|  | /* | 
|  | * SLUB: A slab allocator that limits cache line use instead of queuing | 
|  | * objects in per cpu and per node lists. | 
|  | * | 
|  | * The allocator synchronizes using per slab locks and only | 
|  | * uses a centralized lock to manage a pool of partial slabs. | 
|  | * | 
|  | * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/bit_spinlock.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/kallsyms.h> | 
|  |  | 
|  | /* | 
|  | * Lock order: | 
|  | *   1. slab_lock(page) | 
|  | *   2. slab->list_lock | 
|  | * | 
|  | *   The slab_lock protects operations on the object of a particular | 
|  | *   slab and its metadata in the page struct. If the slab lock | 
|  | *   has been taken then no allocations nor frees can be performed | 
|  | *   on the objects in the slab nor can the slab be added or removed | 
|  | *   from the partial or full lists since this would mean modifying | 
|  | *   the page_struct of the slab. | 
|  | * | 
|  | *   The list_lock protects the partial and full list on each node and | 
|  | *   the partial slab counter. If taken then no new slabs may be added or | 
|  | *   removed from the lists nor make the number of partial slabs be modified. | 
|  | *   (Note that the total number of slabs is an atomic value that may be | 
|  | *   modified without taking the list lock). | 
|  | * | 
|  | *   The list_lock is a centralized lock and thus we avoid taking it as | 
|  | *   much as possible. As long as SLUB does not have to handle partial | 
|  | *   slabs, operations can continue without any centralized lock. F.e. | 
|  | *   allocating a long series of objects that fill up slabs does not require | 
|  | *   the list lock. | 
|  | * | 
|  | *   The lock order is sometimes inverted when we are trying to get a slab | 
|  | *   off a list. We take the list_lock and then look for a page on the list | 
|  | *   to use. While we do that objects in the slabs may be freed. We can | 
|  | *   only operate on the slab if we have also taken the slab_lock. So we use | 
|  | *   a slab_trylock() on the slab. If trylock was successful then no frees | 
|  | *   can occur anymore and we can use the slab for allocations etc. If the | 
|  | *   slab_trylock() does not succeed then frees are in progress in the slab and | 
|  | *   we must stay away from it for a while since we may cause a bouncing | 
|  | *   cacheline if we try to acquire the lock. So go onto the next slab. | 
|  | *   If all pages are busy then we may allocate a new slab instead of reusing | 
|  | *   a partial slab. A new slab has noone operating on it and thus there is | 
|  | *   no danger of cacheline contention. | 
|  | * | 
|  | *   Interrupts are disabled during allocation and deallocation in order to | 
|  | *   make the slab allocator safe to use in the context of an irq. In addition | 
|  | *   interrupts are disabled to ensure that the processor does not change | 
|  | *   while handling per_cpu slabs, due to kernel preemption. | 
|  | * | 
|  | * SLUB assigns one slab for allocation to each processor. | 
|  | * Allocations only occur from these slabs called cpu slabs. | 
|  | * | 
|  | * Slabs with free elements are kept on a partial list and during regular | 
|  | * operations no list for full slabs is used. If an object in a full slab is | 
|  | * freed then the slab will show up again on the partial lists. | 
|  | * We track full slabs for debugging purposes though because otherwise we | 
|  | * cannot scan all objects. | 
|  | * | 
|  | * Slabs are freed when they become empty. Teardown and setup is | 
|  | * minimal so we rely on the page allocators per cpu caches for | 
|  | * fast frees and allocs. | 
|  | * | 
|  | * Overloading of page flags that are otherwise used for LRU management. | 
|  | * | 
|  | * PageActive 		The slab is frozen and exempt from list processing. | 
|  | * 			This means that the slab is dedicated to a purpose | 
|  | * 			such as satisfying allocations for a specific | 
|  | * 			processor. Objects may be freed in the slab while | 
|  | * 			it is frozen but slab_free will then skip the usual | 
|  | * 			list operations. It is up to the processor holding | 
|  | * 			the slab to integrate the slab into the slab lists | 
|  | * 			when the slab is no longer needed. | 
|  | * | 
|  | * 			One use of this flag is to mark slabs that are | 
|  | * 			used for allocations. Then such a slab becomes a cpu | 
|  | * 			slab. The cpu slab may be equipped with an additional | 
|  | * 			freelist that allows lockless access to | 
|  | * 			free objects in addition to the regular freelist | 
|  | * 			that requires the slab lock. | 
|  | * | 
|  | * PageError		Slab requires special handling due to debug | 
|  | * 			options set. This moves	slab handling out of | 
|  | * 			the fast path and disables lockless freelists. | 
|  | */ | 
|  |  | 
|  | #define FROZEN (1 << PG_active) | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | #define SLABDEBUG (1 << PG_error) | 
|  | #else | 
|  | #define SLABDEBUG 0 | 
|  | #endif | 
|  |  | 
|  | static inline int SlabFrozen(struct page *page) | 
|  | { | 
|  | return page->flags & FROZEN; | 
|  | } | 
|  |  | 
|  | static inline void SetSlabFrozen(struct page *page) | 
|  | { | 
|  | page->flags |= FROZEN; | 
|  | } | 
|  |  | 
|  | static inline void ClearSlabFrozen(struct page *page) | 
|  | { | 
|  | page->flags &= ~FROZEN; | 
|  | } | 
|  |  | 
|  | static inline int SlabDebug(struct page *page) | 
|  | { | 
|  | return page->flags & SLABDEBUG; | 
|  | } | 
|  |  | 
|  | static inline void SetSlabDebug(struct page *page) | 
|  | { | 
|  | page->flags |= SLABDEBUG; | 
|  | } | 
|  |  | 
|  | static inline void ClearSlabDebug(struct page *page) | 
|  | { | 
|  | page->flags &= ~SLABDEBUG; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Issues still to be resolved: | 
|  | * | 
|  | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. | 
|  | * | 
|  | * - Variable sizing of the per node arrays | 
|  | */ | 
|  |  | 
|  | /* Enable to test recovery from slab corruption on boot */ | 
|  | #undef SLUB_RESILIENCY_TEST | 
|  |  | 
|  | #if PAGE_SHIFT <= 12 | 
|  |  | 
|  | /* | 
|  | * Small page size. Make sure that we do not fragment memory | 
|  | */ | 
|  | #define DEFAULT_MAX_ORDER 1 | 
|  | #define DEFAULT_MIN_OBJECTS 4 | 
|  |  | 
|  | #else | 
|  |  | 
|  | /* | 
|  | * Large page machines are customarily able to handle larger | 
|  | * page orders. | 
|  | */ | 
|  | #define DEFAULT_MAX_ORDER 2 | 
|  | #define DEFAULT_MIN_OBJECTS 8 | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Mininum number of partial slabs. These will be left on the partial | 
|  | * lists even if they are empty. kmem_cache_shrink may reclaim them. | 
|  | */ | 
|  | #define MIN_PARTIAL 2 | 
|  |  | 
|  | /* | 
|  | * Maximum number of desirable partial slabs. | 
|  | * The existence of more partial slabs makes kmem_cache_shrink | 
|  | * sort the partial list by the number of objects in the. | 
|  | */ | 
|  | #define MAX_PARTIAL 10 | 
|  |  | 
|  | #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ | 
|  | SLAB_POISON | SLAB_STORE_USER) | 
|  |  | 
|  | /* | 
|  | * Set of flags that will prevent slab merging | 
|  | */ | 
|  | #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | 
|  | SLAB_TRACE | SLAB_DESTROY_BY_RCU) | 
|  |  | 
|  | #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ | 
|  | SLAB_CACHE_DMA) | 
|  |  | 
|  | #ifndef ARCH_KMALLOC_MINALIGN | 
|  | #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) | 
|  | #endif | 
|  |  | 
|  | #ifndef ARCH_SLAB_MINALIGN | 
|  | #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) | 
|  | #endif | 
|  |  | 
|  | /* Internal SLUB flags */ | 
|  | #define __OBJECT_POISON		0x80000000 /* Poison object */ | 
|  | #define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */ | 
|  |  | 
|  | /* Not all arches define cache_line_size */ | 
|  | #ifndef cache_line_size | 
|  | #define cache_line_size()	L1_CACHE_BYTES | 
|  | #endif | 
|  |  | 
|  | static int kmem_size = sizeof(struct kmem_cache); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static struct notifier_block slab_notifier; | 
|  | #endif | 
|  |  | 
|  | static enum { | 
|  | DOWN,		/* No slab functionality available */ | 
|  | PARTIAL,	/* kmem_cache_open() works but kmalloc does not */ | 
|  | UP,		/* Everything works but does not show up in sysfs */ | 
|  | SYSFS		/* Sysfs up */ | 
|  | } slab_state = DOWN; | 
|  |  | 
|  | /* A list of all slab caches on the system */ | 
|  | static DECLARE_RWSEM(slub_lock); | 
|  | static LIST_HEAD(slab_caches); | 
|  |  | 
|  | /* | 
|  | * Tracking user of a slab. | 
|  | */ | 
|  | struct track { | 
|  | void *addr;		/* Called from address */ | 
|  | int cpu;		/* Was running on cpu */ | 
|  | int pid;		/* Pid context */ | 
|  | unsigned long when;	/* When did the operation occur */ | 
|  | }; | 
|  |  | 
|  | enum track_item { TRACK_ALLOC, TRACK_FREE }; | 
|  |  | 
|  | #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG) | 
|  | static int sysfs_slab_add(struct kmem_cache *); | 
|  | static int sysfs_slab_alias(struct kmem_cache *, const char *); | 
|  | static void sysfs_slab_remove(struct kmem_cache *); | 
|  | #else | 
|  | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } | 
|  | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | 
|  | { return 0; } | 
|  | static inline void sysfs_slab_remove(struct kmem_cache *s) {} | 
|  | #endif | 
|  |  | 
|  | /******************************************************************** | 
|  | * 			Core slab cache functions | 
|  | *******************************************************************/ | 
|  |  | 
|  | int slab_is_available(void) | 
|  | { | 
|  | return slab_state >= UP; | 
|  | } | 
|  |  | 
|  | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) | 
|  | { | 
|  | #ifdef CONFIG_NUMA | 
|  | return s->node[node]; | 
|  | #else | 
|  | return &s->local_node; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | return s->cpu_slab[cpu]; | 
|  | #else | 
|  | return &s->cpu_slab; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline int check_valid_pointer(struct kmem_cache *s, | 
|  | struct page *page, const void *object) | 
|  | { | 
|  | void *base; | 
|  |  | 
|  | if (!object) | 
|  | return 1; | 
|  |  | 
|  | base = page_address(page); | 
|  | if (object < base || object >= base + s->objects * s->size || | 
|  | (object - base) % s->size) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Slow version of get and set free pointer. | 
|  | * | 
|  | * This version requires touching the cache lines of kmem_cache which | 
|  | * we avoid to do in the fast alloc free paths. There we obtain the offset | 
|  | * from the page struct. | 
|  | */ | 
|  | static inline void *get_freepointer(struct kmem_cache *s, void *object) | 
|  | { | 
|  | return *(void **)(object + s->offset); | 
|  | } | 
|  |  | 
|  | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) | 
|  | { | 
|  | *(void **)(object + s->offset) = fp; | 
|  | } | 
|  |  | 
|  | /* Loop over all objects in a slab */ | 
|  | #define for_each_object(__p, __s, __addr) \ | 
|  | for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\ | 
|  | __p += (__s)->size) | 
|  |  | 
|  | /* Scan freelist */ | 
|  | #define for_each_free_object(__p, __s, __free) \ | 
|  | for (__p = (__free); __p; __p = get_freepointer((__s), __p)) | 
|  |  | 
|  | /* Determine object index from a given position */ | 
|  | static inline int slab_index(void *p, struct kmem_cache *s, void *addr) | 
|  | { | 
|  | return (p - addr) / s->size; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | /* | 
|  | * Debug settings: | 
|  | */ | 
|  | #ifdef CONFIG_SLUB_DEBUG_ON | 
|  | static int slub_debug = DEBUG_DEFAULT_FLAGS; | 
|  | #else | 
|  | static int slub_debug; | 
|  | #endif | 
|  |  | 
|  | static char *slub_debug_slabs; | 
|  |  | 
|  | /* | 
|  | * Object debugging | 
|  | */ | 
|  | static void print_section(char *text, u8 *addr, unsigned int length) | 
|  | { | 
|  | int i, offset; | 
|  | int newline = 1; | 
|  | char ascii[17]; | 
|  |  | 
|  | ascii[16] = 0; | 
|  |  | 
|  | for (i = 0; i < length; i++) { | 
|  | if (newline) { | 
|  | printk(KERN_ERR "%8s 0x%p: ", text, addr + i); | 
|  | newline = 0; | 
|  | } | 
|  | printk(" %02x", addr[i]); | 
|  | offset = i % 16; | 
|  | ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; | 
|  | if (offset == 15) { | 
|  | printk(" %s\n",ascii); | 
|  | newline = 1; | 
|  | } | 
|  | } | 
|  | if (!newline) { | 
|  | i %= 16; | 
|  | while (i < 16) { | 
|  | printk("   "); | 
|  | ascii[i] = ' '; | 
|  | i++; | 
|  | } | 
|  | printk(" %s\n", ascii); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct track *get_track(struct kmem_cache *s, void *object, | 
|  | enum track_item alloc) | 
|  | { | 
|  | struct track *p; | 
|  |  | 
|  | if (s->offset) | 
|  | p = object + s->offset + sizeof(void *); | 
|  | else | 
|  | p = object + s->inuse; | 
|  |  | 
|  | return p + alloc; | 
|  | } | 
|  |  | 
|  | static void set_track(struct kmem_cache *s, void *object, | 
|  | enum track_item alloc, void *addr) | 
|  | { | 
|  | struct track *p; | 
|  |  | 
|  | if (s->offset) | 
|  | p = object + s->offset + sizeof(void *); | 
|  | else | 
|  | p = object + s->inuse; | 
|  |  | 
|  | p += alloc; | 
|  | if (addr) { | 
|  | p->addr = addr; | 
|  | p->cpu = smp_processor_id(); | 
|  | p->pid = current ? current->pid : -1; | 
|  | p->when = jiffies; | 
|  | } else | 
|  | memset(p, 0, sizeof(struct track)); | 
|  | } | 
|  |  | 
|  | static void init_tracking(struct kmem_cache *s, void *object) | 
|  | { | 
|  | if (!(s->flags & SLAB_STORE_USER)) | 
|  | return; | 
|  |  | 
|  | set_track(s, object, TRACK_FREE, NULL); | 
|  | set_track(s, object, TRACK_ALLOC, NULL); | 
|  | } | 
|  |  | 
|  | static void print_track(const char *s, struct track *t) | 
|  | { | 
|  | if (!t->addr) | 
|  | return; | 
|  |  | 
|  | printk(KERN_ERR "INFO: %s in ", s); | 
|  | __print_symbol("%s", (unsigned long)t->addr); | 
|  | printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid); | 
|  | } | 
|  |  | 
|  | static void print_tracking(struct kmem_cache *s, void *object) | 
|  | { | 
|  | if (!(s->flags & SLAB_STORE_USER)) | 
|  | return; | 
|  |  | 
|  | print_track("Allocated", get_track(s, object, TRACK_ALLOC)); | 
|  | print_track("Freed", get_track(s, object, TRACK_FREE)); | 
|  | } | 
|  |  | 
|  | static void print_page_info(struct page *page) | 
|  | { | 
|  | printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n", | 
|  | page, page->inuse, page->freelist, page->flags); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | 
|  | { | 
