|  | /* | 
|  | * Copyright (c) 2006, Intel Corporation. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms and conditions of the GNU General Public License, | 
|  | * version 2, as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along with | 
|  | * this program; if not, write to the Free Software Foundation, Inc., 59 Temple | 
|  | * Place - Suite 330, Boston, MA 02111-1307 USA. | 
|  | * | 
|  | * Copyright (C) 2006-2008 Intel Corporation | 
|  | * Author: Ashok Raj <ashok.raj@intel.com> | 
|  | * Author: Shaohua Li <shaohua.li@intel.com> | 
|  | * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> | 
|  | * Author: Fenghua Yu <fenghua.yu@intel.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/bitmap.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/dmar.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/mempool.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/iova.h> | 
|  | #include <linux/iommu.h> | 
|  | #include <linux/intel-iommu.h> | 
|  | #include <linux/syscore_ops.h> | 
|  | #include <linux/tboot.h> | 
|  | #include <linux/dmi.h> | 
|  | #include <linux/pci-ats.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/iommu.h> | 
|  |  | 
|  | #define ROOT_SIZE		VTD_PAGE_SIZE | 
|  | #define CONTEXT_SIZE		VTD_PAGE_SIZE | 
|  |  | 
|  | #define IS_BRIDGE_HOST_DEVICE(pdev) \ | 
|  | ((pdev->class >> 8) == PCI_CLASS_BRIDGE_HOST) | 
|  | #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) | 
|  | #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) | 
|  | #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e) | 
|  |  | 
|  | #define IOAPIC_RANGE_START	(0xfee00000) | 
|  | #define IOAPIC_RANGE_END	(0xfeefffff) | 
|  | #define IOVA_START_ADDR		(0x1000) | 
|  |  | 
|  | #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48 | 
|  |  | 
|  | #define MAX_AGAW_WIDTH 64 | 
|  |  | 
|  | #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1) | 
|  | #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1) | 
|  |  | 
|  | /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR | 
|  | to match. That way, we can use 'unsigned long' for PFNs with impunity. */ | 
|  | #define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \ | 
|  | __DOMAIN_MAX_PFN(gaw), (unsigned long)-1)) | 
|  | #define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT) | 
|  |  | 
|  | #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT) | 
|  | #define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32)) | 
|  | #define DMA_64BIT_PFN		IOVA_PFN(DMA_BIT_MASK(64)) | 
|  |  | 
|  | /* page table handling */ | 
|  | #define LEVEL_STRIDE		(9) | 
|  | #define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1) | 
|  |  | 
|  | static inline int agaw_to_level(int agaw) | 
|  | { | 
|  | return agaw + 2; | 
|  | } | 
|  |  | 
|  | static inline int agaw_to_width(int agaw) | 
|  | { | 
|  | return 30 + agaw * LEVEL_STRIDE; | 
|  | } | 
|  |  | 
|  | static inline int width_to_agaw(int width) | 
|  | { | 
|  | return (width - 30) / LEVEL_STRIDE; | 
|  | } | 
|  |  | 
|  | static inline unsigned int level_to_offset_bits(int level) | 
|  | { | 
|  | return (level - 1) * LEVEL_STRIDE; | 
|  | } | 
|  |  | 
|  | static inline int pfn_level_offset(unsigned long pfn, int level) | 
|  | { | 
|  | return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK; | 
|  | } | 
|  |  | 
|  | static inline unsigned long level_mask(int level) | 
|  | { | 
|  | return -1UL << level_to_offset_bits(level); | 
|  | } | 
|  |  | 
|  | static inline unsigned long level_size(int level) | 
|  | { | 
|  | return 1UL << level_to_offset_bits(level); | 
|  | } | 
|  |  | 
|  | static inline unsigned long align_to_level(unsigned long pfn, int level) | 
|  | { | 
|  | return (pfn + level_size(level) - 1) & level_mask(level); | 
|  | } | 
|  |  | 
|  | static inline unsigned long lvl_to_nr_pages(unsigned int lvl) | 
|  | { | 
|  | return  1 << ((lvl - 1) * LEVEL_STRIDE); | 
|  | } | 
|  |  | 
|  | /* VT-d pages must always be _smaller_ than MM pages. Otherwise things | 
|  | are never going to work. */ | 
|  | static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn) | 
|  | { | 
|  | return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn) | 
|  | { | 
|  | return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT); | 
|  | } | 
|  | static inline unsigned long page_to_dma_pfn(struct page *pg) | 
|  | { | 
|  | return mm_to_dma_pfn(page_to_pfn(pg)); | 
|  | } | 
|  | static inline unsigned long virt_to_dma_pfn(void *p) | 
|  | { | 
|  | return page_to_dma_pfn(virt_to_page(p)); | 
|  | } | 
|  |  | 
|  | /* global iommu list, set NULL for ignored DMAR units */ | 
|  | static struct intel_iommu **g_iommus; | 
|  |  | 
|  | static void __init check_tylersburg_isoch(void); | 
|  | static int rwbf_quirk; | 
|  |  | 
|  | /* | 
|  | * set to 1 to panic kernel if can't successfully enable VT-d | 
|  | * (used when kernel is launched w/ TXT) | 
|  | */ | 
|  | static int force_on = 0; | 
|  |  | 
|  | /* | 
|  | * 0: Present | 
|  | * 1-11: Reserved | 
|  | * 12-63: Context Ptr (12 - (haw-1)) | 
|  | * 64-127: Reserved | 
|  | */ | 
|  | struct root_entry { | 
|  | u64	val; | 
|  | u64	rsvd1; | 
|  | }; | 
|  | #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry)) | 
|  | static inline bool root_present(struct root_entry *root) | 
|  | { | 
|  | return (root->val & 1); | 
|  | } | 
|  | static inline void set_root_present(struct root_entry *root) | 
|  | { | 
|  | root->val |= 1; | 
|  | } | 
|  | static inline void set_root_value(struct root_entry *root, unsigned long value) | 
|  | { | 
|  | root->val |= value & VTD_PAGE_MASK; | 
|  | } | 
|  |  | 
|  | static inline struct context_entry * | 
|  | get_context_addr_from_root(struct root_entry *root) | 
|  | { | 
|  | return (struct context_entry *) | 
|  | (root_present(root)?phys_to_virt( | 
|  | root->val & VTD_PAGE_MASK) : | 
|  | NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * low 64 bits: | 
|  | * 0: present | 
|  | * 1: fault processing disable | 
|  | * 2-3: translation type | 
|  | * 12-63: address space root | 
|  | * high 64 bits: | 
|  | * 0-2: address width | 
|  | * 3-6: aval | 
|  | * 8-23: domain id | 
|  | */ | 
|  | struct context_entry { | 
|  | u64 lo; | 
|  | u64 hi; | 
|  | }; | 
|  |  | 
|  | static inline bool context_present(struct context_entry *context) | 
|  | { | 
|  | return (context->lo & 1); | 
|  | } | 
|  | static inline void context_set_present(struct context_entry *context) | 
|  | { | 
|  | context->lo |= 1; | 
|  | } | 
|  |  | 
|  | static inline void context_set_fault_enable(struct context_entry *context) | 
|  | { | 
|  | context->lo &= (((u64)-1) << 2) | 1; | 
|  | } | 
|  |  | 
|  | static inline void context_set_translation_type(struct context_entry *context, | 
|  | unsigned long value) | 
|  | { | 
|  | context->lo &= (((u64)-1) << 4) | 3; | 
|  | context->lo |= (value & 3) << 2; | 
|  | } | 
|  |  | 
|  | static inline void context_set_address_root(struct context_entry *context, | 
|  | unsigned long value) | 
|  | { | 
|  | context->lo |= value & VTD_PAGE_MASK; | 
|  | } | 
|  |  | 
|  | static inline void context_set_address_width(struct context_entry *context, | 
|  | unsigned long value) | 
|  | { | 
|  | context->hi |= value & 7; | 
|  | } | 
|  |  | 
|  | static inline void context_set_domain_id(struct context_entry *context, | 
|  | unsigned long value) | 
|  | { | 
|  | context->hi |= (value & ((1 << 16) - 1)) << 8; | 
|  | } | 
|  |  | 
|  | static inline void context_clear_entry(struct context_entry *context) | 
|  | { | 
|  | context->lo = 0; | 
|  | context->hi = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 0: readable | 
|  | * 1: writable | 
|  | * 2-6: reserved | 
|  | * 7: super page | 
|  | * 8-10: available | 
|  | * 11: snoop behavior | 
|  | * 12-63: Host physcial address | 
|  | */ | 
|  | struct dma_pte { | 
|  | u64 val; | 
|  | }; | 
|  |  | 
|  | static inline void dma_clear_pte(struct dma_pte *pte) | 
|  | { | 
|  | pte->val = 0; | 
|  | } | 
|  |  | 
|  | static inline void dma_set_pte_readable(struct dma_pte *pte) | 
|  | { | 
|  | pte->val |= DMA_PTE_READ; | 
|  | } | 
|  |  | 
|  | static inline void dma_set_pte_writable(struct dma_pte *pte) | 
|  | { | 
|  | pte->val |= DMA_PTE_WRITE; | 
|  | } | 
|  |  | 
|  | static inline void dma_set_pte_snp(struct dma_pte *pte) | 
|  | { | 
|  | pte->val |= DMA_PTE_SNP; | 
|  | } | 
|  |  | 
|  | static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot) | 
|  | { | 
|  | pte->val = (pte->val & ~3) | (prot & 3); | 
|  | } | 
|  |  | 
|  | static inline u64 dma_pte_addr(struct dma_pte *pte) | 
|  | { | 
|  | #ifdef CONFIG_64BIT | 
|  | return pte->val & VTD_PAGE_MASK; | 
|  | #else | 
|  | /* Must have a full atomic 64-bit read */ | 
|  | return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn) | 
|  | { | 
|  | pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | static inline bool dma_pte_present(struct dma_pte *pte) | 
|  | { | 
|  | return (pte->val & 3) != 0; | 
|  | } | 
|  |  | 
|  | static inline int first_pte_in_page(struct dma_pte *pte) | 
|  | { | 
|  | return !((unsigned long)pte & ~VTD_PAGE_MASK); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This domain is a statically identity mapping domain. | 
|  | *	1. This domain creats a static 1:1 mapping to all usable memory. | 
|  | * 	2. It maps to each iommu if successful. | 
|  | *	3. Each iommu mapps to this domain if successful. | 
|  | */ | 
|  | static struct dmar_domain *si_domain; | 
|  | static int hw_pass_through = 1; | 
|  |  | 
|  | /* devices under the same p2p bridge are owned in one domain */ | 
|  | #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0) | 
|  |  | 
|  | /* domain represents a virtual machine, more than one devices | 
|  | * across iommus may be owned in one domain, e.g. kvm guest. | 
|  | */ | 
|  | #define DOMAIN_FLAG_VIRTUAL_MACHINE	(1 << 1) | 
|  |  | 
|  | /* si_domain contains mulitple devices */ | 
|  | #define DOMAIN_FLAG_STATIC_IDENTITY	(1 << 2) | 
|  |  | 
|  | struct dmar_domain { | 
|  | int	id;			/* domain id */ | 
|  | int	nid;			/* node id */ | 
|  | unsigned long iommu_bmp;	/* bitmap of iommus this domain uses*/ | 
|  |  | 
|  | struct list_head devices; 	/* all devices' list */ | 
|  | struct iova_domain iovad;	/* iova's that belong to this domain */ | 
|  |  | 
|  | struct dma_pte	*pgd;		/* virtual address */ | 
|  | int		gaw;		/* max guest address width */ | 
|  |  | 
|  | /* adjusted guest address width, 0 is level 2 30-bit */ | 
|  | int		agaw; | 
|  |  | 
|  | int		flags;		/* flags to find out type of domain */ | 
|  |  | 
|  | int		iommu_coherency;/* indicate coherency of iommu access */ | 
|  | int		iommu_snooping; /* indicate snooping control feature*/ | 
|  | int		iommu_count;	/* reference count of iommu */ | 
|  | int		iommu_superpage;/* Level of superpages supported: | 
|  | 0 == 4KiB (no superpages), 1 == 2MiB, | 
|  | 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */ | 
|  | spinlock_t	iommu_lock;	/* protect iommu set in domain */ | 
|  | u64		max_addr;	/* maximum mapped address */ | 
|  | }; | 
|  |  | 
|  | /* PCI domain-device relationship */ | 
|  | struct device_domain_info { | 
|  | struct list_head link;	/* link to domain siblings */ | 
|  | struct list_head global; /* link to global list */ | 
|  | int segment;		/* PCI domain */ | 
|  | u8 bus;			/* PCI bus number */ | 
|  | u8 devfn;		/* PCI devfn number */ | 
|  | struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */ | 
|  | struct intel_iommu *iommu; /* IOMMU used by this device */ | 
|  | struct dmar_domain *domain; /* pointer to domain */ | 
|  | }; | 
|  |  | 
|  | static void flush_unmaps_timeout(unsigned long data); | 
|  |  | 
|  | DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0); | 
|  |  | 
|  | #define HIGH_WATER_MARK 250 | 
|  | struct deferred_flush_tables { | 
|  | int next; | 
|  | struct iova *iova[HIGH_WATER_MARK]; | 
|  | struct dmar_domain *domain[HIGH_WATER_MARK]; | 
|  | }; | 
|  |  | 
|  | static struct deferred_flush_tables *deferred_flush; | 
|  |  | 
|  | /* bitmap for indexing intel_iommus */ | 
|  | static int g_num_of_iommus; | 
|  |  | 
|  | static DEFINE_SPINLOCK(async_umap_flush_lock); | 
|  | static LIST_HEAD(unmaps_to_do); | 
|  |  | 
|  | static int timer_on; | 
|  | static long list_size; | 
|  |  | 
|  | static void domain_remove_dev_info(struct dmar_domain *domain); | 
|  |  | 
|  | #ifdef CONFIG_DMAR_DEFAULT_ON | 
|  | int dmar_disabled = 0; | 
|  | #else | 
|  | int dmar_disabled = 1; | 
|  | #endif /*CONFIG_DMAR_DEFAULT_ON*/ | 
|  |  | 
|  | static int dmar_map_gfx = 1; | 
|  | static int dmar_forcedac; | 
|  | static int intel_iommu_strict; | 
|  | static int intel_iommu_superpage = 1; | 
|  |  | 
|  | #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1)) | 
|  | static DEFINE_SPINLOCK(device_domain_lock); | 
|  | static LIST_HEAD(device_domain_list); | 
|  |  | 
|  | static struct iommu_ops intel_iommu_ops; | 
|  |  | 
|  | static int __init intel_iommu_setup(char *str) | 
|  | { | 
|  | if (!str) | 
|  | return -EINVAL; | 
|  | while (*str) { | 
|  | if (!strncmp(str, "on", 2)) { | 
|  | dmar_disabled = 0; | 
|  | printk(KERN_INFO "Intel-IOMMU: enabled\n"); | 
|  | } else if (!strncmp(str, "off", 3)) { | 
|  | dmar_disabled = 1; | 
|  | printk(KERN_INFO "Intel-IOMMU: disabled\n"); | 
|  | } else if (!strncmp(str, "igfx_off", 8)) { | 
|  | dmar_map_gfx = 0; | 
|  | printk(KERN_INFO | 
|  | "Intel-IOMMU: disable GFX device mapping\n"); | 
|  | } else if (!strncmp(str, "forcedac", 8)) { | 
|  | printk(KERN_INFO | 
|  | "Intel-IOMMU: Forcing DAC for PCI devices\n"); | 
|  | dmar_forcedac = 1; | 
|  | } else if (!strncmp(str, "strict", 6)) { | 
|  | printk(KERN_INFO | 
|  | "Intel-IOMMU: disable batched IOTLB flush\n"); | 
|  | intel_iommu_strict = 1; | 
|  | } else if (!strncmp(str, "sp_off", 6)) { | 
|  | printk(KERN_INFO | 
|  | "Intel-IOMMU: disable supported super page\n"); | 
|  | intel_iommu_superpage = 0; | 
|  | } | 
|  |  | 
|  | str += strcspn(str, ","); | 
|  | while (*str == ',') | 
|  | str++; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | __setup("intel_iommu=", intel_iommu_setup); | 
|  |  | 
|  | static struct kmem_cache *iommu_domain_cache; | 
|  | static struct kmem_cache *iommu_devinfo_cache; | 
|  | static struct kmem_cache *iommu_iova_cache; | 
|  |  | 
|  | static inline void *alloc_pgtable_page(int node) | 
|  | { | 
|  | struct page *page; | 
|  | void *vaddr = NULL; | 
|  |  | 
|  | page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0); | 
|  | if (page) | 
|  | vaddr = page_address(page); | 
|  | return vaddr; | 
|  | } | 
|  |  | 
|  | static inline void free_pgtable_page(void *vaddr) | 
|  | { | 
|  | free_page((unsigned long)vaddr); | 
|  | } | 
|  |  | 
|  | static inline void *alloc_domain_mem(void) | 
|  | { | 
|  | return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC); | 
|  | } | 
|  |  | 
|  | static void free_domain_mem(void *vaddr) | 
|  | { | 
|  | kmem_cache_free(iommu_domain_cache, vaddr); | 
|  | } | 
|  |  | 
|  | static inline void * alloc_devinfo_mem(void) | 
|  | { | 
|  | return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC); | 
|  | } | 
|  |  | 
|  | static inline void free_devinfo_mem(void *vaddr) | 
|  | { | 
|  | kmem_cache_free(iommu_devinfo_cache, vaddr); | 
|  | } | 
|  |  | 
|  | struct iova *alloc_iova_mem(void) | 
|  | { | 
|  | return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC); | 
|  | } | 
|  |  | 
|  | void free_iova_mem(struct iova *iova) | 
|  | { | 
