|  | #ifdef __KERNEL__ | 
|  | #ifndef _PPC_PGTABLE_H | 
|  | #define _PPC_PGTABLE_H | 
|  |  | 
|  | #include <asm-generic/4level-fixup.h> | 
|  |  | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  | #include <linux/sched.h> | 
|  | #include <linux/threads.h> | 
|  | #include <asm/processor.h>		/* For TASK_SIZE */ | 
|  | #include <asm/mmu.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/io.h>			/* For sub-arch specific PPC_PIN_SIZE */ | 
|  | struct mm_struct; | 
|  |  | 
|  | extern unsigned long va_to_phys(unsigned long address); | 
|  | extern pte_t *va_to_pte(unsigned long address); | 
|  | extern unsigned long ioremap_bot, ioremap_base; | 
|  | #endif /* __ASSEMBLY__ */ | 
|  |  | 
|  | /* | 
|  | * The PowerPC MMU uses a hash table containing PTEs, together with | 
|  | * a set of 16 segment registers (on 32-bit implementations), to define | 
|  | * the virtual to physical address mapping. | 
|  | * | 
|  | * We use the hash table as an extended TLB, i.e. a cache of currently | 
|  | * active mappings.  We maintain a two-level page table tree, much | 
|  | * like that used by the i386, for the sake of the Linux memory | 
|  | * management code.  Low-level assembler code in hashtable.S | 
|  | * (procedure hash_page) is responsible for extracting ptes from the | 
|  | * tree and putting them into the hash table when necessary, and | 
|  | * updating the accessed and modified bits in the page table tree. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk. | 
|  | * We also use the two level tables, but we can put the real bits in them | 
|  | * needed for the TLB and tablewalk.  These definitions require Mx_CTR.PPM = 0, | 
|  | * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1.  The level 2 descriptor has | 
|  | * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit | 
|  | * based upon user/super access.  The TLB does not have accessed nor write | 
|  | * protect.  We assume that if the TLB get loaded with an entry it is | 
|  | * accessed, and overload the changed bit for write protect.  We use | 
|  | * two bits in the software pte that are supposed to be set to zero in | 
|  | * the TLB entry (24 and 25) for these indicators.  Although the level 1 | 
|  | * descriptor contains the guarded and writethrough/copyback bits, we can | 
|  | * set these at the page level since they get copied from the Mx_TWC | 
|  | * register when the TLB entry is loaded.  We will use bit 27 for guard, since | 
|  | * that is where it exists in the MD_TWC, and bit 26 for writethrough. | 
|  | * These will get masked from the level 2 descriptor at TLB load time, and | 
|  | * copied to the MD_TWC before it gets loaded. | 
|  | * Large page sizes added.  We currently support two sizes, 4K and 8M. | 
|  | * This also allows a TLB hander optimization because we can directly | 
|  | * load the PMD into MD_TWC.  The 8M pages are only used for kernel | 
|  | * mapping of well known areas.  The PMD (PGD) entries contain control | 
|  | * flags in addition to the address, so care must be taken that the | 
|  | * software no longer assumes these are only pointers. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * At present, all PowerPC 400-class processors share a similar TLB | 
|  | * architecture. The instruction and data sides share a unified, | 
|  | * 64-entry, fully-associative TLB which is maintained totally under | 
|  | * software control. In addition, the instruction side has a | 
|  | * hardware-managed, 4-entry, fully-associative TLB which serves as a | 
|  | * first level to the shared TLB. These two TLBs are known as the UTLB | 
|  | * and ITLB, respectively (see "mmu.h" for definitions). | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The normal case is that PTEs are 32-bits and we have a 1-page | 
|  | * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus | 
|  | * | 
|  | * For any >32-bit physical address platform, we can use the following | 
|  | * two level page table layout where the pgdir is 8KB and the MS 13 bits | 
|  | * are an index to the second level table.  The combined pgdir/pmd first | 
|  | * level has 2048 entries and the second level has 512 64-bit PTE entries. | 
|  | * -Matt | 
|  | */ | 
|  | /* PMD_SHIFT determines the size of the area mapped by the PTE pages */ | 
|  | #define PMD_SHIFT	(PAGE_SHIFT + PTE_SHIFT) | 
|  | #define PMD_SIZE	(1UL << PMD_SHIFT) | 
|  | #define PMD_MASK	(~(PMD_SIZE-1)) | 
|  |  | 
|  | /* PGDIR_SHIFT determines what a top-level page table entry can map */ | 
|  | #define PGDIR_SHIFT	PMD_SHIFT | 
|  | #define PGDIR_SIZE	(1UL << PGDIR_SHIFT) | 
