | 
 | 	} | 
 |  | 
 | 	/* Remaining checks don't apply to root cpuset */ | 
 | 	if ((par = cur->parent) == NULL) | 
 | 		return 0; | 
 |  | 
 | 	/* We must be a subset of our parent cpuset */ | 
 | 	if (!is_cpuset_subset(trial, par)) | 
 | 		return -EACCES; | 
 |  | 
 | 	/* If either I or some sibling (!= me) is exclusive, we can't overlap */ | 
 | 	list_for_each_entry(c, &par->children, sibling) { | 
 | 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && | 
 | 		    c != cur && | 
 | 		    cpus_intersects(trial->cpus_allowed, c->cpus_allowed)) | 
 | 			return -EINVAL; | 
 | 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && | 
 | 		    c != cur && | 
 | 		    nodes_intersects(trial->mems_allowed, c->mems_allowed)) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * For a given cpuset cur, partition the system as follows | 
 |  * a. All cpus in the parent cpuset's cpus_allowed that are not part of any | 
 |  *    exclusive child cpusets | 
 |  * b. All cpus in the current cpuset's cpus_allowed that are not part of any | 
 |  *    exclusive child cpusets | 
 |  * Build these two partitions by calling partition_sched_domains | 
 |  * | 
 |  * Call with cpuset_sem held.  May nest a call to the | 
 |  * lock_cpu_hotplug()/unlock_cpu_hotplug() pair. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Hack to avoid 2.6.13 partial node dynamic sched domain bug. | 
 |  * Disable letting 'cpu_exclusive' cpusets define dynamic sched | 
 |  * domains, until the sched domain can handle partial nodes. | 
 |  * Remove this #if hackery when sched domains fixed. | 
 |  */ | 
 | #if 0 | 
 | static void update_cpu_domains(struct cpuset *cur) | 
 | { | 
 | 	struct cpuset *c, *par = cur->parent; | 
 | 	cpumask_t pspan, cspan; | 
 |  | 
 | 	if (par == NULL || cpus_empty(cur->cpus_allowed)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Get all cpus from parent's cpus_allowed not part of exclusive | 
 | 	 * children | 
 | 	 */ | 
 | 	pspan = par->cpus_allowed; | 
 | 	list_for_each_entry(c, &par->children, sibling) { | 
 | 		if (is_cpu_exclusive(c)) | 
 | 			cpus_andnot(pspan, pspan, c->cpus_allowed); | 
 | 	} | 
 | 	if (is_removed(cur) || !is_cpu_exclusive(cur)) { | 
 | 		cpus_or(pspan, pspan, cur->cpus_allowed); | 
 | 		if (cpus_equal(pspan, cur->cpus_allowed)) | 
 | 			return; | 
 | 		cspan = CPU_MASK_NONE; | 
 | 	} else { | 
 | 		if (cpus_empty(pspan)) | 
 | 			return; | 
 | 		cspan = cur->cpus_allowed; | 
 | 		/* | 
 | 		 * Get all cpus from current cpuset's cpus_allowed not part | 
 | 		 * of exclusive children | 
 | 		 */ | 
 | 		list_for_each_entry(c, &cur->children, sibling) { | 
 | 			if (is_cpu_exclusive(c)) | 
 | 				cpus_andnot(cspan, cspan, c->cpus_allowed); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	lock_cpu_hotplug(); | 
 | 	partition_sched_domains(&pspan, &cspan); | 
 | 	unlock_cpu_hotplug(); | 
 | } | 
 | #else | 
 | static void update_cpu_domains(struct cpuset *cur) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | static int update_cpumask(struct cpuset *cs, char *buf) | 
 | { | 
 | 	struct cpuset trialcs; | 
 | 	int retval, cpus_unchanged; | 
 |  | 
 | 	trialcs = *cs; | 
 | 	retval = cpulist_parse(buf, trialcs.cpus_allowed); | 
 | 	if (retval < 0) | 
 | 		return retval; | 
 | 	cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map); | 
 | 	if (cpus_empty(trialcs.cpus_allowed)) | 
 | 		return -ENOSPC; | 
 | 	retval = validate_change(cs, &trialcs); | 
 | 	if (retval < 0) | 
 | 		return retval; | 
 | 	cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed); | 
 | 	cs->cpus_allowed = trialcs.cpus_allowed; | 
 | 	if (is_cpu_exclusive(cs) && !cpus_unchanged) | 
 | 		update_cpu_domains(cs); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int update_nodemask(struct cpuset *cs, char *buf) | 
 | { | 
 | 	struct cpuset trialcs; | 
 | 	int retval; | 
 |  | 
 | 	trialcs = *cs; | 
 | 	retval = nodelist_parse(buf, trialcs.mems_allowed); | 
 | 	if (retval < 0) | 
 | 		return retval; | 
 | 	nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map); | 