|  | kmem_cache_free(iommu_iova_cache, iova); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw) | 
|  | { | 
|  | unsigned long sagaw; | 
|  | int agaw = -1; | 
|  |  | 
|  | sagaw = cap_sagaw(iommu->cap); | 
|  | for (agaw = width_to_agaw(max_gaw); | 
|  | agaw >= 0; agaw--) { | 
|  | if (test_bit(agaw, &sagaw)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return agaw; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate max SAGAW for each iommu. | 
|  | */ | 
|  | int iommu_calculate_max_sagaw(struct intel_iommu *iommu) | 
|  | { | 
|  | return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * calculate agaw for each iommu. | 
|  | * "SAGAW" may be different across iommus, use a default agaw, and | 
|  | * get a supported less agaw for iommus that don't support the default agaw. | 
|  | */ | 
|  | int iommu_calculate_agaw(struct intel_iommu *iommu) | 
|  | { | 
|  | return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH); | 
|  | } | 
|  |  | 
|  | /* This functionin only returns single iommu in a domain */ | 
|  | static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain) | 
|  | { | 
|  | int iommu_id; | 
|  |  | 
|  | /* si_domain and vm domain should not get here. */ | 
|  | BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE); | 
|  | BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY); | 
|  |  | 
|  | iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus); | 
|  | if (iommu_id < 0 || iommu_id >= g_num_of_iommus) | 
|  | return NULL; | 
|  |  | 
|  | return g_iommus[iommu_id]; | 
|  | } | 
|  |  | 
|  | static void domain_update_iommu_coherency(struct dmar_domain *domain) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | domain->iommu_coherency = 1; | 
|  |  | 
|  | for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) { | 
|  | if (!ecap_coherent(g_iommus[i]->ecap)) { | 
|  | domain->iommu_coherency = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void domain_update_iommu_snooping(struct dmar_domain *domain) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | domain->iommu_snooping = 1; | 
|  |  | 
|  | for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) { | 
|  | if (!ecap_sc_support(g_iommus[i]->ecap)) { | 
|  | domain->iommu_snooping = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void domain_update_iommu_superpage(struct dmar_domain *domain) | 
|  | { | 
|  | int i, mask = 0xf; | 
|  |  | 
|  | if (!intel_iommu_superpage) { | 
|  | domain->iommu_superpage = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | domain->iommu_superpage = 4; /* 1TiB */ | 
|  |  | 
|  | for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) { | 
|  | mask |= cap_super_page_val(g_iommus[i]->cap); | 
|  | if (!mask) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | domain->iommu_superpage = fls(mask); | 
|  | } | 
|  |  | 
|  | /* Some capabilities may be different across iommus */ | 
|  | static void domain_update_iommu_cap(struct dmar_domain *domain) | 
|  | { | 
|  | domain_update_iommu_coherency(domain); | 
|  | domain_update_iommu_snooping(domain); | 
|  | domain_update_iommu_superpage(domain); | 
|  | } | 
|  |  | 
|  | static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn) | 
|  | { | 
|  | struct dmar_drhd_unit *drhd = NULL; | 
|  | int i; | 
|  |  | 
|  | for_each_drhd_unit(drhd) { | 
|  | if (drhd->ignored) | 
|  | continue; | 
|  | if (segment != drhd->segment) | 
|  | continue; | 
|  |  | 
|  | for (i = 0; i < drhd->devices_cnt; i++) { | 
|  | if (drhd->devices[i] && | 
|  | drhd->devices[i]->bus->number == bus && | 
|  | drhd->devices[i]->devfn == devfn) | 
|  | return drhd->iommu; | 
|  | if (drhd->devices[i] && | 
|  | drhd->devices[i]->subordinate && | 
|  | drhd->devices[i]->subordinate->number <= bus && | 
|  | drhd->devices[i]->subordinate->subordinate >= bus) | 
|  | return drhd->iommu; | 
|  | } | 
|  |  | 
|  | if (drhd->include_all) | 
|  | return drhd->iommu; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void domain_flush_cache(struct dmar_domain *domain, | 
|  | void *addr, int size) | 
|  | { | 
|  | if (!domain->iommu_coherency) | 
|  | clflush_cache_range(addr, size); | 
|  | } | 
|  |  | 
|  | /* Gets context entry for a given bus and devfn */ | 
|  | static struct context_entry * device_to_context_entry(struct intel_iommu *iommu, | 
|  | u8 bus, u8 devfn) | 
|  | { | 
|  | struct root_entry *root; | 
|  | struct context_entry *context; | 
|  | unsigned long phy_addr; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&iommu->lock, flags); | 
|  | root = &iommu->root_entry[bus]; | 
|  | context = get_context_addr_from_root(root); | 
|  | if (!context) { | 
|  | context = (struct context_entry *) | 
|  | alloc_pgtable_page(iommu->node); | 
|  | if (!context) { | 
|  | spin_unlock_irqrestore(&iommu->lock, flags); | 
|  | return NULL; | 
|  | } | 
|  | __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE); | 
|  | phy_addr = virt_to_phys((void *)context); | 
|  | set_root_value(root, phy_addr); | 
|  | set_root_present(root); | 
|  | __iommu_flush_cache(iommu, root, sizeof(*root)); | 
|  | } | 
|  | spin_unlock_irqrestore(&iommu->lock, flags); | 
|  | return &context[devfn]; | 
|  | } | 
|  |  | 
|  | static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) | 
|  | { | 
|  | struct root_entry *root; | 
|  | struct context_entry *context; | 
|  | int ret; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&iommu->lock, flags); | 
|  | root = &iommu->root_entry[bus]; | 
|  | context = get_context_addr_from_root(root); | 
|  | if (!context) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | ret = context_present(&context[devfn]); | 
|  | out: | 
|  | spin_unlock_irqrestore(&iommu->lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn) | 
|  | { | 
|  | struct root_entry *root; | 
|  | struct context_entry *context; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&iommu->lock, flags); | 
|  | root = &iommu->root_entry[bus]; | 
|  | context = get_context_addr_from_root(root); | 
|  | if (context) { | 
|  | context_clear_entry(&context[devfn]); | 
|  | __iommu_flush_cache(iommu, &context[devfn], \ | 
|  | sizeof(*context)); | 
|  | } | 
|  | spin_unlock_irqrestore(&iommu->lock, flags); | 
|  | } | 
|  |  | 
|  | static void free_context_table(struct intel_iommu *iommu) | 
|  | { | 
|  | struct root_entry *root; | 
|  | int i; | 
|  | unsigned long flags; | 
|  | struct context_entry *context; | 
|  |  | 
|  | spin_lock_irqsave(&iommu->lock, flags); | 
|  | if (!iommu->root_entry) { | 
|  | goto out; | 
|  | } | 
|  | for (i = 0; i < ROOT_ENTRY_NR; i++) { | 
|  | root = &iommu->root_entry[i]; | 
|  | context = get_context_addr_from_root(root); | 
|  | if (context) | 
|  | free_pgtable_page(context); | 
|  | } | 
|  | free_pgtable_page(iommu->root_entry); | 
|  | iommu->root_entry = NULL; | 
|  | out: | 
|  | spin_unlock_irqrestore(&iommu->lock, flags); | 
|  | } | 
|  |  | 
|  | static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain, | 
|  | unsigned long pfn, int large_level) | 
|  | { | 
|  | int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; | 
|  | struct dma_pte *parent, *pte = NULL; | 
|  | int level = agaw_to_level(domain->agaw); | 
|  | int offset, target_level; | 
|  |  | 
|  | BUG_ON(!domain->pgd); | 
|  | BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width); | 
|  | parent = domain->pgd; | 
|  |  | 
|  | /* Search pte */ | 
|  | if (!large_level) | 
|  | target_level = 1; | 
|  | else | 
|  | target_level = large_level; | 
|  |  | 
|  | while (level > 0) { | 
|  | void *tmp_page; | 
|  |  | 
|  | offset = pfn_level_offset(pfn, level); | 
|  | pte = &parent[offset]; | 
|  | if (!large_level && (pte->val & DMA_PTE_LARGE_PAGE)) | 
|  | break; | 
|  | if (level == target_level) | 
|  | break; | 
|  |  | 
|  | if (!dma_pte_present(pte)) { | 
|  | uint64_t pteval; | 
|  |  | 
|  | tmp_page = alloc_pgtable_page(domain->nid); | 
|  |  | 
|  | if (!tmp_page) | 
|  | return NULL; | 
|  |  | 
|  | domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE); | 
|  | pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE; | 
|  | if (cmpxchg64(&pte->val, 0ULL, pteval)) { | 
|  | /* Someone else set it while we were thinking; use theirs. */ | 
|  | free_pgtable_page(tmp_page); | 
|  | } else { | 
|  | dma_pte_addr(pte); | 
|  | domain_flush_cache(domain, pte, sizeof(*pte)); | 
|  | } | 
|  | } | 
|  | parent = phys_to_virt(dma_pte_addr(pte)); | 
|  | level--; | 
|  | } | 
|  |  | 
|  | return pte; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* return address's pte at specific level */ | 
|  | static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain, | 
|  | unsigned long pfn, | 
|  | int level, int *large_page) | 
|  | { | 
|  | struct dma_pte *parent, *pte = NULL; | 
|  | int total = agaw_to_level(domain->agaw); | 
|  | int offset; | 
|  |  | 
|  | parent = domain->pgd; | 
|  | while (level <= total) { | 
|  | offset = pfn_level_offset(pfn, total); | 
|  | pte = &parent[offset]; | 
|  | if (level == total) | 
|  | return pte; | 
|  |  | 
|  | if (!dma_pte_present(pte)) { | 
|  | *large_page = total; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (pte->val & DMA_PTE_LARGE_PAGE) { | 
|  | *large_page = total; | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | parent = phys_to_virt(dma_pte_addr(pte)); | 
|  | total--; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* clear last level pte, a tlb flush should be followed */ | 
|  | static void dma_pte_clear_range(struct dmar_domain *domain, | 
|  | unsigned long start_pfn, | 
|  | unsigned long last_pfn) | 
|  | { | 
|  | int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; | 
|  | unsigned int large_page = 1; | 
|  | struct dma_pte *first_pte, *pte; | 
|  |  | 
|  | BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width); | 
|  | BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width); | 
|  | BUG_ON(start_pfn > last_pfn); | 
|  |  | 
|  | /* we don't need lock here; nobody else touches the iova range */ | 
|  | do { | 
|  | large_page = 1; | 
|  | first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page); | 
|  | if (!pte) { | 
|  | start_pfn = align_to_level(start_pfn + 1, large_page + 1); | 
|  | continue; | 
|  | } | 
|  | do { | 
|  | dma_clear_pte(pte); | 
|  | start_pfn += lvl_to_nr_pages(large_page); | 
|  | pte++; | 
|  | } while (start_pfn <= last_pfn && !first_pte_in_page(pte)); | 
|  |  | 
|  | domain_flush_cache(domain, first_pte, | 
|  | (void *)pte - (void *)first_pte); | 
|  |  | 
|  | } while (start_pfn && start_pfn <= last_pfn); | 
|  | } | 
|  |  | 
|  | /* free page table pages. last level pte should already be cleared */ | 
|  | static void dma_pte_free_pagetable(struct dmar_domain *domain, | 
|  | unsigned long start_pfn, | 
|  | unsigned long last_pfn) | 
|  | { | 
|  | int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; | 
|  | struct dma_pte *first_pte, *pte; | 
|  | int total = agaw_to_level(domain->agaw); | 
|  | int level; | 
|  | unsigned long tmp; | 
|  | int large_page = 2; | 
|  |  | 
|  | BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width); | 
|  | BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width); | 
|  | BUG_ON(start_pfn > last_pfn); | 
|  |  | 
|  | /* We don't need lock here; nobody else touches the iova range */ | 
|  | level = 2; | 
|  | while (level <= total) { | 
|  | tmp = align_to_level(start_pfn, level); | 
|  |  | 
|  | /* If we can't even clear one PTE at this level, we're done */ | 
|  | if (tmp + level_size(level) - 1 > last_pfn) | 
|  | return; | 
|  |  | 
|  | do { | 
|  | large_page = level; | 
|  | first_pte = pte = dma_pfn_level_pte(domain, tmp, level, &large_page); | 
|  | if (large_page > level) | 
|  | level = large_page + 1; | 
|  | if (!pte) { | 
|  | tmp = align_to_level(tmp + 1, level + 1); | 
|  | continue; | 
|  | } | 
|  | do { | 
|  | if (dma_pte_present(pte)) { | 
|  | free_pgtable_page(phys_to_virt(dma_pte_addr(pte))); | 
|  | dma_clear_pte(pte); | 
|  | } | 
|  | pte++; | 
|  | tmp += level_size(level); | 
|  | } while (!first_pte_in_page(pte) && | 
|  | tmp + level_size(level) - 1 <= last_pfn); | 
|  |  | 
|  | domain_flush_cache(domain, first_pte, | 
|  | (void *)pte - (void *)first_pte); | 
|  |  | 
|  | } while (tmp && tmp + level_size(level) - 1 <= last_pfn); | 
|  | level++; | 
|  | } | 
|  | /* free pgd */ | 
|  | if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { | 
|  | free_pgtable_page(domain->pgd); | 
|  | domain->pgd = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* iommu handling */ | 
|  | static int iommu_alloc_root_entry(struct intel_iommu *iommu) | 
|  | { | 
|  | struct root_entry *root; | 
|  | unsigned long flags; | 
|  |  | 
|  | root = (struct root_entry *)alloc_pgtable_page(iommu->node); | 
|  | if (!root) | 
|  | return -ENOMEM; | 
|  |  | 
|  | __iommu_flush_cache(iommu, root, ROOT_SIZE); | 
|  |  | 
|  | spin_lock_irqsave(&iommu->lock, flags); | 
|  | iommu->root_entry = root; | 
|  | spin_unlock_irqrestore(&iommu->lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void iommu_set_root_entry(struct intel_iommu *iommu) | 
|  | { | 
|  | void *addr; | 
|  | u32 sts; | 
|  | unsigned long flag; | 
|  |  | 
|  | addr = iommu->root_entry; | 
|  |  | 
|  | spin_lock_irqsave(&iommu->register_lock, flag); | 
|  | dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr)); | 
|  |  | 
|  | writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG); | 
|  |  | 
|  | /* Make sure hardware complete it */ | 
|  | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | 
|  | readl, (sts & DMA_GSTS_RTPS), sts); | 
|  |  | 
|  | spin_unlock_irqrestore(&iommu->register_lock, flag); | 
|  | } | 
|  |  | 
|  | static void iommu_flush_write_buffer(struct intel_iommu *iommu) | 
|  | { | 
|  | u32 val; | 
|  | unsigned long flag; | 
|  |  | 
|  | if (!rwbf_quirk && !cap_rwbf(iommu->cap)) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&iommu->register_lock, flag); | 
|  | writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG); | 
|  |  | 
|  | /* Make sure hardware complete it */ | 
|  | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | 
|  | readl, (!(val & DMA_GSTS_WBFS)), val); | 
|  |  | 
|  | spin_unlock_irqrestore(&iommu->register_lock, flag); | 
|  | } | 
|  |  | 
|  | /* return value determine if we need a write buffer flush */ | 
|  | static void __iommu_flush_context(struct intel_iommu *iommu, | 
|  | u16 did, u16 source_id, u8 function_mask, | 
|  | u64 type) | 
|  | { | 
|  | u64 val = 0; | 
|  | unsigned long flag; | 
|  |  | 
|  | switch (type) { | 
|  | case DMA_CCMD_GLOBAL_INVL: | 
|  | val = DMA_CCMD_GLOBAL_INVL; | 
|  | break; | 
|  | case DMA_CCMD_DOMAIN_INVL: | 
|  | val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); | 
|  | break; | 
|  | case DMA_CCMD_DEVICE_INVL: | 
|  | val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) | 
|  | | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | val |= DMA_CCMD_ICC; | 
|  |  | 
|  | spin_lock_irqsave(&iommu->register_lock, flag); | 
|  | dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); | 
|  |  | 
|  | /* Make sure hardware complete it */ | 
|  | IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, | 
|  | dmar_readq, (!(val & DMA_CCMD_ICC)), val); | 
|  |  | 
|  | spin_unlock_irqrestore(&iommu->register_lock, flag); | 
|  | } | 
|  |  | 
|  | /* return value determine if we need a write buffer flush */ | 
|  | static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, | 
|  | u64 addr, unsigned int size_order, u64 type) | 
|  | { | 
|  | int tlb_offset = ecap_iotlb_offset(iommu->ecap); | 