|  | #define PGDIR_MASK	(~(PGDIR_SIZE-1)) | 
|  |  | 
|  | /* | 
|  | * entries per page directory level: our page-table tree is two-level, so | 
|  | * we don't really have any PMD directory. | 
|  | */ | 
|  | #define PTRS_PER_PTE	(1 << PTE_SHIFT) | 
|  | #define PTRS_PER_PMD	1 | 
|  | #define PTRS_PER_PGD	(1 << (32 - PGDIR_SHIFT)) | 
|  |  | 
|  | #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE) | 
|  | #define FIRST_USER_ADDRESS	0 | 
|  |  | 
|  | #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) | 
|  | #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) | 
|  |  | 
|  | #define pte_ERROR(e) \ | 
|  | printk("%s:%d: bad pte "PTE_FMT".\n", __FILE__, __LINE__, pte_val(e)) | 
|  | #define pmd_ERROR(e) \ | 
|  | printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) | 
|  | #define pgd_ERROR(e) \ | 
|  | printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) | 
|  |  | 
|  | /* | 
|  | * Just any arbitrary offset to the start of the vmalloc VM area: the | 
|  | * current 64MB value just means that there will be a 64MB "hole" after the | 
|  | * physical memory until the kernel virtual memory starts.  That means that | 
|  | * any out-of-bounds memory accesses will hopefully be caught. | 
|  | * The vmalloc() routines leaves a hole of 4kB between each vmalloced | 
|  | * area for the same reason. ;) | 
|  | * | 
|  | * We no longer map larger than phys RAM with the BATs so we don't have | 
|  | * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry | 
|  | * about clashes between our early calls to ioremap() that start growing down | 
|  | * from ioremap_base being run into the VM area allocations (growing upwards | 
|  | * from VMALLOC_START).  For this reason we have ioremap_bot to check when | 
|  | * we actually run into our mappings setup in the early boot with the VM | 
|  | * system.  This really does become a problem for machines with good amounts | 
|  | * of RAM.  -- Cort | 
|  | */ | 
|  | #define VMALLOC_OFFSET (0x1000000) /* 16M */ | 
|  | #ifdef PPC_PIN_SIZE | 
|  | #define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) | 
|  | #else | 
|  | #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) | 
|  | #endif | 
|  | #define VMALLOC_END	ioremap_bot | 
|  |  | 
|  | /* | 
|  | * Bits in a linux-style PTE.  These match the bits in the | 
|  | * (hardware-defined) PowerPC PTE as closely as possible. | 
|  | */ | 
|  |  | 
|  | #if defined(CONFIG_40x) | 
|  |  | 
|  | /* There are several potential gotchas here.  The 40x hardware TLBLO | 
|  | field looks like this: | 
|  |  | 
|  | 0  1  2  3  4  ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | 
|  | RPN.....................  0  0 EX WR ZSEL.......  W  I  M  G | 
|  |  | 
|  | Where possible we make the Linux PTE bits match up with this | 
|  |  | 
|  | - bits 20 and 21 must be cleared, because we use 4k pages (40x can | 
|  | support down to 1k pages), this is done in the TLBMiss exception | 
|  | handler. | 
|  | - We use only zones 0 (for kernel pages) and 1 (for user pages) | 
|  | of the 16 available.  Bit 24-26 of the TLB are cleared in the TLB | 
|  | miss handler.  Bit 27 is PAGE_USER, thus selecting the correct | 
|  | zone. | 
|  | - PRESENT *must* be in the bottom two bits because swap cache | 
|  | entries use the top 30 bits.  Because 40x doesn't support SMP | 
|  | anyway, M is irrelevant so we borrow it for PAGE_PRESENT.  Bit 30 | 
|  | is cleared in the TLB miss handler before the TLB entry is loaded. | 
|  | - All other bits of the PTE are loaded into TLBLO without | 
|  | modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for | 
|  | software PTE bits.  We actually use use bits 21, 24, 25, and | 
|  | 30 respectively for the software bits: ACCESSED, DIRTY, RW, and | 
|  | PRESENT. | 
|  | */ | 
|  |  | 
|  | /* Definitions for 40x embedded chips. */ | 
|  | #define	_PAGE_GUARDED	0x001	/* G: page is guarded from prefetch */ | 
|  | #define _PAGE_FILE	0x001	/* when !present: nonlinear file mapping */ | 
|  | #define _PAGE_PRESENT	0x002	/* software: PTE contains a translation */ | 
|  | #define	_PAGE_NO_CACHE	0x004	/* I: caching is inhibited */ | 
|  | #define	_PAGE_WRITETHRU	0x008	/* W: caching is write-through */ | 
|  | #define	_PAGE_USER	0x010	/* matches one of the zone permission bits */ | 
|  | #define	_PAGE_RW	0x040	/* software: Writes permitted */ | 
|  | #define	_PAGE_DIRTY	0x080	/* software: dirty page */ | 
|  | #define _PAGE_HWWRITE	0x100	/* hardware: Dirty & RW, set in exception */ | 
|  | #define _PAGE_HWEXEC	0x200	/* hardware: EX permission */ | 