|  | va_list args; | 
|  | char buf[100]; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | vsnprintf(buf, sizeof(buf), fmt, args); | 
|  | va_end(args); | 
|  | printk(KERN_ERR "========================================" | 
|  | "=====================================\n"); | 
|  | printk(KERN_ERR "BUG %s: %s\n", s->name, buf); | 
|  | printk(KERN_ERR "----------------------------------------" | 
|  | "-------------------------------------\n\n"); | 
|  | } | 
|  |  | 
|  | static void slab_fix(struct kmem_cache *s, char *fmt, ...) | 
|  | { | 
|  | va_list args; | 
|  | char buf[100]; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | vsnprintf(buf, sizeof(buf), fmt, args); | 
|  | va_end(args); | 
|  | printk(KERN_ERR "FIX %s: %s\n", s->name, buf); | 
|  | } | 
|  |  | 
|  | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | 
|  | { | 
|  | unsigned int off;	/* Offset of last byte */ | 
|  | u8 *addr = page_address(page); | 
|  |  | 
|  | print_tracking(s, p); | 
|  |  | 
|  | print_page_info(page); | 
|  |  | 
|  | printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", | 
|  | p, p - addr, get_freepointer(s, p)); | 
|  |  | 
|  | if (p > addr + 16) | 
|  | print_section("Bytes b4", p - 16, 16); | 
|  |  | 
|  | print_section("Object", p, min(s->objsize, 128)); | 
|  |  | 
|  | if (s->flags & SLAB_RED_ZONE) | 
|  | print_section("Redzone", p + s->objsize, | 
|  | s->inuse - s->objsize); | 
|  |  | 
|  | if (s->offset) | 
|  | off = s->offset + sizeof(void *); | 
|  | else | 
|  | off = s->inuse; | 
|  |  | 
|  | if (s->flags & SLAB_STORE_USER) | 
|  | off += 2 * sizeof(struct track); | 
|  |  | 
|  | if (off != s->size) | 
|  | /* Beginning of the filler is the free pointer */ | 
|  | print_section("Padding", p + off, s->size - off); | 
|  |  | 
|  | dump_stack(); | 
|  | } | 
|  |  | 
|  | static void object_err(struct kmem_cache *s, struct page *page, | 
|  | u8 *object, char *reason) | 
|  | { | 
|  | slab_bug(s, reason); | 
|  | print_trailer(s, page, object); | 
|  | } | 
|  |  | 
|  | static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) | 
|  | { | 
|  | va_list args; | 
|  | char buf[100]; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | vsnprintf(buf, sizeof(buf), fmt, args); | 
|  | va_end(args); | 
|  | slab_bug(s, fmt); | 
|  | print_page_info(page); | 
|  | dump_stack(); | 
|  | } | 
|  |  | 
|  | static void init_object(struct kmem_cache *s, void *object, int active) | 
|  | { | 
|  | u8 *p = object; | 
|  |  | 
|  | if (s->flags & __OBJECT_POISON) { | 
|  | memset(p, POISON_FREE, s->objsize - 1); | 
|  | p[s->objsize -1] = POISON_END; | 
|  | } | 
|  |  | 
|  | if (s->flags & SLAB_RED_ZONE) | 
|  | memset(p + s->objsize, | 
|  | active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, | 
|  | s->inuse - s->objsize); | 
|  | } | 
|  |  | 
|  | static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) | 
|  | { | 
|  | while (bytes) { | 
|  | if (*start != (u8)value) | 
|  | return start; | 
|  | start++; | 
|  | bytes--; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, | 
|  | void *from, void *to) | 
|  | { | 
|  | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | 
|  | memset(from, data, to - from); | 
|  | } | 
|  |  | 
|  | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | 
|  | u8 *object, char *what, | 
|  | u8* start, unsigned int value, unsigned int bytes) | 
|  | { | 
|  | u8 *fault; | 
|  | u8 *end; | 
|  |  | 
|  | fault = check_bytes(start, value, bytes); | 
|  | if (!fault) | 
|  | return 1; | 
|  |  | 
|  | end = start + bytes; | 
|  | while (end > fault && end[-1] == value) | 
|  | end--; | 
|  |  | 
|  | slab_bug(s, "%s overwritten", what); | 
|  | printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", | 
|  | fault, end - 1, fault[0], value); | 
|  | print_trailer(s, page, object); | 
|  |  | 
|  | restore_bytes(s, what, value, fault, end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Object layout: | 
|  | * | 
|  | * object address | 
|  | * 	Bytes of the object to be managed. | 
|  | * 	If the freepointer may overlay the object then the free | 
|  | * 	pointer is the first word of the object. | 
|  | * | 
|  | * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is | 
|  | * 	0xa5 (POISON_END) | 
|  | * | 
|  | * object + s->objsize | 
|  | * 	Padding to reach word boundary. This is also used for Redzoning. | 
|  | * 	Padding is extended by another word if Redzoning is enabled and | 
|  | * 	objsize == inuse. | 
|  | * | 
|  | * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with | 
|  | * 	0xcc (RED_ACTIVE) for objects in use. | 
|  | * | 
|  | * object + s->inuse | 
|  | * 	Meta data starts here. | 
|  | * | 
|  | * 	A. Free pointer (if we cannot overwrite object on free) | 
|  | * 	B. Tracking data for SLAB_STORE_USER | 
|  | * 	C. Padding to reach required alignment boundary or at mininum | 
|  | * 		one word if debuggin is on to be able to detect writes | 
|  | * 		before the word boundary. | 
|  | * | 
|  | *	Padding is done using 0x5a (POISON_INUSE) | 
|  | * | 
|  | * object + s->size | 
|  | * 	Nothing is used beyond s->size. | 
|  | * | 
|  | * If slabcaches are merged then the objsize and inuse boundaries are mostly | 
|  | * ignored. And therefore no slab options that rely on these boundaries | 
|  | * may be used with merged slabcaches. | 
|  | */ | 
|  |  | 
|  | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) | 
|  | { | 
|  | unsigned long off = s->inuse;	/* The end of info */ | 
|  |  | 
|  | if (s->offset) | 
|  | /* Freepointer is placed after the object. */ | 
|  | off += sizeof(void *); | 
|  |  | 
|  | if (s->flags & SLAB_STORE_USER) | 
|  | /* We also have user information there */ | 
|  | off += 2 * sizeof(struct track); | 
|  |  | 
|  | if (s->size == off) | 
|  | return 1; | 
|  |  | 
|  | return check_bytes_and_report(s, page, p, "Object padding", | 
|  | p + off, POISON_INUSE, s->size - off); | 
|  | } | 
|  |  | 
|  | static int slab_pad_check(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | u8 *start; | 
|  | u8 *fault; | 
|  | u8 *end; | 
|  | int length; | 
|  | int remainder; | 
|  |  | 
|  | if (!(s->flags & SLAB_POISON)) | 
|  | return 1; | 
|  |  | 
|  | start = page_address(page); | 
|  | end = start + (PAGE_SIZE << s->order); | 
|  | length = s->objects * s->size; | 
|  | remainder = end - (start + length); | 
|  | if (!remainder) | 
|  | return 1; | 
|  |  | 
|  | fault = check_bytes(start + length, POISON_INUSE, remainder); | 
|  | if (!fault) | 
|  | return 1; | 
|  | while (end > fault && end[-1] == POISON_INUSE) | 
|  | end--; | 
|  |  | 
|  | slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); | 
|  | print_section("Padding", start, length); | 
|  |  | 
|  | restore_bytes(s, "slab padding", POISON_INUSE, start, end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_object(struct kmem_cache *s, struct page *page, | 
|  | void *object, int active) | 
|  | { | 
|  | u8 *p = object; | 
|  | u8 *endobject = object + s->objsize; | 
|  |  | 
|  | if (s->flags & SLAB_RED_ZONE) { | 
|  | unsigned int red = | 
|  | active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; | 
|  |  | 
|  | if (!check_bytes_and_report(s, page, object, "Redzone", | 
|  | endobject, red, s->inuse - s->objsize)) | 
|  | return 0; | 
|  | } else { | 
|  | if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) | 
|  | check_bytes_and_report(s, page, p, "Alignment padding", endobject, | 
|  | POISON_INUSE, s->inuse - s->objsize); | 
|  | } | 
|  |  | 
|  | if (s->flags & SLAB_POISON) { | 
|  | if (!active && (s->flags & __OBJECT_POISON) && | 
|  | (!check_bytes_and_report(s, page, p, "Poison", p, | 
|  | POISON_FREE, s->objsize - 1) || | 
|  | !check_bytes_and_report(s, page, p, "Poison", | 
|  | p + s->objsize -1, POISON_END, 1))) | 
|  | return 0; | 
|  | /* | 
|  | * check_pad_bytes cleans up on its own. | 
|  | */ | 
|  | check_pad_bytes(s, page, p); | 
|  | } | 
|  |  | 
|  | if (!s->offset && active) | 
|  | /* | 
|  | * Object and freepointer overlap. Cannot check | 
|  | * freepointer while object is allocated. | 
|  | */ | 
|  | return 1; | 
|  |  | 
|  | /* Check free pointer validity */ | 
|  | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | 
|  | object_err(s, page, p, "Freepointer corrupt"); | 
|  | /* | 
|  | * No choice but to zap it and thus loose the remainder | 
|  | * of the free objects in this slab. May cause | 
|  | * another error because the object count is now wrong. | 
|  | */ | 
|  | set_freepointer(s, p, NULL); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int check_slab(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | VM_BUG_ON(!irqs_disabled()); | 
|  |  | 
|  | if (!PageSlab(page)) { | 
|  | slab_err(s, page, "Not a valid slab page"); | 
|  | return 0; | 
|  | } | 
|  | if (page->inuse > s->objects) { | 
|  | slab_err(s, page, "inuse %u > max %u", | 
|  | s->name, page->inuse, s->objects); | 
|  | return 0; | 
|  | } | 
|  | /* Slab_pad_check fixes things up after itself */ | 
|  | slab_pad_check(s, page); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine if a certain object on a page is on the freelist. Must hold the | 
|  | * slab lock to guarantee that the chains are in a consistent state. | 
|  | */ | 
|  | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | 
|  | { | 
|  | int nr = 0; | 
|  | void *fp = page->freelist; | 
|  | void *object = NULL; | 
|  |  | 
|  | while (fp && nr <= s->objects) { | 
|  | if (fp == search) | 
|  | return 1; | 
|  | if (!check_valid_pointer(s, page, fp)) { | 
|  | if (object) { | 
|  | object_err(s, page, object, | 
|  | "Freechain corrupt"); | 
|  | set_freepointer(s, object, NULL); | 
|  | break; | 
|  | } else { | 
|  | slab_err(s, page, "Freepointer corrupt"); | 
|  | page->freelist = NULL; | 
|  | page->inuse = s->objects; | 
|  | slab_fix(s, "Freelist cleared"); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | } | 
|  | object = fp; | 
|  | fp = get_freepointer(s, object); | 
|  | nr++; | 
|  | } | 
|  |  | 
|  | if (page->inuse != s->objects - nr) { | 
|  | slab_err(s, page, "Wrong object count. Counter is %d but " | 
|  | "counted were %d", page->inuse, s->objects - nr); | 
|  | page->inuse = s->objects - nr; | 
|  | slab_fix(s, "Object count adjusted."); | 
|  | } | 
|  | return search == NULL; | 
|  | } | 
|  |  | 
|  | static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc) | 
|  | { | 
|  | if (s->flags & SLAB_TRACE) { | 
|  | printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", | 
|  | s->name, | 
|  | alloc ? "alloc" : "free", | 
|  | object, page->inuse, | 
|  | page->freelist); | 
|  |  | 
|  | if (!alloc) | 
|  | print_section("Object", (void *)object, s->objsize); | 
|  |  | 
|  | dump_stack(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tracking of fully allocated slabs for debugging purposes. | 
|  | */ | 
|  | static void add_full(struct kmem_cache_node *n, struct page *page) | 
|  | { | 
|  | spin_lock(&n->list_lock); | 
|  | list_add(&page->lru, &n->full); | 
|  | spin_unlock(&n->list_lock); | 
|  | } | 
|  |  | 
|  | static void remove_full(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | if (!(s->flags & SLAB_STORE_USER)) | 
|  | return; | 
|  |  | 
|  | n = get_node(s, page_to_nid(page)); | 
|  |  | 
|  | spin_lock(&n->list_lock); | 
|  | list_del(&page->lru); | 
|  | spin_unlock(&n->list_lock); | 
|  | } | 
|  |  | 
|  | static void setup_object_debug(struct kmem_cache *s, struct page *page, | 
|  | void *object) | 
|  | { | 
|  | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | 
|  | return; | 
|  |  | 
|  | init_object(s, object, 0); | 
|  | init_tracking(s, object); | 
|  | } | 
|  |  | 
|  | static int alloc_debug_processing(struct kmem_cache *s, struct page *page, | 
|  | void *object, void *addr) | 
|  | { | 
|  | if (!check_slab(s, page)) | 
|  | goto bad; | 
|  |  | 
|  | if (object && !on_freelist(s, page, object)) { | 
|  | object_err(s, page, object, "Object already allocated"); | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (!check_valid_pointer(s, page, object)) { | 
|  | object_err(s, page, object, "Freelist Pointer check fails"); | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (object && !check_object(s, page, object, 0)) | 
|  | goto bad; | 
|  |  | 
|  | /* Success perform special debug activities for allocs */ | 
|  | if (s->flags & SLAB_STORE_USER) | 
|  | set_track(s, object, TRACK_ALLOC, addr); | 
|  | trace(s, page, object, 1); | 
|  | init_object(s, object, 1); | 
|  | return 1; | 
|  |  | 
|  | bad: | 
|  | if (PageSlab(page)) { | 
|  | /* | 
|  | * If this is a slab page then lets do the best we can | 
|  | * to avoid issues in the future. Marking all objects | 
|  | * as used avoids touching the remaining objects. | 
|  | */ | 
|  | slab_fix(s, "Marking all objects used"); | 
|  | page->inuse = s->objects; | 
|  | page->freelist = NULL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int free_debug_processing(struct kmem_cache *s, struct page *page, | 
|  | void *object, void *addr) | 
|  | { | 
|  | if (!check_slab(s, page)) | 
|  | goto fail; | 
|  |  | 
|  | if (!check_valid_pointer(s, page, object)) { | 
|  | slab_err(s, page, "Invalid object pointer 0x%p", object); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (on_freelist(s, page, object)) { | 
|  | object_err(s, page, object, "Object already free"); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (!check_object(s, page, object, 1)) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(s != page->slab)) { | 
|  | if (!PageSlab(page)) | 
|  | slab_err(s, page, "Attempt to free object(0x%p) " | 
|  | "outside of slab", object); | 
|  | else | 
|  | if (!page->slab) { | 
|  | printk(KERN_ERR | 
|  | "SLUB <none>: no slab for object 0x%p.\n", | 
|  | object); | 
|  | dump_stack(); | 
|  | } | 
|  | else | 
|  | object_err(s, page, object, | 
|  | "page slab pointer corrupt."); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* Special debug activities for freeing objects */ | 
|  | if (!SlabFrozen(page) && !page->freelist) | 
|  | remove_full(s, page); | 
|  | if (s->flags & SLAB_STORE_USER) | 
|  | set_track(s, object, TRACK_FREE, addr); | 
|  | trace(s, page, object, 0); | 
|  | init_object(s, object, 0); | 
|  | return 1; | 
|  |  | 
|  | fail: | 
|  | slab_fix(s, "Object at 0x%p not freed", object); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init setup_slub_debug(char *str) | 
|  | { | 
|  | slub_debug = DEBUG_DEFAULT_FLAGS; | 
|  | if (*str++ != '=' || !*str) | 
|  | /* | 
|  | * No options specified. Switch on full debugging. | 
|  | */ | 
|  | goto out; | 
|  |  | 
|  | if (*str == ',') | 
|  | /* | 
