|  | #ifndef _ASM_IA64_PGTABLE_H | 
|  | #define _ASM_IA64_PGTABLE_H | 
|  |  | 
|  | /* | 
|  | * This file contains the functions and defines necessary to modify and use | 
|  | * the IA-64 page table tree. | 
|  | * | 
|  | * This hopefully works with any (fixed) IA-64 page-size, as defined | 
|  | * in <asm/page.h>. | 
|  | * | 
|  | * Copyright (C) 1998-2005 Hewlett-Packard Co | 
|  | *	David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | */ | 
|  |  | 
|  |  | 
|  | #include <asm/mman.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/types.h> | 
|  |  | 
|  | #define IA64_MAX_PHYS_BITS	50	/* max. number of physical address bits (architected) */ | 
|  |  | 
|  | /* | 
|  | * First, define the various bits in a PTE.  Note that the PTE format | 
|  | * matches the VHPT short format, the firt doubleword of the VHPD long | 
|  | * format, and the first doubleword of the TLB insertion format. | 
|  | */ | 
|  | #define _PAGE_P_BIT		0 | 
|  | #define _PAGE_A_BIT		5 | 
|  | #define _PAGE_D_BIT		6 | 
|  |  | 
|  | #define _PAGE_P			(1 << _PAGE_P_BIT)	/* page present bit */ | 
|  | #define _PAGE_MA_WB		(0x0 <<  2)	/* write back memory attribute */ | 
|  | #define _PAGE_MA_UC		(0x4 <<  2)	/* uncacheable memory attribute */ | 
|  | #define _PAGE_MA_UCE		(0x5 <<  2)	/* UC exported attribute */ | 
|  | #define _PAGE_MA_WC		(0x6 <<  2)	/* write coalescing memory attribute */ | 
|  | #define _PAGE_MA_NAT		(0x7 <<  2)	/* not-a-thing attribute */ | 
|  | #define _PAGE_MA_MASK		(0x7 <<  2) | 
|  | #define _PAGE_PL_0		(0 <<  7)	/* privilege level 0 (kernel) */ | 
|  | #define _PAGE_PL_1		(1 <<  7)	/* privilege level 1 (unused) */ | 
|  | #define _PAGE_PL_2		(2 <<  7)	/* privilege level 2 (unused) */ | 
|  | #define _PAGE_PL_3		(3 <<  7)	/* privilege level 3 (user) */ | 
|  | #define _PAGE_PL_MASK		(3 <<  7) | 
|  | #define _PAGE_AR_R		(0 <<  9)	/* read only */ | 
|  | #define _PAGE_AR_RX		(1 <<  9)	/* read & execute */ | 
|  | #define _PAGE_AR_RW		(2 <<  9)	/* read & write */ | 
|  | #define _PAGE_AR_RWX		(3 <<  9)	/* read, write & execute */ | 
|  | #define _PAGE_AR_R_RW		(4 <<  9)	/* read / read & write */ | 
|  | #define _PAGE_AR_RX_RWX		(5 <<  9)	/* read & exec / read, write & exec */ | 
|  | #define _PAGE_AR_RWX_RW		(6 <<  9)	/* read, write & exec / read & write */ | 
|  | #define _PAGE_AR_X_RX		(7 <<  9)	/* exec & promote / read & exec */ | 
|  | #define _PAGE_AR_MASK		(7 <<  9) | 
|  | #define _PAGE_AR_SHIFT		9 | 
|  | #define _PAGE_A			(1 << _PAGE_A_BIT)	/* page accessed bit */ | 
|  | #define _PAGE_D			(1 << _PAGE_D_BIT)	/* page dirty bit */ | 
|  | #define _PAGE_PPN_MASK		(((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL) | 
|  | #define _PAGE_ED		(__IA64_UL(1) << 52)	/* exception deferral */ | 
|  | #define _PAGE_PROTNONE		(__IA64_UL(1) << 63) | 
|  |  | 
|  | /* Valid only for a PTE with the present bit cleared: */ | 
|  | #define _PAGE_FILE		(1 << 1)		/* see swap & file pte remarks below */ | 
|  |  | 
|  | #define _PFN_MASK		_PAGE_PPN_MASK | 
|  | /* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */ | 
|  | #define _PAGE_CHG_MASK	(_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED) | 
|  |  | 
|  | #define _PAGE_SIZE_4K	12 | 
|  | #define _PAGE_SIZE_8K	13 | 
|  | #define _PAGE_SIZE_16K	14 | 
|  | #define _PAGE_SIZE_64K	16 | 
|  | #define _PAGE_SIZE_256K	18 | 
|  | #define _PAGE_SIZE_1M	20 | 
|  | #define _PAGE_SIZE_4M	22 | 
|  | #define _PAGE_SIZE_16M	24 | 
|  | #define _PAGE_SIZE_64M	26 | 
|  | #define _PAGE_SIZE_256M	28 | 
|  | #define _PAGE_SIZE_1G	30 | 
|  | #define _PAGE_SIZE_4G	32 | 
|  |  | 
|  | #define __ACCESS_BITS		_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB | 