|  | u64 val = 0, val_iva = 0; | 
|  | unsigned long flag; | 
|  |  | 
|  | switch (type) { | 
|  | case DMA_TLB_GLOBAL_FLUSH: | 
|  | /* global flush doesn't need set IVA_REG */ | 
|  | val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; | 
|  | break; | 
|  | case DMA_TLB_DSI_FLUSH: | 
|  | val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); | 
|  | break; | 
|  | case DMA_TLB_PSI_FLUSH: | 
|  | val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); | 
|  | /* Note: always flush non-leaf currently */ | 
|  | val_iva = size_order | addr; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | /* Note: set drain read/write */ | 
|  | #if 0 | 
|  | /* | 
|  | * This is probably to be super secure.. Looks like we can | 
|  | * ignore it without any impact. | 
|  | */ | 
|  | if (cap_read_drain(iommu->cap)) | 
|  | val |= DMA_TLB_READ_DRAIN; | 
|  | #endif | 
|  | if (cap_write_drain(iommu->cap)) | 
|  | val |= DMA_TLB_WRITE_DRAIN; | 
|  |  | 
|  | spin_lock_irqsave(&iommu->register_lock, flag); | 
|  | /* Note: Only uses first TLB reg currently */ | 
|  | if (val_iva) | 
|  | dmar_writeq(iommu->reg + tlb_offset, val_iva); | 
|  | dmar_writeq(iommu->reg + tlb_offset + 8, val); | 
|  |  | 
|  | /* Make sure hardware complete it */ | 
|  | IOMMU_WAIT_OP(iommu, tlb_offset + 8, | 
|  | dmar_readq, (!(val & DMA_TLB_IVT)), val); | 
|  |  | 
|  | spin_unlock_irqrestore(&iommu->register_lock, flag); | 
|  |  | 
|  | /* check IOTLB invalidation granularity */ | 
|  | if (DMA_TLB_IAIG(val) == 0) | 
|  | printk(KERN_ERR"IOMMU: flush IOTLB failed\n"); | 
|  | if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) | 
|  | pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n", | 
|  | (unsigned long long)DMA_TLB_IIRG(type), | 
|  | (unsigned long long)DMA_TLB_IAIG(val)); | 
|  | } | 
|  |  | 
|  | static struct device_domain_info *iommu_support_dev_iotlb( | 
|  | struct dmar_domain *domain, int segment, u8 bus, u8 devfn) | 
|  | { | 
|  | int found = 0; | 
|  | unsigned long flags; | 
|  | struct device_domain_info *info; | 
|  | struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn); | 
|  |  | 
|  | if (!ecap_dev_iotlb_support(iommu->ecap)) | 
|  | return NULL; | 
|  |  | 
|  | if (!iommu->qi) | 
|  | return NULL; | 
|  |  | 
|  | spin_lock_irqsave(&device_domain_lock, flags); | 
|  | list_for_each_entry(info, &domain->devices, link) | 
|  | if (info->bus == bus && info->devfn == devfn) { | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | spin_unlock_irqrestore(&device_domain_lock, flags); | 
|  |  | 
|  | if (!found || !info->dev) | 
|  | return NULL; | 
|  |  | 
|  | if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS)) | 
|  | return NULL; | 
|  |  | 
|  | if (!dmar_find_matched_atsr_unit(info->dev)) | 
|  | return NULL; | 
|  |  | 
|  | info->iommu = iommu; | 
|  |  | 
|  | return info; | 
|  | } | 
|  |  | 
|  | static void iommu_enable_dev_iotlb(struct device_domain_info *info) | 
|  | { | 
|  | if (!info) | 
|  | return; | 
|  |  | 
|  | pci_enable_ats(info->dev, VTD_PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | static void iommu_disable_dev_iotlb(struct device_domain_info *info) | 
|  | { | 
|  | if (!info->dev || !pci_ats_enabled(info->dev)) | 
|  | return; | 
|  |  | 
|  | pci_disable_ats(info->dev); | 
|  | } | 
|  |  | 
|  | static void iommu_flush_dev_iotlb(struct dmar_domain *domain, | 
|  | u64 addr, unsigned mask) | 
|  | { | 
|  | u16 sid, qdep; | 
|  | unsigned long flags; | 
|  | struct device_domain_info *info; | 
|  |  | 
|  | spin_lock_irqsave(&device_domain_lock, flags); | 
|  | list_for_each_entry(info, &domain->devices, link) { | 
|  | if (!info->dev || !pci_ats_enabled(info->dev)) | 
|  | continue; | 
|  |  | 
|  | sid = info->bus << 8 | info->devfn; | 
|  | qdep = pci_ats_queue_depth(info->dev); | 
|  | qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask); | 
|  | } | 
|  | spin_unlock_irqrestore(&device_domain_lock, flags); | 
|  | } | 
|  |  | 
|  | static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did, | 
|  | unsigned long pfn, unsigned int pages, int map) | 
|  | { | 
|  | unsigned int mask = ilog2(__roundup_pow_of_two(pages)); | 
|  | uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT; | 
|  |  | 
|  | BUG_ON(pages == 0); | 
|  |  | 
|  | /* | 
|  | * Fallback to domain selective flush if no PSI support or the size is | 
|  | * too big. | 
|  | * PSI requires page size to be 2 ^ x, and the base address is naturally | 
|  | * aligned to the size | 
|  | */ | 
|  | if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap)) | 
|  | iommu->flush.flush_iotlb(iommu, did, 0, 0, | 
|  | DMA_TLB_DSI_FLUSH); | 
|  | else | 
|  | iommu->flush.flush_iotlb(iommu, did, addr, mask, | 
|  | DMA_TLB_PSI_FLUSH); | 
|  |  | 
|  | /* | 
|  | * In caching mode, changes of pages from non-present to present require | 
|  | * flush. However, device IOTLB doesn't need to be flushed in this case. | 
|  | */ | 
|  | if (!cap_caching_mode(iommu->cap) || !map) | 
|  | iommu_flush_dev_iotlb(iommu->domains[did], addr, mask); | 
|  | } | 
|  |  | 
|  | static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) | 
|  | { | 
|  | u32 pmen; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&iommu->register_lock, flags); | 
|  | pmen = readl(iommu->reg + DMAR_PMEN_REG); | 
|  | pmen &= ~DMA_PMEN_EPM; | 
|  | writel(pmen, iommu->reg + DMAR_PMEN_REG); | 
|  |  | 
|  | /* wait for the protected region status bit to clear */ | 
|  | IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, | 
|  | readl, !(pmen & DMA_PMEN_PRS), pmen); | 
|  |  | 
|  | spin_unlock_irqrestore(&iommu->register_lock, flags); | 
|  | } | 
|  |  | 
|  | static int iommu_enable_translation(struct intel_iommu *iommu) | 
|  | { | 
|  | u32 sts; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&iommu->register_lock, flags); | 
|  | iommu->gcmd |= DMA_GCMD_TE; | 
|  | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); | 
|  |  | 
|  | /* Make sure hardware complete it */ | 
|  | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | 
|  | readl, (sts & DMA_GSTS_TES), sts); | 
|  |  | 
|  | spin_unlock_irqrestore(&iommu->register_lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int iommu_disable_translation(struct intel_iommu *iommu) | 
|  | { | 
|  | u32 sts; | 
|  | unsigned long flag; | 
|  |  | 
|  | spin_lock_irqsave(&iommu->register_lock, flag); | 
|  | iommu->gcmd &= ~DMA_GCMD_TE; | 
|  | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); | 
|  |  | 
|  | /* Make sure hardware complete it */ | 
|  | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | 
|  | readl, (!(sts & DMA_GSTS_TES)), sts); | 
|  |  | 
|  | spin_unlock_irqrestore(&iommu->register_lock, flag); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int iommu_init_domains(struct intel_iommu *iommu) | 
|  | { | 
|  | unsigned long ndomains; | 
|  | unsigned long nlongs; | 
|  |  | 
|  | ndomains = cap_ndoms(iommu->cap); | 
|  | pr_debug("IOMMU %d: Number of Domains supportd <%ld>\n", iommu->seq_id, | 
|  | ndomains); | 
|  | nlongs = BITS_TO_LONGS(ndomains); | 
|  |  | 
|  | spin_lock_init(&iommu->lock); | 
|  |  | 
|  | /* TBD: there might be 64K domains, | 
|  | * consider other allocation for future chip | 
|  | */ | 
|  | iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL); | 
|  | if (!iommu->domain_ids) { | 
|  | printk(KERN_ERR "Allocating domain id array failed\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *), | 
|  | GFP_KERNEL); | 
|  | if (!iommu->domains) { | 
|  | printk(KERN_ERR "Allocating domain array failed\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if Caching mode is set, then invalid translations are tagged | 
|  | * with domainid 0. Hence we need to pre-allocate it. | 
|  | */ | 
|  | if (cap_caching_mode(iommu->cap)) | 
|  | set_bit(0, iommu->domain_ids); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void domain_exit(struct dmar_domain *domain); | 
|  | static void vm_domain_exit(struct dmar_domain *domain); | 
|  |  | 
|  | void free_dmar_iommu(struct intel_iommu *iommu) | 
|  | { | 
|  | struct dmar_domain *domain; | 
|  | int i; | 
|  | unsigned long flags; | 
|  |  | 
|  | if ((iommu->domains) && (iommu->domain_ids)) { | 
|  | for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) { | 
|  | domain = iommu->domains[i]; | 
|  | clear_bit(i, iommu->domain_ids); | 
|  |  | 
|  | spin_lock_irqsave(&domain->iommu_lock, flags); | 
|  | if (--domain->iommu_count == 0) { | 
|  | if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) | 
|  | vm_domain_exit(domain); | 
|  | else | 
|  | domain_exit(domain); | 
|  | } | 
|  | spin_unlock_irqrestore(&domain->iommu_lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (iommu->gcmd & DMA_GCMD_TE) | 
|  | iommu_disable_translation(iommu); | 
|  |  | 
|  | if (iommu->irq) { | 
|  | irq_set_handler_data(iommu->irq, NULL); | 
|  | /* This will mask the irq */ | 
|  | free_irq(iommu->irq, iommu); | 
|  | destroy_irq(iommu->irq); | 
|  | } | 
|  |  | 
|  | kfree(iommu->domains); | 
|  | kfree(iommu->domain_ids); | 
|  |  | 
|  | g_iommus[iommu->seq_id] = NULL; | 
|  |  | 
|  | /* if all iommus are freed, free g_iommus */ | 
|  | for (i = 0; i < g_num_of_iommus; i++) { | 
|  | if (g_iommus[i]) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i == g_num_of_iommus) | 
|  | kfree(g_iommus); | 
|  |  | 
|  | /* free context mapping */ | 
|  | free_context_table(iommu); | 
|  | } | 
|  |  | 
|  | static struct dmar_domain *alloc_domain(void) | 
|  | { | 
|  | struct dmar_domain *domain; | 
|  |  | 
|  | domain = alloc_domain_mem(); | 
|  | if (!domain) | 
|  | return NULL; | 
|  |  | 
|  | domain->nid = -1; | 
|  | memset(&domain->iommu_bmp, 0, sizeof(unsigned long)); | 
|  | domain->flags = 0; | 
|  |  | 
|  | return domain; | 
|  | } | 
|  |  | 
|  | static int iommu_attach_domain(struct dmar_domain *domain, | 
|  | struct intel_iommu *iommu) | 
|  | { | 
|  | int num; | 
|  | unsigned long ndomains; | 
|  | unsigned long flags; | 
|  |  | 
|  | ndomains = cap_ndoms(iommu->cap); | 
|  |  | 
|  | spin_lock_irqsave(&iommu->lock, flags); | 
|  |  | 
|  | num = find_first_zero_bit(iommu->domain_ids, ndomains); | 
|  | if (num >= ndomains) { | 
|  | spin_unlock_irqrestore(&iommu->lock, flags); | 
|  | printk(KERN_ERR "IOMMU: no free domain ids\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | domain->id = num; | 
|  | set_bit(num, iommu->domain_ids); | 
|  | set_bit(iommu->seq_id, &domain->iommu_bmp); | 
|  | iommu->domains[num] = domain; | 
|  | spin_unlock_irqrestore(&iommu->lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void iommu_detach_domain(struct dmar_domain *domain, | 
|  | struct intel_iommu *iommu) | 
|  | { | 
|  | unsigned long flags; | 
|  | int num, ndomains; | 
|  | int found = 0; | 
|  |  | 
|  | spin_lock_irqsave(&iommu->lock, flags); | 
|  | ndomains = cap_ndoms(iommu->cap); | 
|  | for_each_set_bit(num, iommu->domain_ids, ndomains) { | 
|  | if (iommu->domains[num] == domain) { | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (found) { | 
|  | clear_bit(num, iommu->domain_ids); | 
|  | clear_bit(iommu->seq_id, &domain->iommu_bmp); | 
|  | iommu->domains[num] = NULL; | 
|  | } | 
|  | spin_unlock_irqrestore(&iommu->lock, flags); | 
|  | } | 
|  |  | 
|  | static struct iova_domain reserved_iova_list; | 
|  | static struct lock_class_key reserved_rbtree_key; | 
|  |  | 
|  | static int dmar_init_reserved_ranges(void) | 
|  | { | 
|  | struct pci_dev *pdev = NULL; | 
|  | struct iova *iova; | 
|  | int i; | 
|  |  | 
|  | init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN); | 
|  |  | 
|  | lockdep_set_class(&reserved_iova_list.iova_rbtree_lock, | 
|  | &reserved_rbtree_key); | 
|  |  | 
|  | /* IOAPIC ranges shouldn't be accessed by DMA */ | 
|  | iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START), | 
|  | IOVA_PFN(IOAPIC_RANGE_END)); | 
|  | if (!iova) { | 
|  | printk(KERN_ERR "Reserve IOAPIC range failed\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* Reserve all PCI MMIO to avoid peer-to-peer access */ | 
|  | for_each_pci_dev(pdev) { | 
|  | struct resource *r; | 
|  |  | 
|  | for (i = 0; i < PCI_NUM_RESOURCES; i++) { | 
|  | r = &pdev->resource[i]; | 
|  | if (!r->flags || !(r->flags & IORESOURCE_MEM)) | 
|  | continue; | 
|  | iova = reserve_iova(&reserved_iova_list, | 
|  | IOVA_PFN(r->start), | 
|  | IOVA_PFN(r->end)); | 
|  | if (!iova) { | 
|  | printk(KERN_ERR "Reserve iova failed\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void domain_reserve_special_ranges(struct dmar_domain *domain) | 
|  | { | 
|  | copy_reserved_iova(&reserved_iova_list, &domain->iovad); | 
|  | } | 
|  |  | 
|  | static inline int guestwidth_to_adjustwidth(int gaw) | 
|  | { | 
|  | int agaw; | 
|  | int r = (gaw - 12) % 9; | 
|  |  | 
|  | if (r == 0) | 
|  | agaw = gaw; | 
|  | else | 
|  | agaw = gaw + 9 - r; | 
|  | if (agaw > 64) | 
|  | agaw = 64; | 
|  | return agaw; | 
|  | } | 
|  |  | 
|  | static int domain_init(struct dmar_domain *domain, int guest_width) | 
|  | { | 
|  | struct intel_iommu *iommu; | 
|  | int adjust_width, agaw; | 
|  | unsigned long sagaw; | 
|  |  | 
|  | init_iova_domain(&domain->iovad, DMA_32BIT_PFN); | 
|  | spin_lock_init(&domain->iommu_lock); | 
|  |  | 
|  | domain_reserve_special_ranges(domain); | 
|  |  | 
|  | /* calculate AGAW */ | 
|  | iommu = domain_get_iommu(domain); | 
|  | if (guest_width > cap_mgaw(iommu->cap)) | 
|  | guest_width = cap_mgaw(iommu->cap); | 
|  | domain->gaw = guest_width; | 
|  | adjust_width = guestwidth_to_adjustwidth(guest_width); | 
|  | agaw = width_to_agaw(adjust_width); | 
|  | sagaw = cap_sagaw(iommu->cap); | 
|  | if (!test_bit(agaw, &sagaw)) { | 
|  | /* hardware doesn't support it, choose a bigger one */ | 
|  | pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw); | 
|  | agaw = find_next_bit(&sagaw, 5, agaw); | 
|  | if (agaw >= 5) | 
|  | return -ENODEV; | 
|  | } | 
|  | domain->agaw = agaw; | 
|  | INIT_LIST_HEAD(&domain->devices); | 
|  |  | 
|  | if (ecap_coherent(iommu->ecap)) | 
|  | domain->iommu_coherency = 1; | 
|  | else | 
|  | domain->iommu_coherency = 0; | 
|  |  | 
|  | if (ecap_sc_support(iommu->ecap)) | 
|  | domain->iommu_snooping = 1; | 
|  | else | 
|  | domain->iommu_snooping = 0; | 
|  |  | 
|  | domain->iommu_superpage = fls(cap_super_page_val(iommu->cap)); | 
|  | domain->iommu_count = 1; | 
|  | domain->nid = iommu->node; | 
|  |  | 
|  | /* always allocate the top pgd */ | 
|  | domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid); | 
|  | if (!domain->pgd) | 
|  | return -ENOMEM; | 
|  | __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void domain_exit(struct dmar_domain *domain) | 
|  | { | 
|  | struct dmar_drhd_unit *drhd; | 
|  | struct intel_iommu *iommu; | 
|  |  | 
|  | /* Domain 0 is reserved, so dont process it */ | 
|  | if (!domain) | 
|  | return; | 
|  |  | 
|  | /* Flush any lazy unmaps that may reference this domain */ | 
|  | if (!intel_iommu_strict) | 
|  | flush_unmaps_timeout(0); | 
|  |  | 
|  | domain_remove_dev_info(domain); | 
|  | /* destroy iovas */ | 
|  | put_iova_domain(&domain->iovad); | 
|  |  | 
|  | /* clear ptes */ | 
|  | dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); | 
|  |  | 
|  | /* free page tables */ | 
|  | dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); | 
|  |  | 
|  | for_each_active_iommu(iommu, drhd) | 
|  | if (test_bit(iommu->seq_id, &domain->iommu_bmp)) | 
|  | iommu_detach_domain(domain, iommu); | 
|  |  | 
|  | free_domain_mem(domain); | 
|  | } | 
|  |  | 
