|  | #ifndef __NET_SCHED_RED_H | 
|  | #define __NET_SCHED_RED_H | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <net/pkt_sched.h> | 
|  | #include <net/inet_ecn.h> | 
|  | #include <net/dsfield.h> | 
|  |  | 
|  | /*	Random Early Detection (RED) algorithm. | 
|  | ======================================= | 
|  |  | 
|  | Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways | 
|  | for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking. | 
|  |  | 
|  | This file codes a "divisionless" version of RED algorithm | 
|  | as written down in Fig.17 of the paper. | 
|  |  | 
|  | Short description. | 
|  | ------------------ | 
|  |  | 
|  | When a new packet arrives we calculate the average queue length: | 
|  |  | 
|  | avg = (1-W)*avg + W*current_queue_len, | 
|  |  | 
|  | W is the filter time constant (chosen as 2^(-Wlog)), it controls | 
|  | the inertia of the algorithm. To allow larger bursts, W should be | 
|  | decreased. | 
|  |  | 
|  | if (avg > th_max) -> packet marked (dropped). | 
|  | if (avg < th_min) -> packet passes. | 
|  | if (th_min < avg < th_max) we calculate probability: | 
|  |  | 
|  | Pb = max_P * (avg - th_min)/(th_max-th_min) | 
|  |  | 
|  | and mark (drop) packet with this probability. | 
|  | Pb changes from 0 (at avg==th_min) to max_P (avg==th_max). | 
|  | max_P should be small (not 1), usually 0.01..0.02 is good value. | 
|  |  | 
|  | max_P is chosen as a number, so that max_P/(th_max-th_min) | 
|  | is a negative power of two in order arithmetics to contain | 
|  | only shifts. | 
|  |  | 
|  |  | 
|  | Parameters, settable by user: | 
|  | ----------------------------- | 
|  |  | 
|  | qth_min		- bytes (should be < qth_max/2) | 
|  | qth_max		- bytes (should be at least 2*qth_min and less limit) | 
|  | Wlog	       	- bits (<32) log(1/W). | 
|  | Plog	       	- bits (<32) | 
|  |  | 
|  | Plog is related to max_P by formula: | 
|  |  | 
|  | max_P = (qth_max-qth_min)/2^Plog; | 
|  |  | 
|  | F.e. if qth_max=128K and qth_min=32K, then Plog=22 | 
|  | corresponds to max_P=0.02 | 
|  |  | 
|  | Scell_log | 
|  | Stab | 
|  |  | 
|  | Lookup table for log((1-W)^(t/t_ave). | 
|  |  | 
|  |  | 
|  | NOTES: | 
|  |  | 
|  | Upper bound on W. | 
|  | ----------------- | 
|  |  | 
|  | If you want to allow bursts of L packets of size S, | 
|  | you should choose W: | 
|  |  | 
|  | L + 1 - th_min/S < (1-(1-W)^L)/W | 
|  |  | 
|  | th_min/S = 32         th_min/S = 4 | 
|  |  | 
|  | log(W)	L | 
|  | -1	33 | 
|  | -2	35 | 
|  | -3	39 | 
|  | -4	46 | 
|  | -5	57 | 
|  | -6	75 | 
|  | -7	101 | 
|  | -8	135 | 
|  | -9	190 | 
|  | etc. | 
|  | */ | 
|  |  | 
|  | #define RED_STAB_SIZE	256 | 
|  | #define RED_STAB_MASK	(RED_STAB_SIZE - 1) | 
|  |  | 
|  | struct red_stats | 
|  | { | 
|  | u32		prob_drop;	/* Early probability drops */ | 
|  | u32		prob_mark;	/* Early probability marks */ | 
|  | u32		forced_drop;	/* Forced drops, qavg > max_thresh */ | 
|  | u32		forced_mark;	/* Forced marks, qavg > max_thresh */ | 
|  | u32		pdrop;          /* Drops due to queue limits */ | 
|  | u32		other;          /* Drops due to drop() calls */ | 
|  | u32		backlog; | 
|  | }; | 
|  |  | 
|  | struct red_parms | 
|  | { | 
|  | /* Parameters */ | 
|  | u32		qth_min;	/* Min avg length threshold: A scaled */ | 