|  | #define __DIRTY_BITS_NO_ED	_PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB | 
|  | #define __DIRTY_BITS		_PAGE_ED | __DIRTY_BITS_NO_ED | 
|  |  | 
|  | /* | 
|  | * How many pointers will a page table level hold expressed in shift | 
|  | */ | 
|  | #define PTRS_PER_PTD_SHIFT	(PAGE_SHIFT-3) | 
|  |  | 
|  | /* | 
|  | * Definitions for fourth level: | 
|  | */ | 
|  | #define PTRS_PER_PTE	(__IA64_UL(1) << (PTRS_PER_PTD_SHIFT)) | 
|  |  | 
|  | /* | 
|  | * Definitions for third level: | 
|  | * | 
|  | * PMD_SHIFT determines the size of the area a third-level page table | 
|  | * can map. | 
|  | */ | 
|  | #define PMD_SHIFT	(PAGE_SHIFT + (PTRS_PER_PTD_SHIFT)) | 
|  | #define PMD_SIZE	(1UL << PMD_SHIFT) | 
|  | #define PMD_MASK	(~(PMD_SIZE-1)) | 
|  | #define PTRS_PER_PMD	(1UL << (PTRS_PER_PTD_SHIFT)) | 
|  |  | 
|  | #ifdef CONFIG_PGTABLE_4 | 
|  | /* | 
|  | * Definitions for second level: | 
|  | * | 
|  | * PUD_SHIFT determines the size of the area a second-level page table | 
|  | * can map. | 
|  | */ | 
|  | #define PUD_SHIFT	(PMD_SHIFT + (PTRS_PER_PTD_SHIFT)) | 
|  | #define PUD_SIZE	(1UL << PUD_SHIFT) | 
|  | #define PUD_MASK	(~(PUD_SIZE-1)) | 
|  | #define PTRS_PER_PUD	(1UL << (PTRS_PER_PTD_SHIFT)) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Definitions for first level: | 
|  | * | 
|  | * PGDIR_SHIFT determines what a first-level page table entry can map. | 
|  | */ | 
|  | #ifdef CONFIG_PGTABLE_4 | 
|  | #define PGDIR_SHIFT		(PUD_SHIFT + (PTRS_PER_PTD_SHIFT)) | 
|  | #else | 
|  | #define PGDIR_SHIFT		(PMD_SHIFT + (PTRS_PER_PTD_SHIFT)) | 
|  | #endif | 
|  | #define PGDIR_SIZE		(__IA64_UL(1) << PGDIR_SHIFT) | 
|  | #define PGDIR_MASK		(~(PGDIR_SIZE-1)) | 
|  | #define PTRS_PER_PGD_SHIFT	PTRS_PER_PTD_SHIFT | 
|  | #define PTRS_PER_PGD		(1UL << PTRS_PER_PGD_SHIFT) | 
|  | #define USER_PTRS_PER_PGD	(5*PTRS_PER_PGD/8)	/* regions 0-4 are user regions */ | 
|  | #define FIRST_USER_ADDRESS	0 | 
|  |  | 
|  | /* | 
|  | * All the normal masks have the "page accessed" bits on, as any time | 
|  | * they are used, the page is accessed. They are cleared only by the | 
|  | * page-out routines. | 
|  | */ | 
|  | #define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_A) | 
|  | #define PAGE_SHARED	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW) | 
|  | #define PAGE_READONLY	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) | 
|  | #define PAGE_COPY	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) | 
|  | #define PAGE_COPY_EXEC	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) | 
|  | #define PAGE_GATE	__pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX) | 
|  | #define PAGE_KERNEL	__pgprot(__DIRTY_BITS  | _PAGE_PL_0 | _PAGE_AR_RWX) | 
|  | #define PAGE_KERNELRX	__pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX) | 
|  |  | 
|  | # ifndef __ASSEMBLY__ | 
|  |  | 
|  | #include <linux/sched.h>	/* for mm_struct */ | 
|  | #include <asm/bitops.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/processor.h> | 
|  |  | 
|  | /* | 
|  | * Next come the mappings that determine how mmap() protection bits | 
|  | * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented.  The | 
|  | * _P version gets used for a private shared memory segment, the _S | 
|  | * version gets used for a shared memory segment with MAP_SHARED on. | 
|  | * In a private shared memory segment, we do a copy-on-write if a task | 
|  | * attempts to write to the page. | 
|  | */ | 
|  | /* xwr */ | 
|  | #define __P000	PAGE_NONE | 
|  | #define __P001	PAGE_READONLY | 
|  | #define __P010	PAGE_READONLY	/* write to priv pg -> copy & make writable */ | 