|  | * No options but restriction on slabs. This means full | 
|  | * debugging for slabs matching a pattern. | 
|  | */ | 
|  | goto check_slabs; | 
|  |  | 
|  | slub_debug = 0; | 
|  | if (*str == '-') | 
|  | /* | 
|  | * Switch off all debugging measures. | 
|  | */ | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Determine which debug features should be switched on | 
|  | */ | 
|  | for ( ;*str && *str != ','; str++) { | 
|  | switch (tolower(*str)) { | 
|  | case 'f': | 
|  | slub_debug |= SLAB_DEBUG_FREE; | 
|  | break; | 
|  | case 'z': | 
|  | slub_debug |= SLAB_RED_ZONE; | 
|  | break; | 
|  | case 'p': | 
|  | slub_debug |= SLAB_POISON; | 
|  | break; | 
|  | case 'u': | 
|  | slub_debug |= SLAB_STORE_USER; | 
|  | break; | 
|  | case 't': | 
|  | slub_debug |= SLAB_TRACE; | 
|  | break; | 
|  | default: | 
|  | printk(KERN_ERR "slub_debug option '%c' " | 
|  | "unknown. skipped\n",*str); | 
|  | } | 
|  | } | 
|  |  | 
|  | check_slabs: | 
|  | if (*str == ',') | 
|  | slub_debug_slabs = str + 1; | 
|  | out: | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("slub_debug", setup_slub_debug); | 
|  |  | 
|  | static unsigned long kmem_cache_flags(unsigned long objsize, | 
|  | unsigned long flags, const char *name, | 
|  | void (*ctor)(struct kmem_cache *, void *)) | 
|  | { | 
|  | /* | 
|  | * The page->offset field is only 16 bit wide. This is an offset | 
|  | * in units of words from the beginning of an object. If the slab | 
|  | * size is bigger then we cannot move the free pointer behind the | 
|  | * object anymore. | 
|  | * | 
|  | * On 32 bit platforms the limit is 256k. On 64bit platforms | 
|  | * the limit is 512k. | 
|  | * | 
|  | * Debugging or ctor may create a need to move the free | 
|  | * pointer. Fail if this happens. | 
|  | */ | 
|  | if (objsize >= 65535 * sizeof(void *)) { | 
|  | BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON | | 
|  | SLAB_STORE_USER | SLAB_DESTROY_BY_RCU)); | 
|  | BUG_ON(ctor); | 
|  | } else { | 
|  | /* | 
|  | * Enable debugging if selected on the kernel commandline. | 
|  | */ | 
|  | if (slub_debug && (!slub_debug_slabs || | 
|  | strncmp(slub_debug_slabs, name, | 
|  | strlen(slub_debug_slabs)) == 0)) | 
|  | flags |= slub_debug; | 
|  | } | 
|  |  | 
|  | return flags; | 
|  | } | 
|  | #else | 
|  | static inline void setup_object_debug(struct kmem_cache *s, | 
|  | struct page *page, void *object) {} | 
|  |  | 
|  | static inline int alloc_debug_processing(struct kmem_cache *s, | 
|  | struct page *page, void *object, void *addr) { return 0; } | 
|  |  | 
|  | static inline int free_debug_processing(struct kmem_cache *s, | 
|  | struct page *page, void *object, void *addr) { return 0; } | 
|  |  | 
|  | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) | 
|  | { return 1; } | 
|  | static inline int check_object(struct kmem_cache *s, struct page *page, | 
|  | void *object, int active) { return 1; } | 
|  | static inline void add_full(struct kmem_cache_node *n, struct page *page) {} | 
|  | static inline unsigned long kmem_cache_flags(unsigned long objsize, | 
|  | unsigned long flags, const char *name, | 
|  | void (*ctor)(struct kmem_cache *, void *)) | 
|  | { | 
|  | return flags; | 
|  | } | 
|  | #define slub_debug 0 | 
|  | #endif | 
|  | /* | 
|  | * Slab allocation and freeing | 
|  | */ | 
|  | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) | 
|  | { | 
|  | struct page * page; | 
|  | int pages = 1 << s->order; | 
|  |  | 
|  | if (s->order) | 
|  | flags |= __GFP_COMP; | 
|  |  | 
|  | if (s->flags & SLAB_CACHE_DMA) | 
|  | flags |= SLUB_DMA; | 
|  |  | 
|  | if (s->flags & SLAB_RECLAIM_ACCOUNT) | 
|  | flags |= __GFP_RECLAIMABLE; | 
|  |  | 
|  | if (node == -1) | 
|  | page = alloc_pages(flags, s->order); | 
|  | else | 
|  | page = alloc_pages_node(node, flags, s->order); | 
|  |  | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | mod_zone_page_state(page_zone(page), | 
|  | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | 
|  | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | 
|  | pages); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static void setup_object(struct kmem_cache *s, struct page *page, | 
|  | void *object) | 
|  | { | 
|  | setup_object_debug(s, page, object); | 
|  | if (unlikely(s->ctor)) | 
|  | s->ctor(s, object); | 
|  | } | 
|  |  | 
|  | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | 
|  | { | 
|  | struct page *page; | 
|  | struct kmem_cache_node *n; | 
|  | void *start; | 
|  | void *end; | 
|  | void *last; | 
|  | void *p; | 
|  |  | 
|  | BUG_ON(flags & GFP_SLAB_BUG_MASK); | 
|  |  | 
|  | page = allocate_slab(s, | 
|  | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | 
|  | if (!page) | 
|  | goto out; | 
|  |  | 
|  | n = get_node(s, page_to_nid(page)); | 
|  | if (n) | 
|  | atomic_long_inc(&n->nr_slabs); | 
|  | page->slab = s; | 
|  | page->flags |= 1 << PG_slab; | 
|  | if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | | 
|  | SLAB_STORE_USER | SLAB_TRACE)) | 
|  | SetSlabDebug(page); | 
|  |  | 
|  | start = page_address(page); | 
|  | end = start + s->objects * s->size; | 
|  |  | 
|  | if (unlikely(s->flags & SLAB_POISON)) | 
|  | memset(start, POISON_INUSE, PAGE_SIZE << s->order); | 
|  |  | 
|  | last = start; | 
|  | for_each_object(p, s, start) { | 
|  | setup_object(s, page, last); | 
|  | set_freepointer(s, last, p); | 
|  | last = p; | 
|  | } | 
|  | setup_object(s, page, last); | 
|  | set_freepointer(s, last, NULL); | 
|  |  | 
|  | page->freelist = start; | 
|  | page->inuse = 0; | 
|  | out: | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static void __free_slab(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | int pages = 1 << s->order; | 
|  |  | 
|  | if (unlikely(SlabDebug(page))) { | 
|  | void *p; | 
|  |  | 
|  | slab_pad_check(s, page); | 
|  | for_each_object(p, s, page_address(page)) | 
|  | check_object(s, page, p, 0); | 
|  | ClearSlabDebug(page); | 
|  | } | 
|  |  | 
|  | mod_zone_page_state(page_zone(page), | 
|  | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | 
|  | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | 
|  | - pages); | 
|  |  | 
|  | __free_pages(page, s->order); | 
|  | } | 
|  |  | 
|  | static void rcu_free_slab(struct rcu_head *h) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | page = container_of((struct list_head *)h, struct page, lru); | 
|  | __free_slab(page->slab, page); | 
|  | } | 
|  |  | 
|  | static void free_slab(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { | 
|  | /* | 
|  | * RCU free overloads the RCU head over the LRU | 
|  | */ | 
|  | struct rcu_head *head = (void *)&page->lru; | 
|  |  | 
|  | call_rcu(head, rcu_free_slab); | 
|  | } else | 
|  | __free_slab(s, page); | 
|  | } | 
|  |  | 
|  | static void discard_slab(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 
|  |  | 
|  | atomic_long_dec(&n->nr_slabs); | 
|  | reset_page_mapcount(page); | 
|  | __ClearPageSlab(page); | 
|  | free_slab(s, page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Per slab locking using the pagelock | 
|  | */ | 
|  | static __always_inline void slab_lock(struct page *page) | 
|  | { | 
|  | bit_spin_lock(PG_locked, &page->flags); | 
|  | } | 
|  |  | 
|  | static __always_inline void slab_unlock(struct page *page) | 
|  | { | 
|  | bit_spin_unlock(PG_locked, &page->flags); | 
|  | } | 
|  |  | 
|  | static __always_inline int slab_trylock(struct page *page) | 
|  | { | 
|  | int rc = 1; | 
|  |  | 
|  | rc = bit_spin_trylock(PG_locked, &page->flags); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Management of partially allocated slabs | 
|  | */ | 
|  | static void add_partial_tail(struct kmem_cache_node *n, struct page *page) | 
|  | { | 
|  | spin_lock(&n->list_lock); | 
|  | n->nr_partial++; | 
|  | list_add_tail(&page->lru, &n->partial); | 
|  | spin_unlock(&n->list_lock); | 
|  | } | 
|  |  | 
|  | static void add_partial(struct kmem_cache_node *n, struct page *page) | 
|  | { | 
|  | spin_lock(&n->list_lock); | 
|  | n->nr_partial++; | 
|  | list_add(&page->lru, &n->partial); | 
|  | spin_unlock(&n->list_lock); | 
|  | } | 
|  |  | 
|  | static void remove_partial(struct kmem_cache *s, | 
|  | struct page *page) | 
|  | { | 
|  | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 
|  |  | 
|  | spin_lock(&n->list_lock); | 
|  | list_del(&page->lru); | 
|  | n->nr_partial--; | 
|  | spin_unlock(&n->list_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lock slab and remove from the partial list. | 
|  | * | 
|  | * Must hold list_lock. | 
|  | */ | 
|  | static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page) | 
|  | { | 
|  | if (slab_trylock(page)) { | 
|  | list_del(&page->lru); | 
|  | n->nr_partial--; | 
|  | SetSlabFrozen(page); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to allocate a partial slab from a specific node. | 
|  | */ | 
|  | static struct page *get_partial_node(struct kmem_cache_node *n) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | /* | 
|  | * Racy check. If we mistakenly see no partial slabs then we | 
|  | * just allocate an empty slab. If we mistakenly try to get a | 
|  | * partial slab and there is none available then get_partials() | 
|  | * will return NULL. | 
|  | */ | 
|  | if (!n || !n->nr_partial) | 
|  | return NULL; | 
|  |  | 
|  | spin_lock(&n->list_lock); | 
|  | list_for_each_entry(page, &n->partial, lru) | 
|  | if (lock_and_freeze_slab(n, page)) | 
|  | goto out; | 
|  | page = NULL; | 
|  | out: | 
|  | spin_unlock(&n->list_lock); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get a page from somewhere. Search in increasing NUMA distances. | 
|  | */ | 
|  | static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) | 
|  | { | 
|  | #ifdef CONFIG_NUMA | 
|  | struct zonelist *zonelist; | 
|  | struct zone **z; | 
|  | struct page *page; | 
|  |  | 
|  | /* | 
|  | * The defrag ratio allows a configuration of the tradeoffs between | 
|  | * inter node defragmentation and node local allocations. A lower | 
|  | * defrag_ratio increases the tendency to do local allocations | 
|  | * instead of attempting to obtain partial slabs from other nodes. | 
|  | * | 
|  | * If the defrag_ratio is set to 0 then kmalloc() always | 
|  | * returns node local objects. If the ratio is higher then kmalloc() | 
|  | * may return off node objects because partial slabs are obtained | 
|  | * from other nodes and filled up. | 
|  | * | 
|  | * If /sys/slab/xx/defrag_ratio is set to 100 (which makes | 
|  | * defrag_ratio = 1000) then every (well almost) allocation will | 
|  | * first attempt to defrag slab caches on other nodes. This means | 
|  | * scanning over all nodes to look for partial slabs which may be | 
|  | * expensive if we do it every time we are trying to find a slab | 
|  | * with available objects. | 
|  | */ | 
|  | if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio) | 
|  | return NULL; | 
|  |  | 
|  | zonelist = &NODE_DATA(slab_node(current->mempolicy)) | 
|  | ->node_zonelists[gfp_zone(flags)]; | 
|  | for (z = zonelist->zones; *z; z++) { | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | n = get_node(s, zone_to_nid(*z)); | 
|  |  | 
|  | if (n && cpuset_zone_allowed_hardwall(*z, flags) && | 
|  | n->nr_partial > MIN_PARTIAL) { | 
|  | page = get_partial_node(n); | 
|  | if (page) | 
|  | return page; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get a partial page, lock it and return it. | 
|  | */ | 
|  | static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) | 
|  | { | 
|  | struct page *page; | 
|  | int searchnode = (node == -1) ? numa_node_id() : node; | 
|  |  | 
|  | page = get_partial_node(get_node(s, searchnode)); | 
|  | if (page || (flags & __GFP_THISNODE)) | 
|  | return page; | 
|  |  | 
|  | return get_any_partial(s, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move a page back to the lists. | 
|  | * | 
|  | * Must be called with the slab lock held. | 
|  | * | 
|  | * On exit the slab lock will have been dropped. | 
|  | */ | 
|  | static void unfreeze_slab(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 
|  |  | 
|  | ClearSlabFrozen(page); | 
|  | if (page->inuse) { | 
|  |  | 
|  | if (page->freelist) | 
|  | add_partial(n, page); | 
|  | else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER)) | 
|  | add_full(n, page); | 
|  | slab_unlock(page); | 
|  |  | 
|  | } else { | 
|  | if (n->nr_partial < MIN_PARTIAL) { | 
|  | /* | 
|  | * Adding an empty slab to the partial slabs in order | 
|  | * to avoid page allocator overhead. This slab needs | 
|  | * to come after the other slabs with objects in | 
|  | * order to fill them up. That way the size of the | 
|  | * partial list stays small. kmem_cache_shrink can | 
|  | * reclaim empty slabs from the partial list. | 
|  | */ | 
|  | add_partial_tail(n, page); | 
|  | slab_unlock(page); | 
|  | } else { | 
|  | slab_unlock(page); | 
|  | discard_slab(s, page); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove the cpu slab | 
|  | */ | 
|  | static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) | 
|  | { | 
|  | struct page *page = c->page; | 
|  | /* | 
|  | * Merge cpu freelist into freelist. Typically we get here | 
|  | * because both freelists are empty. So this is unlikely | 
|  | * to occur. | 
|  | */ | 
|  | while (unlikely(c->freelist)) { | 
|  | void **object; | 
|  |  | 
|  | /* Retrieve object from cpu_freelist */ | 
|  | object = c->freelist; | 
|  | c->freelist = c->freelist[c->offset]; | 
|  |  | 
|  | /* And put onto the regular freelist */ | 
|  | object[c->offset] = page->freelist; | 
|  | page->freelist = object; | 
|  | page->inuse--; | 
|  | } | 
|  | c->page = NULL; | 
|  | unfreeze_slab(s, page); | 
|  | } | 
|  |  | 
|  | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) | 
|  | { | 
|  | slab_lock(c->page); | 
|  | deactivate_slab(s, c); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush cpu slab. | 
|  | * Called from IPI handler with interrupts disabled. | 
|  | */ | 
|  | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) | 
|  | { | 
|  | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | 
|  |  | 
|  | if (likely(c && c->page)) | 
|  | flush_slab(s, c); | 
|  | } | 
|  |  | 
|  | static void flush_cpu_slab(void *d) | 
|  | { | 
|  | struct kmem_cache *s = d; | 
|  |  | 
|  | __flush_cpu_slab(s, smp_processor_id()); | 
|  | } | 
|  |  | 
|  | static void flush_all(struct kmem_cache *s) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | on_each_cpu(flush_cpu_slab, s, 1, 1); | 
|  | #else | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | flush_cpu_slab(s); | 