|  | static int domain_context_mapping_one(struct dmar_domain *domain, int segment, | 
|  | u8 bus, u8 devfn, int translation) | 
|  | { | 
|  | struct context_entry *context; | 
|  | unsigned long flags; | 
|  | struct intel_iommu *iommu; | 
|  | struct dma_pte *pgd; | 
|  | unsigned long num; | 
|  | unsigned long ndomains; | 
|  | int id; | 
|  | int agaw; | 
|  | struct device_domain_info *info = NULL; | 
|  |  | 
|  | pr_debug("Set context mapping for %02x:%02x.%d\n", | 
|  | bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); | 
|  |  | 
|  | BUG_ON(!domain->pgd); | 
|  | BUG_ON(translation != CONTEXT_TT_PASS_THROUGH && | 
|  | translation != CONTEXT_TT_MULTI_LEVEL); | 
|  |  | 
|  | iommu = device_to_iommu(segment, bus, devfn); | 
|  | if (!iommu) | 
|  | return -ENODEV; | 
|  |  | 
|  | context = device_to_context_entry(iommu, bus, devfn); | 
|  | if (!context) | 
|  | return -ENOMEM; | 
|  | spin_lock_irqsave(&iommu->lock, flags); | 
|  | if (context_present(context)) { | 
|  | spin_unlock_irqrestore(&iommu->lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | id = domain->id; | 
|  | pgd = domain->pgd; | 
|  |  | 
|  | if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE || | 
|  | domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) { | 
|  | int found = 0; | 
|  |  | 
|  | /* find an available domain id for this device in iommu */ | 
|  | ndomains = cap_ndoms(iommu->cap); | 
|  | for_each_set_bit(num, iommu->domain_ids, ndomains) { | 
|  | if (iommu->domains[num] == domain) { | 
|  | id = num; | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (found == 0) { | 
|  | num = find_first_zero_bit(iommu->domain_ids, ndomains); | 
|  | if (num >= ndomains) { | 
|  | spin_unlock_irqrestore(&iommu->lock, flags); | 
|  | printk(KERN_ERR "IOMMU: no free domain ids\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | set_bit(num, iommu->domain_ids); | 
|  | iommu->domains[num] = domain; | 
|  | id = num; | 
|  | } | 
|  |  | 
|  | /* Skip top levels of page tables for | 
|  | * iommu which has less agaw than default. | 
|  | * Unnecessary for PT mode. | 
|  | */ | 
|  | if (translation != CONTEXT_TT_PASS_THROUGH) { | 
|  | for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) { | 
|  | pgd = phys_to_virt(dma_pte_addr(pgd)); | 
|  | if (!dma_pte_present(pgd)) { | 
|  | spin_unlock_irqrestore(&iommu->lock, flags); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | context_set_domain_id(context, id); | 
|  |  | 
|  | if (translation != CONTEXT_TT_PASS_THROUGH) { | 
|  | info = iommu_support_dev_iotlb(domain, segment, bus, devfn); | 
|  | translation = info ? CONTEXT_TT_DEV_IOTLB : | 
|  | CONTEXT_TT_MULTI_LEVEL; | 
|  | } | 
|  | /* | 
|  | * In pass through mode, AW must be programmed to indicate the largest | 
|  | * AGAW value supported by hardware. And ASR is ignored by hardware. | 
|  | */ | 
|  | if (unlikely(translation == CONTEXT_TT_PASS_THROUGH)) | 
|  | context_set_address_width(context, iommu->msagaw); | 
|  | else { | 
|  | context_set_address_root(context, virt_to_phys(pgd)); | 
|  | context_set_address_width(context, iommu->agaw); | 
|  | } | 
|  |  | 
|  | context_set_translation_type(context, translation); | 
|  | context_set_fault_enable(context); | 
|  | context_set_present(context); | 
|  | domain_flush_cache(domain, context, sizeof(*context)); | 
|  |  | 
|  | /* | 
|  | * It's a non-present to present mapping. If hardware doesn't cache | 
|  | * non-present entry we only need to flush the write-buffer. If the | 
|  | * _does_ cache non-present entries, then it does so in the special | 
|  | * domain #0, which we have to flush: | 
|  | */ | 
|  | if (cap_caching_mode(iommu->cap)) { | 
|  | iommu->flush.flush_context(iommu, 0, | 
|  | (((u16)bus) << 8) | devfn, | 
|  | DMA_CCMD_MASK_NOBIT, | 
|  | DMA_CCMD_DEVICE_INVL); | 
|  | iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH); | 
|  | } else { | 
|  | iommu_flush_write_buffer(iommu); | 
|  | } | 
|  | iommu_enable_dev_iotlb(info); | 
|  | spin_unlock_irqrestore(&iommu->lock, flags); | 
|  |  | 
|  | spin_lock_irqsave(&domain->iommu_lock, flags); | 
|  | if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) { | 
|  | domain->iommu_count++; | 
|  | if (domain->iommu_count == 1) | 
|  | domain->nid = iommu->node; | 
|  | domain_update_iommu_cap(domain); | 
|  | } | 
|  | spin_unlock_irqrestore(&domain->iommu_lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev, | 
|  | int translation) | 
|  | { | 
|  | int ret; | 
|  | struct pci_dev *tmp, *parent; | 
|  |  | 
|  | ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus), | 
|  | pdev->bus->number, pdev->devfn, | 
|  | translation); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* dependent device mapping */ | 
|  | tmp = pci_find_upstream_pcie_bridge(pdev); | 
|  | if (!tmp) | 
|  | return 0; | 
|  | /* Secondary interface's bus number and devfn 0 */ | 
|  | parent = pdev->bus->self; | 
|  | while (parent != tmp) { | 
|  | ret = domain_context_mapping_one(domain, | 
|  | pci_domain_nr(parent->bus), | 
|  | parent->bus->number, | 
|  | parent->devfn, translation); | 
|  | if (ret) | 
|  | return ret; | 
|  | parent = parent->bus->self; | 
|  | } | 
|  | if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */ | 
|  | return domain_context_mapping_one(domain, | 
|  | pci_domain_nr(tmp->subordinate), | 
|  | tmp->subordinate->number, 0, | 
|  | translation); | 
|  | else /* this is a legacy PCI bridge */ | 
|  | return domain_context_mapping_one(domain, | 
|  | pci_domain_nr(tmp->bus), | 
|  | tmp->bus->number, | 
|  | tmp->devfn, | 
|  | translation); | 
|  | } | 
|  |  | 
|  | static int domain_context_mapped(struct pci_dev *pdev) | 
|  | { | 
|  | int ret; | 
|  | struct pci_dev *tmp, *parent; | 
|  | struct intel_iommu *iommu; | 
|  |  | 
|  | iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number, | 
|  | pdev->devfn); | 
|  | if (!iommu) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn); | 
|  | if (!ret) | 
|  | return ret; | 
|  | /* dependent device mapping */ | 
|  | tmp = pci_find_upstream_pcie_bridge(pdev); | 
|  | if (!tmp) | 
|  | return ret; | 
|  | /* Secondary interface's bus number and devfn 0 */ | 
|  | parent = pdev->bus->self; | 
|  | while (parent != tmp) { | 
|  | ret = device_context_mapped(iommu, parent->bus->number, | 
|  | parent->devfn); | 
|  | if (!ret) | 
|  | return ret; | 
|  | parent = parent->bus->self; | 
|  | } | 
|  | if (pci_is_pcie(tmp)) | 
|  | return device_context_mapped(iommu, tmp->subordinate->number, | 
|  | 0); | 
|  | else | 
|  | return device_context_mapped(iommu, tmp->bus->number, | 
|  | tmp->devfn); | 
|  | } | 
|  |  | 
|  | /* Returns a number of VTD pages, but aligned to MM page size */ | 
|  | static inline unsigned long aligned_nrpages(unsigned long host_addr, | 
|  | size_t size) | 
|  | { | 
|  | host_addr &= ~PAGE_MASK; | 
|  | return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | /* Return largest possible superpage level for a given mapping */ | 
|  | static inline int hardware_largepage_caps(struct dmar_domain *domain, | 
|  | unsigned long iov_pfn, | 
|  | unsigned long phy_pfn, | 
|  | unsigned long pages) | 
|  | { | 
|  | int support, level = 1; | 
|  | unsigned long pfnmerge; | 
|  |  | 
|  | support = domain->iommu_superpage; | 
|  |  | 
|  | /* To use a large page, the virtual *and* physical addresses | 
|  | must be aligned to 2MiB/1GiB/etc. Lower bits set in either | 
|  | of them will mean we have to use smaller pages. So just | 
|  | merge them and check both at once. */ | 
|  | pfnmerge = iov_pfn | phy_pfn; | 
|  |  | 
|  | while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) { | 
|  | pages >>= VTD_STRIDE_SHIFT; | 
|  | if (!pages) | 
|  | break; | 
|  | pfnmerge >>= VTD_STRIDE_SHIFT; | 
|  | level++; | 
|  | support--; | 
|  | } | 
|  | return level; | 
|  | } | 
|  |  | 
|  | static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn, | 
|  | struct scatterlist *sg, unsigned long phys_pfn, | 
|  | unsigned long nr_pages, int prot) | 
|  | { | 
|  | struct dma_pte *first_pte = NULL, *pte = NULL; | 
|  | phys_addr_t uninitialized_var(pteval); | 
|  | int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; | 
|  | unsigned long sg_res; | 
|  | unsigned int largepage_lvl = 0; | 
|  | unsigned long lvl_pages = 0; | 
|  |  | 
|  | BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width); | 
|  |  | 
|  | if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP; | 
|  |  | 
|  | if (sg) | 
|  | sg_res = 0; | 
|  | else { | 
|  | sg_res = nr_pages + 1; | 
|  | pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot; | 
|  | } | 
|  |  | 
|  | while (nr_pages > 0) { | 
|  | uint64_t tmp; | 
|  |  | 
|  | if (!sg_res) { | 
|  | sg_res = aligned_nrpages(sg->offset, sg->length); | 
|  | sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset; | 
|  | sg->dma_length = sg->length; | 
|  | pteval = page_to_phys(sg_page(sg)) | prot; | 
|  | phys_pfn = pteval >> VTD_PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | if (!pte) { | 
|  | largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res); | 
|  |  | 
|  | first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl); | 
|  | if (!pte) | 
|  | return -ENOMEM; | 
|  | /* It is large page*/ | 
|  | if (largepage_lvl > 1) | 
|  | pteval |= DMA_PTE_LARGE_PAGE; | 
|  | else | 
|  | pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE; | 
|  |  | 
|  | } | 
|  | /* We don't need lock here, nobody else | 
|  | * touches the iova range | 
|  | */ | 
|  | tmp = cmpxchg64_local(&pte->val, 0ULL, pteval); | 
|  | if (tmp) { | 
|  | static int dumps = 5; | 
|  | printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n", | 
|  | iov_pfn, tmp, (unsigned long long)pteval); | 
|  | if (dumps) { | 
|  | dumps--; | 
|  | debug_dma_dump_mappings(NULL); | 
|  | } | 
|  | WARN_ON(1); | 
|  | } | 
|  |  | 
|  | lvl_pages = lvl_to_nr_pages(largepage_lvl); | 
|  |  | 
|  | BUG_ON(nr_pages < lvl_pages); | 
|  | BUG_ON(sg_res < lvl_pages); | 
|  |  | 
|  | nr_pages -= lvl_pages; | 
|  | iov_pfn += lvl_pages; | 
|  | phys_pfn += lvl_pages; | 
|  | pteval += lvl_pages * VTD_PAGE_SIZE; | 
|  | sg_res -= lvl_pages; | 
|  |  | 
|  | /* If the next PTE would be the first in a new page, then we | 
|  | need to flush the cache on the entries we've just written. | 
|  | And then we'll need to recalculate 'pte', so clear it and | 
|  | let it get set again in the if (!pte) block above. | 
|  |  | 
|  | If we're done (!nr_pages) we need to flush the cache too. | 
|  |  | 
|  | Also if we've been setting superpages, we may need to | 
|  | recalculate 'pte' and switch back to smaller pages for the | 
|  | end of the mapping, if the trailing size is not enough to | 
|  | use another superpage (i.e. sg_res < lvl_pages). */ | 
|  | pte++; | 
|  | if (!nr_pages || first_pte_in_page(pte) || | 
|  | (largepage_lvl > 1 && sg_res < lvl_pages)) { | 
|  | domain_flush_cache(domain, first_pte, | 
|  | (void *)pte - (void *)first_pte); | 
|  | pte = NULL; | 
|  | } | 
|  |  | 
|  | if (!sg_res && nr_pages) | 
|  | sg = sg_next(sg); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn, | 
|  | struct scatterlist *sg, unsigned long nr_pages, | 
|  | int prot) | 
|  | { | 
|  | return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot); | 
|  | } | 
|  |  | 
|  | static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn, | 
|  | unsigned long phys_pfn, unsigned long nr_pages, | 
|  | int prot) | 
|  | { | 
|  | return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot); | 
|  | } | 
|  |  | 
|  | static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn) | 
|  | { | 
|  | if (!iommu) | 
|  | return; | 
|  |  | 
|  | clear_context_table(iommu, bus, devfn); | 
|  | iommu->flush.flush_context(iommu, 0, 0, 0, | 
|  | DMA_CCMD_GLOBAL_INVL); | 
|  | iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); | 
|  | } | 
|  |  | 
|  | static void domain_remove_dev_info(struct dmar_domain *domain) | 
|  | { | 
|  | struct device_domain_info *info; | 
|  | unsigned long flags; | 
|  | struct intel_iommu *iommu; | 
|  |  | 
|  | spin_lock_irqsave(&device_domain_lock, flags); | 
|  | while (!list_empty(&domain->devices)) { | 
|  | info = list_entry(domain->devices.next, | 
|  | struct device_domain_info, link); | 
|  | list_del(&info->link); | 
|  | list_del(&info->global); | 
|  | if (info->dev) | 
|  | info->dev->dev.archdata.iommu = NULL; | 
|  | spin_unlock_irqrestore(&device_domain_lock, flags); | 
|  |  | 
|  | iommu_disable_dev_iotlb(info); | 
|  | iommu = device_to_iommu(info->segment, info->bus, info->devfn); | 
|  | iommu_detach_dev(iommu, info->bus, info->devfn); | 
|  | free_devinfo_mem(info); | 
|  |  | 
|  | spin_lock_irqsave(&device_domain_lock, flags); | 
|  | } | 
|  | spin_unlock_irqrestore(&device_domain_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_domain | 
|  | * Note: we use struct pci_dev->dev.archdata.iommu stores the info | 
|  | */ | 
|  | static struct dmar_domain * | 
|  | find_domain(struct pci_dev *pdev) | 
|  | { | 
|  | struct device_domain_info *info; | 
|  |  | 
|  | /* No lock here, assumes no domain exit in normal case */ | 
|  | info = pdev->dev.archdata.iommu; | 
|  | if (info) | 
|  | return info->domain; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* domain is initialized */ | 
|  | static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw) | 
|  | { | 
|  | struct dmar_domain *domain, *found = NULL; | 
|  | struct intel_iommu *iommu; | 
|  | struct dmar_drhd_unit *drhd; | 
|  | struct device_domain_info *info, *tmp; | 
|  | struct pci_dev *dev_tmp; | 
|  | unsigned long flags; | 
|  | int bus = 0, devfn = 0; | 
|  | int segment; | 
|  | int ret; | 
|  |  | 
|  | domain = find_domain(pdev); | 
|  | if (domain) | 
|  | return domain; | 
|  |  | 
|  | segment = pci_domain_nr(pdev->bus); | 
|  |  | 
|  | dev_tmp = pci_find_upstream_pcie_bridge(pdev); | 
|  | if (dev_tmp) { | 
|  | if (pci_is_pcie(dev_tmp)) { | 
|  | bus = dev_tmp->subordinate->number; | 
|  | devfn = 0; | 
|  | } else { | 
|  | bus = dev_tmp->bus->number; | 
|  | devfn = dev_tmp->devfn; | 
|  | } | 
|  | spin_lock_irqsave(&device_domain_lock, flags); | 
|  | list_for_each_entry(info, &device_domain_list, global) { | 
|  | if (info->segment == segment && | 
|  | info->bus == bus && info->devfn == devfn) { | 
|  | found = info->domain; | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&device_domain_lock, flags); | 
|  | /* pcie-pci bridge already has a domain, uses it */ | 
|  | if (found) { | 
|  | domain = found; | 
|  | goto found_domain; | 
|  | } | 
|  | } | 
|  |  | 
|  | domain = alloc_domain(); | 
|  | if (!domain) | 
|  | goto error; | 
|  |  | 
|  | /* Allocate new domain for the device */ | 
|  | drhd = dmar_find_matched_drhd_unit(pdev); | 
|  | if (!drhd) { | 
|  | printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n", | 
|  | pci_name(pdev)); | 
|  | return NULL; | 
|  | } | 
|  | iommu = drhd->iommu; | 
|  |  | 
|  | ret = iommu_attach_domain(domain, iommu); | 
|  | if (ret) { | 
|  | free_domain_mem(domain); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (domain_init(domain, gaw)) { | 
|  | domain_exit(domain); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* register pcie-to-pci device */ | 
|  | if (dev_tmp) { | 
|  | info = alloc_devinfo_mem(); | 
|  | if (!info) { | 
|  | domain_exit(domain); | 
|  | goto error; | 
|  | } | 
|  | info->segment = segment; | 
|  | info->bus = bus; | 
|  | info->devfn = devfn; | 
|  | info->dev = NULL; | 
|  | info->domain = domain; | 