 | 	if (nodes_empty(trialcs.mems_allowed)) | 
 | 		return -ENOSPC; | 
 | 	retval = validate_change(cs, &trialcs); | 
 | 	if (retval == 0) { | 
 | 		cs->mems_allowed = trialcs.mems_allowed; | 
 | 		atomic_inc(&cpuset_mems_generation); | 
 | 		cs->mems_generation = atomic_read(&cpuset_mems_generation); | 
 | 	} | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * update_flag - read a 0 or a 1 in a file and update associated flag | 
 |  * bit:	the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE, | 
 |  *						CS_NOTIFY_ON_RELEASE) | 
 |  * cs:	the cpuset to update | 
 |  * buf:	the buffer where we read the 0 or 1 | 
 |  */ | 
 |  | 
 | static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf) | 
 | { | 
 | 	int turning_on; | 
 | 	struct cpuset trialcs; | 
 | 	int err, cpu_exclusive_changed; | 
 |  | 
 | 	turning_on = (simple_strtoul(buf, NULL, 10) != 0); | 
 |  | 
 | 	trialcs = *cs; | 
 | 	if (turning_on) | 
 | 		set_bit(bit, &trialcs.flags); | 
 | 	else | 
 | 		clear_bit(bit, &trialcs.flags); | 
 |  | 
 | 	err = validate_change(cs, &trialcs); | 
 | 	if (err < 0) | 
 | 		return err; | 
 | 	cpu_exclusive_changed = | 
 | 		(is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs)); | 
 | 	if (turning_on) | 
 | 		set_bit(bit, &cs->flags); | 
 | 	else | 
 | 		clear_bit(bit, &cs->flags); | 
 |  | 
 | 	if (cpu_exclusive_changed) | 
 |                 update_cpu_domains(cs); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf) | 
 | { | 
 | 	pid_t pid; | 
 | 	struct task_struct *tsk; | 
 | 	struct cpuset *oldcs; | 
 | 	cpumask_t cpus; | 
 |  | 
 | 	if (sscanf(pidbuf, "%d", &pid) != 1) | 
 | 		return -EIO; | 
 | 	if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	if (pid) { | 
 | 		read_lock(&tasklist_lock); | 
 |  | 
 | 		tsk = find_task_by_pid(pid); | 
 | 		if (!tsk) { | 
 | 			read_unlock(&tasklist_lock); | 
 | 			return -ESRCH; | 
 | 		} | 
 |  | 
 | 		get_task_struct(tsk); | 
 | 		read_unlock(&tasklist_lock); | 
 |  | 
 | 		if ((current->euid) && (current->euid != tsk->uid) | 
 | 		    && (current->euid != tsk->suid)) { | 
 | 			put_task_struct(tsk); | 
 | 			return -EACCES; | 
 | 		} | 
 | 	} else { | 
 | 		tsk = current; | 
 | 		get_task_struct(tsk); | 
 | 	} | 
 |  | 
 | 	task_lock(tsk); | 
 | 	oldcs = tsk->cpuset; | 
 | 	if (!oldcs) { | 
 | 		task_unlock(tsk); | 
 | 		put_task_struct(tsk); | 
 | 		return -ESRCH; | 
 | 	} | 
 | 	atomic_inc(&cs->count); | 
 | 	tsk->cpuset = cs; | 
 | 	task_unlock(tsk); | 
 |  | 
 | 	guarantee_online_cpus(cs, &cpus); | 
 | 	set_cpus_allowed(tsk, cpus); | 
 |  | 
 | 	put_task_struct(tsk); | 
 | 	if (atomic_dec_and_test(&oldcs->count)) | 
 | 		check_for_release(oldcs, ppathbuf); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* The various types of files and directories in a cpuset file system */ | 
 |  | 
 | typedef enum { | 
 | 	FILE_ROOT, | 
 | 	FILE_DIR, | 
 | 	FILE_CPULIST, | 
 | 	FILE_MEMLIST, | 
 | 	FILE_CPU_EXCLUSIVE, | 
 | 	FILE_MEM_EXCLUSIVE, | 
 | 	FILE_NOTIFY_ON_RELEASE, | 
 | 	FILE_TASKLIST, | 
 | } cpuset_filetype_t; | 
 |  | 
 | static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf, | 
 | 					size_t nbytes, loff_t *unused_ppos) | 
 | { | 
 | 	struct cpuset *cs = __d_cs(file->f_dentry->d_parent); | 
 | 	struct cftype *cft = __d_cft(file->f_dentry); | 
 | 	cpuset_filetype_t type = cft->private; | 
 | 	char *buffer; | 
 | 	char *pathbuf = NULL; | 
 | 	int retval = 0; | 
 |  | 
 | 	/* Crude upper limit on largest legitimate cpulist user might write. */ | 
 | 	if (nbytes > 100 + 6 * NR_CPUS) | 
 | 		return -E2BIG; | 
 |  | 
 | 	/* +1 for nul-terminator */ | 
 | 	if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (copy_from_user(buffer, userbuf, nbytes)) { | 
 | 		retval = -EFAULT; | 
 | 		goto out1; | 
 | 	} | 
 | 	buffer[nbytes] = 0;	/* nul-terminate */ | 
 |  | 
 | 	down(&cpuset_sem); | 
 |  | 
 | 	if (is_removed(cs)) { | 
 | 		retval = -ENODEV; | 
 | 		goto out2; | 
 | 	} | 
 |  | 
 | 	switch (type) { | 
 | 	case FILE_CPULIST: | 
 | 		retval = update_cpumask(cs, buffer); | 
 | 		break; | 
 | 	case FILE_MEMLIST: | 