|  | #define __P011	PAGE_READONLY	/* ditto */ | 
|  | #define __P100	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) | 
|  | #define __P101	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) | 
|  | #define __P110	PAGE_COPY_EXEC | 
|  | #define __P111	PAGE_COPY_EXEC | 
|  |  | 
|  | #define __S000	PAGE_NONE | 
|  | #define __S001	PAGE_READONLY | 
|  | #define __S010	PAGE_SHARED	/* we don't have (and don't need) write-only */ | 
|  | #define __S011	PAGE_SHARED | 
|  | #define __S100	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) | 
|  | #define __S101	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) | 
|  | #define __S110	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) | 
|  | #define __S111	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) | 
|  |  | 
|  | #define pgd_ERROR(e)	printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) | 
|  | #ifdef CONFIG_PGTABLE_4 | 
|  | #define pud_ERROR(e)	printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e)) | 
|  | #endif | 
|  | #define pmd_ERROR(e)	printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) | 
|  | #define pte_ERROR(e)	printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Some definitions to translate between mem_map, PTEs, and page addresses: | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* Quick test to see if ADDR is a (potentially) valid physical address. */ | 
|  | static inline long | 
|  | ia64_phys_addr_valid (unsigned long addr) | 
|  | { | 
|  | return (addr & (local_cpu_data->unimpl_pa_mask)) == 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel | 
|  | * memory.  For the return value to be meaningful, ADDR must be >= | 
|  | * PAGE_OFFSET.  This operation can be relatively expensive (e.g., | 
|  | * require a hash-, or multi-level tree-lookup or something of that | 
|  | * sort) but it guarantees to return TRUE only if accessing the page | 
|  | * at that address does not cause an error.  Note that there may be | 
|  | * addresses for which kern_addr_valid() returns FALSE even though an | 
|  | * access would not cause an error (e.g., this is typically true for | 
|  | * memory mapped I/O regions. | 
|  | * | 
|  | * XXX Need to implement this for IA-64. | 
|  | */ | 
|  | #define kern_addr_valid(addr)	(1) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Now come the defines and routines to manage and access the three-level | 
|  | * page table. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * On some architectures, special things need to be done when setting | 
|  | * the PTE in a page table.  Nothing special needs to be on IA-64. | 
|  | */ | 
|  | #define set_pte(ptep, pteval)	(*(ptep) = (pteval)) | 
|  | #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) | 
|  |  | 
|  | #define VMALLOC_START		(RGN_BASE(RGN_GATE) + 0x200000000UL) | 
|  | #ifdef CONFIG_VIRTUAL_MEM_MAP | 
|  | # define VMALLOC_END_INIT	(RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9))) | 
|  | # define VMALLOC_END		vmalloc_end | 
|  | extern unsigned long vmalloc_end; | 
|  | #else | 
|  | # define VMALLOC_END		(RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9))) | 
|  | #endif | 
|  |  | 
|  | /* fs/proc/kcore.c */ | 
|  | #define	kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE)) | 
|  | #define	kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE)) | 
|  |  | 
|  | #define RGN_MAP_SHIFT (PGDIR_SHIFT + PTRS_PER_PGD_SHIFT - 3) | 
|  | #define RGN_MAP_LIMIT	((1UL << RGN_MAP_SHIFT) - PAGE_SIZE)	/* per region addr limit */ | 
|  |  | 
|  | /* | 
|  | * Conversion functions: convert page frame number (pfn) and a protection value to a page | 
|  | * table entry (pte). | 