|  | #define _PAGE_ACCESSED	0x400	/* software: R: page referenced */ | 
|  |  | 
|  | #define _PMD_PRESENT	0x400	/* PMD points to page of PTEs */ | 
|  | #define _PMD_BAD	0x802 | 
|  | #define _PMD_SIZE	0x0e0	/* size field, != 0 for large-page PMD entry */ | 
|  | #define _PMD_SIZE_4M	0x0c0 | 
|  | #define _PMD_SIZE_16M	0x0e0 | 
|  | #define PMD_PAGE_SIZE(pmdval)	(1024 << (((pmdval) & _PMD_SIZE) >> 4)) | 
|  |  | 
|  | #elif defined(CONFIG_44x) | 
|  | /* | 
|  | * Definitions for PPC440 | 
|  | * | 
|  | * Because of the 3 word TLB entries to support 36-bit addressing, | 
|  | * the attribute are difficult to map in such a fashion that they | 
|  | * are easily loaded during exception processing.  I decided to | 
|  | * organize the entry so the ERPN is the only portion in the | 
|  | * upper word of the PTE and the attribute bits below are packed | 
|  | * in as sensibly as they can be in the area below a 4KB page size | 
|  | * oriented RPN.  This at least makes it easy to load the RPN and | 
|  | * ERPN fields in the TLB. -Matt | 
|  | * | 
|  | * Note that these bits preclude future use of a page size | 
|  | * less than 4KB. | 
|  | * | 
|  | * | 
|  | * PPC 440 core has following TLB attribute fields; | 
|  | * | 
|  | *   TLB1: | 
|  | *   0  1  2  3  4  ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | 
|  | *   RPN.................................  -  -  -  -  -  - ERPN....... | 
|  | * | 
|  | *   TLB2: | 
|  | *   0  1  2  3  4  ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | 
|  | *   -  -  -  -  -    - U0 U1 U2 U3 W  I  M  G  E   - UX UW UR SX SW SR | 
|  | * | 
|  | * There are some constrains and options, to decide mapping software bits | 
|  | * into TLB entry. | 
|  | * | 
|  | *   - PRESENT *must* be in the bottom three bits because swap cache | 
|  | *     entries use the top 29 bits for TLB2. | 
|  | * | 
|  | *   - FILE *must* be in the bottom three bits because swap cache | 
|  | *     entries use the top 29 bits for TLB2. | 
|  | * | 
|  | *   - CACHE COHERENT bit (M) has no effect on PPC440 core, because it | 
|  | *     doesn't support SMP. So we can use this as software bit, like | 
|  | *     DIRTY. | 
|  | * | 
|  | * With the PPC 44x Linux implementation, the 0-11th LSBs of the PTE are used | 
|  | * for memory protection related functions (see PTE structure in | 
|  | * include/asm-ppc/mmu.h).  The _PAGE_XXX definitions in this file map to the | 
|  | * above bits.  Note that the bit values are CPU specific, not architecture | 
|  | * specific. | 
|  | * | 
|  | * The kernel PTE entry holds an arch-dependent swp_entry structure under | 
|  | * certain situations. In other words, in such situations some portion of | 
|  | * the PTE bits are used as a swp_entry. In the PPC implementation, the | 
|  | * 3-24th LSB are shared with swp_entry, however the 0-2nd three LSB still | 
|  | * hold protection values. That means the three protection bits are | 
|  | * reserved for both PTE and SWAP entry at the most significant three | 
|  | * LSBs. | 
|  | * | 
|  | * There are three protection bits available for SWAP entry: | 
|  | *	_PAGE_PRESENT | 
|  | *	_PAGE_FILE | 
|  | *	_PAGE_HASHPTE (if HW has) | 
|  | * | 
|  | * So those three bits have to be inside of 0-2nd LSB of PTE. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #define _PAGE_PRESENT	0x00000001		/* S: PTE valid */ | 
|  | #define	_PAGE_RW	0x00000002		/* S: Write permission */ | 
|  | #define _PAGE_FILE	0x00000004		/* S: nonlinear file mapping */ | 
|  | #define _PAGE_ACCESSED	0x00000008		/* S: Page referenced */ | 
|  | #define _PAGE_HWWRITE	0x00000010		/* H: Dirty & RW */ | 
|  | #define _PAGE_HWEXEC	0x00000020		/* H: Execute permission */ | 
|  | #define	_PAGE_USER	0x00000040		/* S: User page */ | 
|  | #define	_PAGE_ENDIAN	0x00000080		/* H: E bit */ | 
|  | #define	_PAGE_GUARDED	0x00000100		/* H: G bit */ | 
|  | #define	_PAGE_DIRTY	0x00000200		/* S: Page dirty */ | 
|  | #define	_PAGE_NO_CACHE	0x00000400		/* H: I bit */ | 
|  | #define	_PAGE_WRITETHRU	0x00000800		/* H: W bit */ | 
|  |  | 
|  | /* TODO: Add large page lowmem mapping support */ | 
|  | #define _PMD_PRESENT	0 | 
|  | #define _PMD_PRESENT_MASK (PAGE_MASK) | 
|  | #define _PMD_BAD	(~PAGE_MASK) | 
|  |  | 
|  | /* ERPN in a PTE never gets cleared, ignore it */ | 
|  | #define _PTE_NONE_MASK	0xffffffff00000000ULL | 
|  |  | 
|  | #elif defined(CONFIG_FSL_BOOKE) | 
|  | /* | 
|  | MMU Assist Register 3: | 
|  |  | 
|  | 32 33 34 35 36  ... 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | 
|  | RPN......................  0  0 U0 U1 U2 U3 UX SX UW SW UR SR | 
|  |  | 