 | 		retval = update_nodemask(cs, buffer); | 
 | 		break; | 
 | 	case FILE_CPU_EXCLUSIVE: | 
 | 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer); | 
 | 		break; | 
 | 	case FILE_MEM_EXCLUSIVE: | 
 | 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer); | 
 | 		break; | 
 | 	case FILE_NOTIFY_ON_RELEASE: | 
 | 		retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer); | 
 | 		break; | 
 | 	case FILE_TASKLIST: | 
 | 		retval = attach_task(cs, buffer, &pathbuf); | 
 | 		break; | 
 | 	default: | 
 | 		retval = -EINVAL; | 
 | 		goto out2; | 
 | 	} | 
 |  | 
 | 	if (retval == 0) | 
 | 		retval = nbytes; | 
 | out2: | 
 | 	up(&cpuset_sem); | 
 | 	cpuset_release_agent(pathbuf); | 
 | out1: | 
 | 	kfree(buffer); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static ssize_t cpuset_file_write(struct file *file, const char __user *buf, | 
 | 						size_t nbytes, loff_t *ppos) | 
 | { | 
 | 	ssize_t retval = 0; | 
 | 	struct cftype *cft = __d_cft(file->f_dentry); | 
 | 	if (!cft) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* special function ? */ | 
 | 	if (cft->write) | 
 | 		retval = cft->write(file, buf, nbytes, ppos); | 
 | 	else | 
 | 		retval = cpuset_common_file_write(file, buf, nbytes, ppos); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * These ascii lists should be read in a single call, by using a user | 
 |  * buffer large enough to hold the entire map.  If read in smaller | 
 |  * chunks, there is no guarantee of atomicity.  Since the display format | 
 |  * used, list of ranges of sequential numbers, is variable length, | 
 |  * and since these maps can change value dynamically, one could read | 
 |  * gibberish by doing partial reads while a list was changing. | 
 |  * A single large read to a buffer that crosses a page boundary is | 
 |  * ok, because the result being copied to user land is not recomputed | 
 |  * across a page fault. | 
 |  */ | 
 |  | 
 | static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs) | 
 | { | 
 | 	cpumask_t mask; | 
 |  | 
 | 	down(&cpuset_sem); | 
 | 	mask = cs->cpus_allowed; | 
 | 	up(&cpuset_sem); | 
 |  | 
 | 	return cpulist_scnprintf(page, PAGE_SIZE, mask); | 
 | } | 
 |  | 
 | static int cpuset_sprintf_memlist(char *page, struct cpuset *cs) | 
 | { | 
 | 	nodemask_t mask; | 
 |  | 
 | 	down(&cpuset_sem); | 
 | 	mask = cs->mems_allowed; | 
 | 	up(&cpuset_sem); | 
 |  | 
 | 	return nodelist_scnprintf(page, PAGE_SIZE, mask); | 
 | } | 
 |  | 
 | static ssize_t cpuset_common_file_read(struct file *file, char __user *buf, | 
 | 				size_t nbytes, loff_t *ppos) | 
 | { | 
 | 	struct cftype *cft = __d_cft(file->f_dentry); | 
 | 	struct cpuset *cs = __d_cs(file->f_dentry->d_parent); | 
 | 	cpuset_filetype_t type = cft->private; | 
 | 	char *page; | 
 | 	ssize_t retval = 0; | 
 | 	char *s; | 
 | 	char *start; | 
 | 	size_t n; | 
 |  | 
 | 	if (!(page = (char *)__get_free_page(GFP_KERNEL))) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	s = page; | 
 |  | 
 | 	switch (type) { | 
 | 	case FILE_CPULIST: | 
 | 		s += cpuset_sprintf_cpulist(s, cs); | 
 | 		break; | 
 | 	case FILE_MEMLIST: | 
 | 		s += cpuset_sprintf_memlist(s, cs); | 
 | 		break; | 
 | 	case FILE_CPU_EXCLUSIVE: | 
 | 		*s++ = is_cpu_exclusive(cs) ? '1' : '0'; | 
 | 		break; | 
 | 	case FILE_MEM_EXCLUSIVE: | 
 | 		*s++ = is_mem_exclusive(cs) ? '1' : '0'; | 
 | 		break; | 
 | 	case FILE_NOTIFY_ON_RELEASE: | 
 | 		*s++ = notify_on_release(cs) ? '1' : '0'; | 
 | 		break; | 
 | 	default: | 
 | 		retval = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | 	*s++ = '\n'; | 
 | 	*s = '\0'; | 
 |  | 
 | 	start = page + *ppos; | 
 | 	n = s - start; | 
 | 	retval = n - copy_to_user(buf, start, min(n, nbytes)); | 
 | 	*ppos += retval; | 
 | out: | 
 | 	free_page((unsigned long)page); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes, | 
 | 								loff_t *ppos) | 
 | { | 
 | 	ssize_t retval = 0; | 
 | 	struct cftype *cft = __d_cft(file->f_dentry); | 
 | 	if (!cft) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* special function ? */ | 
 | 	if (cft->read) | 