|  | local_irq_restore(flags); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if the objects in a per cpu structure fit numa | 
|  | * locality expectations. | 
|  | */ | 
|  | static inline int node_match(struct kmem_cache_cpu *c, int node) | 
|  | { | 
|  | #ifdef CONFIG_NUMA | 
|  | if (node != -1 && c->node != node) | 
|  | return 0; | 
|  | #endif | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Slow path. The lockless freelist is empty or we need to perform | 
|  | * debugging duties. | 
|  | * | 
|  | * Interrupts are disabled. | 
|  | * | 
|  | * Processing is still very fast if new objects have been freed to the | 
|  | * regular freelist. In that case we simply take over the regular freelist | 
|  | * as the lockless freelist and zap the regular freelist. | 
|  | * | 
|  | * If that is not working then we fall back to the partial lists. We take the | 
|  | * first element of the freelist as the object to allocate now and move the | 
|  | * rest of the freelist to the lockless freelist. | 
|  | * | 
|  | * And if we were unable to get a new slab from the partial slab lists then | 
|  | * we need to allocate a new slab. This is slowest path since we may sleep. | 
|  | */ | 
|  | static void *__slab_alloc(struct kmem_cache *s, | 
|  | gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c) | 
|  | { | 
|  | void **object; | 
|  | struct page *new; | 
|  |  | 
|  | if (!c->page) | 
|  | goto new_slab; | 
|  |  | 
|  | slab_lock(c->page); | 
|  | if (unlikely(!node_match(c, node))) | 
|  | goto another_slab; | 
|  | load_freelist: | 
|  | object = c->page->freelist; | 
|  | if (unlikely(!object)) | 
|  | goto another_slab; | 
|  | if (unlikely(SlabDebug(c->page))) | 
|  | goto debug; | 
|  |  | 
|  | object = c->page->freelist; | 
|  | c->freelist = object[c->offset]; | 
|  | c->page->inuse = s->objects; | 
|  | c->page->freelist = NULL; | 
|  | c->node = page_to_nid(c->page); | 
|  | slab_unlock(c->page); | 
|  | return object; | 
|  |  | 
|  | another_slab: | 
|  | deactivate_slab(s, c); | 
|  |  | 
|  | new_slab: | 
|  | new = get_partial(s, gfpflags, node); | 
|  | if (new) { | 
|  | c->page = new; | 
|  | goto load_freelist; | 
|  | } | 
|  |  | 
|  | if (gfpflags & __GFP_WAIT) | 
|  | local_irq_enable(); | 
|  |  | 
|  | new = new_slab(s, gfpflags, node); | 
|  |  | 
|  | if (gfpflags & __GFP_WAIT) | 
|  | local_irq_disable(); | 
|  |  | 
|  | if (new) { | 
|  | c = get_cpu_slab(s, smp_processor_id()); | 
|  | if (c->page) { | 
|  | /* | 
|  | * Someone else populated the cpu_slab while we | 
|  | * enabled interrupts, or we have gotten scheduled | 
|  | * on another cpu. The page may not be on the | 
|  | * requested node even if __GFP_THISNODE was | 
|  | * specified. So we need to recheck. | 
|  | */ | 
|  | if (node_match(c, node)) { | 
|  | /* | 
|  | * Current cpuslab is acceptable and we | 
|  | * want the current one since its cache hot | 
|  | */ | 
|  | discard_slab(s, new); | 
|  | slab_lock(c->page); | 
|  | goto load_freelist; | 
|  | } | 
|  | /* New slab does not fit our expectations */ | 
|  | flush_slab(s, c); | 
|  | } | 
|  | slab_lock(new); | 
|  | SetSlabFrozen(new); | 
|  | c->page = new; | 
|  | goto load_freelist; | 
|  | } | 
|  | return NULL; | 
|  | debug: | 
|  | object = c->page->freelist; | 
|  | if (!alloc_debug_processing(s, c->page, object, addr)) | 
|  | goto another_slab; | 
|  |  | 
|  | c->page->inuse++; | 
|  | c->page->freelist = object[c->offset]; | 
|  | c->node = -1; | 
|  | slab_unlock(c->page); | 
|  | return object; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | 
|  | * have the fastpath folded into their functions. So no function call | 
|  | * overhead for requests that can be satisfied on the fastpath. | 
|  | * | 
|  | * The fastpath works by first checking if the lockless freelist can be used. | 
|  | * If not then __slab_alloc is called for slow processing. | 
|  | * | 
|  | * Otherwise we can simply pick the next object from the lockless free list. | 
|  | */ | 
|  | static void __always_inline *slab_alloc(struct kmem_cache *s, | 
|  | gfp_t gfpflags, int node, void *addr) | 
|  | { | 
|  | void **object; | 
|  | unsigned long flags; | 
|  | struct kmem_cache_cpu *c; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | c = get_cpu_slab(s, smp_processor_id()); | 
|  | if (unlikely(!c->freelist || !node_match(c, node))) | 
|  |  | 
|  | object = __slab_alloc(s, gfpflags, node, addr, c); | 
|  |  | 
|  | else { | 
|  | object = c->freelist; | 
|  | c->freelist = object[c->offset]; | 
|  | } | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | if (unlikely((gfpflags & __GFP_ZERO) && object)) | 
|  | memset(object, 0, c->objsize); | 
|  |  | 
|  | return object; | 
|  | } | 
|  |  | 
|  | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | 
|  | { | 
|  | return slab_alloc(s, gfpflags, -1, __builtin_return_address(0)); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_alloc); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | 
|  | { | 
|  | return slab_alloc(s, gfpflags, node, __builtin_return_address(0)); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_alloc_node); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Slow patch handling. This may still be called frequently since objects | 
|  | * have a longer lifetime than the cpu slabs in most processing loads. | 
|  | * | 
|  | * So we still attempt to reduce cache line usage. Just take the slab | 
|  | * lock and free the item. If there is no additional partial page | 
|  | * handling required then we can return immediately. | 
|  | */ | 
|  | static void __slab_free(struct kmem_cache *s, struct page *page, | 
|  | void *x, void *addr, unsigned int offset) | 
|  | { | 
|  | void *prior; | 
|  | void **object = (void *)x; | 
|  |  | 
|  | slab_lock(page); | 
|  |  | 
|  | if (unlikely(SlabDebug(page))) | 
|  | goto debug; | 
|  | checks_ok: | 
|  | prior = object[offset] = page->freelist; | 
|  | page->freelist = object; | 
|  | page->inuse--; | 
|  |  | 
|  | if (unlikely(SlabFrozen(page))) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (unlikely(!page->inuse)) | 
|  | goto slab_empty; | 
|  |  | 
|  | /* | 
|  | * Objects left in the slab. If it | 
|  | * was not on the partial list before | 
|  | * then add it. | 
|  | */ | 
|  | if (unlikely(!prior)) | 
|  | add_partial(get_node(s, page_to_nid(page)), page); | 
|  |  | 
|  | out_unlock: | 
|  | slab_unlock(page); | 
|  | return; | 
|  |  | 
|  | slab_empty: | 
|  | if (prior) | 
|  | /* | 
|  | * Slab still on the partial list. | 
|  | */ | 
|  | remove_partial(s, page); | 
|  |  | 
|  | slab_unlock(page); | 
|  | discard_slab(s, page); | 
|  | return; | 
|  |  | 
|  | debug: | 
|  | if (!free_debug_processing(s, page, x, addr)) | 
|  | goto out_unlock; | 
|  | goto checks_ok; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | 
|  | * can perform fastpath freeing without additional function calls. | 
|  | * | 
|  | * The fastpath is only possible if we are freeing to the current cpu slab | 
|  | * of this processor. This typically the case if we have just allocated | 
|  | * the item before. | 
|  | * | 
|  | * If fastpath is not possible then fall back to __slab_free where we deal | 
|  | * with all sorts of special processing. | 
|  | */ | 
|  | static void __always_inline slab_free(struct kmem_cache *s, | 
|  | struct page *page, void *x, void *addr) | 
|  | { | 
|  | void **object = (void *)x; | 
|  | unsigned long flags; | 
|  | struct kmem_cache_cpu *c; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | debug_check_no_locks_freed(object, s->objsize); | 
|  | c = get_cpu_slab(s, smp_processor_id()); | 
|  | if (likely(page == c->page && c->node >= 0)) { | 
|  | object[c->offset] = c->freelist; | 
|  | c->freelist = object; | 
|  | } else | 
|  | __slab_free(s, page, x, addr, c->offset); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | void kmem_cache_free(struct kmem_cache *s, void *x) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | page = virt_to_head_page(x); | 
|  |  | 
|  | slab_free(s, page, x, __builtin_return_address(0)); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_free); | 
|  |  | 
|  | /* Figure out on which slab object the object resides */ | 
|  | static struct page *get_object_page(const void *x) | 
|  | { | 
|  | struct page *page = virt_to_head_page(x); | 
|  |  | 
|  | if (!PageSlab(page)) | 
|  | return NULL; | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Object placement in a slab is made very easy because we always start at | 
|  | * offset 0. If we tune the size of the object to the alignment then we can | 
|  | * get the required alignment by putting one properly sized object after | 
|  | * another. | 
|  | * | 
|  | * Notice that the allocation order determines the sizes of the per cpu | 
|  | * caches. Each processor has always one slab available for allocations. | 
|  | * Increasing the allocation order reduces the number of times that slabs | 
|  | * must be moved on and off the partial lists and is therefore a factor in | 
|  | * locking overhead. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Mininum / Maximum order of slab pages. This influences locking overhead | 
|  | * and slab fragmentation. A higher order reduces the number of partial slabs | 
|  | * and increases the number of allocations possible without having to | 
|  | * take the list_lock. | 
|  | */ | 
|  | static int slub_min_order; | 
|  | static int slub_max_order = DEFAULT_MAX_ORDER; | 
|  | static int slub_min_objects = DEFAULT_MIN_OBJECTS; | 
|  |  | 
|  | /* | 
|  | * Merge control. If this is set then no merging of slab caches will occur. | 
|  | * (Could be removed. This was introduced to pacify the merge skeptics.) | 
|  | */ | 
|  | static int slub_nomerge; | 
|  |  | 
|  | /* | 
|  | * Calculate the order of allocation given an slab object size. | 
|  | * | 
|  | * The order of allocation has significant impact on performance and other | 
|  | * system components. Generally order 0 allocations should be preferred since | 
|  | * order 0 does not cause fragmentation in the page allocator. Larger objects | 
|  | * be problematic to put into order 0 slabs because there may be too much | 
|  | * unused space left. We go to a higher order if more than 1/8th of the slab | 
|  | * would be wasted. | 
|  | * | 
|  | * In order to reach satisfactory performance we must ensure that a minimum | 
|  | * number of objects is in one slab. Otherwise we may generate too much | 
|  | * activity on the partial lists which requires taking the list_lock. This is | 
|  | * less a concern for large slabs though which are rarely used. | 
|  | * | 
|  | * slub_max_order specifies the order where we begin to stop considering the | 
|  | * number of objects in a slab as critical. If we reach slub_max_order then | 
|  | * we try to keep the page order as low as possible. So we accept more waste | 
|  | * of space in favor of a small page order. | 
|  | * | 
|  | * Higher order allocations also allow the placement of more objects in a | 
|  | * slab and thereby reduce object handling overhead. If the user has | 
|  | * requested a higher mininum order then we start with that one instead of | 
|  | * the smallest order which will fit the object. | 
|  | */ | 
|  | static inline int slab_order(int size, int min_objects, | 
|  | int max_order, int fract_leftover) | 
|  | { | 
|  | int order; | 
|  | int rem; | 
|  | int min_order = slub_min_order; | 
|  |  | 
|  | for (order = max(min_order, | 
|  | fls(min_objects * size - 1) - PAGE_SHIFT); | 
|  | order <= max_order; order++) { | 
|  |  | 
|  | unsigned long slab_size = PAGE_SIZE << order; | 
|  |  | 
|  | if (slab_size < min_objects * size) | 
|  | continue; | 
|  |  | 
|  | rem = slab_size % size; | 
|  |  | 
|  | if (rem <= slab_size / fract_leftover) | 
|  | break; | 
|  |  | 
|  | } | 
|  |  | 
|  | return order; | 
|  | } | 
|  |  | 
|  | static inline int calculate_order(int size) | 
|  | { | 
|  | int order; | 
|  | int min_objects; | 
|  | int fraction; | 
|  |  | 
|  | /* | 
|  | * Attempt to find best configuration for a slab. This | 
|  | * works by first attempting to generate a layout with | 
|  | * the best configuration and backing off gradually. | 
|  | * | 
|  | * First we reduce the acceptable waste in a slab. Then | 
|  | * we reduce the minimum objects required in a slab. | 
|  | */ | 
|  | min_objects = slub_min_objects; | 
|  | while (min_objects > 1) { | 
|  | fraction = 8; | 
|  | while (fraction >= 4) { | 
|  | order = slab_order(size, min_objects, | 
|  | slub_max_order, fraction); | 
|  | if (order <= slub_max_order) | 
|  | return order; | 
|  | fraction /= 2; | 
|  | } | 
|  | min_objects /= 2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We were unable to place multiple objects in a slab. Now | 
|  | * lets see if we can place a single object there. | 
|  | */ | 
|  | order = slab_order(size, 1, slub_max_order, 1); | 
|  | if (order <= slub_max_order) | 
|  | return order; | 
|  |  | 
|  | /* | 
|  | * Doh this slab cannot be placed using slub_max_order. | 
|  | */ | 
|  | order = slab_order(size, 1, MAX_ORDER, 1); | 
|  | if (order <= MAX_ORDER) | 
|  | return order; | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Figure out what the alignment of the objects will be. | 
|  | */ | 
|  | static unsigned long calculate_alignment(unsigned long flags, | 
|  | unsigned long align, unsigned long size) | 
|  | { | 
|  | /* | 
|  | * If the user wants hardware cache aligned objects then | 
|  | * follow that suggestion if the object is sufficiently | 
|  | * large. | 
|  | * | 
|  | * The hardware cache alignment cannot override the | 
|  | * specified alignment though. If that is greater | 
|  | * then use it. | 
|  | */ | 
|  | if ((flags & SLAB_HWCACHE_ALIGN) && | 
|  | size > cache_line_size() / 2) | 
|  | return max_t(unsigned long, align, cache_line_size()); | 
|  |  | 
|  | if (align < ARCH_SLAB_MINALIGN) | 
|  | return ARCH_SLAB_MINALIGN; | 
|  |  | 
|  | return ALIGN(align, sizeof(void *)); | 
|  | } | 
|  |  | 
|  | static void init_kmem_cache_cpu(struct kmem_cache *s, | 
|  | struct kmem_cache_cpu *c) | 
|  | { | 
|  | c->page = NULL; | 
|  | c->freelist = NULL; | 
|  | c->node = 0; | 
|  | c->offset = s->offset / sizeof(void *); | 
|  | c->objsize = s->objsize; | 
|  | } | 
|  |  | 
|  | static void init_kmem_cache_node(struct kmem_cache_node *n) | 
|  | { | 
|  | n->nr_partial = 0; | 
|  | atomic_long_set(&n->nr_slabs, 0); | 
|  | spin_lock_init(&n->list_lock); | 
|  | INIT_LIST_HEAD(&n->partial); | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | INIT_LIST_HEAD(&n->full); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Per cpu array for per cpu structures. | 