|  | u32		qth_max;	/* Max avg length threshold: A scaled */ | 
|  | u32		Scell_max; | 
|  | u32		Rmask;		/* Cached random mask, see red_rmask */ | 
|  | u8		Scell_log; | 
|  | u8		Wlog;		/* log(W)		*/ | 
|  | u8		Plog;		/* random number bits	*/ | 
|  | u8		Stab[RED_STAB_SIZE]; | 
|  |  | 
|  | /* Variables */ | 
|  | int		qcount;		/* Number of packets since last random | 
|  | number generation */ | 
|  | u32		qR;		/* Cached random number */ | 
|  |  | 
|  | unsigned long	qavg;		/* Average queue length: A scaled */ | 
|  | psched_time_t	qidlestart;	/* Start of current idle period */ | 
|  | }; | 
|  |  | 
|  | static inline u32 red_rmask(u8 Plog) | 
|  | { | 
|  | return Plog < 32 ? ((1 << Plog) - 1) : ~0UL; | 
|  | } | 
|  |  | 
|  | static inline void red_set_parms(struct red_parms *p, | 
|  | u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog, | 
|  | u8 Scell_log, u8 *stab) | 
|  | { | 
|  | /* Reset average queue length, the value is strictly bound | 
|  | * to the parameters below, reseting hurts a bit but leaving | 
|  | * it might result in an unreasonable qavg for a while. --TGR | 
|  | */ | 
|  | p->qavg		= 0; | 
|  |  | 
|  | p->qcount	= -1; | 
|  | p->qth_min	= qth_min << Wlog; | 
|  | p->qth_max	= qth_max << Wlog; | 
|  | p->Wlog		= Wlog; | 
|  | p->Plog		= Plog; | 
|  | p->Rmask	= red_rmask(Plog); | 
|  | p->Scell_log	= Scell_log; | 
|  | p->Scell_max	= (255 << Scell_log); | 
|  |  | 
|  | memcpy(p->Stab, stab, sizeof(p->Stab)); | 
|  | } | 
|  |  | 
|  | static inline int red_is_idling(struct red_parms *p) | 
|  | { | 
|  | return !PSCHED_IS_PASTPERFECT(p->qidlestart); | 
|  | } | 
|  |  | 
|  | static inline void red_start_of_idle_period(struct red_parms *p) | 
|  | { | 
|  | PSCHED_GET_TIME(p->qidlestart); | 
|  | } | 
|  |  | 
|  | static inline void red_end_of_idle_period(struct red_parms *p) | 
|  | { | 
|  | PSCHED_SET_PASTPERFECT(p->qidlestart); | 
|  | } | 
|  |  | 
|  | static inline void red_restart(struct red_parms *p) | 
|  | { | 
|  | red_end_of_idle_period(p); | 
|  | p->qavg = 0; | 
|  | p->qcount = -1; | 
|  | } | 
|  |  | 
|  | static inline unsigned long red_calc_qavg_from_idle_time(struct red_parms *p) | 
|  | { | 
|  | psched_time_t now; | 
|  | long us_idle; | 
|  | int  shift; | 
|  |  | 
|  | PSCHED_GET_TIME(now); | 
|  | us_idle = PSCHED_TDIFF_SAFE(now, p->qidlestart, p->Scell_max); | 
|  |  | 
|  | /* | 
|  | * The problem: ideally, average length queue recalcultion should | 
|  | * be done over constant clock intervals. This is too expensive, so | 
|  | * that the calculation is driven by outgoing packets. | 
|  | * When the queue is idle we have to model this clock by hand. | 
|  | * | 
|  | * SF+VJ proposed to "generate": | 
|  | * | 
|  | *	m = idletime / (average_pkt_size / bandwidth) | 
|  | * | 
|  | * dummy packets as a burst after idle time, i.e. | 
|  | * | 
|  | * 	p->qavg *= (1-W)^m | 
|  | * | 
|  | * This is an apparently overcomplicated solution (f.e. we have to | 
|  | * precompute a table to make this calculation in reasonable time) | 
|  | * I believe that a simpler model may be used here, | 
|  | * but it is field for experiments. | 
|  | */ | 
|  |  | 
|  | shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK]; | 
|  |  | 
|  | if (shift) | 
|  | return p->qavg >> shift; | 
|  | else { | 