 | 		retval = cft->read(file, buf, nbytes, ppos); | 
 | 	else | 
 | 		retval = cpuset_common_file_read(file, buf, nbytes, ppos); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int cpuset_file_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	int err; | 
 | 	struct cftype *cft; | 
 |  | 
 | 	err = generic_file_open(inode, file); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	cft = __d_cft(file->f_dentry); | 
 | 	if (!cft) | 
 | 		return -ENODEV; | 
 | 	if (cft->open) | 
 | 		err = cft->open(inode, file); | 
 | 	else | 
 | 		err = 0; | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int cpuset_file_release(struct inode *inode, struct file *file) | 
 | { | 
 | 	struct cftype *cft = __d_cft(file->f_dentry); | 
 | 	if (cft->release) | 
 | 		return cft->release(inode, file); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct file_operations cpuset_file_operations = { | 
 | 	.read = cpuset_file_read, | 
 | 	.write = cpuset_file_write, | 
 | 	.llseek = generic_file_llseek, | 
 | 	.open = cpuset_file_open, | 
 | 	.release = cpuset_file_release, | 
 | }; | 
 |  | 
 | static struct inode_operations cpuset_dir_inode_operations = { | 
 | 	.lookup = simple_lookup, | 
 | 	.mkdir = cpuset_mkdir, | 
 | 	.rmdir = cpuset_rmdir, | 
 | }; | 
 |  | 
 | static int cpuset_create_file(struct dentry *dentry, int mode) | 
 | { | 
 | 	struct inode *inode; | 
 |  | 
 | 	if (!dentry) | 
 | 		return -ENOENT; | 
 | 	if (dentry->d_inode) | 
 | 		return -EEXIST; | 
 |  | 
 | 	inode = cpuset_new_inode(mode); | 
 | 	if (!inode) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (S_ISDIR(mode)) { | 
 | 		inode->i_op = &cpuset_dir_inode_operations; | 
 | 		inode->i_fop = &simple_dir_operations; | 
 |  | 
 | 		/* start off with i_nlink == 2 (for "." entry) */ | 
 | 		inode->i_nlink++; | 
 | 	} else if (S_ISREG(mode)) { | 
 | 		inode->i_size = 0; | 
 | 		inode->i_fop = &cpuset_file_operations; | 
 | 	} | 
 |  | 
 | 	d_instantiate(dentry, inode); | 
 | 	dget(dentry);	/* Extra count - pin the dentry in core */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  *	cpuset_create_dir - create a directory for an object. | 
 |  *	cs: 	the cpuset we create the directory for. | 
 |  *		It must have a valid ->parent field | 
 |  *		And we are going to fill its ->dentry field. | 
 |  *	name:	The name to give to the cpuset directory. Will be copied. | 
 |  *	mode:	mode to set on new directory. | 
 |  */ | 
 |  | 
 | static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode) | 
 | { | 
 | 	struct dentry *dentry = NULL; | 
 | 	struct dentry *parent; | 
 | 	int error = 0; | 
 |  | 
 | 	parent = cs->parent->dentry; | 
 | 	dentry = cpuset_get_dentry(parent, name); | 
 | 	if (IS_ERR(dentry)) | 
 | 		return PTR_ERR(dentry); | 
 | 	error = cpuset_create_file(dentry, S_IFDIR | mode); | 
 | 	if (!error) { | 
 | 		dentry->d_fsdata = cs; | 
 | 		parent->d_inode->i_nlink++; | 
 | 		cs->dentry = dentry; | 
 | 	} | 
 | 	dput(dentry); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | static int cpuset_add_file(struct dentry *dir, const struct cftype *cft) | 
 | { | 
 | 	struct dentry *dentry; | 
 | 	int error; | 
 |  | 
 | 	down(&dir->d_inode->i_sem); | 
 | 	dentry = cpuset_get_dentry(dir, cft->name); | 
 | 	if (!IS_ERR(dentry)) { | 
 | 		error = cpuset_create_file(dentry, 0644 | S_IFREG); | 
 | 		if (!error) | 
 | 			dentry->d_fsdata = (void *)cft; | 
 | 		dput(dentry); | 
 | 	} else | 
 | 		error = PTR_ERR(dentry); | 
 | 	up(&dir->d_inode->i_sem); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Stuff for reading the 'tasks' file. | 
 |  * | 
 |  * Reading this file can return large amounts of data if a cpuset has | 
 |  * *lots* of attached tasks. So it may need several calls to read(), | 
 |  * but we cannot guarantee that the information we produce is correct | 
 |  * unless we produce it entirely atomically. | 
 |  * | 
 |  * Upon tasks file open(), a struct ctr_struct is allocated, that | 
 |  * will have a pointer to an array (also allocated here).  The struct | 
 |  * ctr_struct * is stored in file->private_data.  Its resources will | 