|  | - PRESENT *must* be in the bottom three bits because swap cache | 
|  | entries use the top 29 bits. | 
|  |  | 
|  | - FILE *must* be in the bottom three bits because swap cache | 
|  | entries use the top 29 bits. | 
|  | */ | 
|  |  | 
|  | /* Definitions for FSL Book-E Cores */ | 
|  | #define _PAGE_PRESENT	0x00001	/* S: PTE contains a translation */ | 
|  | #define _PAGE_USER	0x00002	/* S: User page (maps to UR) */ | 
|  | #define _PAGE_FILE	0x00002	/* S: when !present: nonlinear file mapping */ | 
|  | #define _PAGE_ACCESSED	0x00004	/* S: Page referenced */ | 
|  | #define _PAGE_HWWRITE	0x00008	/* H: Dirty & RW, set in exception */ | 
|  | #define _PAGE_RW	0x00010	/* S: Write permission */ | 
|  | #define _PAGE_HWEXEC	0x00020	/* H: UX permission */ | 
|  |  | 
|  | #define _PAGE_ENDIAN	0x00040	/* H: E bit */ | 
|  | #define _PAGE_GUARDED	0x00080	/* H: G bit */ | 
|  | #define _PAGE_COHERENT	0x00100	/* H: M bit */ | 
|  | #define _PAGE_NO_CACHE	0x00200	/* H: I bit */ | 
|  | #define _PAGE_WRITETHRU	0x00400	/* H: W bit */ | 
|  |  | 
|  | #ifdef CONFIG_PTE_64BIT | 
|  | #define _PAGE_DIRTY	0x08000	/* S: Page dirty */ | 
|  |  | 
|  | /* ERPN in a PTE never gets cleared, ignore it */ | 
|  | #define _PTE_NONE_MASK	0xffffffffffff0000ULL | 
|  | #else | 
|  | #define _PAGE_DIRTY	0x00800	/* S: Page dirty */ | 
|  | #endif | 
|  |  | 
|  | #define _PMD_PRESENT	0 | 
|  | #define _PMD_PRESENT_MASK (PAGE_MASK) | 
|  | #define _PMD_BAD	(~PAGE_MASK) | 
|  |  | 
|  | #elif defined(CONFIG_8xx) | 
|  | /* Definitions for 8xx embedded chips. */ | 
|  | #define _PAGE_PRESENT	0x0001	/* Page is valid */ | 
|  | #define _PAGE_FILE	0x0002	/* when !present: nonlinear file mapping */ | 
|  | #define _PAGE_NO_CACHE	0x0002	/* I: cache inhibit */ | 
|  | #define _PAGE_SHARED	0x0004	/* No ASID (context) compare */ | 
|  |  | 
|  | /* These five software bits must be masked out when the entry is loaded | 
|  | * into the TLB. | 
|  | */ | 
|  | #define _PAGE_EXEC	0x0008	/* software: i-cache coherency required */ | 
|  | #define _PAGE_GUARDED	0x0010	/* software: guarded access */ | 
|  | #define _PAGE_DIRTY	0x0020	/* software: page changed */ | 
|  | #define _PAGE_RW	0x0040	/* software: user write access allowed */ | 
|  | #define _PAGE_ACCESSED	0x0080	/* software: page referenced */ | 
|  |  | 
|  | /* Setting any bits in the nibble with the follow two controls will | 
|  | * require a TLB exception handler change.  It is assumed unused bits | 
|  | * are always zero. | 
|  | */ | 
|  | #define _PAGE_HWWRITE	0x0100	/* h/w write enable: never set in Linux PTE */ | 
|  | #define _PAGE_USER	0x0800	/* One of the PP bits, the other is USER&~RW */ | 
|  |  | 
|  | #define _PMD_PRESENT	0x0001 | 
|  | #define _PMD_BAD	0x0ff0 | 
|  | #define _PMD_PAGE_MASK	0x000c | 
|  | #define _PMD_PAGE_8M	0x000c | 
|  |  | 
|  | /* | 
|  | * The 8xx TLB miss handler allegedly sets _PAGE_ACCESSED in the PTE | 
|  | * for an address even if _PAGE_PRESENT is not set, as a performance | 
|  | * optimization.  This is a bug if you ever want to use swap unless | 
|  | * _PAGE_ACCESSED is 2, which it isn't, or unless you have 8xx-specific | 
|  | * definitions for __swp_entry etc. below, which would be gross. | 
|  | *  -- paulus | 
|  | */ | 
|  | #define _PTE_NONE_MASK _PAGE_ACCESSED | 
|  |  | 
|  | #else /* CONFIG_6xx */ | 
|  | /* Definitions for 60x, 740/750, etc. */ | 
|  | #define _PAGE_PRESENT	0x001	/* software: pte contains a translation */ | 
|  | #define _PAGE_HASHPTE	0x002	/* hash_page has made an HPTE for this pte */ | 
|  | #define _PAGE_FILE	0x004	/* when !present: nonlinear file mapping */ | 
|  | #define _PAGE_USER	0x004	/* usermode access allowed */ | 
|  | #define _PAGE_GUARDED	0x008	/* G: prohibit speculative access */ | 
|  | #define _PAGE_COHERENT	0x010	/* M: enforce memory coherence (SMP systems) */ | 
|  | #define _PAGE_NO_CACHE	0x020	/* I: cache inhibit */ | 
|  | #define _PAGE_WRITETHRU	0x040	/* W: cache write-through */ | 
|  | #define _PAGE_DIRTY	0x080	/* C: page changed */ | 
|  | #define _PAGE_ACCESSED	0x100	/* R: page referenced */ | 
|  | #define _PAGE_EXEC	0x200	/* software: i-cache coherency required */ | 
|  | #define _PAGE_RW	0x400	/* software: user write access allowed */ | 
|  |  | 
|  | #define _PTE_NONE_MASK	_PAGE_HASHPTE | 
|  |  | 
|  | #define _PMD_PRESENT	0 | 
|  | #define _PMD_PRESENT_MASK (PAGE_MASK) | 
|  | #define _PMD_BAD	(~PAGE_MASK) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Some bits are only used on some cpu families... | 
|  | */ | 
|  | #ifndef _PAGE_HASHPTE | 
|  | #define _PAGE_HASHPTE	0 | 
|  | #endif | 