|  | */ | 
|  | #define pfn_pte(pfn, pgprot) \ | 
|  | ({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; }) | 
|  |  | 
|  | /* Extract pfn from pte.  */ | 
|  | #define pte_pfn(_pte)		((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT) | 
|  |  | 
|  | #define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot)) | 
|  |  | 
|  | /* This takes a physical page address that is used by the remapping functions */ | 
|  | #define mk_pte_phys(physpage, pgprot) \ | 
|  | ({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; }) | 
|  |  | 
|  | #define pte_modify(_pte, newprot) \ | 
|  | (__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK))) | 
|  |  | 
|  | #define pte_none(pte) 			(!pte_val(pte)) | 
|  | #define pte_present(pte)		(pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE)) | 
|  | #define pte_clear(mm,addr,pte)		(pte_val(*(pte)) = 0UL) | 
|  | /* pte_page() returns the "struct page *" corresponding to the PTE: */ | 
|  | #define pte_page(pte)			virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET)) | 
|  |  | 
|  | #define pmd_none(pmd)			(!pmd_val(pmd)) | 
|  | #define pmd_bad(pmd)			(!ia64_phys_addr_valid(pmd_val(pmd))) | 
|  | #define pmd_present(pmd)		(pmd_val(pmd) != 0UL) | 
|  | #define pmd_clear(pmdp)			(pmd_val(*(pmdp)) = 0UL) | 
|  | #define pmd_page_vaddr(pmd)		((unsigned long) __va(pmd_val(pmd) & _PFN_MASK)) | 
|  | #define pmd_page(pmd)			virt_to_page((pmd_val(pmd) + PAGE_OFFSET)) | 
|  |  | 
|  | #define pud_none(pud)			(!pud_val(pud)) | 
|  | #define pud_bad(pud)			(!ia64_phys_addr_valid(pud_val(pud))) | 
|  | #define pud_present(pud)		(pud_val(pud) != 0UL) | 
|  | #define pud_clear(pudp)			(pud_val(*(pudp)) = 0UL) | 
|  | #define pud_page_vaddr(pud)		((unsigned long) __va(pud_val(pud) & _PFN_MASK)) | 
|  | #define pud_page(pud)			virt_to_page((pud_val(pud) + PAGE_OFFSET)) | 
|  |  | 
|  | #ifdef CONFIG_PGTABLE_4 | 
|  | #define pgd_none(pgd)			(!pgd_val(pgd)) | 
|  | #define pgd_bad(pgd)			(!ia64_phys_addr_valid(pgd_val(pgd))) | 
|  | #define pgd_present(pgd)		(pgd_val(pgd) != 0UL) | 
|  | #define pgd_clear(pgdp)			(pgd_val(*(pgdp)) = 0UL) | 
|  | #define pgd_page_vaddr(pgd)		((unsigned long) __va(pgd_val(pgd) & _PFN_MASK)) | 
|  | #define pgd_page(pgd)			virt_to_page((pgd_val(pgd) + PAGE_OFFSET)) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The following have defined behavior only work if pte_present() is true. | 
|  | */ | 
|  | #define pte_user(pte)		((pte_val(pte) & _PAGE_PL_MASK) == _PAGE_PL_3) | 
|  | #define pte_read(pte)		(((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) < 6) | 
|  | #define pte_write(pte)	((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4) | 
|  | #define pte_exec(pte)		((pte_val(pte) & _PAGE_AR_RX) != 0) | 
|  | #define pte_dirty(pte)		((pte_val(pte) & _PAGE_D) != 0) | 
|  | #define pte_young(pte)		((pte_val(pte) & _PAGE_A) != 0) | 
|  | #define pte_file(pte)		((pte_val(pte) & _PAGE_FILE) != 0) | 
|  | /* | 
|  | * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the | 
|  | * access rights: | 
|  | */ | 
|  | #define pte_wrprotect(pte)	(__pte(pte_val(pte) & ~_PAGE_AR_RW)) | 
|  | #define pte_mkwrite(pte)	(__pte(pte_val(pte) | _PAGE_AR_RW)) | 
|  | #define pte_mkexec(pte)		(__pte(pte_val(pte) | _PAGE_AR_RX)) | 
|  | #define pte_mkold(pte)		(__pte(pte_val(pte) & ~_PAGE_A)) | 
|  | #define pte_mkyoung(pte)	(__pte(pte_val(pte) | _PAGE_A)) | 
|  | #define pte_mkclean(pte)	(__pte(pte_val(pte) & ~_PAGE_D)) | 
|  | #define pte_mkdirty(pte)	(__pte(pte_val(pte) | _PAGE_D)) | 
|  | #define pte_mkhuge(pte)		(__pte(pte_val(pte))) | 
|  |  | 
|  | /* | 
|  | * Make page protection values cacheable, uncacheable, or write- | 