|  | /* This domain is shared by devices under p2p bridge */ | 
|  | domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES; | 
|  |  | 
|  | /* pcie-to-pci bridge already has a domain, uses it */ | 
|  | found = NULL; | 
|  | spin_lock_irqsave(&device_domain_lock, flags); | 
|  | list_for_each_entry(tmp, &device_domain_list, global) { | 
|  | if (tmp->segment == segment && | 
|  | tmp->bus == bus && tmp->devfn == devfn) { | 
|  | found = tmp->domain; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (found) { | 
|  | spin_unlock_irqrestore(&device_domain_lock, flags); | 
|  | free_devinfo_mem(info); | 
|  | domain_exit(domain); | 
|  | domain = found; | 
|  | } else { | 
|  | list_add(&info->link, &domain->devices); | 
|  | list_add(&info->global, &device_domain_list); | 
|  | spin_unlock_irqrestore(&device_domain_lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | found_domain: | 
|  | info = alloc_devinfo_mem(); | 
|  | if (!info) | 
|  | goto error; | 
|  | info->segment = segment; | 
|  | info->bus = pdev->bus->number; | 
|  | info->devfn = pdev->devfn; | 
|  | info->dev = pdev; | 
|  | info->domain = domain; | 
|  | spin_lock_irqsave(&device_domain_lock, flags); | 
|  | /* somebody is fast */ | 
|  | found = find_domain(pdev); | 
|  | if (found != NULL) { | 
|  | spin_unlock_irqrestore(&device_domain_lock, flags); | 
|  | if (found != domain) { | 
|  | domain_exit(domain); | 
|  | domain = found; | 
|  | } | 
|  | free_devinfo_mem(info); | 
|  | return domain; | 
|  | } | 
|  | list_add(&info->link, &domain->devices); | 
|  | list_add(&info->global, &device_domain_list); | 
|  | pdev->dev.archdata.iommu = info; | 
|  | spin_unlock_irqrestore(&device_domain_lock, flags); | 
|  | return domain; | 
|  | error: | 
|  | /* recheck it here, maybe others set it */ | 
|  | return find_domain(pdev); | 
|  | } | 
|  |  | 
|  | static int iommu_identity_mapping; | 
|  | #define IDENTMAP_ALL		1 | 
|  | #define IDENTMAP_GFX		2 | 
|  | #define IDENTMAP_AZALIA		4 | 
|  |  | 
|  | static int iommu_domain_identity_map(struct dmar_domain *domain, | 
|  | unsigned long long start, | 
|  | unsigned long long end) | 
|  | { | 
|  | unsigned long first_vpfn = start >> VTD_PAGE_SHIFT; | 
|  | unsigned long last_vpfn = end >> VTD_PAGE_SHIFT; | 
|  |  | 
|  | if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn), | 
|  | dma_to_mm_pfn(last_vpfn))) { | 
|  | printk(KERN_ERR "IOMMU: reserve iova failed\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | pr_debug("Mapping reserved region %llx-%llx for domain %d\n", | 
|  | start, end, domain->id); | 
|  | /* | 
|  | * RMRR range might have overlap with physical memory range, | 
|  | * clear it first | 
|  | */ | 
|  | dma_pte_clear_range(domain, first_vpfn, last_vpfn); | 
|  |  | 
|  | return domain_pfn_mapping(domain, first_vpfn, first_vpfn, | 
|  | last_vpfn - first_vpfn + 1, | 
|  | DMA_PTE_READ|DMA_PTE_WRITE); | 
|  | } | 
|  |  | 
|  | static int iommu_prepare_identity_map(struct pci_dev *pdev, | 
|  | unsigned long long start, | 
|  | unsigned long long end) | 
|  | { | 
|  | struct dmar_domain *domain; | 
|  | int ret; | 
|  |  | 
|  | domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH); | 
|  | if (!domain) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* For _hardware_ passthrough, don't bother. But for software | 
|  | passthrough, we do it anyway -- it may indicate a memory | 
|  | range which is reserved in E820, so which didn't get set | 
|  | up to start with in si_domain */ | 
|  | if (domain == si_domain && hw_pass_through) { | 
|  | printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n", | 
|  | pci_name(pdev), start, end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | printk(KERN_INFO | 
|  | "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n", | 
|  | pci_name(pdev), start, end); | 
|  |  | 
|  | if (end < start) { | 
|  | WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n" | 
|  | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", | 
|  | dmi_get_system_info(DMI_BIOS_VENDOR), | 
|  | dmi_get_system_info(DMI_BIOS_VERSION), | 
|  | dmi_get_system_info(DMI_PRODUCT_VERSION)); | 
|  | ret = -EIO; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (end >> agaw_to_width(domain->agaw)) { | 
|  | WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n" | 
|  | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", | 
|  | agaw_to_width(domain->agaw), | 
|  | dmi_get_system_info(DMI_BIOS_VENDOR), | 
|  | dmi_get_system_info(DMI_BIOS_VERSION), | 
|  | dmi_get_system_info(DMI_PRODUCT_VERSION)); | 
|  | ret = -EIO; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | ret = iommu_domain_identity_map(domain, start, end); | 
|  | if (ret) | 
|  | goto error; | 
|  |  | 
|  | /* context entry init */ | 
|  | ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL); | 
|  | if (ret) | 
|  | goto error; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error: | 
|  | domain_exit(domain); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr, | 
|  | struct pci_dev *pdev) | 
|  | { | 
|  | if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) | 
|  | return 0; | 
|  | return iommu_prepare_identity_map(pdev, rmrr->base_address, | 
|  | rmrr->end_address); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DMAR_FLOPPY_WA | 
|  | static inline void iommu_prepare_isa(void) | 
|  | { | 
|  | struct pci_dev *pdev; | 
|  | int ret; | 
|  |  | 
|  | pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL); | 
|  | if (!pdev) | 
|  | return; | 
|  |  | 
|  | printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n"); | 
|  | ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1); | 
|  |  | 
|  | if (ret) | 
|  | printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; " | 
|  | "floppy might not work\n"); | 
|  |  | 
|  | } | 
|  | #else | 
|  | static inline void iommu_prepare_isa(void) | 
|  | { | 
|  | return; | 
|  | } | 
|  | #endif /* !CONFIG_DMAR_FLPY_WA */ | 
|  |  | 
|  | static int md_domain_init(struct dmar_domain *domain, int guest_width); | 
|  |  | 
|  | static int __init si_domain_work_fn(unsigned long start_pfn, | 
|  | unsigned long end_pfn, void *datax) | 
|  | { | 
|  | int *ret = datax; | 
|  |  | 
|  | *ret = iommu_domain_identity_map(si_domain, | 
|  | (uint64_t)start_pfn << PAGE_SHIFT, | 
|  | (uint64_t)end_pfn << PAGE_SHIFT); | 
|  | return *ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int __init si_domain_init(int hw) | 
|  | { | 
|  | struct dmar_drhd_unit *drhd; | 
|  | struct intel_iommu *iommu; | 
|  | int nid, ret = 0; | 
|  |  | 
|  | si_domain = alloc_domain(); | 
|  | if (!si_domain) | 
|  | return -EFAULT; | 
|  |  | 
|  | pr_debug("Identity mapping domain is domain %d\n", si_domain->id); | 
|  |  | 
|  | for_each_active_iommu(iommu, drhd) { | 
|  | ret = iommu_attach_domain(si_domain, iommu); | 
|  | if (ret) { | 
|  | domain_exit(si_domain); | 
|  | return -EFAULT; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { | 
|  | domain_exit(si_domain); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY; | 
|  |  | 
|  | if (hw) | 
|  | return 0; | 
|  |  | 
|  | for_each_online_node(nid) { | 
|  | work_with_active_regions(nid, si_domain_work_fn, &ret); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void domain_remove_one_dev_info(struct dmar_domain *domain, | 
|  | struct pci_dev *pdev); | 
|  | static int identity_mapping(struct pci_dev *pdev) | 
|  | { | 
|  | struct device_domain_info *info; | 
|  |  | 
|  | if (likely(!iommu_identity_mapping)) | 
|  | return 0; | 
|  |  | 
|  | info = pdev->dev.archdata.iommu; | 
|  | if (info && info != DUMMY_DEVICE_DOMAIN_INFO) | 
|  | return (info->domain == si_domain); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int domain_add_dev_info(struct dmar_domain *domain, | 
|  | struct pci_dev *pdev, | 
|  | int translation) | 
|  | { | 
|  | struct device_domain_info *info; | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | info = alloc_devinfo_mem(); | 
|  | if (!info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = domain_context_mapping(domain, pdev, translation); | 
|  | if (ret) { | 
|  | free_devinfo_mem(info); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | info->segment = pci_domain_nr(pdev->bus); | 
|  | info->bus = pdev->bus->number; | 
|  | info->devfn = pdev->devfn; | 
|  | info->dev = pdev; | 
|  | info->domain = domain; | 
|  |  | 
|  | spin_lock_irqsave(&device_domain_lock, flags); | 
|  | list_add(&info->link, &domain->devices); | 
|  | list_add(&info->global, &device_domain_list); | 
|  | pdev->dev.archdata.iommu = info; | 
|  | spin_unlock_irqrestore(&device_domain_lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int iommu_should_identity_map(struct pci_dev *pdev, int startup) | 
|  | { | 
|  | if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev)) | 
|  | return 1; | 
|  |  | 
|  | if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev)) | 
|  | return 1; | 
|  |  | 
|  | if (!(iommu_identity_mapping & IDENTMAP_ALL)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We want to start off with all devices in the 1:1 domain, and | 
|  | * take them out later if we find they can't access all of memory. | 
|  | * | 
|  | * However, we can't do this for PCI devices behind bridges, | 
|  | * because all PCI devices behind the same bridge will end up | 
|  | * with the same source-id on their transactions. | 
|  | * | 
|  | * Practically speaking, we can't change things around for these | 
|  | * devices at run-time, because we can't be sure there'll be no | 
|  | * DMA transactions in flight for any of their siblings. | 
|  | * | 
|  | * So PCI devices (unless they're on the root bus) as well as | 
|  | * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of | 
|  | * the 1:1 domain, just in _case_ one of their siblings turns out | 
|  | * not to be able to map all of memory. | 
|  | */ | 
|  | if (!pci_is_pcie(pdev)) { | 
|  | if (!pci_is_root_bus(pdev->bus)) | 
|  | return 0; | 
|  | if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI) | 
|  | return 0; | 
|  | } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * At boot time, we don't yet know if devices will be 64-bit capable. | 
|  | * Assume that they will -- if they turn out not to be, then we can | 
|  | * take them out of the 1:1 domain later. | 
|  | */ | 
|  | if (!startup) { | 
|  | /* | 
|  | * If the device's dma_mask is less than the system's memory | 
|  | * size then this is not a candidate for identity mapping. | 
|  | */ | 
|  | u64 dma_mask = pdev->dma_mask; | 
|  |  | 
|  | if (pdev->dev.coherent_dma_mask && | 
|  | pdev->dev.coherent_dma_mask < dma_mask) | 
|  | dma_mask = pdev->dev.coherent_dma_mask; | 
|  |  | 
|  | return dma_mask >= dma_get_required_mask(&pdev->dev); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int __init iommu_prepare_static_identity_mapping(int hw) | 
|  | { | 
|  | struct pci_dev *pdev = NULL; | 
|  | int ret; | 
|  |  | 
|  | ret = si_domain_init(hw); | 
|  | if (ret) | 
|  | return -EFAULT; | 
|  |  | 
|  | for_each_pci_dev(pdev) { | 
|  | /* Skip Host/PCI Bridge devices */ | 
|  | if (IS_BRIDGE_HOST_DEVICE(pdev)) | 
|  | continue; | 
|  | if (iommu_should_identity_map(pdev, 1)) { | 
|  | printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n", | 
|  | hw ? "hardware" : "software", pci_name(pdev)); | 
|  |  | 
|  | ret = domain_add_dev_info(si_domain, pdev, | 
|  | hw ? CONTEXT_TT_PASS_THROUGH : | 
|  | CONTEXT_TT_MULTI_LEVEL); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init init_dmars(void) | 
|  | { | 
|  | struct dmar_drhd_unit *drhd; | 
|  | struct dmar_rmrr_unit *rmrr; | 
|  | struct pci_dev *pdev; | 
|  | struct intel_iommu *iommu; | 
|  | int i, ret; | 
|  |  | 
|  | /* | 
|  | * for each drhd | 
|  | *    allocate root | 
|  | *    initialize and program root entry to not present | 
|  | * endfor | 
|  | */ | 
|  | for_each_drhd_unit(drhd) { | 
|  | g_num_of_iommus++; | 
|  | /* | 
|  | * lock not needed as this is only incremented in the single | 
|  | * threaded kernel __init code path all other access are read | 
|  | * only | 
|  | */ | 
|  | } | 
|  |  | 
|  | g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *), | 
|  | GFP_KERNEL); | 
|  | if (!g_iommus) { | 
|  | printk(KERN_ERR "Allocating global iommu array failed\n"); | 
|  | ret = -ENOMEM; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | deferred_flush = kzalloc(g_num_of_iommus * | 
|  | sizeof(struct deferred_flush_tables), GFP_KERNEL); | 
|  | if (!deferred_flush) { | 
|  | ret = -ENOMEM; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | for_each_drhd_unit(drhd) { | 
|  | if (drhd->ignored) | 
|  | continue; | 
|  |  | 
|  | iommu = drhd->iommu; | 
|  | g_iommus[iommu->seq_id] = iommu; | 
|  |  | 
|  | ret = iommu_init_domains(iommu); | 
|  | if (ret) | 
|  | goto error; | 
|  |  | 
|  | /* | 
|  | * TBD: | 
|  | * we could share the same root & context tables | 
|  | * among all IOMMU's. Need to Split it later. | 
|  | */ | 
|  | ret = iommu_alloc_root_entry(iommu); | 
|  | if (ret) { | 
|  | printk(KERN_ERR "IOMMU: allocate root entry failed\n"); | 
|  | goto error; | 
|  | } | 
|  | if (!ecap_pass_through(iommu->ecap)) | 
|  | hw_pass_through = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start from the sane iommu hardware state. | 
|  | */ | 
|  | for_each_drhd_unit(drhd) { | 
|  | if (drhd->ignored) | 
|  | continue; | 
|  |  | 
|  | iommu = drhd->iommu; | 
|  |  | 
|  | /* | 
|  | * If the queued invalidation is already initialized by us | 
|  | * (for example, while enabling interrupt-remapping) then | 
|  | * we got the things already rolling from a sane state. | 
|  | */ | 
|  | if (iommu->qi) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Clear any previous faults. | 
|  | */ | 
|  | dmar_fault(-1, iommu); | 
|  | /* | 
|  | * Disable queued invalidation if supported and already enabled | 
|  | * before OS handover. | 
|  | */ | 
|  | dmar_disable_qi(iommu); | 
|  | } | 
|  |  | 
|  | for_each_drhd_unit(drhd) { | 
|  | if (drhd->ignored) | 
|  | continue; | 
|  |  | 
|  | iommu = drhd->iommu; | 
|  |  | 
|  | if (dmar_enable_qi(iommu)) { | 
|  | /* | 
|  | * Queued Invalidate not enabled, use Register Based | 
|  | * Invalidate | 
|  | */ | 
|  | iommu->flush.flush_context = __iommu_flush_context; | 
|  | iommu->flush.flush_iotlb = __iommu_flush_iotlb; | 
|  | printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based " | 
|  | "invalidation\n", | 
|  | iommu->seq_id, | 
|  | (unsigned long long)drhd->reg_base_addr); | 
|  | } else { | 
|  | iommu->flush.flush_context = qi_flush_context; | 
|  | iommu->flush.flush_iotlb = qi_flush_iotlb; | 
|  | printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued " | 
|  | "invalidation\n", | 
|  | iommu->seq_id, | 
|  | (unsigned long long)drhd->reg_base_addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (iommu_pass_through) | 
|  | iommu_identity_mapping |= IDENTMAP_ALL; | 
|  |  | 
|  | #ifdef CONFIG_DMAR_BROKEN_GFX_WA | 
|  | iommu_identity_mapping |= IDENTMAP_GFX; | 
|  | #endif | 
|  |  | 
|  | check_tylersburg_isoch(); | 
|  |  | 
|  | /* | 
|  | * If pass through is not set or not enabled, setup context entries for | 
|  | * identity mappings for rmrr, gfx, and isa and may fall back to static | 
|  | * identity mapping if iommu_identity_mapping is set. | 
|  | */ | 
|  | if (iommu_identity_mapping) { | 
|  | ret = iommu_prepare_static_identity_mapping(hw_pass_through); | 
|  | if (ret) { | 
|  | printk(KERN_CRIT "Failed to setup IOMMU pass-through\n"); | 
|  | goto error; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * For each rmrr | 