|  | #ifndef _PTE_NONE_MASK | 
|  | #define _PTE_NONE_MASK 0 | 
|  | #endif | 
|  | #ifndef _PAGE_SHARED | 
|  | #define _PAGE_SHARED	0 | 
|  | #endif | 
|  | #ifndef _PAGE_HWWRITE | 
|  | #define _PAGE_HWWRITE	0 | 
|  | #endif | 
|  | #ifndef _PAGE_HWEXEC | 
|  | #define _PAGE_HWEXEC	0 | 
|  | #endif | 
|  | #ifndef _PAGE_EXEC | 
|  | #define _PAGE_EXEC	0 | 
|  | #endif | 
|  | #ifndef _PMD_PRESENT_MASK | 
|  | #define _PMD_PRESENT_MASK	_PMD_PRESENT | 
|  | #endif | 
|  | #ifndef _PMD_SIZE | 
|  | #define _PMD_SIZE	0 | 
|  | #define PMD_PAGE_SIZE(pmd)	bad_call_to_PMD_PAGE_SIZE() | 
|  | #endif | 
|  |  | 
|  | #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) | 
|  |  | 
|  | /* | 
|  | * Note: the _PAGE_COHERENT bit automatically gets set in the hardware | 
|  | * PTE if CONFIG_SMP is defined (hash_page does this); there is no need | 
|  | * to have it in the Linux PTE, and in fact the bit could be reused for | 
|  | * another purpose.  -- paulus. | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_44x | 
|  | #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_GUARDED) | 
|  | #else | 
|  | #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED) | 
|  | #endif | 
|  | #define _PAGE_WRENABLE	(_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE) | 
|  | #define _PAGE_KERNEL	(_PAGE_BASE | _PAGE_SHARED | _PAGE_WRENABLE) | 
|  |  | 
|  | #ifdef CONFIG_PPC_STD_MMU | 
|  | /* On standard PPC MMU, no user access implies kernel read/write access, | 
|  | * so to write-protect kernel memory we must turn on user access */ | 
|  | #define _PAGE_KERNEL_RO	(_PAGE_BASE | _PAGE_SHARED | _PAGE_USER) | 
|  | #else | 
|  | #define _PAGE_KERNEL_RO	(_PAGE_BASE | _PAGE_SHARED) | 
|  | #endif | 
|  |  | 
|  | #define _PAGE_IO	(_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED) | 
|  | #define _PAGE_RAM	(_PAGE_KERNEL | _PAGE_HWEXEC) | 
|  |  | 
|  | #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) | 
|  | /* We want the debuggers to be able to set breakpoints anywhere, so | 
|  | * don't write protect the kernel text */ | 
|  | #define _PAGE_RAM_TEXT	_PAGE_RAM | 
|  | #else | 
|  | #define _PAGE_RAM_TEXT	(_PAGE_KERNEL_RO | _PAGE_HWEXEC) | 
|  | #endif | 
|  |  | 
|  | #define PAGE_NONE	__pgprot(_PAGE_BASE) | 
|  | #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_USER) | 
|  | #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) | 
|  | #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW) | 
|  | #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC) | 
|  | #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_USER) | 
|  | #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) | 
|  |  | 
|  | #define PAGE_KERNEL		__pgprot(_PAGE_RAM) | 
|  | #define PAGE_KERNEL_NOCACHE	__pgprot(_PAGE_IO) | 
|  |  | 
|  | /* | 
|  | * The PowerPC can only do execute protection on a segment (256MB) basis, | 
|  | * not on a page basis.  So we consider execute permission the same as read. | 
|  | * Also, write permissions imply read permissions. | 
|  | * This is the closest we can get.. | 
|  | */ | 
|  | #define __P000	PAGE_NONE | 
|  | #define __P001	PAGE_READONLY_X | 
|  | #define __P010	PAGE_COPY | 
|  | #define __P011	PAGE_COPY_X | 
|  | #define __P100	PAGE_READONLY | 
|  | #define __P101	PAGE_READONLY_X | 
|  | #define __P110	PAGE_COPY | 
|  | #define __P111	PAGE_COPY_X | 
|  |  | 
|  | #define __S000	PAGE_NONE | 
|  | #define __S001	PAGE_READONLY_X | 
|  | #define __S010	PAGE_SHARED | 
|  | #define __S011	PAGE_SHARED_X | 
|  | #define __S100	PAGE_READONLY | 
|  | #define __S101	PAGE_READONLY_X | 
|  | #define __S110	PAGE_SHARED | 
|  | #define __S111	PAGE_SHARED_X | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  | /* Make sure we get a link error if PMD_PAGE_SIZE is ever called on a | 
|  | * kernel without large page PMD support */ | 
|  | extern unsigned long bad_call_to_PMD_PAGE_SIZE(void); | 
|  |  | 
|  | /* | 
|  | * Conversions between PTE values and page frame numbers. | 
|  | */ | 
|  |  | 
|  | /* in some case we want to additionaly adjust where the pfn is in the pte to | 
|  | * allow room for more flags */ | 
|  | #if defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT) | 
|  | #define PFN_SHIFT_OFFSET	(PAGE_SHIFT + 8) | 
|  | #else | 
|  | #define PFN_SHIFT_OFFSET	(PAGE_SHIFT) | 
|  | #endif | 
|  |  | 
|  | #define pte_pfn(x)		(pte_val(x) >> PFN_SHIFT_OFFSET) | 
|  | #define pte_page(x)		pfn_to_page(pte_pfn(x)) | 
|  |  | 
|  | #define pfn_pte(pfn, prot)	__pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) |\ | 
|  | pgprot_val(prot)) | 