|  | * | 
|  | * The per cpu array places all kmem_cache_cpu structures from one processor | 
|  | * close together meaning that it becomes possible that multiple per cpu | 
|  | * structures are contained in one cacheline. This may be particularly | 
|  | * beneficial for the kmalloc caches. | 
|  | * | 
|  | * A desktop system typically has around 60-80 slabs. With 100 here we are | 
|  | * likely able to get per cpu structures for all caches from the array defined | 
|  | * here. We must be able to cover all kmalloc caches during bootstrap. | 
|  | * | 
|  | * If the per cpu array is exhausted then fall back to kmalloc | 
|  | * of individual cachelines. No sharing is possible then. | 
|  | */ | 
|  | #define NR_KMEM_CACHE_CPU 100 | 
|  |  | 
|  | static DEFINE_PER_CPU(struct kmem_cache_cpu, | 
|  | kmem_cache_cpu)[NR_KMEM_CACHE_CPU]; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); | 
|  | static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE; | 
|  |  | 
|  | static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s, | 
|  | int cpu, gfp_t flags) | 
|  | { | 
|  | struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu); | 
|  |  | 
|  | if (c) | 
|  | per_cpu(kmem_cache_cpu_free, cpu) = | 
|  | (void *)c->freelist; | 
|  | else { | 
|  | /* Table overflow: So allocate ourselves */ | 
|  | c = kmalloc_node( | 
|  | ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()), | 
|  | flags, cpu_to_node(cpu)); | 
|  | if (!c) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | init_kmem_cache_cpu(s, c); | 
|  | return c; | 
|  | } | 
|  |  | 
|  | static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu) | 
|  | { | 
|  | if (c < per_cpu(kmem_cache_cpu, cpu) || | 
|  | c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) { | 
|  | kfree(c); | 
|  | return; | 
|  | } | 
|  | c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu); | 
|  | per_cpu(kmem_cache_cpu_free, cpu) = c; | 
|  | } | 
|  |  | 
|  | static void free_kmem_cache_cpus(struct kmem_cache *s) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | 
|  |  | 
|  | if (c) { | 
|  | s->cpu_slab[cpu] = NULL; | 
|  | free_kmem_cache_cpu(c, cpu); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | 
|  |  | 
|  | if (c) | 
|  | continue; | 
|  |  | 
|  | c = alloc_kmem_cache_cpu(s, cpu, flags); | 
|  | if (!c) { | 
|  | free_kmem_cache_cpus(s); | 
|  | return 0; | 
|  | } | 
|  | s->cpu_slab[cpu] = c; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the per cpu array. | 
|  | */ | 
|  | static void init_alloc_cpu_cpu(int cpu) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (cpu_isset(cpu, kmem_cach_cpu_free_init_once)) | 
|  | return; | 
|  |  | 
|  | for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--) | 
|  | free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu); | 
|  |  | 
|  | cpu_set(cpu, kmem_cach_cpu_free_init_once); | 
|  | } | 
|  |  | 
|  | static void __init init_alloc_cpu(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | init_alloc_cpu_cpu(cpu); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline void free_kmem_cache_cpus(struct kmem_cache *s) {} | 
|  | static inline void init_alloc_cpu(void) {} | 
|  |  | 
|  | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) | 
|  | { | 
|  | init_kmem_cache_cpu(s, &s->cpu_slab); | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * No kmalloc_node yet so do it by hand. We know that this is the first | 
|  | * slab on the node for this slabcache. There are no concurrent accesses | 
|  | * possible. | 
|  | * | 
|  | * Note that this function only works on the kmalloc_node_cache | 
|  | * when allocating for the kmalloc_node_cache. This is used for bootstrapping | 
|  | * memory on a fresh node that has no slab structures yet. | 
|  | */ | 
|  | static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags, | 
|  | int node) | 
|  | { | 
|  | struct page *page; | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); | 
|  |  | 
|  | page = new_slab(kmalloc_caches, gfpflags, node); | 
|  |  | 
|  | BUG_ON(!page); | 
|  | if (page_to_nid(page) != node) { | 
|  | printk(KERN_ERR "SLUB: Unable to allocate memory from " | 
|  | "node %d\n", node); | 
|  | printk(KERN_ERR "SLUB: Allocating a useless per node structure " | 
|  | "in order to be able to continue\n"); | 
|  | } | 
|  |  | 
|  | n = page->freelist; | 
|  | BUG_ON(!n); | 
|  | page->freelist = get_freepointer(kmalloc_caches, n); | 
|  | page->inuse++; | 
|  | kmalloc_caches->node[node] = n; | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | init_object(kmalloc_caches, n, 1); | 
|  | init_tracking(kmalloc_caches, n); | 
|  | #endif | 
|  | init_kmem_cache_node(n); | 
|  | atomic_long_inc(&n->nr_slabs); | 
|  | add_partial(n, page); | 
|  | return n; | 
|  | } | 
|  |  | 
|  | static void free_kmem_cache_nodes(struct kmem_cache *s) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | for_each_node_state(node, N_NORMAL_MEMORY) { | 
|  | struct kmem_cache_node *n = s->node[node]; | 
|  | if (n && n != &s->local_node) | 
|  | kmem_cache_free(kmalloc_caches, n); | 
|  | s->node[node] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | 
|  | { | 
|  | int node; | 
|  | int local_node; | 
|  |  | 
|  | if (slab_state >= UP) | 
|  | local_node = page_to_nid(virt_to_page(s)); | 
|  | else | 
|  | local_node = 0; | 
|  |  | 
|  | for_each_node_state(node, N_NORMAL_MEMORY) { | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | if (local_node == node) | 
|  | n = &s->local_node; | 
|  | else { | 
|  | if (slab_state == DOWN) { | 
|  | n = early_kmem_cache_node_alloc(gfpflags, | 
|  | node); | 
|  | continue; | 
|  | } | 
|  | n = kmem_cache_alloc_node(kmalloc_caches, | 
|  | gfpflags, node); | 
|  |  | 
|  | if (!n) { | 
|  | free_kmem_cache_nodes(s); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | } | 
|  | s->node[node] = n; | 
|  | init_kmem_cache_node(n); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | #else | 
|  | static void free_kmem_cache_nodes(struct kmem_cache *s) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | 
|  | { | 
|  | init_kmem_cache_node(&s->local_node); | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * calculate_sizes() determines the order and the distribution of data within | 
|  | * a slab object. | 
|  | */ | 
|  | static int calculate_sizes(struct kmem_cache *s) | 
|  | { | 
|  | unsigned long flags = s->flags; | 
|  | unsigned long size = s->objsize; | 
|  | unsigned long align = s->align; | 
|  |  | 
|  | /* | 
|  | * Determine if we can poison the object itself. If the user of | 
|  | * the slab may touch the object after free or before allocation | 
|  | * then we should never poison the object itself. | 
|  | */ | 
|  | if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && | 
|  | !s->ctor) | 
|  | s->flags |= __OBJECT_POISON; | 
|  | else | 
|  | s->flags &= ~__OBJECT_POISON; | 
|  |  | 
|  | /* | 
|  | * Round up object size to the next word boundary. We can only | 
|  | * place the free pointer at word boundaries and this determines | 
|  | * the possible location of the free pointer. | 
|  | */ | 
|  | size = ALIGN(size, sizeof(void *)); | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | /* | 
|  | * If we are Redzoning then check if there is some space between the | 
|  | * end of the object and the free pointer. If not then add an | 
|  | * additional word to have some bytes to store Redzone information. | 
|  | */ | 
|  | if ((flags & SLAB_RED_ZONE) && size == s->objsize) | 
|  | size += sizeof(void *); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * With that we have determined the number of bytes in actual use | 
|  | * by the object. This is the potential offset to the free pointer. | 
|  | */ | 
|  | s->inuse = size; | 
|  |  | 
|  | if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || | 
|  | s->ctor)) { | 
|  | /* | 
|  | * Relocate free pointer after the object if it is not | 
|  | * permitted to overwrite the first word of the object on | 
|  | * kmem_cache_free. | 
|  | * | 
|  | * This is the case if we do RCU, have a constructor or | 
|  | * destructor or are poisoning the objects. | 
|  | */ | 
|  | s->offset = size; | 
|  | size += sizeof(void *); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | if (flags & SLAB_STORE_USER) | 
|  | /* | 
|  | * Need to store information about allocs and frees after | 
|  | * the object. | 
|  | */ | 
|  | size += 2 * sizeof(struct track); | 
|  |  | 
|  | if (flags & SLAB_RED_ZONE) | 
|  | /* | 
|  | * Add some empty padding so that we can catch | 
|  | * overwrites from earlier objects rather than let | 
|  | * tracking information or the free pointer be | 
|  | * corrupted if an user writes before the start | 
|  | * of the object. | 
|  | */ | 
|  | size += sizeof(void *); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Determine the alignment based on various parameters that the | 
|  | * user specified and the dynamic determination of cache line size | 
|  | * on bootup. | 
|  | */ | 
|  | align = calculate_alignment(flags, align, s->objsize); | 
|  |  | 
|  | /* | 
|  | * SLUB stores one object immediately after another beginning from | 
|  | * offset 0. In order to align the objects we have to simply size | 
|  | * each object to conform to the alignment. | 
|  | */ | 
|  | size = ALIGN(size, align); | 
|  | s->size = size; | 
|  |  | 
|  | s->order = calculate_order(size); | 
|  | if (s->order < 0) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Determine the number of objects per slab | 
|  | */ | 
|  | s->objects = (PAGE_SIZE << s->order) / size; | 
|  |  | 
|  | return !!s->objects; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, | 
|  | const char *name, size_t size, | 
|  | size_t align, unsigned long flags, | 
|  | void (*ctor)(struct kmem_cache *, void *)) | 
|  | { | 
|  | memset(s, 0, kmem_size); | 
|  | s->name = name; | 
|  | s->ctor = ctor; | 
|  | s->objsize = size; | 
|  | s->align = align; | 
|  | s->flags = kmem_cache_flags(size, flags, name, ctor); | 
|  |  | 
|  | if (!calculate_sizes(s)) | 
|  | goto error; | 
|  |  | 
|  | s->refcount = 1; | 
|  | #ifdef CONFIG_NUMA | 
|  | s->defrag_ratio = 100; | 
|  | #endif | 
|  | if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) | 
|  | goto error; | 
|  |  | 
|  | if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) | 
|  | return 1; | 
|  | free_kmem_cache_nodes(s); | 
|  | error: | 
|  | if (flags & SLAB_PANIC) | 
|  | panic("Cannot create slab %s size=%lu realsize=%u " | 
|  | "order=%u offset=%u flags=%lx\n", | 
|  | s->name, (unsigned long)size, s->size, s->order, | 
|  | s->offset, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if a given pointer is valid | 
|  | */ | 
|  | int kmem_ptr_validate(struct kmem_cache *s, const void *object) | 
|  | { | 
|  | struct page * page; | 
|  |  | 
|  | page = get_object_page(object); | 
|  |  | 
|  | if (!page || s != page->slab) | 
|  | /* No slab or wrong slab */ | 
|  | return 0; | 
|  |  | 
|  | if (!check_valid_pointer(s, page, object)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We could also check if the object is on the slabs freelist. | 
|  | * But this would be too expensive and it seems that the main | 
|  | * purpose of kmem_ptr_valid is to check if the object belongs | 
|  | * to a certain slab. | 
|  | */ | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_ptr_validate); | 
|  |  | 
|  | /* | 
|  | * Determine the size of a slab object | 
|  | */ | 
|  | unsigned int kmem_cache_size(struct kmem_cache *s) | 
|  | { | 
|  | return s->objsize; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_size); | 
|  |  | 
|  | const char *kmem_cache_name(struct kmem_cache *s) | 
|  | { | 
|  | return s->name; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_name); | 
|  |  | 
|  | /* | 
|  | * Attempt to free all slabs on a node. Return the number of slabs we | 
|  | * were unable to free. | 
|  | */ | 
|  | static int free_list(struct kmem_cache *s, struct kmem_cache_node *n, | 
|  | struct list_head *list) | 
|  | { | 
|  | int slabs_inuse = 0; | 
|  | unsigned long flags; | 
|  | struct page *page, *h; | 
|  |  | 
|  | spin_lock_irqsave(&n->list_lock, flags); | 
|  | list_for_each_entry_safe(page, h, list, lru) | 
|  | if (!page->inuse) { | 
|  | list_del(&page->lru); | 
|  | discard_slab(s, page); | 
|  | } else | 
|  | slabs_inuse++; | 
|  | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | return slabs_inuse; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release all resources used by a slab cache. | 
|  | */ | 
|  | static inline int kmem_cache_close(struct kmem_cache *s) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | flush_all(s); | 
|  |  | 
|  | /* Attempt to free all objects */ | 
|  | free_kmem_cache_cpus(s); | 
|  | for_each_node_state(node, N_NORMAL_MEMORY) { | 
|  | struct kmem_cache_node *n = get_node(s, node); | 
|  |  | 
|  | n->nr_partial -= free_list(s, n, &n->partial); | 
|  | if (atomic_long_read(&n->nr_slabs)) | 
|  | return 1; | 
|  | } | 
|  | free_kmem_cache_nodes(s); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Close a cache and release the kmem_cache structure | 
|  | * (must be used for caches created using kmem_cache_create) | 
|  | */ | 
|  | void kmem_cache_destroy(struct kmem_cache *s) | 
|  | { | 
|  | down_write(&slub_lock); | 
|  | s->refcount--; | 
|  | if (!s->refcount) { | 
|  | list_del(&s->list); | 
|  | up_write(&slub_lock); | 
|  | if (kmem_cache_close(s)) | 
|  | WARN_ON(1); | 
|  | sysfs_slab_remove(s); | 
|  | kfree(s); | 
|  | } else | 
|  | up_write(&slub_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_destroy); | 
|  |  | 
|  | /******************************************************************** | 
|  | *		Kmalloc subsystem | 
|  | *******************************************************************/ | 
|  |  | 
|  | struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned; | 
|  | EXPORT_SYMBOL(kmalloc_caches); | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT]; | 
|  | #endif | 
|  |  | 
|  | static int __init setup_slub_min_order(char *str) | 
|  | { | 
|  | get_option (&str, &slub_min_order); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("slub_min_order=", setup_slub_min_order); | 
|  |  | 
|  | static int __init setup_slub_max_order(char *str) | 
|  | { | 
|  | get_option (&str, &slub_max_order); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("slub_max_order=", setup_slub_max_order); | 
|  |  | 
|  | static int __init setup_slub_min_objects(char *str) | 
|  | { | 
|  | get_option (&str, &slub_min_objects); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("slub_min_objects=", setup_slub_min_objects); | 