|  | *   for each dev attached to rmrr | 
|  | *   do | 
|  | *     locate drhd for dev, alloc domain for dev | 
|  | *     allocate free domain | 
|  | *     allocate page table entries for rmrr | 
|  | *     if context not allocated for bus | 
|  | *           allocate and init context | 
|  | *           set present in root table for this bus | 
|  | *     init context with domain, translation etc | 
|  | *    endfor | 
|  | * endfor | 
|  | */ | 
|  | printk(KERN_INFO "IOMMU: Setting RMRR:\n"); | 
|  | for_each_rmrr_units(rmrr) { | 
|  | for (i = 0; i < rmrr->devices_cnt; i++) { | 
|  | pdev = rmrr->devices[i]; | 
|  | /* | 
|  | * some BIOS lists non-exist devices in DMAR | 
|  | * table. | 
|  | */ | 
|  | if (!pdev) | 
|  | continue; | 
|  | ret = iommu_prepare_rmrr_dev(rmrr, pdev); | 
|  | if (ret) | 
|  | printk(KERN_ERR | 
|  | "IOMMU: mapping reserved region failed\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | iommu_prepare_isa(); | 
|  |  | 
|  | /* | 
|  | * for each drhd | 
|  | *   enable fault log | 
|  | *   global invalidate context cache | 
|  | *   global invalidate iotlb | 
|  | *   enable translation | 
|  | */ | 
|  | for_each_drhd_unit(drhd) { | 
|  | if (drhd->ignored) { | 
|  | /* | 
|  | * we always have to disable PMRs or DMA may fail on | 
|  | * this device | 
|  | */ | 
|  | if (force_on) | 
|  | iommu_disable_protect_mem_regions(drhd->iommu); | 
|  | continue; | 
|  | } | 
|  | iommu = drhd->iommu; | 
|  |  | 
|  | iommu_flush_write_buffer(iommu); | 
|  |  | 
|  | ret = dmar_set_interrupt(iommu); | 
|  | if (ret) | 
|  | goto error; | 
|  |  | 
|  | iommu_set_root_entry(iommu); | 
|  |  | 
|  | iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); | 
|  | iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); | 
|  |  | 
|  | ret = iommu_enable_translation(iommu); | 
|  | if (ret) | 
|  | goto error; | 
|  |  | 
|  | iommu_disable_protect_mem_regions(iommu); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | error: | 
|  | for_each_drhd_unit(drhd) { | 
|  | if (drhd->ignored) | 
|  | continue; | 
|  | iommu = drhd->iommu; | 
|  | free_iommu(iommu); | 
|  | } | 
|  | kfree(g_iommus); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* This takes a number of _MM_ pages, not VTD pages */ | 
|  | static struct iova *intel_alloc_iova(struct device *dev, | 
|  | struct dmar_domain *domain, | 
|  | unsigned long nrpages, uint64_t dma_mask) | 
|  | { | 
|  | struct pci_dev *pdev = to_pci_dev(dev); | 
|  | struct iova *iova = NULL; | 
|  |  | 
|  | /* Restrict dma_mask to the width that the iommu can handle */ | 
|  | dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask); | 
|  |  | 
|  | if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) { | 
|  | /* | 
|  | * First try to allocate an io virtual address in | 
|  | * DMA_BIT_MASK(32) and if that fails then try allocating | 
|  | * from higher range | 
|  | */ | 
|  | iova = alloc_iova(&domain->iovad, nrpages, | 
|  | IOVA_PFN(DMA_BIT_MASK(32)), 1); | 
|  | if (iova) | 
|  | return iova; | 
|  | } | 
|  | iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1); | 
|  | if (unlikely(!iova)) { | 
|  | printk(KERN_ERR "Allocating %ld-page iova for %s failed", | 
|  | nrpages, pci_name(pdev)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return iova; | 
|  | } | 
|  |  | 
|  | static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev) | 
|  | { | 
|  | struct dmar_domain *domain; | 
|  | int ret; | 
|  |  | 
|  | domain = get_domain_for_dev(pdev, | 
|  | DEFAULT_DOMAIN_ADDRESS_WIDTH); | 
|  | if (!domain) { | 
|  | printk(KERN_ERR | 
|  | "Allocating domain for %s failed", pci_name(pdev)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* make sure context mapping is ok */ | 
|  | if (unlikely(!domain_context_mapped(pdev))) { | 
|  | ret = domain_context_mapping(domain, pdev, | 
|  | CONTEXT_TT_MULTI_LEVEL); | 
|  | if (ret) { | 
|  | printk(KERN_ERR | 
|  | "Domain context map for %s failed", | 
|  | pci_name(pdev)); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return domain; | 
|  | } | 
|  |  | 
|  | static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev) | 
|  | { | 
|  | struct device_domain_info *info; | 
|  |  | 
|  | /* No lock here, assumes no domain exit in normal case */ | 
|  | info = dev->dev.archdata.iommu; | 
|  | if (likely(info)) | 
|  | return info->domain; | 
|  |  | 
|  | return __get_valid_domain_for_dev(dev); | 
|  | } | 
|  |  | 
|  | static int iommu_dummy(struct pci_dev *pdev) | 
|  | { | 
|  | return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO; | 
|  | } | 
|  |  | 
|  | /* Check if the pdev needs to go through non-identity map and unmap process.*/ | 
|  | static int iommu_no_mapping(struct device *dev) | 
|  | { | 
|  | struct pci_dev *pdev; | 
|  | int found; | 
|  |  | 
|  | if (unlikely(dev->bus != &pci_bus_type)) | 
|  | return 1; | 
|  |  | 
|  | pdev = to_pci_dev(dev); | 
|  | if (iommu_dummy(pdev)) | 
|  | return 1; | 
|  |  | 
|  | if (!iommu_identity_mapping) | 
|  | return 0; | 
|  |  | 
|  | found = identity_mapping(pdev); | 
|  | if (found) { | 
|  | if (iommu_should_identity_map(pdev, 0)) | 
|  | return 1; | 
|  | else { | 
|  | /* | 
|  | * 32 bit DMA is removed from si_domain and fall back | 
|  | * to non-identity mapping. | 
|  | */ | 
|  | domain_remove_one_dev_info(si_domain, pdev); | 
|  | printk(KERN_INFO "32bit %s uses non-identity mapping\n", | 
|  | pci_name(pdev)); | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * In case of a detached 64 bit DMA device from vm, the device | 
|  | * is put into si_domain for identity mapping. | 
|  | */ | 
|  | if (iommu_should_identity_map(pdev, 0)) { | 
|  | int ret; | 
|  | ret = domain_add_dev_info(si_domain, pdev, | 
|  | hw_pass_through ? | 
|  | CONTEXT_TT_PASS_THROUGH : | 
|  | CONTEXT_TT_MULTI_LEVEL); | 
|  | if (!ret) { | 
|  | printk(KERN_INFO "64bit %s uses identity mapping\n", | 
|  | pci_name(pdev)); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr, | 
|  | size_t size, int dir, u64 dma_mask) | 
|  | { | 
|  | struct pci_dev *pdev = to_pci_dev(hwdev); | 
|  | struct dmar_domain *domain; | 
|  | phys_addr_t start_paddr; | 
|  | struct iova *iova; | 
|  | int prot = 0; | 
|  | int ret; | 
|  | struct intel_iommu *iommu; | 
|  | unsigned long paddr_pfn = paddr >> PAGE_SHIFT; | 
|  |  | 
|  | BUG_ON(dir == DMA_NONE); | 
|  |  | 
|  | if (iommu_no_mapping(hwdev)) | 
|  | return paddr; | 
|  |  | 
|  | domain = get_valid_domain_for_dev(pdev); | 
|  | if (!domain) | 
|  | return 0; | 
|  |  | 
|  | iommu = domain_get_iommu(domain); | 
|  | size = aligned_nrpages(paddr, size); | 
|  |  | 
|  | iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask); | 
|  | if (!iova) | 
|  | goto error; | 
|  |  | 
|  | /* | 
|  | * Check if DMAR supports zero-length reads on write only | 
|  | * mappings.. | 
|  | */ | 
|  | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ | 
|  | !cap_zlr(iommu->cap)) | 
|  | prot |= DMA_PTE_READ; | 
|  | if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) | 
|  | prot |= DMA_PTE_WRITE; | 
|  | /* | 
|  | * paddr - (paddr + size) might be partial page, we should map the whole | 
|  | * page.  Note: if two part of one page are separately mapped, we | 
|  | * might have two guest_addr mapping to the same host paddr, but this | 
|  | * is not a big problem | 
|  | */ | 
|  | ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo), | 
|  | mm_to_dma_pfn(paddr_pfn), size, prot); | 
|  | if (ret) | 
|  | goto error; | 
|  |  | 
|  | /* it's a non-present to present mapping. Only flush if caching mode */ | 
|  | if (cap_caching_mode(iommu->cap)) | 
|  | iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1); | 
|  | else | 
|  | iommu_flush_write_buffer(iommu); | 
|  |  | 
|  | start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT; | 
|  | start_paddr += paddr & ~PAGE_MASK; | 
|  | return start_paddr; | 
|  |  | 
|  | error: | 
|  | if (iova) | 
|  | __free_iova(&domain->iovad, iova); | 
|  | printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n", | 
|  | pci_name(pdev), size, (unsigned long long)paddr, dir); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static dma_addr_t intel_map_page(struct device *dev, struct page *page, | 
|  | unsigned long offset, size_t size, | 
|  | enum dma_data_direction dir, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | return __intel_map_single(dev, page_to_phys(page) + offset, size, | 
|  | dir, to_pci_dev(dev)->dma_mask); | 
|  | } | 
|  |  | 
|  | static void flush_unmaps(void) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | timer_on = 0; | 
|  |  | 
|  | /* just flush them all */ | 
|  | for (i = 0; i < g_num_of_iommus; i++) { | 
|  | struct intel_iommu *iommu = g_iommus[i]; | 
|  | if (!iommu) | 
|  | continue; | 
|  |  | 
|  | if (!deferred_flush[i].next) | 
|  | continue; | 
|  |  | 
|  | /* In caching mode, global flushes turn emulation expensive */ | 
|  | if (!cap_caching_mode(iommu->cap)) | 
|  | iommu->flush.flush_iotlb(iommu, 0, 0, 0, | 
|  | DMA_TLB_GLOBAL_FLUSH); | 
|  | for (j = 0; j < deferred_flush[i].next; j++) { | 
|  | unsigned long mask; | 
|  | struct iova *iova = deferred_flush[i].iova[j]; | 
|  | struct dmar_domain *domain = deferred_flush[i].domain[j]; | 
|  |  | 
|  | /* On real hardware multiple invalidations are expensive */ | 
|  | if (cap_caching_mode(iommu->cap)) | 
|  | iommu_flush_iotlb_psi(iommu, domain->id, | 
|  | iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0); | 
|  | else { | 
|  | mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1)); | 
|  | iommu_flush_dev_iotlb(deferred_flush[i].domain[j], | 
|  | (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask); | 
|  | } | 
|  | __free_iova(&deferred_flush[i].domain[j]->iovad, iova); | 
|  | } | 
|  | deferred_flush[i].next = 0; | 
|  | } | 
|  |  | 
|  | list_size = 0; | 
|  | } | 
|  |  | 
|  | static void flush_unmaps_timeout(unsigned long data) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&async_umap_flush_lock, flags); | 
|  | flush_unmaps(); | 
|  | spin_unlock_irqrestore(&async_umap_flush_lock, flags); | 
|  | } | 
|  |  | 
|  | static void add_unmap(struct dmar_domain *dom, struct iova *iova) | 
|  | { | 
|  | unsigned long flags; | 
|  | int next, iommu_id; | 
|  | struct intel_iommu *iommu; | 
|  |  | 
|  | spin_lock_irqsave(&async_umap_flush_lock, flags); | 
|  | if (list_size == HIGH_WATER_MARK) | 
|  | flush_unmaps(); | 
|  |  | 
|  | iommu = domain_get_iommu(dom); | 
|  | iommu_id = iommu->seq_id; | 
|  |  | 
|  | next = deferred_flush[iommu_id].next; | 
|  | deferred_flush[iommu_id].domain[next] = dom; | 
|  | deferred_flush[iommu_id].iova[next] = iova; | 
|  | deferred_flush[iommu_id].next++; | 
|  |  | 
|  | if (!timer_on) { | 
|  | mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10)); | 
|  | timer_on = 1; | 
|  | } | 
|  | list_size++; | 
|  | spin_unlock_irqrestore(&async_umap_flush_lock, flags); | 
|  | } | 
|  |  | 
|  | static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr, | 
|  | size_t size, enum dma_data_direction dir, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | struct pci_dev *pdev = to_pci_dev(dev); | 
|  | struct dmar_domain *domain; | 
|  | unsigned long start_pfn, last_pfn; | 
|  | struct iova *iova; | 
|  | struct intel_iommu *iommu; | 
|  |  | 
|  | if (iommu_no_mapping(dev)) | 
|  | return; | 
|  |  | 
|  | domain = find_domain(pdev); | 
|  | BUG_ON(!domain); | 
|  |  | 
|  | iommu = domain_get_iommu(domain); | 
|  |  | 
|  | iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr)); | 
|  | if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n", | 
|  | (unsigned long long)dev_addr)) | 
|  | return; | 
|  |  | 
|  | start_pfn = mm_to_dma_pfn(iova->pfn_lo); | 
|  | last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1; | 
|  |  | 
|  | pr_debug("Device %s unmapping: pfn %lx-%lx\n", | 
|  | pci_name(pdev), start_pfn, last_pfn); | 
|  |  | 
|  | /*  clear the whole page */ | 
|  | dma_pte_clear_range(domain, start_pfn, last_pfn); | 
|  |  | 
|  | /* free page tables */ | 
|  | dma_pte_free_pagetable(domain, start_pfn, last_pfn); | 
|  |  | 
|  | if (intel_iommu_strict) { | 
|  | iommu_flush_iotlb_psi(iommu, domain->id, start_pfn, | 
|  | last_pfn - start_pfn + 1, 0); | 
|  | /* free iova */ | 
|  | __free_iova(&domain->iovad, iova); | 
|  | } else { | 
|  | add_unmap(domain, iova); | 
|  | /* | 
|  | * queue up the release of the unmap to save the 1/6th of the | 
|  | * cpu used up by the iotlb flush operation... | 
|  | */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static void *intel_alloc_coherent(struct device *hwdev, size_t size, | 
|  | dma_addr_t *dma_handle, gfp_t flags) | 
|  | { | 
|  | void *vaddr; | 
|  | int order; | 
|  |  | 
|  | size = PAGE_ALIGN(size); | 
|  | order = get_order(size); | 
|  |  | 
|  | if (!iommu_no_mapping(hwdev)) | 
|  | flags &= ~(GFP_DMA | GFP_DMA32); | 
|  | else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) { | 
|  | if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32)) | 
|  | flags |= GFP_DMA; | 
|  | else | 
|  | flags |= GFP_DMA32; | 
|  | } | 
|  |  | 
|  | vaddr = (void *)__get_free_pages(flags, order); | 
|  | if (!vaddr) | 
|  | return NULL; | 
|  | memset(vaddr, 0, size); | 
|  |  | 
|  | *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size, | 
|  | DMA_BIDIRECTIONAL, | 
|  | hwdev->coherent_dma_mask); | 
|  | if (*dma_handle) | 
|  | return vaddr; | 
|  | free_pages((unsigned long)vaddr, order); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr, | 
|  | dma_addr_t dma_handle) | 
|  | { | 
|  | int order; | 
|  |  | 
|  | size = PAGE_ALIGN(size); | 
|  | order = get_order(size); | 
|  |  | 
|  | intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL); | 
|  | free_pages((unsigned long)vaddr, order); | 
|  | } | 
|  |  | 
|  | static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist, | 
|  | int nelems, enum dma_data_direction dir, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | struct pci_dev *pdev = to_pci_dev(hwdev); | 
|  | struct dmar_domain *domain; | 
|  | unsigned long start_pfn, last_pfn; | 
|  | struct iova *iova; | 
|  | struct intel_iommu *iommu; | 
|  |  | 
|  | if (iommu_no_mapping(hwdev)) | 
|  | return; | 
|  |  | 
|  | domain = find_domain(pdev); | 
|  | BUG_ON(!domain); | 
|  |  | 
|  | iommu = domain_get_iommu(domain); | 
|  |  | 
|  | iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address)); | 
|  | if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n", | 
|  | (unsigned long long)sglist[0].dma_address)) | 
|  | return; | 
|  |  | 
|  | start_pfn = mm_to_dma_pfn(iova->pfn_lo); | 
|  | last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1; | 
|  |  | 
|  | /*  clear the whole page */ | 
|  | dma_pte_clear_range(domain, start_pfn, last_pfn); | 
|  |  | 
|  | /* free page tables */ | 
|  | dma_pte_free_pagetable(domain, start_pfn, last_pfn); | 
|  |  | 
|  | if (intel_iommu_strict) { | 
|  | iommu_flush_iotlb_psi(iommu, domain->id, start_pfn, | 
|  | last_pfn - start_pfn + 1, 0); | 
|  | /* free iova */ | 
|  | __free_iova(&domain->iovad, iova); | 
|  | } else { | 
|  | add_unmap(domain, iova); | 
|  | /* | 
|  | * queue up the release of the unmap to save the 1/6th of the | 
|  | * cpu used up by the iotlb flush operation... | 
|  | */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static int intel_nontranslate_map_sg(struct device *hddev, | 
|  | struct scatterlist *sglist, int nelems, int dir) | 
|  | { | 
|  | int i; | 
|  | struct scatterlist *sg; | 