 |  * be freed by release() when the file is closed.  The array is used | 
 |  * to sprintf the PIDs and then used by read(). | 
 |  */ | 
 |  | 
 | /* cpusets_tasks_read array */ | 
 |  | 
 | struct ctr_struct { | 
 | 	char *buf; | 
 | 	int bufsz; | 
 | }; | 
 |  | 
 | /* | 
 |  * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'. | 
 |  * Return actual number of pids loaded. | 
 |  */ | 
 | static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs) | 
 | { | 
 | 	int n = 0; | 
 | 	struct task_struct *g, *p; | 
 |  | 
 | 	read_lock(&tasklist_lock); | 
 |  | 
 | 	do_each_thread(g, p) { | 
 | 		if (p->cpuset == cs) { | 
 | 			pidarray[n++] = p->pid; | 
 | 			if (unlikely(n == npids)) | 
 | 				goto array_full; | 
 | 		} | 
 | 	} while_each_thread(g, p); | 
 |  | 
 | array_full: | 
 | 	read_unlock(&tasklist_lock); | 
 | 	return n; | 
 | } | 
 |  | 
 | static int cmppid(const void *a, const void *b) | 
 | { | 
 | 	return *(pid_t *)a - *(pid_t *)b; | 
 | } | 
 |  | 
 | /* | 
 |  * Convert array 'a' of 'npids' pid_t's to a string of newline separated | 
 |  * decimal pids in 'buf'.  Don't write more than 'sz' chars, but return | 
 |  * count 'cnt' of how many chars would be written if buf were large enough. | 
 |  */ | 
 | static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids) | 
 | { | 
 | 	int cnt = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < npids; i++) | 
 | 		cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]); | 
 | 	return cnt; | 
 | } | 
 |  | 
 | static int cpuset_tasks_open(struct inode *unused, struct file *file) | 
 | { | 
 | 	struct cpuset *cs = __d_cs(file->f_dentry->d_parent); | 
 | 	struct ctr_struct *ctr; | 
 | 	pid_t *pidarray; | 
 | 	int npids; | 
 | 	char c; | 
 |  | 
 | 	if (!(file->f_mode & FMODE_READ)) | 
 | 		return 0; | 
 |  | 
 | 	ctr = kmalloc(sizeof(*ctr), GFP_KERNEL); | 
 | 	if (!ctr) | 
 | 		goto err0; | 
 |  | 
 | 	/* | 
 | 	 * If cpuset gets more users after we read count, we won't have | 
 | 	 * enough space - tough.  This race is indistinguishable to the | 
 | 	 * caller from the case that the additional cpuset users didn't | 
 | 	 * show up until sometime later on. | 
 | 	 */ | 
 | 	npids = atomic_read(&cs->count); | 
 | 	pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL); | 
 | 	if (!pidarray) | 
 | 		goto err1; | 
 |  | 
 | 	npids = pid_array_load(pidarray, npids, cs); | 
 | 	sort(pidarray, npids, sizeof(pid_t), cmppid, NULL); | 
 |  | 
 | 	/* Call pid_array_to_buf() twice, first just to get bufsz */ | 
 | 	ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1; | 
 | 	ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL); | 
 | 	if (!ctr->buf) | 
 | 		goto err2; | 
 | 	ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids); | 
 |  | 
 | 	kfree(pidarray); | 
 | 	file->private_data = ctr; | 
 | 	return 0; | 
 |  | 
 | err2: | 
 | 	kfree(pidarray); | 
 | err1: | 
 | 	kfree(ctr); | 
 | err0: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static ssize_t cpuset_tasks_read(struct file *file, char __user *buf, | 
 | 						size_t nbytes, loff_t *ppos) | 
 | { | 
 | 	struct ctr_struct *ctr = file->private_data; | 
 |  | 
 | 	if (*ppos + nbytes > ctr->bufsz) | 
 | 		nbytes = ctr->bufsz - *ppos; | 
 | 	if (copy_to_user(buf, ctr->buf + *ppos, nbytes)) | 
 | 		return -EFAULT; | 
 | 	*ppos += nbytes; | 
 | 	return nbytes; | 
 | } | 
 |  | 
 | static int cpuset_tasks_release(struct inode *unused_inode, struct file *file) | 
 | { | 
 | 	struct ctr_struct *ctr; | 
 |  | 
 | 	if (file->f_mode & FMODE_READ) { | 
 | 		ctr = file->private_data; | 
 | 		kfree(ctr->buf); | 
 | 		kfree(ctr); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * for the common functions, 'private' gives the type of file | 
 |  */ | 
 |  | 
 | static struct cftype cft_tasks = { | 
 | 	.name = "tasks", | 
 | 	.open = cpuset_tasks_open, | 
 | 	.read = cpuset_tasks_read, | 
 | 	.release = cpuset_tasks_release, | 
 | 	.private = FILE_TASKLIST, | 
 | }; | 
 |  | 
 | static struct cftype cft_cpus = { | 
 | 	.name = "cpus", | 