|  |  | 
|  | static int __init setup_slub_nomerge(char *str) | 
|  | { | 
|  | slub_nomerge = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("slub_nomerge", setup_slub_nomerge); | 
|  |  | 
|  | static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, | 
|  | const char *name, int size, gfp_t gfp_flags) | 
|  | { | 
|  | unsigned int flags = 0; | 
|  |  | 
|  | if (gfp_flags & SLUB_DMA) | 
|  | flags = SLAB_CACHE_DMA; | 
|  |  | 
|  | down_write(&slub_lock); | 
|  | if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, | 
|  | flags, NULL)) | 
|  | goto panic; | 
|  |  | 
|  | list_add(&s->list, &slab_caches); | 
|  | up_write(&slub_lock); | 
|  | if (sysfs_slab_add(s)) | 
|  | goto panic; | 
|  | return s; | 
|  |  | 
|  | panic: | 
|  | panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  |  | 
|  | static void sysfs_add_func(struct work_struct *w) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  |  | 
|  | down_write(&slub_lock); | 
|  | list_for_each_entry(s, &slab_caches, list) { | 
|  | if (s->flags & __SYSFS_ADD_DEFERRED) { | 
|  | s->flags &= ~__SYSFS_ADD_DEFERRED; | 
|  | sysfs_slab_add(s); | 
|  | } | 
|  | } | 
|  | up_write(&slub_lock); | 
|  | } | 
|  |  | 
|  | static DECLARE_WORK(sysfs_add_work, sysfs_add_func); | 
|  |  | 
|  | static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | char *text; | 
|  | size_t realsize; | 
|  |  | 
|  | s = kmalloc_caches_dma[index]; | 
|  | if (s) | 
|  | return s; | 
|  |  | 
|  | /* Dynamically create dma cache */ | 
|  | if (flags & __GFP_WAIT) | 
|  | down_write(&slub_lock); | 
|  | else { | 
|  | if (!down_write_trylock(&slub_lock)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (kmalloc_caches_dma[index]) | 
|  | goto unlock_out; | 
|  |  | 
|  | realsize = kmalloc_caches[index].objsize; | 
|  | text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize), | 
|  | s = kmalloc(kmem_size, flags & ~SLUB_DMA); | 
|  |  | 
|  | if (!s || !text || !kmem_cache_open(s, flags, text, | 
|  | realsize, ARCH_KMALLOC_MINALIGN, | 
|  | SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) { | 
|  | kfree(s); | 
|  | kfree(text); | 
|  | goto unlock_out; | 
|  | } | 
|  |  | 
|  | list_add(&s->list, &slab_caches); | 
|  | kmalloc_caches_dma[index] = s; | 
|  |  | 
|  | schedule_work(&sysfs_add_work); | 
|  |  | 
|  | unlock_out: | 
|  | up_write(&slub_lock); | 
|  | out: | 
|  | return kmalloc_caches_dma[index]; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Conversion table for small slabs sizes / 8 to the index in the | 
|  | * kmalloc array. This is necessary for slabs < 192 since we have non power | 
|  | * of two cache sizes there. The size of larger slabs can be determined using | 
|  | * fls. | 
|  | */ | 
|  | static s8 size_index[24] = { | 
|  | 3,	/* 8 */ | 
|  | 4,	/* 16 */ | 
|  | 5,	/* 24 */ | 
|  | 5,	/* 32 */ | 
|  | 6,	/* 40 */ | 
|  | 6,	/* 48 */ | 
|  | 6,	/* 56 */ | 
|  | 6,	/* 64 */ | 
|  | 1,	/* 72 */ | 
|  | 1,	/* 80 */ | 
|  | 1,	/* 88 */ | 
|  | 1,	/* 96 */ | 
|  | 7,	/* 104 */ | 
|  | 7,	/* 112 */ | 
|  | 7,	/* 120 */ | 
|  | 7,	/* 128 */ | 
|  | 2,	/* 136 */ | 
|  | 2,	/* 144 */ | 
|  | 2,	/* 152 */ | 
|  | 2,	/* 160 */ | 
|  | 2,	/* 168 */ | 
|  | 2,	/* 176 */ | 
|  | 2,	/* 184 */ | 
|  | 2	/* 192 */ | 
|  | }; | 
|  |  | 
|  | static struct kmem_cache *get_slab(size_t size, gfp_t flags) | 
|  | { | 
|  | int index; | 
|  |  | 
|  | if (size <= 192) { | 
|  | if (!size) | 
|  | return ZERO_SIZE_PTR; | 
|  |  | 
|  | index = size_index[(size - 1) / 8]; | 
|  | } else | 
|  | index = fls(size - 1); | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | if (unlikely((flags & SLUB_DMA))) | 
|  | return dma_kmalloc_cache(index, flags); | 
|  |  | 
|  | #endif | 
|  | return &kmalloc_caches[index]; | 
|  | } | 
|  |  | 
|  | void *__kmalloc(size_t size, gfp_t flags) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  |  | 
|  | if (unlikely(size > PAGE_SIZE / 2)) | 
|  | return (void *)__get_free_pages(flags | __GFP_COMP, | 
|  | get_order(size)); | 
|  |  | 
|  | s = get_slab(size, flags); | 
|  |  | 
|  | if (unlikely(ZERO_OR_NULL_PTR(s))) | 
|  | return s; | 
|  |  | 
|  | return slab_alloc(s, flags, -1, __builtin_return_address(0)); | 
|  | } | 
|  | EXPORT_SYMBOL(__kmalloc); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | void *__kmalloc_node(size_t size, gfp_t flags, int node) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  |  | 
|  | if (unlikely(size > PAGE_SIZE / 2)) | 
|  | return (void *)__get_free_pages(flags | __GFP_COMP, | 
|  | get_order(size)); | 
|  |  | 
|  | s = get_slab(size, flags); | 
|  |  | 
|  | if (unlikely(ZERO_OR_NULL_PTR(s))) | 
|  | return s; | 
|  |  | 
|  | return slab_alloc(s, flags, node, __builtin_return_address(0)); | 
|  | } | 
|  | EXPORT_SYMBOL(__kmalloc_node); | 
|  | #endif | 
|  |  | 
|  | size_t ksize(const void *object) | 
|  | { | 
|  | struct page *page; | 
|  | struct kmem_cache *s; | 
|  |  | 
|  | BUG_ON(!object); | 
|  | if (unlikely(object == ZERO_SIZE_PTR)) | 
|  | return 0; | 
|  |  | 
|  | page = get_object_page(object); | 
|  | BUG_ON(!page); | 
|  | s = page->slab; | 
|  | BUG_ON(!s); | 
|  |  | 
|  | /* | 
|  | * Debugging requires use of the padding between object | 
|  | * and whatever may come after it. | 
|  | */ | 
|  | if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) | 
|  | return s->objsize; | 
|  |  | 
|  | /* | 
|  | * If we have the need to store the freelist pointer | 
|  | * back there or track user information then we can | 
|  | * only use the space before that information. | 
|  | */ | 
|  | if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) | 
|  | return s->inuse; | 
|  |  | 
|  | /* | 
|  | * Else we can use all the padding etc for the allocation | 
|  | */ | 
|  | return s->size; | 
|  | } | 
|  | EXPORT_SYMBOL(ksize); | 
|  |  | 
|  | void kfree(const void *x) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | if (unlikely(ZERO_OR_NULL_PTR(x))) | 
|  | return; | 
|  |  | 
|  | page = virt_to_head_page(x); | 
|  | if (unlikely(!PageSlab(page))) { | 
|  | put_page(page); | 
|  | return; | 
|  | } | 
|  | slab_free(page->slab, page, (void *)x, __builtin_return_address(0)); | 
|  | } | 
|  | EXPORT_SYMBOL(kfree); | 
|  |  | 
|  | /* | 
|  | * kmem_cache_shrink removes empty slabs from the partial lists and sorts | 
|  | * the remaining slabs by the number of items in use. The slabs with the | 
|  | * most items in use come first. New allocations will then fill those up | 
|  | * and thus they can be removed from the partial lists. | 
|  | * | 
|  | * The slabs with the least items are placed last. This results in them | 
|  | * being allocated from last increasing the chance that the last objects | 
|  | * are freed in them. | 
|  | */ | 
|  | int kmem_cache_shrink(struct kmem_cache *s) | 
|  | { | 
|  | int node; | 
|  | int i; | 
|  | struct kmem_cache_node *n; | 
|  | struct page *page; | 
|  | struct page *t; | 
|  | struct list_head *slabs_by_inuse = | 
|  | kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL); | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!slabs_by_inuse) | 
|  | return -ENOMEM; | 
|  |  | 
|  | flush_all(s); | 
|  | for_each_node_state(node, N_NORMAL_MEMORY) { | 
|  | n = get_node(s, node); | 
|  |  | 
|  | if (!n->nr_partial) | 
|  | continue; | 
|  |  | 
|  | for (i = 0; i < s->objects; i++) | 
|  | INIT_LIST_HEAD(slabs_by_inuse + i); | 
|  |  | 
|  | spin_lock_irqsave(&n->list_lock, flags); | 
|  |  | 
|  | /* | 
|  | * Build lists indexed by the items in use in each slab. | 
|  | * | 
|  | * Note that concurrent frees may occur while we hold the | 
|  | * list_lock. page->inuse here is the upper limit. | 
|  | */ | 
|  | list_for_each_entry_safe(page, t, &n->partial, lru) { | 
|  | if (!page->inuse && slab_trylock(page)) { | 
|  | /* | 
|  | * Must hold slab lock here because slab_free | 
|  | * may have freed the last object and be | 
|  | * waiting to release the slab. | 
|  | */ | 
|  | list_del(&page->lru); | 
|  | n->nr_partial--; | 
|  | slab_unlock(page); | 
|  | discard_slab(s, page); | 
|  | } else { | 
|  | list_move(&page->lru, | 
|  | slabs_by_inuse + page->inuse); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Rebuild the partial list with the slabs filled up most | 
|  | * first and the least used slabs at the end. | 
|  | */ | 
|  | for (i = s->objects - 1; i >= 0; i--) | 
|  | list_splice(slabs_by_inuse + i, n->partial.prev); | 
|  |  | 
|  | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | } | 
|  |  | 
|  | kfree(slabs_by_inuse); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_shrink); | 
|  |  | 
|  | /******************************************************************** | 
|  | *			Basic setup of slabs | 
|  | *******************************************************************/ | 
|  |  | 
|  | void __init kmem_cache_init(void) | 
|  | { | 
|  | int i; | 
|  | int caches = 0; | 
|  |  | 
|  | init_alloc_cpu(); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * Must first have the slab cache available for the allocations of the | 
|  | * struct kmem_cache_node's. There is special bootstrap code in | 
|  | * kmem_cache_open for slab_state == DOWN. | 
|  | */ | 
|  | create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", | 
|  | sizeof(struct kmem_cache_node), GFP_KERNEL); | 
|  | kmalloc_caches[0].refcount = -1; | 
|  | caches++; | 
|  | #endif | 
|  |  | 
|  | /* Able to allocate the per node structures */ | 
|  | slab_state = PARTIAL; | 
|  |  | 
|  | /* Caches that are not of the two-to-the-power-of size */ | 
|  | if (KMALLOC_MIN_SIZE <= 64) { | 
|  | create_kmalloc_cache(&kmalloc_caches[1], | 
|  | "kmalloc-96", 96, GFP_KERNEL); | 
|  | caches++; | 
|  | } | 
|  | if (KMALLOC_MIN_SIZE <= 128) { | 
|  | create_kmalloc_cache(&kmalloc_caches[2], | 
|  | "kmalloc-192", 192, GFP_KERNEL); | 
|  | caches++; | 
|  | } | 
|  |  | 
|  | for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) { | 
|  | create_kmalloc_cache(&kmalloc_caches[i], | 
|  | "kmalloc", 1 << i, GFP_KERNEL); | 
|  | caches++; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Patch up the size_index table if we have strange large alignment | 
|  | * requirements for the kmalloc array. This is only the case for | 
|  | * mips it seems. The standard arches will not generate any code here. | 
|  | * | 
|  | * Largest permitted alignment is 256 bytes due to the way we | 
|  | * handle the index determination for the smaller caches. | 
|  | * | 
|  | * Make sure that nothing crazy happens if someone starts tinkering | 
|  | * around with ARCH_KMALLOC_MINALIGN | 
|  | */ | 
|  | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || | 
|  | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | 
|  |  | 
|  | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) | 
|  | size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW; | 
|  |  | 
|  | slab_state = UP; | 
|  |  | 
|  | /* Provide the correct kmalloc names now that the caches are up */ | 
|  | for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) | 
|  | kmalloc_caches[i]. name = | 
|  | kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | register_cpu_notifier(&slab_notifier); | 
|  | kmem_size = offsetof(struct kmem_cache, cpu_slab) + | 
|  | nr_cpu_ids * sizeof(struct kmem_cache_cpu *); | 
|  | #else | 
|  | kmem_size = sizeof(struct kmem_cache); | 
|  | #endif | 
|  |  | 
|  |  | 
|  | printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," | 
|  | " CPUs=%d, Nodes=%d\n", | 
|  | caches, cache_line_size(), | 
|  | slub_min_order, slub_max_order, slub_min_objects, | 
|  | nr_cpu_ids, nr_node_ids); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find a mergeable slab cache | 
|  | */ | 
|  | static int slab_unmergeable(struct kmem_cache *s) | 
|  | { | 
|  | if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) | 
|  | return 1; | 
|  |  | 
|  | if (s->ctor) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * We may have set a slab to be unmergeable during bootstrap. | 
|  | */ | 
|  | if (s->refcount < 0) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct kmem_cache *find_mergeable(size_t size, | 
|  | size_t align, unsigned long flags, const char *name, | 
|  | void (*ctor)(struct kmem_cache *, void *)) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  |  | 
|  | if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) | 
|  | return NULL; | 
|  |  | 
|  | if (ctor) | 
|  | return NULL; | 
|  |  | 
|  | size = ALIGN(size, sizeof(void *)); | 
|  | align = calculate_alignment(flags, align, size); | 
|  | size = ALIGN(size, align); | 
|  | flags = kmem_cache_flags(size, flags, name, NULL); | 
|  |  | 
|  | list_for_each_entry(s, &slab_caches, list) { | 
|  | if (slab_unmergeable(s)) | 
|  | continue; | 
|  |  | 
|  | if (size > s->size) | 
|  | continue; | 
|  |  | 
|  | if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) | 
|  | continue; | 
|  | /* | 
|  | * Check if alignment is compatible. | 
|  | * Courtesy of Adrian Drzewiecki | 
|  | */ | 
|  | if ((s->size & ~(align -1)) != s->size) | 
|  | continue; | 
|  |  | 
|  | if (s->size - size >= sizeof(void *)) | 
|  | continue; | 
|  |  | 
|  | return s; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | 
|  | size_t align, unsigned long flags, | 
|  | void (*ctor)(struct kmem_cache *, void *)) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  |  | 
|  | down_write(&slub_lock); | 
|  | s = find_mergeable(size, align, flags, name, ctor); | 
|  | if (s) { | 
|  | int cpu; | 
|  |  | 
|  | s->refcount++; | 
|  | /* | 
|  | * Adjust the object sizes so that we clear | 
|  | * the complete object on kzalloc. | 
|  | */ | 
|  | s->objsize = max(s->objsize, (int)size); | 
|  |  | 
|  | /* | 
|  | * And then we need to update the object size in the | 
|  | * per cpu structures | 
|  | */ | 
|  | for_each_online_cpu(cpu) | 
|  | get_cpu_slab(s, cpu)->objsize = s->objsize; | 
|  | s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); | 
|  | up_write(&slub_lock); | 
|  | if (sysfs_slab_alias(s, name)) | 
|  | goto err; | 
|  | return s; | 
|  | } | 
|  | s = kmalloc(kmem_size, GFP_KERNEL); | 
|  | if (s) { | 
|  | if (kmem_cache_open(s, GFP_KERNEL, name, | 
|  | size, align, flags, ctor)) { | 
|  | list_add(&s->list, &slab_caches); | 
|  | up_write(&slub_lock); | 
|  | if (sysfs_slab_add(s)) | 
|  | goto err; | 
|  | return s; | 
|  | } | 
|  | kfree(s); | 
|  | } | 
|  | up_write(&slub_lock); | 
|  |  | 
|  | err: | 
|  | if (flags & SLAB_PANIC) | 
|  | panic("Cannot create slabcache %s\n", name); | 
|  | else | 
|  | s = NULL; | 