|  | * combining.  Note that "protection" is really a misnomer here as the | 
|  | * protection value contains the memory attribute bits, dirty bits, and | 
|  | * various other bits as well. | 
|  | */ | 
|  | #define pgprot_cacheable(prot)		__pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WB) | 
|  | #define pgprot_noncached(prot)		__pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC) | 
|  | #define pgprot_writecombine(prot)	__pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC) | 
|  |  | 
|  | struct file; | 
|  | extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, | 
|  | unsigned long size, pgprot_t vma_prot); | 
|  | #define __HAVE_PHYS_MEM_ACCESS_PROT | 
|  |  | 
|  | static inline unsigned long | 
|  | pgd_index (unsigned long address) | 
|  | { | 
|  | unsigned long region = address >> 61; | 
|  | unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1); | 
|  |  | 
|  | return (region << (PAGE_SHIFT - 6)) | l1index; | 
|  | } | 
|  |  | 
|  | /* The offset in the 1-level directory is given by the 3 region bits | 
|  | (61..63) and the level-1 bits.  */ | 
|  | static inline pgd_t* | 
|  | pgd_offset (struct mm_struct *mm, unsigned long address) | 
|  | { | 
|  | return mm->pgd + pgd_index(address); | 
|  | } | 
|  |  | 
|  | /* In the kernel's mapped region we completely ignore the region number | 
|  | (since we know it's in region number 5). */ | 
|  | #define pgd_offset_k(addr) \ | 
|  | (init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))) | 
|  |  | 
|  | /* Look up a pgd entry in the gate area.  On IA-64, the gate-area | 
|  | resides in the kernel-mapped segment, hence we use pgd_offset_k() | 
|  | here.  */ | 
|  | #define pgd_offset_gate(mm, addr)	pgd_offset_k(addr) | 
|  |  | 
|  | #ifdef CONFIG_PGTABLE_4 | 
|  | /* Find an entry in the second-level page table.. */ | 
|  | #define pud_offset(dir,addr) \ | 
|  | ((pud_t *) pgd_page_vaddr(*(dir)) + (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))) | 
|  | #endif | 
|  |  | 
|  | /* Find an entry in the third-level page table.. */ | 
|  | #define pmd_offset(dir,addr) \ | 
|  | ((pmd_t *) pud_page_vaddr(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) | 
|  |  | 
|  | /* | 
|  | * Find an entry in the third-level page table.  This looks more complicated than it | 
|  | * should be because some platforms place page tables in high memory. | 
|  | */ | 
|  | #define pte_index(addr)	 	(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) | 
|  | #define pte_offset_kernel(dir,addr)	((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr)) | 
|  | #define pte_offset_map(dir,addr)	pte_offset_kernel(dir, addr) | 
|  | #define pte_offset_map_nested(dir,addr)	pte_offset_map(dir, addr) | 
|  | #define pte_unmap(pte)			do { } while (0) | 
|  | #define pte_unmap_nested(pte)		do { } while (0) | 
|  |  | 
|  | /* atomic versions of the some PTE manipulations: */ | 
|  |  | 
|  | static inline int | 
|  | ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | if (!pte_young(*ptep)) | 
|  | return 0; | 
|  | return test_and_clear_bit(_PAGE_A_BIT, ptep); | 
|  | #else | 
|  | pte_t pte = *ptep; | 
|  | if (!pte_young(pte)) | 
|  | return 0; | 
|  | set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte)); | 
|  | return 1; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | ptep_test_and_clear_dirty (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | if (!pte_dirty(*ptep)) | 
|  | return 0; | 
|  | return test_and_clear_bit(_PAGE_D_BIT, ptep); | 
|  | #else | 
|  | pte_t pte = *ptep; | 
|  | if (!pte_dirty(pte)) | 
|  | return 0; | 
|  | set_pte_at(vma->vm_mm, addr, ptep, pte_mkclean(pte)); | 