 | 	.private = FILE_CPULIST, | 
 | }; | 
 |  | 
 | static struct cftype cft_mems = { | 
 | 	.name = "mems", | 
 | 	.private = FILE_MEMLIST, | 
 | }; | 
 |  | 
 | static struct cftype cft_cpu_exclusive = { | 
 | 	.name = "cpu_exclusive", | 
 | 	.private = FILE_CPU_EXCLUSIVE, | 
 | }; | 
 |  | 
 | static struct cftype cft_mem_exclusive = { | 
 | 	.name = "mem_exclusive", | 
 | 	.private = FILE_MEM_EXCLUSIVE, | 
 | }; | 
 |  | 
 | static struct cftype cft_notify_on_release = { | 
 | 	.name = "notify_on_release", | 
 | 	.private = FILE_NOTIFY_ON_RELEASE, | 
 | }; | 
 |  | 
 | static int cpuset_populate_dir(struct dentry *cs_dentry) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0) | 
 | 		return err; | 
 | 	if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0) | 
 | 		return err; | 
 | 	if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0) | 
 | 		return err; | 
 | 	if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0) | 
 | 		return err; | 
 | 	if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0) | 
 | 		return err; | 
 | 	if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0) | 
 | 		return err; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  *	cpuset_create - create a cpuset | 
 |  *	parent:	cpuset that will be parent of the new cpuset. | 
 |  *	name:		name of the new cpuset. Will be strcpy'ed. | 
 |  *	mode:		mode to set on new inode | 
 |  * | 
 |  *	Must be called with the semaphore on the parent inode held | 
 |  */ | 
 |  | 
 | static long cpuset_create(struct cpuset *parent, const char *name, int mode) | 
 | { | 
 | 	struct cpuset *cs; | 
 | 	int err; | 
 |  | 
 | 	cs = kmalloc(sizeof(*cs), GFP_KERNEL); | 
 | 	if (!cs) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	down(&cpuset_sem); | 
 | 	refresh_mems(); | 
 | 	cs->flags = 0; | 
 | 	if (notify_on_release(parent)) | 
 | 		set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags); | 
 | 	cs->cpus_allowed = CPU_MASK_NONE; | 
 | 	cs->mems_allowed = NODE_MASK_NONE; | 
 | 	atomic_set(&cs->count, 0); | 
 | 	INIT_LIST_HEAD(&cs->sibling); | 
 | 	INIT_LIST_HEAD(&cs->children); | 
 | 	atomic_inc(&cpuset_mems_generation); | 
 | 	cs->mems_generation = atomic_read(&cpuset_mems_generation); | 
 |  | 
 | 	cs->parent = parent; | 
 |  | 
 | 	list_add(&cs->sibling, &cs->parent->children); | 
 |  | 
 | 	err = cpuset_create_dir(cs, name, mode); | 
 | 	if (err < 0) | 
 | 		goto err; | 
 |  | 
 | 	/* | 
 | 	 * Release cpuset_sem before cpuset_populate_dir() because it | 
 | 	 * will down() this new directory's i_sem and if we race with | 
 | 	 * another mkdir, we might deadlock. | 
 | 	 */ | 
 | 	up(&cpuset_sem); | 
 |  | 
 | 	err = cpuset_populate_dir(cs->dentry); | 
 | 	/* If err < 0, we have a half-filled directory - oh well ;) */ | 
 | 	return 0; | 
 | err: | 
 | 	list_del(&cs->sibling); | 
 | 	up(&cpuset_sem); | 
 | 	kfree(cs); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode) | 
 | { | 
 | 	struct cpuset *c_parent = dentry->d_parent->d_fsdata; | 
 |  | 
 | 	/* the vfs holds inode->i_sem already */ | 
 | 	return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR); | 
 | } | 
 |  | 
 | static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry) | 
 | { | 
 | 	struct cpuset *cs = dentry->d_fsdata; | 
 | 	struct dentry *d; | 
 | 	struct cpuset *parent; | 
 | 	char *pathbuf = NULL; | 
 |  | 
 | 	/* the vfs holds both inode->i_sem already */ | 
 |  | 
 | 	down(&cpuset_sem); | 
 | 	refresh_mems(); | 
 | 	if (atomic_read(&cs->count) > 0) { | 
 | 		up(&cpuset_sem); | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	if (!list_empty(&cs->children)) { | 
 | 		up(&cpuset_sem); | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	parent = cs->parent; | 
 | 	set_bit(CS_REMOVED, &cs->flags); | 
 | 	if (is_cpu_exclusive(cs)) | 
 | 		update_cpu_domains(cs); | 
 | 	list_del(&cs->sibling);	/* delete my sibling from parent->children */ | 
 | 	if (list_empty(&parent->children)) | 
 | 		check_for_release(parent, &pathbuf); | 
 | 	spin_lock(&cs->dentry->d_lock); | 
 | 	d = dget(cs->dentry); | 