|  |  | 
|  | for_each_sg(sglist, sg, nelems, i) { | 
|  | BUG_ON(!sg_page(sg)); | 
|  | sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset; | 
|  | sg->dma_length = sg->length; | 
|  | } | 
|  | return nelems; | 
|  | } | 
|  |  | 
|  | static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems, | 
|  | enum dma_data_direction dir, struct dma_attrs *attrs) | 
|  | { | 
|  | int i; | 
|  | struct pci_dev *pdev = to_pci_dev(hwdev); | 
|  | struct dmar_domain *domain; | 
|  | size_t size = 0; | 
|  | int prot = 0; | 
|  | struct iova *iova = NULL; | 
|  | int ret; | 
|  | struct scatterlist *sg; | 
|  | unsigned long start_vpfn; | 
|  | struct intel_iommu *iommu; | 
|  |  | 
|  | BUG_ON(dir == DMA_NONE); | 
|  | if (iommu_no_mapping(hwdev)) | 
|  | return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir); | 
|  |  | 
|  | domain = get_valid_domain_for_dev(pdev); | 
|  | if (!domain) | 
|  | return 0; | 
|  |  | 
|  | iommu = domain_get_iommu(domain); | 
|  |  | 
|  | for_each_sg(sglist, sg, nelems, i) | 
|  | size += aligned_nrpages(sg->offset, sg->length); | 
|  |  | 
|  | iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), | 
|  | pdev->dma_mask); | 
|  | if (!iova) { | 
|  | sglist->dma_length = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if DMAR supports zero-length reads on write only | 
|  | * mappings.. | 
|  | */ | 
|  | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ | 
|  | !cap_zlr(iommu->cap)) | 
|  | prot |= DMA_PTE_READ; | 
|  | if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) | 
|  | prot |= DMA_PTE_WRITE; | 
|  |  | 
|  | start_vpfn = mm_to_dma_pfn(iova->pfn_lo); | 
|  |  | 
|  | ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot); | 
|  | if (unlikely(ret)) { | 
|  | /*  clear the page */ | 
|  | dma_pte_clear_range(domain, start_vpfn, | 
|  | start_vpfn + size - 1); | 
|  | /* free page tables */ | 
|  | dma_pte_free_pagetable(domain, start_vpfn, | 
|  | start_vpfn + size - 1); | 
|  | /* free iova */ | 
|  | __free_iova(&domain->iovad, iova); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* it's a non-present to present mapping. Only flush if caching mode */ | 
|  | if (cap_caching_mode(iommu->cap)) | 
|  | iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1); | 
|  | else | 
|  | iommu_flush_write_buffer(iommu); | 
|  |  | 
|  | return nelems; | 
|  | } | 
|  |  | 
|  | static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr) | 
|  | { | 
|  | return !dma_addr; | 
|  | } | 
|  |  | 
|  | struct dma_map_ops intel_dma_ops = { | 
|  | .alloc_coherent = intel_alloc_coherent, | 
|  | .free_coherent = intel_free_coherent, | 
|  | .map_sg = intel_map_sg, | 
|  | .unmap_sg = intel_unmap_sg, | 
|  | .map_page = intel_map_page, | 
|  | .unmap_page = intel_unmap_page, | 
|  | .mapping_error = intel_mapping_error, | 
|  | }; | 
|  |  | 
|  | static inline int iommu_domain_cache_init(void) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | iommu_domain_cache = kmem_cache_create("iommu_domain", | 
|  | sizeof(struct dmar_domain), | 
|  | 0, | 
|  | SLAB_HWCACHE_ALIGN, | 
|  |  | 
|  | NULL); | 
|  | if (!iommu_domain_cache) { | 
|  | printk(KERN_ERR "Couldn't create iommu_domain cache\n"); | 
|  | ret = -ENOMEM; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int iommu_devinfo_cache_init(void) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | iommu_devinfo_cache = kmem_cache_create("iommu_devinfo", | 
|  | sizeof(struct device_domain_info), | 
|  | 0, | 
|  | SLAB_HWCACHE_ALIGN, | 
|  | NULL); | 
|  | if (!iommu_devinfo_cache) { | 
|  | printk(KERN_ERR "Couldn't create devinfo cache\n"); | 
|  | ret = -ENOMEM; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int iommu_iova_cache_init(void) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | iommu_iova_cache = kmem_cache_create("iommu_iova", | 
|  | sizeof(struct iova), | 
|  | 0, | 
|  | SLAB_HWCACHE_ALIGN, | 
|  | NULL); | 
|  | if (!iommu_iova_cache) { | 
|  | printk(KERN_ERR "Couldn't create iova cache\n"); | 
|  | ret = -ENOMEM; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __init iommu_init_mempool(void) | 
|  | { | 
|  | int ret; | 
|  | ret = iommu_iova_cache_init(); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = iommu_domain_cache_init(); | 
|  | if (ret) | 
|  | goto domain_error; | 
|  |  | 
|  | ret = iommu_devinfo_cache_init(); | 
|  | if (!ret) | 
|  | return ret; | 
|  |  | 
|  | kmem_cache_destroy(iommu_domain_cache); | 
|  | domain_error: | 
|  | kmem_cache_destroy(iommu_iova_cache); | 
|  |  | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void __init iommu_exit_mempool(void) | 
|  | { | 
|  | kmem_cache_destroy(iommu_devinfo_cache); | 
|  | kmem_cache_destroy(iommu_domain_cache); | 
|  | kmem_cache_destroy(iommu_iova_cache); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev) | 
|  | { | 
|  | struct dmar_drhd_unit *drhd; | 
|  | u32 vtbar; | 
|  | int rc; | 
|  |  | 
|  | /* We know that this device on this chipset has its own IOMMU. | 
|  | * If we find it under a different IOMMU, then the BIOS is lying | 
|  | * to us. Hope that the IOMMU for this device is actually | 
|  | * disabled, and it needs no translation... | 
|  | */ | 
|  | rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar); | 
|  | if (rc) { | 
|  | /* "can't" happen */ | 
|  | dev_info(&pdev->dev, "failed to run vt-d quirk\n"); | 
|  | return; | 
|  | } | 
|  | vtbar &= 0xffff0000; | 
|  |  | 
|  | /* we know that the this iommu should be at offset 0xa000 from vtbar */ | 
|  | drhd = dmar_find_matched_drhd_unit(pdev); | 
|  | if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000, | 
|  | TAINT_FIRMWARE_WORKAROUND, | 
|  | "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n")) | 
|  | pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO; | 
|  | } | 
|  | DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu); | 
|  |  | 
|  | static void __init init_no_remapping_devices(void) | 
|  | { | 
|  | struct dmar_drhd_unit *drhd; | 
|  |  | 
|  | for_each_drhd_unit(drhd) { | 
|  | if (!drhd->include_all) { | 
|  | int i; | 
|  | for (i = 0; i < drhd->devices_cnt; i++) | 
|  | if (drhd->devices[i] != NULL) | 
|  | break; | 
|  | /* ignore DMAR unit if no pci devices exist */ | 
|  | if (i == drhd->devices_cnt) | 
|  | drhd->ignored = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (dmar_map_gfx) | 
|  | return; | 
|  |  | 
|  | for_each_drhd_unit(drhd) { | 
|  | int i; | 
|  | if (drhd->ignored || drhd->include_all) | 
|  | continue; | 
|  |  | 
|  | for (i = 0; i < drhd->devices_cnt; i++) | 
|  | if (drhd->devices[i] && | 
|  | !IS_GFX_DEVICE(drhd->devices[i])) | 
|  | break; | 
|  |  | 
|  | if (i < drhd->devices_cnt) | 
|  | continue; | 
|  |  | 
|  | /* bypass IOMMU if it is just for gfx devices */ | 
|  | drhd->ignored = 1; | 
|  | for (i = 0; i < drhd->devices_cnt; i++) { | 
|  | if (!drhd->devices[i]) | 
|  | continue; | 
|  | drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SUSPEND | 
|  | static int init_iommu_hw(void) | 
|  | { | 
|  | struct dmar_drhd_unit *drhd; | 
|  | struct intel_iommu *iommu = NULL; | 
|  |  | 
|  | for_each_active_iommu(iommu, drhd) | 
|  | if (iommu->qi) | 
|  | dmar_reenable_qi(iommu); | 
|  |  | 
|  | for_each_iommu(iommu, drhd) { | 
|  | if (drhd->ignored) { | 
|  | /* | 
|  | * we always have to disable PMRs or DMA may fail on | 
|  | * this device | 
|  | */ | 
|  | if (force_on) | 
|  | iommu_disable_protect_mem_regions(iommu); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | iommu_flush_write_buffer(iommu); | 
|  |  | 
|  | iommu_set_root_entry(iommu); | 
|  |  | 
|  | iommu->flush.flush_context(iommu, 0, 0, 0, | 
|  | DMA_CCMD_GLOBAL_INVL); | 
|  | iommu->flush.flush_iotlb(iommu, 0, 0, 0, | 
|  | DMA_TLB_GLOBAL_FLUSH); | 
|  | if (iommu_enable_translation(iommu)) | 
|  | return 1; | 
|  | iommu_disable_protect_mem_regions(iommu); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void iommu_flush_all(void) | 
|  | { | 
|  | struct dmar_drhd_unit *drhd; | 
|  | struct intel_iommu *iommu; | 
|  |  | 
|  | for_each_active_iommu(iommu, drhd) { | 
|  | iommu->flush.flush_context(iommu, 0, 0, 0, | 
|  | DMA_CCMD_GLOBAL_INVL); | 
|  | iommu->flush.flush_iotlb(iommu, 0, 0, 0, | 
|  | DMA_TLB_GLOBAL_FLUSH); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int iommu_suspend(void) | 
|  | { | 
|  | struct dmar_drhd_unit *drhd; | 
|  | struct intel_iommu *iommu = NULL; | 
|  | unsigned long flag; | 
|  |  | 
|  | for_each_active_iommu(iommu, drhd) { | 
|  | iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS, | 
|  | GFP_ATOMIC); | 
|  | if (!iommu->iommu_state) | 
|  | goto nomem; | 
|  | } | 
|  |  | 
|  | iommu_flush_all(); | 
|  |  | 
|  | for_each_active_iommu(iommu, drhd) { | 
|  | iommu_disable_translation(iommu); | 
|  |  | 
|  | spin_lock_irqsave(&iommu->register_lock, flag); | 
|  |  | 
|  | iommu->iommu_state[SR_DMAR_FECTL_REG] = | 
|  | readl(iommu->reg + DMAR_FECTL_REG); | 
|  | iommu->iommu_state[SR_DMAR_FEDATA_REG] = | 
|  | readl(iommu->reg + DMAR_FEDATA_REG); | 
|  | iommu->iommu_state[SR_DMAR_FEADDR_REG] = | 
|  | readl(iommu->reg + DMAR_FEADDR_REG); | 
|  | iommu->iommu_state[SR_DMAR_FEUADDR_REG] = | 
|  | readl(iommu->reg + DMAR_FEUADDR_REG); | 
|  |  | 
|  | spin_unlock_irqrestore(&iommu->register_lock, flag); | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | nomem: | 
|  | for_each_active_iommu(iommu, drhd) | 
|  | kfree(iommu->iommu_state); | 
|  |  | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void iommu_resume(void) | 
|  | { | 
|  | struct dmar_drhd_unit *drhd; | 
|  | struct intel_iommu *iommu = NULL; | 
|  | unsigned long flag; | 
|  |  | 
|  | if (init_iommu_hw()) { | 
|  | if (force_on) | 
|  | panic("tboot: IOMMU setup failed, DMAR can not resume!\n"); | 
|  | else | 
|  | WARN(1, "IOMMU setup failed, DMAR can not resume!\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for_each_active_iommu(iommu, drhd) { | 
|  |  | 
|  | spin_lock_irqsave(&iommu->register_lock, flag); | 
|  |  | 
|  | writel(iommu->iommu_state[SR_DMAR_FECTL_REG], | 
|  | iommu->reg + DMAR_FECTL_REG); | 
|  | writel(iommu->iommu_state[SR_DMAR_FEDATA_REG], | 
|  | iommu->reg + DMAR_FEDATA_REG); | 
|  | writel(iommu->iommu_state[SR_DMAR_FEADDR_REG], | 
|  | iommu->reg + DMAR_FEADDR_REG); | 
|  | writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG], | 
|  | iommu->reg + DMAR_FEUADDR_REG); | 
|  |  | 
|  | spin_unlock_irqrestore(&iommu->register_lock, flag); | 
|  | } | 
|  |  | 
|  | for_each_active_iommu(iommu, drhd) | 
|  | kfree(iommu->iommu_state); | 
|  | } | 
|  |  | 
|  | static struct syscore_ops iommu_syscore_ops = { | 
|  | .resume		= iommu_resume, | 
|  | .suspend	= iommu_suspend, | 
|  | }; | 
|  |  | 
|  | static void __init init_iommu_pm_ops(void) | 
|  | { | 
|  | register_syscore_ops(&iommu_syscore_ops); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline void init_iommu_pm_ops(void) {} | 
|  | #endif	/* CONFIG_PM */ | 
|  |  | 
|  | /* | 
|  | * Here we only respond to action of unbound device from driver. | 
|  | * | 
|  | * Added device is not attached to its DMAR domain here yet. That will happen | 
|  | * when mapping the device to iova. | 
|  | */ | 
|  | static int device_notifier(struct notifier_block *nb, | 
|  | unsigned long action, void *data) | 
|  | { | 
|  | struct device *dev = data; | 
|  | struct pci_dev *pdev = to_pci_dev(dev); | 
|  | struct dmar_domain *domain; | 
|  |  | 
|  | if (iommu_no_mapping(dev)) | 
|  | return 0; | 
|  |  | 
|  | domain = find_domain(pdev); | 
|  | if (!domain) | 
|  | return 0; | 
|  |  | 
|  | if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) { | 
|  | domain_remove_one_dev_info(domain, pdev); | 
|  |  | 
|  | if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) && | 
|  | !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) && | 
|  | list_empty(&domain->devices)) | 
|  | domain_exit(domain); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct notifier_block device_nb = { | 
|  | .notifier_call = device_notifier, | 
|  | }; | 
|  |  | 
|  | int __init intel_iommu_init(void) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | /* VT-d is required for a TXT/tboot launch, so enforce that */ | 
|  | force_on = tboot_force_iommu(); | 
|  |  | 
|  | if (dmar_table_init()) { | 
|  | if (force_on) | 
|  | panic("tboot: Failed to initialize DMAR table\n"); | 
|  | return 	-ENODEV; | 
|  | } | 
|  |  | 
|  | if (dmar_dev_scope_init()) { | 
|  | if (force_on) | 
|  | panic("tboot: Failed to initialize DMAR device scope\n"); | 
|  | return 	-ENODEV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check the need for DMA-remapping initialization now. | 
|  | * Above initialization will also be used by Interrupt-remapping. | 
|  | */ | 
|  | if (no_iommu || dmar_disabled) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (iommu_init_mempool()) { | 
|  | if (force_on) | 
|  | panic("tboot: Failed to initialize iommu memory\n"); | 
|  | return 	-ENODEV; | 
|  | } | 
|  |  | 
|  | if (dmar_init_reserved_ranges()) { | 
|  | if (force_on) | 
|  | panic("tboot: Failed to reserve iommu ranges\n"); | 
|  | return 	-ENODEV; | 
|  | } | 
|  |  | 
|  | init_no_remapping_devices(); | 
|  |  | 
|  | ret = init_dmars(); | 
|  | if (ret) { | 
|  | if (force_on) | 
|  | panic("tboot: Failed to initialize DMARs\n"); | 
|  | printk(KERN_ERR "IOMMU: dmar init failed\n"); | 
|  | put_iova_domain(&reserved_iova_list); | 
|  | iommu_exit_mempool(); | 
|  | return ret; | 
|  | } | 
|  | printk(KERN_INFO | 
|  | "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n"); | 
|  |  | 
|  | init_timer(&unmap_timer); | 
|  | #ifdef CONFIG_SWIOTLB | 
|  | swiotlb = 0; | 
|  | #endif | 
|  | dma_ops = &intel_dma_ops; | 
|  |  | 
|  | init_iommu_pm_ops(); | 
|  |  | 
|  | register_iommu(&intel_iommu_ops); | 
|  |  | 
|  | bus_register_notifier(&pci_bus_type, &device_nb); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void iommu_detach_dependent_devices(struct intel_iommu *iommu, | 
|  | struct pci_dev *pdev) | 
|  | { | 
|  | struct pci_dev *tmp, *parent; | 
|  |  | 
|  | if (!iommu || !pdev) | 
|  | return; | 
|  |  | 
|  | /* dependent device detach */ | 
|  | tmp = pci_find_upstream_pcie_bridge(pdev); | 
|  | /* Secondary interface's bus number and devfn 0 */ | 
|  | if (tmp) { | 
|  | parent = pdev->bus->self; | 
|  | while (parent != tmp) { | 
|  | iommu_detach_dev(iommu, parent->bus->number, | 
|  | parent->devfn); | 
|  | parent = parent->bus->self; | 
|  | } | 
|  | if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */ | 
|  | iommu_detach_dev(iommu, | 
|  | tmp->subordinate->number, 0); | 
|  | else /* this is a legacy PCI bridge */ | 
|  | iommu_detach_dev(iommu, tmp->bus->number, | 
|  | tmp->devfn); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void domain_remove_one_dev_info(struct dmar_domain *domain, | 
|  | struct pci_dev *pdev) | 
|  | { | 
|  | struct device_domain_info *info; | 
|  | struct intel_iommu *iommu; | 
|  | unsigned long flags; | 
|  | int found = 0; | 
|  | struct list_head *entry, *tmp; | 
|  |  | 
|  | iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number, | 
|  | pdev->devfn); | 
|  | if (!iommu) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&device_domain_lock, flags); | 
|  | list_for_each_safe(entry, tmp, &domain->devices) { | 
|  | info = list_entry(entry, struct device_domain_info, link); | 
|  | if (info->segment == pci_domain_nr(pdev->bus) && | 
|  | info->bus == pdev->bus->number && | 
|  | info->devfn == pdev->devfn) { | 
|  | list_del(&info->link); | 