|  | /* Approximate initial part of exponent with linear function: | 
|  | * | 
|  | * 	(1-W)^m ~= 1-mW + ... | 
|  | * | 
|  | * Seems, it is the best solution to | 
|  | * problem of too coarse exponent tabulation. | 
|  | */ | 
|  | us_idle = (p->qavg * (u64)us_idle) >> p->Scell_log; | 
|  |  | 
|  | if (us_idle < (p->qavg >> 1)) | 
|  | return p->qavg - us_idle; | 
|  | else | 
|  | return p->qavg >> 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline unsigned long red_calc_qavg_no_idle_time(struct red_parms *p, | 
|  | unsigned int backlog) | 
|  | { | 
|  | /* | 
|  | * NOTE: p->qavg is fixed point number with point at Wlog. | 
|  | * The formula below is equvalent to floating point | 
|  | * version: | 
|  | * | 
|  | * 	qavg = qavg*(1-W) + backlog*W; | 
|  | * | 
|  | * --ANK (980924) | 
|  | */ | 
|  | return p->qavg + (backlog - (p->qavg >> p->Wlog)); | 
|  | } | 
|  |  | 
|  | static inline unsigned long red_calc_qavg(struct red_parms *p, | 
|  | unsigned int backlog) | 
|  | { | 
|  | if (!red_is_idling(p)) | 
|  | return red_calc_qavg_no_idle_time(p, backlog); | 
|  | else | 
|  | return red_calc_qavg_from_idle_time(p); | 
|  | } | 
|  |  | 
|  | static inline u32 red_random(struct red_parms *p) | 
|  | { | 
|  | return net_random() & p->Rmask; | 
|  | } | 
|  |  | 
|  | static inline int red_mark_probability(struct red_parms *p, unsigned long qavg) | 
|  | { | 
|  | /* The formula used below causes questions. | 
|  |  | 
|  | OK. qR is random number in the interval 0..Rmask | 
|  | i.e. 0..(2^Plog). If we used floating point | 
|  | arithmetics, it would be: (2^Plog)*rnd_num, | 
|  | where rnd_num is less 1. | 
|  |  | 
|  | Taking into account, that qavg have fixed | 
|  | point at Wlog, and Plog is related to max_P by | 
|  | max_P = (qth_max-qth_min)/2^Plog; two lines | 
|  | below have the following floating point equivalent: | 
|  |  | 
|  | max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount | 
|  |  | 
|  | Any questions? --ANK (980924) | 
|  | */ | 
|  | return !(((qavg - p->qth_min) >> p->Wlog) * p->qcount < p->qR); | 
|  | } | 
|  |  | 
|  | enum { | 
|  | RED_BELOW_MIN_THRESH, | 
|  | RED_BETWEEN_TRESH, | 
|  | RED_ABOVE_MAX_TRESH, | 
|  | }; | 
|  |  | 
|  | static inline int red_cmp_thresh(struct red_parms *p, unsigned long qavg) | 
|  | { | 
|  | if (qavg < p->qth_min) | 
|  | return RED_BELOW_MIN_THRESH; | 
|  | else if (qavg >= p->qth_max) | 
|  | return RED_ABOVE_MAX_TRESH; | 
|  | else | 
|  | return RED_BETWEEN_TRESH; | 
|  | } | 
|  |  | 
|  | enum { | 
|  | RED_DONT_MARK, | 
|  | RED_PROB_MARK, | 
|  | RED_HARD_MARK, | 
|  | }; | 
|  |  | 
|  | static inline int red_action(struct red_parms *p, unsigned long qavg) | 
|  | { | 
|  | switch (red_cmp_thresh(p, qavg)) { | 
|  | case RED_BELOW_MIN_THRESH: | 
|  | p->qcount = -1; | 
|  | return RED_DONT_MARK; | 
|  |  | 
|  | case RED_BETWEEN_TRESH: | 
|  | if (++p->qcount) { | 
|  | if (red_mark_probability(p, qavg)) { | 
|  | p->qcount = 0; | 
|  | p->qR = red_random(p); | 
|  | return RED_PROB_MARK; | 
|  | } | 
|  | } else | 
|  | p->qR = red_random(p); | 
|  |  | 
|  | return RED_DONT_MARK; | 
|  |  | 
|  | case RED_ABOVE_MAX_TRESH: | 
|  | p->qcount = -1; | 
|  | return RED_HARD_MARK; | 
|  | } | 
|  |  | 
|  | BUG(); | 
|  | return RED_DONT_MARK; | 
|  | } | 
|  |  | 
|  | #endif |