 | 	cs->dentry = NULL; | 
 | 	spin_unlock(&d->d_lock); | 
 | 	cpuset_d_remove_dir(d); | 
 | 	dput(d); | 
 | 	up(&cpuset_sem); | 
 | 	cpuset_release_agent(pathbuf); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_init - initialize cpusets at system boot | 
 |  * | 
 |  * Description: Initialize top_cpuset and the cpuset internal file system, | 
 |  **/ | 
 |  | 
 | int __init cpuset_init(void) | 
 | { | 
 | 	struct dentry *root; | 
 | 	int err; | 
 |  | 
 | 	top_cpuset.cpus_allowed = CPU_MASK_ALL; | 
 | 	top_cpuset.mems_allowed = NODE_MASK_ALL; | 
 |  | 
 | 	atomic_inc(&cpuset_mems_generation); | 
 | 	top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation); | 
 |  | 
 | 	init_task.cpuset = &top_cpuset; | 
 |  | 
 | 	err = register_filesystem(&cpuset_fs_type); | 
 | 	if (err < 0) | 
 | 		goto out; | 
 | 	cpuset_mount = kern_mount(&cpuset_fs_type); | 
 | 	if (IS_ERR(cpuset_mount)) { | 
 | 		printk(KERN_ERR "cpuset: could not mount!\n"); | 
 | 		err = PTR_ERR(cpuset_mount); | 
 | 		cpuset_mount = NULL; | 
 | 		goto out; | 
 | 	} | 
 | 	root = cpuset_mount->mnt_sb->s_root; | 
 | 	root->d_fsdata = &top_cpuset; | 
 | 	root->d_inode->i_nlink++; | 
 | 	top_cpuset.dentry = root; | 
 | 	root->d_inode->i_op = &cpuset_dir_inode_operations; | 
 | 	err = cpuset_populate_dir(root); | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_init_smp - initialize cpus_allowed | 
 |  * | 
 |  * Description: Finish top cpuset after cpu, node maps are initialized | 
 |  **/ | 
 |  | 
 | void __init cpuset_init_smp(void) | 
 | { | 
 | 	top_cpuset.cpus_allowed = cpu_online_map; | 
 | 	top_cpuset.mems_allowed = node_online_map; | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_fork - attach newly forked task to its parents cpuset. | 
 |  * @tsk: pointer to task_struct of forking parent process. | 
 |  * | 
 |  * Description: By default, on fork, a task inherits its | 
 |  * parent's cpuset.  The pointer to the shared cpuset is | 
 |  * automatically copied in fork.c by dup_task_struct(). | 
 |  * This cpuset_fork() routine need only increment the usage | 
 |  * counter in that cpuset. | 
 |  **/ | 
 |  | 
 | void cpuset_fork(struct task_struct *tsk) | 
 | { | 
 | 	atomic_inc(&tsk->cpuset->count); | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_exit - detach cpuset from exiting task | 
 |  * @tsk: pointer to task_struct of exiting process | 
 |  * | 
 |  * Description: Detach cpuset from @tsk and release it. | 
 |  * | 
 |  * Note that cpusets marked notify_on_release force every task | 
 |  * in them to take the global cpuset_sem semaphore when exiting. | 
 |  * This could impact scaling on very large systems.  Be reluctant | 
 |  * to use notify_on_release cpusets where very high task exit | 
 |  * scaling is required on large systems. | 
 |  * | 
 |  * Don't even think about derefencing 'cs' after the cpuset use | 
 |  * count goes to zero, except inside a critical section guarded | 
 |  * by the cpuset_sem semaphore.  If you don't hold cpuset_sem, | 
 |  * then a zero cpuset use count is a license to any other task to | 
 |  * nuke the cpuset immediately. | 
 |  **/ | 
 |  | 
 | void cpuset_exit(struct task_struct *tsk) | 
 | { | 
 | 	struct cpuset *cs; | 
 |  | 
 | 	task_lock(tsk); | 
 | 	cs = tsk->cpuset; | 
 | 	tsk->cpuset = NULL; | 
 | 	task_unlock(tsk); | 
 |  | 
 | 	if (notify_on_release(cs)) { | 
 | 		char *pathbuf = NULL; | 
 |  | 
 | 		down(&cpuset_sem); | 
 | 		if (atomic_dec_and_test(&cs->count)) | 
 | 			check_for_release(cs, &pathbuf); | 
 | 		up(&cpuset_sem); | 
 | 		cpuset_release_agent(pathbuf); | 
 | 	} else { | 
 | 		atomic_dec(&cs->count); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. | 
 |  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. | 
 |  * | 
 |  * Description: Returns the cpumask_t cpus_allowed of the cpuset | 
 |  * attached to the specified @tsk.  Guaranteed to return some non-empty | 
 |  * subset of cpu_online_map, even if this means going outside the | 
 |  * tasks cpuset. | 
 |  **/ | 
 |  | 
 | cpumask_t cpuset_cpus_allowed(const struct task_struct *tsk) | 
