|  | #ifndef __V850_UACCESS_H__ | 
|  | #define __V850_UACCESS_H__ | 
|  |  | 
|  | /* | 
|  | * User space memory access functions | 
|  | */ | 
|  |  | 
|  | #include <linux/errno.h> | 
|  | #include <linux/string.h> | 
|  |  | 
|  | #include <asm/segment.h> | 
|  | #include <asm/machdep.h> | 
|  |  | 
|  | #define VERIFY_READ	0 | 
|  | #define VERIFY_WRITE	1 | 
|  |  | 
|  | static inline int access_ok (int type, const void *addr, unsigned long size) | 
|  | { | 
|  | /* XXX I guess we should check against real ram bounds at least, and | 
|  | possibly make sure ADDR is not within the kernel. | 
|  | For now we just check to make sure it's not a small positive | 
|  | or negative value, as that will at least catch some kinds of | 
|  | error.  In particular, we make sure that ADDR's not within the | 
|  | interrupt vector area, which we know starts at zero, or within the | 
|  | peripheral-I/O area, which is located just _before_ zero.  */ | 
|  | unsigned long val = (unsigned long)addr; | 
|  | return val >= (0x80 + NUM_CPU_IRQS*16) && val < 0xFFFFF000; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The exception table consists of pairs of addresses: the first is the | 
|  | * address of an instruction that is allowed to fault, and the second is | 
|  | * the address at which the program should continue.  No registers are | 
|  | * modified, so it is entirely up to the continuation code to figure out | 
|  | * what to do. | 
|  | * | 
|  | * All the routines below use bits of fixup code that are out of line | 
|  | * with the main instruction path.  This means when everything is well, | 
|  | * we don't even have to jump over them.  Further, they do not intrude | 
|  | * on our cache or tlb entries. | 
|  | */ | 
|  |  | 
|  | struct exception_table_entry | 
|  | { | 
|  | unsigned long insn, fixup; | 
|  | }; | 
|  |  | 
|  | /* Returns 0 if exception not found and fixup otherwise.  */ | 
|  | extern unsigned long search_exception_table (unsigned long); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * These are the main single-value transfer routines.  They automatically | 
|  | * use the right size if we just have the right pointer type. | 
|  | */ | 
|  |  | 
|  | extern int bad_user_access_length (void); | 
|  |  | 
|  | #define __get_user(var, ptr)						      \ | 
|  | ({									      \ | 
|  | int __gu_err = 0;						      \ | 
|  | typeof(*(ptr)) __gu_val = 0;					      \ | 
|  | switch (sizeof (*(ptr))) {					      \ | 
|  | case 1:							      \ | 
|  | case 2:							      \ | 
|  | case 4:							      \ | 
|  | __gu_val = *(ptr);					      \ | 
|  | break;						      \ | 
|  | case 8:							      \ | 
|  | memcpy(&__gu_val, ptr, sizeof(__gu_val));		      \ | 
|  | break;						      \ | 
|  | default:							      \ | 
|  | __gu_val = 0;						      \ | 
|  | __gu_err = __get_user_bad ();				      \ | 
|  | break;						      \ | 
|  | }								      \ | 
|  | (var) = __gu_val;						      \ | 
|  | __gu_err;							      \ | 
|  | }) | 
|  | #define __get_user_bad()	(bad_user_access_length (), (-EFAULT)) | 
|  |  | 
|  | #define __put_user(var, ptr)						      \ | 
|  | ({									      \ | 
|  | int __pu_err = 0;						      \ | 
|  | switch (sizeof (*(ptr))) {					      \ | 
|  | case 1:							      \ | 
|  | case 2:							      \ | 
|  | case 4:							      \ | 
|  | *(ptr) = (var);					      \ | 
|  | break;						      \ | 
|  | case 8: {							      \ | 
|  | typeof(*(ptr)) __pu_val = 0;				      \ | 
|  | memcpy(ptr, &__pu_val, sizeof(__pu_val));		      \ | 
|  | }							      \ | 
|  | break;						      \ | 
|  | default:							      \ | 
|  | __pu_err = __put_user_bad ();				      \ | 
|  | break;						      \ | 
|  | }								      \ | 
|  | __pu_err;							      \ | 
|  | }) | 
|  | #define __put_user_bad()	(bad_user_access_length (), (-EFAULT)) | 
|  |  | 
|  | #define put_user(x, ptr)	__put_user(x, ptr) | 
|  | #define get_user(x, ptr)	__get_user(x, ptr) | 
|  |  | 
|  | #define __copy_from_user(to, from, n)	(memcpy (to, from, n), 0) | 
|  | #define __copy_to_user(to, from, n)	(memcpy(to, from, n), 0) | 
|  |  | 
|  | #define __copy_to_user_inatomic __copy_to_user | 
|  | #define __copy_from_user_inatomic __copy_from_user | 
|  |  | 
|  | #define copy_from_user(to, from, n)	__copy_from_user (to, from, n) | 
|  | #define copy_to_user(to, from, n) 	__copy_to_user(to, from, n) | 
|  |  | 
|  | #define copy_to_user_ret(to,from,n,retval) \ | 
|  | ({ if (copy_to_user (to,from,n)) return retval; }) | 
|  |  | 
|  | #define copy_from_user_ret(to,from,n,retval) \ | 
|  | ({ if (copy_from_user (to,from,n)) return retval; }) | 
|  |  | 
|  | /* | 
|  | * Copy a null terminated string from userspace. | 
|  | */ | 
|  |  | 
|  | static inline long | 
|  | strncpy_from_user (char *dst, const char *src, long count) | 
|  | { | 
|  | char *tmp; | 
|  | strncpy (dst, src, count); | 
|  | for (tmp = dst; *tmp && count > 0; tmp++, count--) | 
|  | ; | 
|  | return tmp - dst; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the size of a string (including the ending 0) | 
|  | * | 
|  | * Return 0 on exception, a value greater than N if too long | 
|  | */ | 
|  | static inline long strnlen_user (const char *src, long n) | 
|  | { | 
|  | return strlen (src) + 1; | 
|  | } | 
|  |  | 
|  | #define strlen_user(str)	strnlen_user (str, 32767) | 
|  |  | 
|  | /* | 
|  | * Zero Userspace | 
|  | */ | 
|  |  | 
|  | static inline unsigned long | 
|  | clear_user (void *to, unsigned long n) | 
|  | { | 
|  | memset (to, 0, n); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* __V850_UACCESS_H__ */ |