|  | return 1; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline pte_t | 
|  | ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | return __pte(xchg((long *) ptep, 0)); | 
|  | #else | 
|  | pte_t pte = *ptep; | 
|  | pte_clear(mm, addr, ptep); | 
|  | return pte; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | unsigned long new, old; | 
|  |  | 
|  | do { | 
|  | old = pte_val(*ptep); | 
|  | new = pte_val(pte_wrprotect(__pte (old))); | 
|  | } while (cmpxchg((unsigned long *) ptep, old, new) != old); | 
|  | #else | 
|  | pte_t old_pte = *ptep; | 
|  | set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | pte_same (pte_t a, pte_t b) | 
|  | { | 
|  | return pte_val(a) == pte_val(b); | 
|  | } | 
|  |  | 
|  | #define update_mmu_cache(vma, address, pte) do { } while (0) | 
|  |  | 
|  | extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; | 
|  | extern void paging_init (void); | 
|  |  | 
|  | /* | 
|  | * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of | 
|  | *	 bits in the swap-type field of the swap pte.  It would be nice to | 
|  | *	 enforce that, but we can't easily include <linux/swap.h> here. | 
|  | *	 (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...). | 
|  | * | 
|  | * Format of swap pte: | 
|  | *	bit   0   : present bit (must be zero) | 
|  | *	bit   1   : _PAGE_FILE (must be zero) | 
|  | *	bits  2- 8: swap-type | 
|  | *	bits  9-62: swap offset | 
|  | *	bit  63   : _PAGE_PROTNONE bit | 
|  | * | 
|  | * Format of file pte: | 
|  | *	bit   0   : present bit (must be zero) | 
|  | *	bit   1   : _PAGE_FILE (must be one) | 
|  | *	bits  2-62: file_offset/PAGE_SIZE | 
|  | *	bit  63   : _PAGE_PROTNONE bit | 
|  | */ | 
|  | #define __swp_type(entry)		(((entry).val >> 2) & 0x7f) | 
|  | #define __swp_offset(entry)		(((entry).val << 1) >> 10) | 
|  | #define __swp_entry(type,offset)	((swp_entry_t) { ((type) << 2) | ((long) (offset) << 9) }) | 
|  | #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) }) | 
|  | #define __swp_entry_to_pte(x)		((pte_t) { (x).val }) | 
|  |  | 
|  | #define PTE_FILE_MAX_BITS		61 | 
|  | #define pte_to_pgoff(pte)		((pte_val(pte) << 1) >> 3) | 
|  | #define pgoff_to_pte(off)		((pte_t) { ((off) << 2) | _PAGE_FILE }) | 
|  |  | 
|  | #define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\ | 
|  | remap_pfn_range(vma, vaddr, pfn, size, prot) | 
|  |  | 
|  | #define MK_IOSPACE_PFN(space, pfn)	(pfn) | 
|  | #define GET_IOSPACE(pfn)		0 | 
|  | #define GET_PFN(pfn)			(pfn) | 
|  |  | 
|  | /* | 
|  | * ZERO_PAGE is a global shared page that is always zero: used | 
|  | * for zero-mapped memory areas etc.. | 
|  | */ | 
|  | extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; | 
|  | extern struct page *zero_page_memmap_ptr; | 
|  | #define ZERO_PAGE(vaddr) (zero_page_memmap_ptr) | 
|  |  | 
|  | /* We provide our own get_unmapped_area to cope with VA holes for userland */ | 
|  | #define HAVE_ARCH_UNMAPPED_AREA | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | #define HUGETLB_PGDIR_SHIFT	(HPAGE_SHIFT + 2*(PAGE_SHIFT-3)) | 
|  | #define HUGETLB_PGDIR_SIZE	(__IA64_UL(1) << HUGETLB_PGDIR_SHIFT) | 
|  | #define HUGETLB_PGDIR_MASK	(~(HUGETLB_PGDIR_SIZE-1)) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * IA-64 doesn't have any external MMU info: the page tables contain all the necessary | 
|  | * information.  However, we use this routine to take care of any (delayed) i-cache | 
|  | * flushing that may be necessary. | 
|  | */ | 
|  | extern void lazy_mmu_prot_update (pte_t pte); | 
|  |  | 
|  | #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS | 
|  | /* | 