 | { | 
 | 	cpumask_t mask; | 
 |  | 
 | 	down(&cpuset_sem); | 
 | 	task_lock((struct task_struct *)tsk); | 
 | 	guarantee_online_cpus(tsk->cpuset, &mask); | 
 | 	task_unlock((struct task_struct *)tsk); | 
 | 	up(&cpuset_sem); | 
 |  | 
 | 	return mask; | 
 | } | 
 |  | 
 | void cpuset_init_current_mems_allowed(void) | 
 | { | 
 | 	current->mems_allowed = NODE_MASK_ALL; | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_update_current_mems_allowed - update mems parameters to new values | 
 |  * | 
 |  * If the current tasks cpusets mems_allowed changed behind our backs, | 
 |  * update current->mems_allowed and mems_generation to the new value. | 
 |  * Do not call this routine if in_interrupt(). | 
 |  */ | 
 |  | 
 | void cpuset_update_current_mems_allowed(void) | 
 | { | 
 | 	struct cpuset *cs = current->cpuset; | 
 |  | 
 | 	if (!cs) | 
 | 		return;		/* task is exiting */ | 
 | 	if (current->cpuset_mems_generation != cs->mems_generation) { | 
 | 		down(&cpuset_sem); | 
 | 		refresh_mems(); | 
 | 		up(&cpuset_sem); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_restrict_to_mems_allowed - limit nodes to current mems_allowed | 
 |  * @nodes: pointer to a node bitmap that is and-ed with mems_allowed | 
 |  */ | 
 | void cpuset_restrict_to_mems_allowed(unsigned long *nodes) | 
 | { | 
 | 	bitmap_and(nodes, nodes, nodes_addr(current->mems_allowed), | 
 | 							MAX_NUMNODES); | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed | 
 |  * @zl: the zonelist to be checked | 
 |  * | 
 |  * Are any of the nodes on zonelist zl allowed in current->mems_allowed? | 
 |  */ | 
 | int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; zl->zones[i]; i++) { | 
 | 		int nid = zl->zones[i]->zone_pgdat->node_id; | 
 |  | 
 | 		if (node_isset(nid, current->mems_allowed)) | 
 | 			return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_zone_allowed - is zone z allowed in current->mems_allowed | 
 |  * @z: zone in question | 
 |  * | 
 |  * Is zone z allowed in current->mems_allowed, or is | 
 |  * the CPU in interrupt context? (zone is always allowed in this case) | 
 |  */ | 
 | int cpuset_zone_allowed(struct zone *z) | 
 | { | 
 | 	return in_interrupt() || | 
 | 		node_isset(z->zone_pgdat->node_id, current->mems_allowed); | 
 | } | 
 |  | 
 | /* | 
 |  * proc_cpuset_show() | 
 |  *  - Print tasks cpuset path into seq_file. | 
 |  *  - Used for /proc/<pid>/cpuset. | 
 |  */ | 
 |  | 
 | static int proc_cpuset_show(struct seq_file *m, void *v) | 
 | { | 
 | 	struct cpuset *cs; | 
 | 	struct task_struct *tsk; | 
 | 	char *buf; | 
 | 	int retval = 0; | 
 |  | 
 | 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
 | 	if (!buf) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	tsk = m->private; | 
 | 	down(&cpuset_sem); | 
 | 	task_lock(tsk); | 
 | 	cs = tsk->cpuset; | 
 | 	task_unlock(tsk); | 
 | 	if (!cs) { | 
 | 		retval = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	retval = cpuset_path(cs, buf, PAGE_SIZE); | 
 | 	if (retval < 0) | 
 | 		goto out; | 
 | 	seq_puts(m, buf); | 
 | 	seq_putc(m, '\n'); | 
 | out: | 
 | 	up(&cpuset_sem); | 
 | 	kfree(buf); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int cpuset_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	struct task_struct *tsk = PROC_I(inode)->task; | 
 | 	return single_open(file, proc_cpuset_show, tsk); | 
 | } | 
 |  | 
 | struct file_operations proc_cpuset_operations = { | 
 | 	.open		= cpuset_open, | 
 | 	.read		= seq_read, | 
 | 	.llseek		= seq_lseek, | 
 | 	.release	= single_release, | 
 | }; | 
 |  | 
 | /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */ | 
 | char *cpuset_task_status_allowed(struct task_struct *task, char *buffer) | 
 | { | 
 | 	buffer += sprintf(buffer, "Cpus_allowed:\t"); | 
 | 	buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed); | 
 | 	buffer += sprintf(buffer, "\n"); | 
 | 	buffer += sprintf(buffer, "Mems_allowed:\t"); | 
 | 	buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed); | 
 | 	buffer += sprintf(buffer, "\n"); | 
 | 	return buffer; | 
 | } |