|  | #define mk_pte(page, prot)	pfn_pte(page_to_pfn(page), prot) | 
|  |  | 
|  | /* | 
|  | * ZERO_PAGE is a global shared page that is always zero: used | 
|  | * for zero-mapped memory areas etc.. | 
|  | */ | 
|  | extern unsigned long empty_zero_page[1024]; | 
|  | #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) | 
|  |  | 
|  | #endif /* __ASSEMBLY__ */ | 
|  |  | 
|  | #define pte_none(pte)		((pte_val(pte) & ~_PTE_NONE_MASK) == 0) | 
|  | #define pte_present(pte)	(pte_val(pte) & _PAGE_PRESENT) | 
|  | #define pte_clear(mm,addr,ptep)	do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0) | 
|  |  | 
|  | #define pmd_none(pmd)		(!pmd_val(pmd)) | 
|  | #define	pmd_bad(pmd)		(pmd_val(pmd) & _PMD_BAD) | 
|  | #define	pmd_present(pmd)	(pmd_val(pmd) & _PMD_PRESENT_MASK) | 
|  | #define	pmd_clear(pmdp)		do { pmd_val(*(pmdp)) = 0; } while (0) | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  | /* | 
|  | * The "pgd_xxx()" functions here are trivial for a folded two-level | 
|  | * setup: the pgd is never bad, and a pmd always exists (as it's folded | 
|  | * into the pgd entry) | 
|  | */ | 
|  | static inline int pgd_none(pgd_t pgd)		{ return 0; } | 
|  | static inline int pgd_bad(pgd_t pgd)		{ return 0; } | 
|  | static inline int pgd_present(pgd_t pgd)	{ return 1; } | 
|  | #define pgd_clear(xp)				do { } while (0) | 
|  |  | 
|  | #define pgd_page_vaddr(pgd) \ | 
|  | ((unsigned long) __va(pgd_val(pgd) & PAGE_MASK)) | 
|  |  | 
|  | /* | 
|  | * The following only work if pte_present() is true. | 
|  | * Undefined behaviour if not.. | 
|  | */ | 
|  | static inline int pte_read(pte_t pte)		{ return pte_val(pte) & _PAGE_USER; } | 
|  | static inline int pte_write(pte_t pte)		{ return pte_val(pte) & _PAGE_RW; } | 
|  | static inline int pte_exec(pte_t pte)		{ return pte_val(pte) & _PAGE_EXEC; } | 
|  | static inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; } | 
|  | static inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; } | 
|  | static inline int pte_file(pte_t pte)		{ return pte_val(pte) & _PAGE_FILE; } | 
|  |  | 
|  | static inline void pte_uncache(pte_t pte)       { pte_val(pte) |= _PAGE_NO_CACHE; } | 
|  | static inline void pte_cache(pte_t pte)         { pte_val(pte) &= ~_PAGE_NO_CACHE; } | 
|  |  | 
|  | static inline pte_t pte_rdprotect(pte_t pte) { | 
|  | pte_val(pte) &= ~_PAGE_USER; return pte; } | 
|  | static inline pte_t pte_wrprotect(pte_t pte) { | 
|  | pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; } | 
|  | static inline pte_t pte_exprotect(pte_t pte) { | 
|  | pte_val(pte) &= ~_PAGE_EXEC; return pte; } | 
|  | static inline pte_t pte_mkclean(pte_t pte) { | 
|  | pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } | 
|  | static inline pte_t pte_mkold(pte_t pte) { | 
|  | pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } | 
|  |  | 
|  | static inline pte_t pte_mkread(pte_t pte) { | 
|  | pte_val(pte) |= _PAGE_USER; return pte; } | 
|  | static inline pte_t pte_mkexec(pte_t pte) { | 
|  | pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } | 
|  | static inline pte_t pte_mkwrite(pte_t pte) { | 
|  | pte_val(pte) |= _PAGE_RW; return pte; } | 
|  | static inline pte_t pte_mkdirty(pte_t pte) { | 
|  | pte_val(pte) |= _PAGE_DIRTY; return pte; } | 
|  | static inline pte_t pte_mkyoung(pte_t pte) { | 
|  | pte_val(pte) |= _PAGE_ACCESSED; return pte; } | 
|  |  | 
|  | static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) | 
|  | { | 
|  | pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When flushing the tlb entry for a page, we also need to flush the hash | 
|  | * table entry.  flush_hash_pages is assembler (for speed) in hashtable.S. | 
|  | */ | 
|  | extern int flush_hash_pages(unsigned context, unsigned long va, | 
|  | unsigned long pmdval, int count); | 
|  |  | 
|  | /* Add an HPTE to the hash table */ | 
|  | extern void add_hash_page(unsigned context, unsigned long va, | 
|  | unsigned long pmdval); | 
|  |  | 
|  | /* | 
|  | * Atomic PTE updates. | 
|  | * | 
|  | * pte_update clears and sets bit atomically, and returns | 
|  | * the old pte value.  In the 64-bit PTE case we lock around the | 
|  | * low PTE word since we expect ALL flag bits to be there | 
|  | */ | 
|  | #ifndef CONFIG_PTE_64BIT | 
|  | static inline unsigned long pte_update(pte_t *p, unsigned long clr, | 
|  | unsigned long set) | 
|  | { | 
|  | unsigned long old, tmp; | 
|  |  | 
|  | __asm__ __volatile__("\ | 
|  | 1:	lwarx	%0,0,%3\n\ | 
|  | andc	%1,%0,%4\n\ | 
|  | or	%1,%1,%5\n" | 
|  | PPC405_ERR77(0,%3) | 
|  | "	stwcx.	%1,0,%3\n\ | 
|  | bne-	1b" | 
|  | : "=&r" (old), "=&r" (tmp), "=m" (*p) | 