|  | return s; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_create); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Use the cpu notifier to insure that the cpu slabs are flushed when | 
|  | * necessary. | 
|  | */ | 
|  | static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | long cpu = (long)hcpu; | 
|  | struct kmem_cache *s; | 
|  | unsigned long flags; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_UP_PREPARE: | 
|  | case CPU_UP_PREPARE_FROZEN: | 
|  | init_alloc_cpu_cpu(cpu); | 
|  | down_read(&slub_lock); | 
|  | list_for_each_entry(s, &slab_caches, list) | 
|  | s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu, | 
|  | GFP_KERNEL); | 
|  | up_read(&slub_lock); | 
|  | break; | 
|  |  | 
|  | case CPU_UP_CANCELED: | 
|  | case CPU_UP_CANCELED_FROZEN: | 
|  | case CPU_DEAD: | 
|  | case CPU_DEAD_FROZEN: | 
|  | down_read(&slub_lock); | 
|  | list_for_each_entry(s, &slab_caches, list) { | 
|  | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | 
|  |  | 
|  | local_irq_save(flags); | 
|  | __flush_cpu_slab(s, cpu); | 
|  | local_irq_restore(flags); | 
|  | free_kmem_cache_cpu(c, cpu); | 
|  | s->cpu_slab[cpu] = NULL; | 
|  | } | 
|  | up_read(&slub_lock); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block __cpuinitdata slab_notifier = | 
|  | { &slab_cpuup_callback, NULL, 0 }; | 
|  |  | 
|  | #endif | 
|  |  | 
|  | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  |  | 
|  | if (unlikely(size > PAGE_SIZE / 2)) | 
|  | return (void *)__get_free_pages(gfpflags | __GFP_COMP, | 
|  | get_order(size)); | 
|  | s = get_slab(size, gfpflags); | 
|  |  | 
|  | if (unlikely(ZERO_OR_NULL_PTR(s))) | 
|  | return s; | 
|  |  | 
|  | return slab_alloc(s, gfpflags, -1, caller); | 
|  | } | 
|  |  | 
|  | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | 
|  | int node, void *caller) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  |  | 
|  | if (unlikely(size > PAGE_SIZE / 2)) | 
|  | return (void *)__get_free_pages(gfpflags | __GFP_COMP, | 
|  | get_order(size)); | 
|  | s = get_slab(size, gfpflags); | 
|  |  | 
|  | if (unlikely(ZERO_OR_NULL_PTR(s))) | 
|  | return s; | 
|  |  | 
|  | return slab_alloc(s, gfpflags, node, caller); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG) | 
|  | static int validate_slab(struct kmem_cache *s, struct page *page, | 
|  | unsigned long *map) | 
|  | { | 
|  | void *p; | 
|  | void *addr = page_address(page); | 
|  |  | 
|  | if (!check_slab(s, page) || | 
|  | !on_freelist(s, page, NULL)) | 
|  | return 0; | 
|  |  | 
|  | /* Now we know that a valid freelist exists */ | 
|  | bitmap_zero(map, s->objects); | 
|  |  | 
|  | for_each_free_object(p, s, page->freelist) { | 
|  | set_bit(slab_index(p, s, addr), map); | 
|  | if (!check_object(s, page, p, 0)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for_each_object(p, s, addr) | 
|  | if (!test_bit(slab_index(p, s, addr), map)) | 
|  | if (!check_object(s, page, p, 1)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void validate_slab_slab(struct kmem_cache *s, struct page *page, | 
|  | unsigned long *map) | 
|  | { | 
|  | if (slab_trylock(page)) { | 
|  | validate_slab(s, page, map); | 
|  | slab_unlock(page); | 
|  | } else | 
|  | printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", | 
|  | s->name, page); | 
|  |  | 
|  | if (s->flags & DEBUG_DEFAULT_FLAGS) { | 
|  | if (!SlabDebug(page)) | 
|  | printk(KERN_ERR "SLUB %s: SlabDebug not set " | 
|  | "on slab 0x%p\n", s->name, page); | 
|  | } else { | 
|  | if (SlabDebug(page)) | 
|  | printk(KERN_ERR "SLUB %s: SlabDebug set on " | 
|  | "slab 0x%p\n", s->name, page); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int validate_slab_node(struct kmem_cache *s, | 
|  | struct kmem_cache_node *n, unsigned long *map) | 
|  | { | 
|  | unsigned long count = 0; | 
|  | struct page *page; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&n->list_lock, flags); | 
|  |  | 
|  | list_for_each_entry(page, &n->partial, lru) { | 
|  | validate_slab_slab(s, page, map); | 
|  | count++; | 
|  | } | 
|  | if (count != n->nr_partial) | 
|  | printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " | 
|  | "counter=%ld\n", s->name, count, n->nr_partial); | 
|  |  | 
|  | if (!(s->flags & SLAB_STORE_USER)) | 
|  | goto out; | 
|  |  | 
|  | list_for_each_entry(page, &n->full, lru) { | 
|  | validate_slab_slab(s, page, map); | 
|  | count++; | 
|  | } | 
|  | if (count != atomic_long_read(&n->nr_slabs)) | 
|  | printk(KERN_ERR "SLUB: %s %ld slabs counted but " | 
|  | "counter=%ld\n", s->name, count, | 
|  | atomic_long_read(&n->nr_slabs)); | 
|  |  | 
|  | out: | 
|  | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static long validate_slab_cache(struct kmem_cache *s) | 
|  | { | 
|  | int node; | 
|  | unsigned long count = 0; | 
|  | unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) * | 
|  | sizeof(unsigned long), GFP_KERNEL); | 
|  |  | 
|  | if (!map) | 
|  | return -ENOMEM; | 
|  |  | 
|  | flush_all(s); | 
|  | for_each_node_state(node, N_NORMAL_MEMORY) { | 
|  | struct kmem_cache_node *n = get_node(s, node); | 
|  |  | 
|  | count += validate_slab_node(s, n, map); | 
|  | } | 
|  | kfree(map); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | #ifdef SLUB_RESILIENCY_TEST | 
|  | static void resiliency_test(void) | 
|  | { | 
|  | u8 *p; | 
|  |  | 
|  | printk(KERN_ERR "SLUB resiliency testing\n"); | 
|  | printk(KERN_ERR "-----------------------\n"); | 
|  | printk(KERN_ERR "A. Corruption after allocation\n"); | 
|  |  | 
|  | p = kzalloc(16, GFP_KERNEL); | 
|  | p[16] = 0x12; | 
|  | printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" | 
|  | " 0x12->0x%p\n\n", p + 16); | 
|  |  | 
|  | validate_slab_cache(kmalloc_caches + 4); | 
|  |  | 
|  | /* Hmmm... The next two are dangerous */ | 
|  | p = kzalloc(32, GFP_KERNEL); | 
|  | p[32 + sizeof(void *)] = 0x34; | 
|  | printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" | 
|  | " 0x34 -> -0x%p\n", p); | 
|  | printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n"); | 
|  |  | 
|  | validate_slab_cache(kmalloc_caches + 5); | 
|  | p = kzalloc(64, GFP_KERNEL); | 
|  | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | 
|  | *p = 0x56; | 
|  | printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", | 
|  | p); | 
|  | printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n"); | 
|  | validate_slab_cache(kmalloc_caches + 6); | 
|  |  | 
|  | printk(KERN_ERR "\nB. Corruption after free\n"); | 
|  | p = kzalloc(128, GFP_KERNEL); | 
|  | kfree(p); | 
|  | *p = 0x78; | 
|  | printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); | 
|  | validate_slab_cache(kmalloc_caches + 7); | 
|  |  | 
|  | p = kzalloc(256, GFP_KERNEL); | 
|  | kfree(p); | 
|  | p[50] = 0x9a; | 
|  | printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); | 
|  | validate_slab_cache(kmalloc_caches + 8); | 
|  |  | 
|  | p = kzalloc(512, GFP_KERNEL); | 
|  | kfree(p); | 
|  | p[512] = 0xab; | 
|  | printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); | 
|  | validate_slab_cache(kmalloc_caches + 9); | 
|  | } | 
|  | #else | 
|  | static void resiliency_test(void) {}; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Generate lists of code addresses where slabcache objects are allocated | 
|  | * and freed. | 
|  | */ | 
|  |  | 
|  | struct location { | 
|  | unsigned long count; | 
|  | void *addr; | 
|  | long long sum_time; | 
|  | long min_time; | 
|  | long max_time; | 
|  | long min_pid; | 
|  | long max_pid; | 
|  | cpumask_t cpus; | 
|  | nodemask_t nodes; | 
|  | }; | 
|  |  | 
|  | struct loc_track { | 
|  | unsigned long max; | 
|  | unsigned long count; | 
|  | struct location *loc; | 
|  | }; | 
|  |  | 
|  | static void free_loc_track(struct loc_track *t) | 
|  | { | 
|  | if (t->max) | 
|  | free_pages((unsigned long)t->loc, | 
|  | get_order(sizeof(struct location) * t->max)); | 
|  | } | 
|  |  | 
|  | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) | 
|  | { | 
|  | struct location *l; | 
|  | int order; | 
|  |  | 
|  | order = get_order(sizeof(struct location) * max); | 
|  |  | 
|  | l = (void *)__get_free_pages(flags, order); | 
|  | if (!l) | 
|  | return 0; | 
|  |  | 
|  | if (t->count) { | 
|  | memcpy(l, t->loc, sizeof(struct location) * t->count); | 
|  | free_loc_track(t); | 
|  | } | 
|  | t->max = max; | 
|  | t->loc = l; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int add_location(struct loc_track *t, struct kmem_cache *s, | 
|  | const struct track *track) | 
|  | { | 
|  | long start, end, pos; | 
|  | struct location *l; | 
|  | void *caddr; | 
|  | unsigned long age = jiffies - track->when; | 
|  |  | 
|  | start = -1; | 
|  | end = t->count; | 
|  |  | 
|  | for ( ; ; ) { | 
|  | pos = start + (end - start + 1) / 2; | 
|  |  | 
|  | /* | 
|  | * There is nothing at "end". If we end up there | 
|  | * we need to add something to before end. | 
|  | */ | 
|  | if (pos == end) | 
|  | break; | 
|  |  | 
|  | caddr = t->loc[pos].addr; | 
|  | if (track->addr == caddr) { | 
|  |  | 
|  | l = &t->loc[pos]; | 
|  | l->count++; | 
|  | if (track->when) { | 
|  | l->sum_time += age; | 
|  | if (age < l->min_time) | 
|  | l->min_time = age; | 
|  | if (age > l->max_time) | 
|  | l->max_time = age; | 
|  |  | 
|  | if (track->pid < l->min_pid) | 
|  | l->min_pid = track->pid; | 
|  | if (track->pid > l->max_pid) | 
|  | l->max_pid = track->pid; | 
|  |  | 
|  | cpu_set(track->cpu, l->cpus); | 
|  | } | 
|  | node_set(page_to_nid(virt_to_page(track)), l->nodes); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (track->addr < caddr) | 
|  | end = pos; | 
|  | else | 
|  | start = pos; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Not found. Insert new tracking element. | 
|  | */ | 
|  | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) | 
|  | return 0; | 
|  |  | 
|  | l = t->loc + pos; | 
|  | if (pos < t->count) | 
|  | memmove(l + 1, l, | 
|  | (t->count - pos) * sizeof(struct location)); | 
|  | t->count++; | 
|  | l->count = 1; | 
|  | l->addr = track->addr; | 
|  | l->sum_time = age; | 
|  | l->min_time = age; | 
|  | l->max_time = age; | 
|  | l->min_pid = track->pid; | 
|  | l->max_pid = track->pid; | 
|  | cpus_clear(l->cpus); | 
|  | cpu_set(track->cpu, l->cpus); | 
|  | nodes_clear(l->nodes); | 
|  | node_set(page_to_nid(virt_to_page(track)), l->nodes); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void process_slab(struct loc_track *t, struct kmem_cache *s, | 
|  | struct page *page, enum track_item alloc) | 
|  | { | 
|  | void *addr = page_address(page); | 
|  | DECLARE_BITMAP(map, s->objects); | 
|  | void *p; | 
|  |  | 
|  | bitmap_zero(map, s->objects); | 
|  | for_each_free_object(p, s, page->freelist) | 
|  | set_bit(slab_index(p, s, addr), map); | 
|  |  | 
|  | for_each_object(p, s, addr) | 
|  | if (!test_bit(slab_index(p, s, addr), map)) | 
|  | add_location(t, s, get_track(s, p, alloc)); | 
|  | } | 
|  |  | 
|  | static int list_locations(struct kmem_cache *s, char *buf, | 
|  | enum track_item alloc) | 
|  | { | 
|  | int n = 0; | 
|  | unsigned long i; | 
|  | struct loc_track t = { 0, 0, NULL }; | 
|  | int node; | 
|  |  | 
|  | if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), | 
|  | GFP_TEMPORARY)) | 
|  | return sprintf(buf, "Out of memory\n"); | 
|  |  | 
|  | /* Push back cpu slabs */ | 
|  | flush_all(s); | 
|  |  | 
|  | for_each_node_state(node, N_NORMAL_MEMORY) { | 
|  | struct kmem_cache_node *n = get_node(s, node); | 
|  | unsigned long flags; | 
|  | struct page *page; | 
|  |  | 
|  | if (!atomic_long_read(&n->nr_slabs)) | 
|  | continue; | 
|  |  | 
|  | spin_lock_irqsave(&n->list_lock, flags); | 
|  | list_for_each_entry(page, &n->partial, lru) | 
|  | process_slab(&t, s, page, alloc); | 
|  | list_for_each_entry(page, &n->full, lru) | 
|  | process_slab(&t, s, page, alloc); | 
|  | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < t.count; i++) { | 
|  | struct location *l = &t.loc[i]; | 
|  |  | 
|  | if (n > PAGE_SIZE - 100) | 
|  | break; | 
|  | n += sprintf(buf + n, "%7ld ", l->count); | 
|  |  | 
|  | if (l->addr) | 
|  | n += sprint_symbol(buf + n, (unsigned long)l->addr); | 
|  | else | 
|  | n += sprintf(buf + n, "<not-available>"); | 
|  |  | 
|  | if (l->sum_time != l->min_time) { | 
|  | unsigned long remainder; | 
|  |  | 
|  | n += sprintf(buf + n, " age=%ld/%ld/%ld", | 
|  | l->min_time, | 
|  | div_long_long_rem(l->sum_time, l->count, &remainder), | 
|  | l->max_time); | 
|  | } else | 
|  | n += sprintf(buf + n, " age=%ld", | 
|  | l->min_time); | 
|  |  | 
|  | if (l->min_pid != l->max_pid) | 
|  | n += sprintf(buf + n, " pid=%ld-%ld", | 
|  | l->min_pid, l->max_pid); | 
|  | else | 
|  | n += sprintf(buf + n, " pid=%ld", | 
|  | l->min_pid); | 
|  |  | 
|  | if (num_online_cpus() > 1 && !cpus_empty(l->cpus) && | 
|  | n < PAGE_SIZE - 60) { | 
|  | n += sprintf(buf + n, " cpus="); | 
|  | n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50, | 
|  | l->cpus); | 
|  | } | 
|  |  | 
|  | if (num_online_nodes() > 1 && !nodes_empty(l->nodes) && | 
|  | n < PAGE_SIZE - 60) { | 
|  | n += sprintf(buf + n, " nodes="); | 
|  | n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50, | 
|  | l->nodes); | 
|  | } | 
|  |  | 
|  | n += sprintf(buf + n, "\n"); | 
|  | } | 
|  |  | 
|  | free_loc_track(&t); | 
|  | if (!t.count) | 
|  | n += sprintf(buf, "No data\n"); | 
|  | return n; | 
|  | } | 
|  |  | 
|  | static unsigned long count_partial(struct kmem_cache_node *n) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned long x = 0; | 
|  | struct page *page; | 
|  |  | 
|  | spin_lock_irqsave(&n->list_lock, flags); | 
|  | list_for_each_entry(page, &n->partial, lru) | 
|  | x += page->inuse; | 
|  | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | return x; | 
|  | } | 
|  |  | 
|  | enum slab_stat_type { | 
|  | SL_FULL, | 
|  | SL_PARTIAL, | 
|  | SL_CPU, | 
|  | SL_OBJECTS | 
|  | }; | 
|  |  | 
|  | #define SO_FULL		(1 << SL_FULL) | 
|  | #define SO_PARTIAL	(1 << SL_PARTIAL) | 
|  | #define SO_CPU		(1 << SL_CPU) | 
|  | #define SO_OBJECTS	(1 << SL_OBJECTS) | 
|  |  | 
|  | static unsigned long slab_objects(struct kmem_cache *s, | 
|  | char *buf, unsigned long flags) | 
|  | { | 
|  | unsigned long total = 0; | 
|  | int cpu; | 
|  | int node; | 
|  | int x; | 
|  | unsigned long *nodes; | 
|  | unsigned long *per_cpu; | 
|  |  | 
|  | nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); | 
|  | per_cpu = nodes + nr_node_ids; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct page *page; | 
|  | int node; | 
|  | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | 
|  |  | 
|  | if (!c) | 
|  | continue; | 