|  | * Update PTEP with ENTRY, which is guaranteed to be a less | 
|  | * restrictive PTE.  That is, ENTRY may have the ACCESSED, DIRTY, and | 
|  | * WRITABLE bits turned on, when the value at PTEP did not.  The | 
|  | * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE. | 
|  | * | 
|  | * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without | 
|  | * having to worry about races.  On SMP machines, there are only two | 
|  | * cases where this is true: | 
|  | * | 
|  | *	(1) *PTEP has the PRESENT bit turned OFF | 
|  | *	(2) ENTRY has the DIRTY bit turned ON | 
|  | * | 
|  | * On ia64, we could implement this routine with a cmpxchg()-loop | 
|  | * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY. | 
|  | * However, like on x86, we can get a more streamlined version by | 
|  | * observing that it is OK to drop ACCESSED bit updates when | 
|  | * SAFELY_WRITABLE is FALSE.  Besides being rare, all that would do is | 
|  | * result in an extra Access-bit fault, which would then turn on the | 
|  | * ACCESSED bit in the low-level fault handler (iaccess_bit or | 
|  | * daccess_bit in ivt.S). | 
|  | */ | 
|  | #ifdef CONFIG_SMP | 
|  | # define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable)	\ | 
|  | do {											\ | 
|  | if (__safely_writable) {							\ | 
|  | set_pte(__ptep, __entry);						\ | 
|  | flush_tlb_page(__vma, __addr);						\ | 
|  | }										\ | 
|  | } while (0) | 
|  | #else | 
|  | # define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable)	\ | 
|  | ptep_establish(__vma, __addr, __ptep, __entry) | 
|  | #endif | 
|  |  | 
|  | #  ifdef CONFIG_VIRTUAL_MEM_MAP | 
|  | /* arch mem_map init routine is needed due to holes in a virtual mem_map */ | 
|  | #   define __HAVE_ARCH_MEMMAP_INIT | 
|  | extern void memmap_init (unsigned long size, int nid, unsigned long zone, | 
|  | unsigned long start_pfn); | 
|  | #  endif /* CONFIG_VIRTUAL_MEM_MAP */ | 
|  | # endif /* !__ASSEMBLY__ */ | 
|  |  | 
|  | /* | 
|  | * Identity-mapped regions use a large page size.  We'll call such large pages | 
|  | * "granules".  If you can think of a better name that's unambiguous, let me | 
|  | * know... | 
|  | */ | 
|  | #if defined(CONFIG_IA64_GRANULE_64MB) | 
|  | # define IA64_GRANULE_SHIFT	_PAGE_SIZE_64M | 
|  | #elif defined(CONFIG_IA64_GRANULE_16MB) | 
|  | # define IA64_GRANULE_SHIFT	_PAGE_SIZE_16M | 
|  | #endif | 
|  | #define IA64_GRANULE_SIZE	(1 << IA64_GRANULE_SHIFT) | 
|  | /* | 
|  | * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL): | 
|  | */ | 
|  | #define KERNEL_TR_PAGE_SHIFT	_PAGE_SIZE_64M | 
|  | #define KERNEL_TR_PAGE_SIZE	(1 << KERNEL_TR_PAGE_SHIFT) | 
|  |  | 
|  | /* | 
|  | * No page table caches to initialise | 
|  | */ | 
|  | #define pgtable_cache_init()	do { } while (0) | 
|  |  | 
|  | /* These tell get_user_pages() that the first gate page is accessible from user-level.  */ | 
|  | #define FIXADDR_USER_START	GATE_ADDR | 
|  | #ifdef HAVE_BUGGY_SEGREL | 
|  | # define FIXADDR_USER_END	(GATE_ADDR + 2*PAGE_SIZE) | 
|  | #else | 
|  | # define FIXADDR_USER_END	(GATE_ADDR + 2*PERCPU_PAGE_SIZE) | 
|  | #endif | 
|  |  | 
|  | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG | 
|  | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY | 
|  | #define __HAVE_ARCH_PTEP_GET_AND_CLEAR | 
|  | #define __HAVE_ARCH_PTEP_SET_WRPROTECT | 
|  | #define __HAVE_ARCH_PTE_SAME | 
|  | #define __HAVE_ARCH_PGD_OFFSET_GATE | 
|  | #define __HAVE_ARCH_LAZY_MMU_PROT_UPDATE | 
|  |  | 
|  | #ifndef CONFIG_PGTABLE_4 | 
|  | #include <asm-generic/pgtable-nopud.h> | 
|  | #endif | 
|  | #include <asm-generic/pgtable.h> | 
|  |  | 
|  | #endif /* _ASM_IA64_PGTABLE_H */ |