|  | list_del(&info->global); | 
|  | if (info->dev) | 
|  | info->dev->dev.archdata.iommu = NULL; | 
|  | spin_unlock_irqrestore(&device_domain_lock, flags); | 
|  |  | 
|  | iommu_disable_dev_iotlb(info); | 
|  | iommu_detach_dev(iommu, info->bus, info->devfn); | 
|  | iommu_detach_dependent_devices(iommu, pdev); | 
|  | free_devinfo_mem(info); | 
|  |  | 
|  | spin_lock_irqsave(&device_domain_lock, flags); | 
|  |  | 
|  | if (found) | 
|  | break; | 
|  | else | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* if there is no other devices under the same iommu | 
|  | * owned by this domain, clear this iommu in iommu_bmp | 
|  | * update iommu count and coherency | 
|  | */ | 
|  | if (iommu == device_to_iommu(info->segment, info->bus, | 
|  | info->devfn)) | 
|  | found = 1; | 
|  | } | 
|  |  | 
|  | if (found == 0) { | 
|  | unsigned long tmp_flags; | 
|  | spin_lock_irqsave(&domain->iommu_lock, tmp_flags); | 
|  | clear_bit(iommu->seq_id, &domain->iommu_bmp); | 
|  | domain->iommu_count--; | 
|  | domain_update_iommu_cap(domain); | 
|  | spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags); | 
|  |  | 
|  | if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) && | 
|  | !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) { | 
|  | spin_lock_irqsave(&iommu->lock, tmp_flags); | 
|  | clear_bit(domain->id, iommu->domain_ids); | 
|  | iommu->domains[domain->id] = NULL; | 
|  | spin_unlock_irqrestore(&iommu->lock, tmp_flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&device_domain_lock, flags); | 
|  | } | 
|  |  | 
|  | static void vm_domain_remove_all_dev_info(struct dmar_domain *domain) | 
|  | { | 
|  | struct device_domain_info *info; | 
|  | struct intel_iommu *iommu; | 
|  | unsigned long flags1, flags2; | 
|  |  | 
|  | spin_lock_irqsave(&device_domain_lock, flags1); | 
|  | while (!list_empty(&domain->devices)) { | 
|  | info = list_entry(domain->devices.next, | 
|  | struct device_domain_info, link); | 
|  | list_del(&info->link); | 
|  | list_del(&info->global); | 
|  | if (info->dev) | 
|  | info->dev->dev.archdata.iommu = NULL; | 
|  |  | 
|  | spin_unlock_irqrestore(&device_domain_lock, flags1); | 
|  |  | 
|  | iommu_disable_dev_iotlb(info); | 
|  | iommu = device_to_iommu(info->segment, info->bus, info->devfn); | 
|  | iommu_detach_dev(iommu, info->bus, info->devfn); | 
|  | iommu_detach_dependent_devices(iommu, info->dev); | 
|  |  | 
|  | /* clear this iommu in iommu_bmp, update iommu count | 
|  | * and capabilities | 
|  | */ | 
|  | spin_lock_irqsave(&domain->iommu_lock, flags2); | 
|  | if (test_and_clear_bit(iommu->seq_id, | 
|  | &domain->iommu_bmp)) { | 
|  | domain->iommu_count--; | 
|  | domain_update_iommu_cap(domain); | 
|  | } | 
|  | spin_unlock_irqrestore(&domain->iommu_lock, flags2); | 
|  |  | 
|  | free_devinfo_mem(info); | 
|  | spin_lock_irqsave(&device_domain_lock, flags1); | 
|  | } | 
|  | spin_unlock_irqrestore(&device_domain_lock, flags1); | 
|  | } | 
|  |  | 
|  | /* domain id for virtual machine, it won't be set in context */ | 
|  | static unsigned long vm_domid; | 
|  |  | 
|  | static struct dmar_domain *iommu_alloc_vm_domain(void) | 
|  | { | 
|  | struct dmar_domain *domain; | 
|  |  | 
|  | domain = alloc_domain_mem(); | 
|  | if (!domain) | 
|  | return NULL; | 
|  |  | 
|  | domain->id = vm_domid++; | 
|  | domain->nid = -1; | 
|  | memset(&domain->iommu_bmp, 0, sizeof(unsigned long)); | 
|  | domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE; | 
|  |  | 
|  | return domain; | 
|  | } | 
|  |  | 
|  | static int md_domain_init(struct dmar_domain *domain, int guest_width) | 
|  | { | 
|  | int adjust_width; | 
|  |  | 
|  | init_iova_domain(&domain->iovad, DMA_32BIT_PFN); | 
|  | spin_lock_init(&domain->iommu_lock); | 
|  |  | 
|  | domain_reserve_special_ranges(domain); | 
|  |  | 
|  | /* calculate AGAW */ | 
|  | domain->gaw = guest_width; | 
|  | adjust_width = guestwidth_to_adjustwidth(guest_width); | 
|  | domain->agaw = width_to_agaw(adjust_width); | 
|  |  | 
|  | INIT_LIST_HEAD(&domain->devices); | 
|  |  | 
|  | domain->iommu_count = 0; | 
|  | domain->iommu_coherency = 0; | 
|  | domain->iommu_snooping = 0; | 
|  | domain->iommu_superpage = 0; | 
|  | domain->max_addr = 0; | 
|  | domain->nid = -1; | 
|  |  | 
|  | /* always allocate the top pgd */ | 
|  | domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid); | 
|  | if (!domain->pgd) | 
|  | return -ENOMEM; | 
|  | domain_flush_cache(domain, domain->pgd, PAGE_SIZE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void iommu_free_vm_domain(struct dmar_domain *domain) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct dmar_drhd_unit *drhd; | 
|  | struct intel_iommu *iommu; | 
|  | unsigned long i; | 
|  | unsigned long ndomains; | 
|  |  | 
|  | for_each_drhd_unit(drhd) { | 
|  | if (drhd->ignored) | 
|  | continue; | 
|  | iommu = drhd->iommu; | 
|  |  | 
|  | ndomains = cap_ndoms(iommu->cap); | 
|  | for_each_set_bit(i, iommu->domain_ids, ndomains) { | 
|  | if (iommu->domains[i] == domain) { | 
|  | spin_lock_irqsave(&iommu->lock, flags); | 
|  | clear_bit(i, iommu->domain_ids); | 
|  | iommu->domains[i] = NULL; | 
|  | spin_unlock_irqrestore(&iommu->lock, flags); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vm_domain_exit(struct dmar_domain *domain) | 
|  | { | 
|  | /* Domain 0 is reserved, so dont process it */ | 
|  | if (!domain) | 
|  | return; | 
|  |  | 
|  | vm_domain_remove_all_dev_info(domain); | 
|  | /* destroy iovas */ | 
|  | put_iova_domain(&domain->iovad); | 
|  |  | 
|  | /* clear ptes */ | 
|  | dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); | 
|  |  | 
|  | /* free page tables */ | 
|  | dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); | 
|  |  | 
|  | iommu_free_vm_domain(domain); | 
|  | free_domain_mem(domain); | 
|  | } | 
|  |  | 
|  | static int intel_iommu_domain_init(struct iommu_domain *domain) | 
|  | { | 
|  | struct dmar_domain *dmar_domain; | 
|  |  | 
|  | dmar_domain = iommu_alloc_vm_domain(); | 
|  | if (!dmar_domain) { | 
|  | printk(KERN_ERR | 
|  | "intel_iommu_domain_init: dmar_domain == NULL\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { | 
|  | printk(KERN_ERR | 
|  | "intel_iommu_domain_init() failed\n"); | 
|  | vm_domain_exit(dmar_domain); | 
|  | return -ENOMEM; | 
|  | } | 
|  | domain->priv = dmar_domain; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void intel_iommu_domain_destroy(struct iommu_domain *domain) | 
|  | { | 
|  | struct dmar_domain *dmar_domain = domain->priv; | 
|  |  | 
|  | domain->priv = NULL; | 
|  | vm_domain_exit(dmar_domain); | 
|  | } | 
|  |  | 
|  | static int intel_iommu_attach_device(struct iommu_domain *domain, | 
|  | struct device *dev) | 
|  | { | 
|  | struct dmar_domain *dmar_domain = domain->priv; | 
|  | struct pci_dev *pdev = to_pci_dev(dev); | 
|  | struct intel_iommu *iommu; | 
|  | int addr_width; | 
|  |  | 
|  | /* normally pdev is not mapped */ | 
|  | if (unlikely(domain_context_mapped(pdev))) { | 
|  | struct dmar_domain *old_domain; | 
|  |  | 
|  | old_domain = find_domain(pdev); | 
|  | if (old_domain) { | 
|  | if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE || | 
|  | dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) | 
|  | domain_remove_one_dev_info(old_domain, pdev); | 
|  | else | 
|  | domain_remove_dev_info(old_domain); | 
|  | } | 
|  | } | 
|  |  | 
|  | iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number, | 
|  | pdev->devfn); | 
|  | if (!iommu) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* check if this iommu agaw is sufficient for max mapped address */ | 
|  | addr_width = agaw_to_width(iommu->agaw); | 
|  | if (addr_width > cap_mgaw(iommu->cap)) | 
|  | addr_width = cap_mgaw(iommu->cap); | 
|  |  | 
|  | if (dmar_domain->max_addr > (1LL << addr_width)) { | 
|  | printk(KERN_ERR "%s: iommu width (%d) is not " | 
|  | "sufficient for the mapped address (%llx)\n", | 
|  | __func__, addr_width, dmar_domain->max_addr); | 
|  | return -EFAULT; | 
|  | } | 
|  | dmar_domain->gaw = addr_width; | 
|  |  | 
|  | /* | 
|  | * Knock out extra levels of page tables if necessary | 
|  | */ | 
|  | while (iommu->agaw < dmar_domain->agaw) { | 
|  | struct dma_pte *pte; | 
|  |  | 
|  | pte = dmar_domain->pgd; | 
|  | if (dma_pte_present(pte)) { | 
|  | dmar_domain->pgd = (struct dma_pte *) | 
|  | phys_to_virt(dma_pte_addr(pte)); | 
|  | free_pgtable_page(pte); | 
|  | } | 
|  | dmar_domain->agaw--; | 
|  | } | 
|  |  | 
|  | return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL); | 
|  | } | 
|  |  | 
|  | static void intel_iommu_detach_device(struct iommu_domain *domain, | 
|  | struct device *dev) | 
|  | { | 
|  | struct dmar_domain *dmar_domain = domain->priv; | 
|  | struct pci_dev *pdev = to_pci_dev(dev); | 
|  |  | 
|  | domain_remove_one_dev_info(dmar_domain, pdev); | 
|  | } | 
|  |  | 
|  | static int intel_iommu_map(struct iommu_domain *domain, | 
|  | unsigned long iova, phys_addr_t hpa, | 
|  | int gfp_order, int iommu_prot) | 
|  | { | 
|  | struct dmar_domain *dmar_domain = domain->priv; | 
|  | u64 max_addr; | 
|  | int prot = 0; | 
|  | size_t size; | 
|  | int ret; | 
|  |  | 
|  | if (iommu_prot & IOMMU_READ) | 
|  | prot |= DMA_PTE_READ; | 
|  | if (iommu_prot & IOMMU_WRITE) | 
|  | prot |= DMA_PTE_WRITE; | 
|  | if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping) | 
|  | prot |= DMA_PTE_SNP; | 
|  |  | 
|  | size     = PAGE_SIZE << gfp_order; | 
|  | max_addr = iova + size; | 
|  | if (dmar_domain->max_addr < max_addr) { | 
|  | u64 end; | 
|  |  | 
|  | /* check if minimum agaw is sufficient for mapped address */ | 
|  | end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1; | 
|  | if (end < max_addr) { | 
|  | printk(KERN_ERR "%s: iommu width (%d) is not " | 
|  | "sufficient for the mapped address (%llx)\n", | 
|  | __func__, dmar_domain->gaw, max_addr); | 
|  | return -EFAULT; | 
|  | } | 
|  | dmar_domain->max_addr = max_addr; | 
|  | } | 
|  | /* Round up size to next multiple of PAGE_SIZE, if it and | 
|  | the low bits of hpa would take us onto the next page */ | 
|  | size = aligned_nrpages(hpa, size); | 
|  | ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT, | 
|  | hpa >> VTD_PAGE_SHIFT, size, prot); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int intel_iommu_unmap(struct iommu_domain *domain, | 
|  | unsigned long iova, int gfp_order) | 
|  | { | 
|  | struct dmar_domain *dmar_domain = domain->priv; | 
|  | size_t size = PAGE_SIZE << gfp_order; | 
|  |  | 
|  | dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT, | 
|  | (iova + size - 1) >> VTD_PAGE_SHIFT); | 
|  |  | 
|  | if (dmar_domain->max_addr == iova + size) | 
|  | dmar_domain->max_addr = iova; | 
|  |  | 
|  | return gfp_order; | 
|  | } | 
|  |  | 
|  | static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, | 
|  | unsigned long iova) | 
|  | { | 
|  | struct dmar_domain *dmar_domain = domain->priv; | 
|  | struct dma_pte *pte; | 
|  | u64 phys = 0; | 
|  |  | 
|  | pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0); | 
|  | if (pte) | 
|  | phys = dma_pte_addr(pte); | 
|  |  | 
|  | return phys; | 
|  | } | 
|  |  | 
|  | static int intel_iommu_domain_has_cap(struct iommu_domain *domain, | 
|  | unsigned long cap) | 
|  | { | 
|  | struct dmar_domain *dmar_domain = domain->priv; | 
|  |  | 
|  | if (cap == IOMMU_CAP_CACHE_COHERENCY) | 
|  | return dmar_domain->iommu_snooping; | 
|  | if (cap == IOMMU_CAP_INTR_REMAP) | 
|  | return intr_remapping_enabled; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct iommu_ops intel_iommu_ops = { | 
|  | .domain_init	= intel_iommu_domain_init, | 
|  | .domain_destroy = intel_iommu_domain_destroy, | 
|  | .attach_dev	= intel_iommu_attach_device, | 
|  | .detach_dev	= intel_iommu_detach_device, | 
|  | .map		= intel_iommu_map, | 
|  | .unmap		= intel_iommu_unmap, | 
|  | .iova_to_phys	= intel_iommu_iova_to_phys, | 
|  | .domain_has_cap = intel_iommu_domain_has_cap, | 
|  | }; | 
|  |  | 
|  | static void __devinit quirk_iommu_rwbf(struct pci_dev *dev) | 
|  | { | 
|  | /* | 
|  | * Mobile 4 Series Chipset neglects to set RWBF capability, | 
|  | * but needs it: | 
|  | */ | 
|  | printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n"); | 
|  | rwbf_quirk = 1; | 
|  |  | 
|  | /* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */ | 
|  | if (dev->revision == 0x07) { | 
|  | printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n"); | 
|  | dmar_map_gfx = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf); | 
|  |  | 
|  | #define GGC 0x52 | 
|  | #define GGC_MEMORY_SIZE_MASK	(0xf << 8) | 
|  | #define GGC_MEMORY_SIZE_NONE	(0x0 << 8) | 
|  | #define GGC_MEMORY_SIZE_1M	(0x1 << 8) | 
|  | #define GGC_MEMORY_SIZE_2M	(0x3 << 8) | 
|  | #define GGC_MEMORY_VT_ENABLED	(0x8 << 8) | 
|  | #define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8) | 
|  | #define GGC_MEMORY_SIZE_3M_VT	(0xa << 8) | 
|  | #define GGC_MEMORY_SIZE_4M_VT	(0xb << 8) | 
|  |  | 
|  | static void __devinit quirk_calpella_no_shadow_gtt(struct pci_dev *dev) | 
|  | { | 
|  | unsigned short ggc; | 
|  |  | 
|  | if (pci_read_config_word(dev, GGC, &ggc)) | 
|  | return; | 
|  |  | 
|  | if (!(ggc & GGC_MEMORY_VT_ENABLED)) { | 
|  | printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n"); | 
|  | dmar_map_gfx = 0; | 
|  | } | 
|  | } | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt); | 
|  |  | 
|  | /* On Tylersburg chipsets, some BIOSes have been known to enable the | 
|  | ISOCH DMAR unit for the Azalia sound device, but not give it any | 
|  | TLB entries, which causes it to deadlock. Check for that.  We do | 
|  | this in a function called from init_dmars(), instead of in a PCI | 
|  | quirk, because we don't want to print the obnoxious "BIOS broken" | 
|  | message if VT-d is actually disabled. | 
|  | */ | 
|  | static void __init check_tylersburg_isoch(void) | 
|  | { | 
|  | struct pci_dev *pdev; | 
|  | uint32_t vtisochctrl; | 
|  |  | 
|  | /* If there's no Azalia in the system anyway, forget it. */ | 
|  | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL); | 
|  | if (!pdev) | 
|  | return; | 
|  | pci_dev_put(pdev); | 
|  |  | 
|  | /* System Management Registers. Might be hidden, in which case | 
|  | we can't do the sanity check. But that's OK, because the | 
|  | known-broken BIOSes _don't_ actually hide it, so far. */ | 
|  | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL); | 
|  | if (!pdev) | 
|  | return; | 
|  |  | 
|  | if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) { | 
|  | pci_dev_put(pdev); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pci_dev_put(pdev); | 
|  |  | 
|  | /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */ | 
|  | if (vtisochctrl & 1) | 
|  | return; | 
|  |  | 
|  | /* Drop all bits other than the number of TLB entries */ | 
|  | vtisochctrl &= 0x1c; | 
|  |  | 
|  | /* If we have the recommended number of TLB entries (16), fine. */ | 
|  | if (vtisochctrl == 0x10) | 
|  | return; | 
|  |  | 
|  | /* Zero TLB entries? You get to ride the short bus to school. */ | 
|  | if (!vtisochctrl) { | 
|  | WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n" | 
|  | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", | 
|  | dmi_get_system_info(DMI_BIOS_VENDOR), | 
|  | dmi_get_system_info(DMI_BIOS_VERSION), | 
|  | dmi_get_system_info(DMI_PRODUCT_VERSION)); | 
|  | iommu_identity_mapping |= IDENTMAP_AZALIA; | 
|  | return; | 
|  | } | 
|  |  | 
|  | printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n", | 
|  | vtisochctrl); | 
|  | } |