|  | : "r" (p), "r" (clr), "r" (set), "m" (*p) | 
|  | : "cc" ); | 
|  | return old; | 
|  | } | 
|  | #else | 
|  | static inline unsigned long long pte_update(pte_t *p, unsigned long clr, | 
|  | unsigned long set) | 
|  | { | 
|  | unsigned long long old; | 
|  | unsigned long tmp; | 
|  |  | 
|  | __asm__ __volatile__("\ | 
|  | 1:	lwarx	%L0,0,%4\n\ | 
|  | lwzx	%0,0,%3\n\ | 
|  | andc	%1,%L0,%5\n\ | 
|  | or	%1,%1,%6\n" | 
|  | PPC405_ERR77(0,%3) | 
|  | "	stwcx.	%1,0,%4\n\ | 
|  | bne-	1b" | 
|  | : "=&r" (old), "=&r" (tmp), "=m" (*p) | 
|  | : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p) | 
|  | : "cc" ); | 
|  | return old; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * set_pte stores a linux PTE into the linux page table. | 
|  | * On machines which use an MMU hash table we avoid changing the | 
|  | * _PAGE_HASHPTE bit. | 
|  | */ | 
|  | static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, | 
|  | pte_t *ptep, pte_t pte) | 
|  | { | 
|  | #if _PAGE_HASHPTE != 0 | 
|  | pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte) & ~_PAGE_HASHPTE); | 
|  | #else | 
|  | *ptep = pte; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 2.6 calles this without flushing the TLB entry, this is wrong | 
|  | * for our hash-based implementation, we fix that up here | 
|  | */ | 
|  | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG | 
|  | static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep) | 
|  | { | 
|  | unsigned long old; | 
|  | old = pte_update(ptep, _PAGE_ACCESSED, 0); | 
|  | #if _PAGE_HASHPTE != 0 | 
|  | if (old & _PAGE_HASHPTE) { | 
|  | unsigned long ptephys = __pa(ptep) & PAGE_MASK; | 
|  | flush_hash_pages(context, addr, ptephys, 1); | 
|  | } | 
|  | #endif | 
|  | return (old & _PAGE_ACCESSED) != 0; | 
|  | } | 
|  | #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ | 
|  | __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep) | 
|  |  | 
|  | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY | 
|  | static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t *ptep) | 
|  | { | 
|  | return (pte_update(ptep, (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0; | 
|  | } | 
|  |  | 
|  | #define __HAVE_ARCH_PTEP_GET_AND_CLEAR | 
|  | static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, | 
|  | pte_t *ptep) | 
|  | { | 
|  | return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); | 
|  | } | 
|  |  | 
|  | #define __HAVE_ARCH_PTEP_SET_WRPROTECT | 
|  | static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, | 
|  | pte_t *ptep) | 
|  | { | 
|  | pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0); | 
|  | } | 
|  |  | 
|  | #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS | 
|  | static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty) | 
|  | { | 
|  | unsigned long bits = pte_val(entry) & | 
|  | (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW); | 
|  | pte_update(ptep, 0, bits); | 
|  | } | 
|  |  | 
|  | #define  ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ | 
|  | do {								   \ | 
|  | __ptep_set_access_flags(__ptep, __entry, __dirty);	   \ | 
|  | flush_tlb_page_nohash(__vma, __address);	       	   \ | 
|  | } while(0) | 
|  |  | 
|  | /* | 
|  | * Macro to mark a page protection value as "uncacheable". | 
|  | */ | 
|  | #define pgprot_noncached(prot)	(__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED)) | 
|  |  | 
|  | struct file; | 
|  | extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, | 
|  | unsigned long size, pgprot_t vma_prot); | 
|  | #define __HAVE_PHYS_MEM_ACCESS_PROT | 
|  |  | 
|  | #define __HAVE_ARCH_PTE_SAME | 
|  | #define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0) | 
|  |  | 
|  | /* | 
|  | * Note that on Book E processors, the pmd contains the kernel virtual | 
|  | * (lowmem) address of the pte page.  The physical address is less useful | 
|  | * because everything runs with translation enabled (even the TLB miss | 
|  | * handler).  On everything else the pmd contains the physical address | 
|  | * of the pte page.  -- paulus | 
|  | */ | 
|  | #ifndef CONFIG_BOOKE | 
|  | #define pmd_page_vaddr(pmd)	\ | 
|  | ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) | 
|  | #define pmd_page(pmd)		\ | 
|  | (mem_map + (pmd_val(pmd) >> PAGE_SHIFT)) | 
|  | #else | 
|  | #define pmd_page_vaddr(pmd)	\ | 
|  | ((unsigned long) (pmd_val(pmd) & PAGE_MASK)) | 
|  | #define pmd_page(pmd)		\ | 
|  | (mem_map + (__pa(pmd_val(pmd)) >> PAGE_SHIFT)) | 
|  | #endif | 
|  |  | 
|  | /* to find an entry in a kernel page-table-directory */ | 
|  | #define pgd_offset_k(address) pgd_offset(&init_mm, address) | 
|  |  | 
|  | /* to find an entry in a page-table-directory */ | 
|  | #define pgd_index(address)	 ((address) >> PGDIR_SHIFT) | 
|  | #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address)) | 
|  |  | 
|  | /* Find an entry in the second-level page table.. */ | 
|  | static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) | 
|  | { | 
|  | return (pmd_t *) dir; | 
|  | } | 
|  |  | 
|  | /* Find an entry in the third-level page table.. */ | 
|  | #define pte_index(address)		\ | 
|  | (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) | 
|  | #define pte_offset_kernel(dir, addr)	\ | 
|  | ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr)) | 
|  | #define pte_offset_map(dir, addr)		\ | 
|  | ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr)) | 
|  | #define pte_offset_map_nested(dir, addr)	\ | 
|  | ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr)) | 
|  |  | 
|  | #define pte_unmap(pte)		kunmap_atomic(pte, KM_PTE0) | 
|  | #define pte_unmap_nested(pte)	kunmap_atomic(pte, KM_PTE1) | 
|  |  | 
|  | extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; | 
|  |  | 
|  | extern void paging_init(void); | 
|  |  | 
|  | /* | 
|  | * Encode and decode a swap entry. | 
|  | * Note that the bits we use in a PTE for representing a swap entry | 
|  | * must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the | 
|  | *_PAGE_HASHPTE bit (if used).  -- paulus | 
|  | */ | 
|  | #define __swp_type(entry)		((entry).val & 0x1f) | 
|  | #define __swp_offset(entry)		((entry).val >> 5) | 
|  | #define __swp_entry(type, offset)	((swp_entry_t) { (type) | ((offset) << 5) }) | 
|  | #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) >> 3 }) | 
|  | #define __swp_entry_to_pte(x)		((pte_t) { (x).val << 3 }) | 
|  |  | 
|  | /* Encode and decode a nonlinear file mapping entry */ | 
|  | #define PTE_FILE_MAX_BITS	29 | 
|  | #define pte_to_pgoff(pte)	(pte_val(pte) >> 3) | 
|  | #define pgoff_to_pte(off)	((pte_t) { ((off) << 3) | _PAGE_FILE }) | 
|  |  | 
|  | /* CONFIG_APUS */ | 
|  | /* For virtual address to physical address conversion */ | 
|  | extern void cache_clear(__u32 addr, int length); | 
|  | extern void cache_push(__u32 addr, int length); | 
|  | extern int mm_end_of_chunk (unsigned long addr, int len); | 
|  | extern unsigned long iopa(unsigned long addr); | 
|  | extern unsigned long mm_ptov(unsigned long addr) __attribute_const__; | 
|  |  | 
|  | /* Values for nocacheflag and cmode */ | 
|  | /* These are not used by the APUS kernel_map, but prevents | 
|  | compilation errors. */ | 
|  | #define	KERNELMAP_FULL_CACHING		0 | 
|  | #define	KERNELMAP_NOCACHE_SER		1 | 
|  | #define	KERNELMAP_NOCACHE_NONSER	2 | 
|  | #define	KERNELMAP_NO_COPYBACK		3 | 
|  |  | 
|  | /* | 
|  | * Map some physical address range into the kernel address space. | 
|  | */ | 
|  | extern unsigned long kernel_map(unsigned long paddr, unsigned long size, | 
|  | int nocacheflag, unsigned long *memavailp ); | 
|  |  | 
|  | /* | 
|  | * Set cache mode of (kernel space) address range. | 
|  | */ | 
|  | extern void kernel_set_cachemode (unsigned long address, unsigned long size, | 
|  | unsigned int cmode); | 
|  |  | 
|  | /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ | 
|  | #define kern_addr_valid(addr)	(1) | 
|  |  | 
|  | #ifdef CONFIG_PHYS_64BIT | 
|  | extern int remap_pfn_range(struct vm_area_struct *vma, unsigned long from, | 
|  | unsigned long paddr, unsigned long size, pgprot_t prot); | 
|  |  | 
|  | static inline int io_remap_pfn_range(struct vm_area_struct *vma, | 
|  | unsigned long vaddr, | 
|  | unsigned long pfn, | 
|  | unsigned long size, | 
|  | pgprot_t prot) | 
|  | { | 
|  | phys_addr_t paddr64 = fixup_bigphys_addr(pfn << PAGE_SHIFT, size); | 
|  | return remap_pfn_range(vma, vaddr, paddr64 >> PAGE_SHIFT, size, prot); | 
|  | } | 
|  | #else | 
|  | #define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\ | 
|  | remap_pfn_range(vma, vaddr, pfn, size, prot) | 
|  | #endif | 
|  |  | 
|  | #define MK_IOSPACE_PFN(space, pfn)	(pfn) | 
|  | #define GET_IOSPACE(pfn)		0 | 
|  | #define GET_PFN(pfn)			(pfn) | 
|  |  | 
|  | /* | 
|  | * No page table caches to initialise | 
|  | */ | 
|  | #define pgtable_cache_init()	do { } while (0) | 
|  |  | 
|  | extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep, | 
|  | pmd_t **pmdp); | 
|  |  | 
|  | #include <asm-generic/pgtable.h> | 
|  |  | 
|  | #endif /* !__ASSEMBLY__ */ | 
|  |  | 
|  | #endif /* _PPC_PGTABLE_H */ | 
|  | #endif /* __KERNEL__ */ |