|  |  | 
|  | page = c->page; | 
|  | node = c->node; | 
|  | if (node < 0) | 
|  | continue; | 
|  | if (page) { | 
|  | if (flags & SO_CPU) { | 
|  | int x = 0; | 
|  |  | 
|  | if (flags & SO_OBJECTS) | 
|  | x = page->inuse; | 
|  | else | 
|  | x = 1; | 
|  | total += x; | 
|  | nodes[node] += x; | 
|  | } | 
|  | per_cpu[node]++; | 
|  | } | 
|  | } | 
|  |  | 
|  | for_each_node_state(node, N_NORMAL_MEMORY) { | 
|  | struct kmem_cache_node *n = get_node(s, node); | 
|  |  | 
|  | if (flags & SO_PARTIAL) { | 
|  | if (flags & SO_OBJECTS) | 
|  | x = count_partial(n); | 
|  | else | 
|  | x = n->nr_partial; | 
|  | total += x; | 
|  | nodes[node] += x; | 
|  | } | 
|  |  | 
|  | if (flags & SO_FULL) { | 
|  | int full_slabs = atomic_long_read(&n->nr_slabs) | 
|  | - per_cpu[node] | 
|  | - n->nr_partial; | 
|  |  | 
|  | if (flags & SO_OBJECTS) | 
|  | x = full_slabs * s->objects; | 
|  | else | 
|  | x = full_slabs; | 
|  | total += x; | 
|  | nodes[node] += x; | 
|  | } | 
|  | } | 
|  |  | 
|  | x = sprintf(buf, "%lu", total); | 
|  | #ifdef CONFIG_NUMA | 
|  | for_each_node_state(node, N_NORMAL_MEMORY) | 
|  | if (nodes[node]) | 
|  | x += sprintf(buf + x, " N%d=%lu", | 
|  | node, nodes[node]); | 
|  | #endif | 
|  | kfree(nodes); | 
|  | return x + sprintf(buf + x, "\n"); | 
|  | } | 
|  |  | 
|  | static int any_slab_objects(struct kmem_cache *s) | 
|  | { | 
|  | int node; | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | 
|  |  | 
|  | if (c && c->page) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | struct kmem_cache_node *n = get_node(s, node); | 
|  |  | 
|  | if (!n) | 
|  | continue; | 
|  |  | 
|  | if (n->nr_partial || atomic_long_read(&n->nr_slabs)) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | 
|  | #define to_slab(n) container_of(n, struct kmem_cache, kobj); | 
|  |  | 
|  | struct slab_attribute { | 
|  | struct attribute attr; | 
|  | ssize_t (*show)(struct kmem_cache *s, char *buf); | 
|  | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | 
|  | }; | 
|  |  | 
|  | #define SLAB_ATTR_RO(_name) \ | 
|  | static struct slab_attribute _name##_attr = __ATTR_RO(_name) | 
|  |  | 
|  | #define SLAB_ATTR(_name) \ | 
|  | static struct slab_attribute _name##_attr =  \ | 
|  | __ATTR(_name, 0644, _name##_show, _name##_store) | 
|  |  | 
|  | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", s->size); | 
|  | } | 
|  | SLAB_ATTR_RO(slab_size); | 
|  |  | 
|  | static ssize_t align_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", s->align); | 
|  | } | 
|  | SLAB_ATTR_RO(align); | 
|  |  | 
|  | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", s->objsize); | 
|  | } | 
|  | SLAB_ATTR_RO(object_size); | 
|  |  | 
|  | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", s->objects); | 
|  | } | 
|  | SLAB_ATTR_RO(objs_per_slab); | 
|  |  | 
|  | static ssize_t order_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", s->order); | 
|  | } | 
|  | SLAB_ATTR_RO(order); | 
|  |  | 
|  | static ssize_t ctor_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | if (s->ctor) { | 
|  | int n = sprint_symbol(buf, (unsigned long)s->ctor); | 
|  |  | 
|  | return n + sprintf(buf + n, "\n"); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | SLAB_ATTR_RO(ctor); | 
|  |  | 
|  | static ssize_t aliases_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", s->refcount - 1); | 
|  | } | 
|  | SLAB_ATTR_RO(aliases); | 
|  |  | 
|  | static ssize_t slabs_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU); | 
|  | } | 
|  | SLAB_ATTR_RO(slabs); | 
|  |  | 
|  | static ssize_t partial_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return slab_objects(s, buf, SO_PARTIAL); | 
|  | } | 
|  | SLAB_ATTR_RO(partial); | 
|  |  | 
|  | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return slab_objects(s, buf, SO_CPU); | 
|  | } | 
|  | SLAB_ATTR_RO(cpu_slabs); | 
|  |  | 
|  | static ssize_t objects_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS); | 
|  | } | 
|  | SLAB_ATTR_RO(objects); | 
|  |  | 
|  | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); | 
|  | } | 
|  |  | 
|  | static ssize_t sanity_checks_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | s->flags &= ~SLAB_DEBUG_FREE; | 
|  | if (buf[0] == '1') | 
|  | s->flags |= SLAB_DEBUG_FREE; | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(sanity_checks); | 
|  |  | 
|  | static ssize_t trace_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | 
|  | } | 
|  |  | 
|  | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | 
|  | size_t length) | 
|  | { | 
|  | s->flags &= ~SLAB_TRACE; | 
|  | if (buf[0] == '1') | 
|  | s->flags |= SLAB_TRACE; | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(trace); | 
|  |  | 
|  | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | 
|  | } | 
|  |  | 
|  | static ssize_t reclaim_account_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | 
|  | if (buf[0] == '1') | 
|  | s->flags |= SLAB_RECLAIM_ACCOUNT; | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(reclaim_account); | 
|  |  | 
|  | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); | 
|  | } | 
|  | SLAB_ATTR_RO(hwcache_align); | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | 
|  | } | 
|  | SLAB_ATTR_RO(cache_dma); | 
|  | #endif | 
|  |  | 
|  | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); | 
|  | } | 
|  | SLAB_ATTR_RO(destroy_by_rcu); | 
|  |  | 
|  | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | 
|  | } | 
|  |  | 
|  | static ssize_t red_zone_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | if (any_slab_objects(s)) | 
|  | return -EBUSY; | 
|  |  | 
|  | s->flags &= ~SLAB_RED_ZONE; | 
|  | if (buf[0] == '1') | 
|  | s->flags |= SLAB_RED_ZONE; | 
|  | calculate_sizes(s); | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(red_zone); | 
|  |  | 
|  | static ssize_t poison_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | 
|  | } | 
|  |  | 
|  | static ssize_t poison_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | if (any_slab_objects(s)) | 
|  | return -EBUSY; | 
|  |  | 
|  | s->flags &= ~SLAB_POISON; | 
|  | if (buf[0] == '1') | 
|  | s->flags |= SLAB_POISON; | 
|  | calculate_sizes(s); | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(poison); | 
|  |  | 
|  | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | 
|  | } | 
|  |  | 
|  | static ssize_t store_user_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | if (any_slab_objects(s)) | 
|  | return -EBUSY; | 
|  |  | 
|  | s->flags &= ~SLAB_STORE_USER; | 
|  | if (buf[0] == '1') | 
|  | s->flags |= SLAB_STORE_USER; | 
|  | calculate_sizes(s); | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(store_user); | 
|  |  | 
|  | static ssize_t validate_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t validate_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | if (buf[0] == '1') { | 
|  | ret = validate_slab_cache(s); | 
|  | if (ret >= 0) | 
|  | ret = length; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | SLAB_ATTR(validate); | 
|  |  | 
|  | static ssize_t shrink_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t shrink_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | if (buf[0] == '1') { | 
|  | int rc = kmem_cache_shrink(s); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  | } else | 
|  | return -EINVAL; | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(shrink); | 
|  |  | 
|  | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | if (!(s->flags & SLAB_STORE_USER)) | 
|  | return -ENOSYS; | 
|  | return list_locations(s, buf, TRACK_ALLOC); | 
|  | } | 
|  | SLAB_ATTR_RO(alloc_calls); | 
|  |  | 
|  | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | if (!(s->flags & SLAB_STORE_USER)) | 
|  | return -ENOSYS; | 
|  | return list_locations(s, buf, TRACK_FREE); | 
|  | } | 
|  | SLAB_ATTR_RO(free_calls); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", s->defrag_ratio / 10); | 
|  | } | 
|  |  | 
|  | static ssize_t defrag_ratio_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | int n = simple_strtoul(buf, NULL, 10); | 
|  |  | 
|  | if (n < 100) | 
|  | s->defrag_ratio = n * 10; | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(defrag_ratio); | 
|  | #endif | 
|  |  | 
|  | static struct attribute * slab_attrs[] = { | 
|  | &slab_size_attr.attr, | 
|  | &object_size_attr.attr, | 
|  | &objs_per_slab_attr.attr, | 
|  | &order_attr.attr, | 
|  | &objects_attr.attr, | 
|  | &slabs_attr.attr, | 
|  | &partial_attr.attr, | 
|  | &cpu_slabs_attr.attr, | 
|  | &ctor_attr.attr, | 
|  | &aliases_attr.attr, | 
|  | &align_attr.attr, | 
|  | &sanity_checks_attr.attr, | 
|  | &trace_attr.attr, | 
|  | &hwcache_align_attr.attr, | 
|  | &reclaim_account_attr.attr, | 
|  | &destroy_by_rcu_attr.attr, | 
|  | &red_zone_attr.attr, | 
|  | &poison_attr.attr, | 
|  | &store_user_attr.attr, | 
|  | &validate_attr.attr, | 
|  | &shrink_attr.attr, | 
|  | &alloc_calls_attr.attr, | 
|  | &free_calls_attr.attr, | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | &cache_dma_attr.attr, | 
|  | #endif | 
|  | #ifdef CONFIG_NUMA | 
|  | &defrag_ratio_attr.attr, | 
|  | #endif | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static struct attribute_group slab_attr_group = { | 
|  | .attrs = slab_attrs, | 
|  | }; | 
|  |  | 
|  | static ssize_t slab_attr_show(struct kobject *kobj, | 
|  | struct attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | struct slab_attribute *attribute; | 
|  | struct kmem_cache *s; | 
|  | int err; | 
|  |  | 
|  | attribute = to_slab_attr(attr); | 
|  | s = to_slab(kobj); | 
|  |  | 
|  | if (!attribute->show) | 
|  | return -EIO; | 
|  |  | 
|  | err = attribute->show(s, buf); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static ssize_t slab_attr_store(struct kobject *kobj, | 
|  | struct attribute *attr, | 
|  | const char *buf, size_t len) | 
|  | { | 
|  | struct slab_attribute *attribute; | 
|  | struct kmem_cache *s; | 
|  | int err; | 
|  |  | 
|  | attribute = to_slab_attr(attr); | 
|  | s = to_slab(kobj); | 
|  |  | 
|  | if (!attribute->store) | 
|  | return -EIO; | 
|  |  | 
|  | err = attribute->store(s, buf, len); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static struct sysfs_ops slab_sysfs_ops = { | 
|  | .show = slab_attr_show, | 
|  | .store = slab_attr_store, | 
|  | }; | 
|  |  | 
|  | static struct kobj_type slab_ktype = { | 
|  | .sysfs_ops = &slab_sysfs_ops, | 
|  | }; | 
|  |  | 
|  | static int uevent_filter(struct kset *kset, struct kobject *kobj) | 
|  | { | 
|  | struct kobj_type *ktype = get_ktype(kobj); | 
|  |  | 
|  | if (ktype == &slab_ktype) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct kset_uevent_ops slab_uevent_ops = { | 
|  | .filter = uevent_filter, | 
|  | }; | 
|  |  | 
|  | static decl_subsys(slab, &slab_ktype, &slab_uevent_ops); | 
|  |  | 
|  | #define ID_STR_LENGTH 64 | 
|  |  | 
|  | /* Create a unique string id for a slab cache: | 
|  | * format | 
|  | * :[flags-]size:[memory address of kmemcache] | 
|  | */ | 
|  | static char *create_unique_id(struct kmem_cache *s) | 
|  | { | 
|  | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | 
|  | char *p = name; | 
|  |  | 
|  | BUG_ON(!name); | 
|  |  | 
|  | *p++ = ':'; | 
|  | /* | 
|  | * First flags affecting slabcache operations. We will only | 
|  | * get here for aliasable slabs so we do not need to support | 
|  | * too many flags. The flags here must cover all flags that | 
|  | * are matched during merging to guarantee that the id is | 
|  | * unique. | 
|  | */ | 
|  | if (s->flags & SLAB_CACHE_DMA) | 
|  | *p++ = 'd'; | 
|  | if (s->flags & SLAB_RECLAIM_ACCOUNT) | 
|  | *p++ = 'a'; | 
|  | if (s->flags & SLAB_DEBUG_FREE) | 
|  | *p++ = 'F'; | 
|  | if (p != name + 1) | 
|  | *p++ = '-'; | 
|  | p += sprintf(p, "%07d", s->size); | 
|  | BUG_ON(p > name + ID_STR_LENGTH - 1); | 
|  | return name; | 
|  | } | 
|  |  | 
|  | static int sysfs_slab_add(struct kmem_cache *s) | 
|  | { | 
|  | int err; | 
|  | const char *name; | 
|  | int unmergeable; | 
|  |  | 
|  | if (slab_state < SYSFS) | 
|  | /* Defer until later */ | 
|  | return 0; | 
|  |  | 
|  | unmergeable = slab_unmergeable(s); | 
|  | if (unmergeable) { | 
|  | /* | 
|  | * Slabcache can never be merged so we can use the name proper. | 
|  | * This is typically the case for debug situations. In that | 
|  | * case we can catch duplicate names easily. | 
|  | */ | 
|  | sysfs_remove_link(&slab_subsys.kobj, s->name); | 
|  | name = s->name; | 
|  | } else { | 
|  | /* | 
|  | * Create a unique name for the slab as a target | 
|  | * for the symlinks. | 
|  | */ | 
|  | name = create_unique_id(s); | 
|  | } | 
|  |  | 
|  | kobj_set_kset_s(s, slab_subsys); | 
|  | kobject_set_name(&s->kobj, name); | 
|  | kobject_init(&s->kobj); | 
|  | err = kobject_add(&s->kobj); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = sysfs_create_group(&s->kobj, &slab_attr_group); | 
|  | if (err) | 
|  | return err; | 
|  | kobject_uevent(&s->kobj, KOBJ_ADD); | 
|  | if (!unmergeable) { | 
|  | /* Setup first alias */ | 
|  | sysfs_slab_alias(s, s->name); | 
|  | kfree(name); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sysfs_slab_remove(struct kmem_cache *s) | 
|  | { | 
|  | kobject_uevent(&s->kobj, KOBJ_REMOVE); | 
|  | kobject_del(&s->kobj); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Need to buffer aliases during bootup until sysfs becomes | 
|  | * available lest we loose that information. | 
|  | */ | 
|  | struct saved_alias { | 
|  | struct kmem_cache *s; | 
|  | const char *name; | 
|  | struct saved_alias *next; | 
|  | }; | 
|  |  | 
|  | static struct saved_alias *alias_list; | 
|  |  | 
|  | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | 
|  | { | 
|  | struct saved_alias *al; | 
|  |  | 
|  | if (slab_state == SYSFS) { | 
|  | /* | 
|  | * If we have a leftover link then remove it. | 
|  | */ | 
|  | sysfs_remove_link(&slab_subsys.kobj, name); | 
|  | return sysfs_create_link(&slab_subsys.kobj, | 
|  | &s->kobj, name); | 
|  | } | 
|  |  | 
|  | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | 
|  | if (!al) | 
|  | return -ENOMEM; | 
|  |  | 
|  | al->s = s; | 
|  | al->name = name; | 
|  | al->next = alias_list; | 
|  | alias_list = al; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init slab_sysfs_init(void) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | int err; | 
|  |  | 
|  | err = subsystem_register(&slab_subsys); | 
|  | if (err) { | 
|  | printk(KERN_ERR "Cannot register slab subsystem.\n"); | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | slab_state = SYSFS; | 
|  |  | 
|  | list_for_each_entry(s, &slab_caches, list) { | 
|  | err = sysfs_slab_add(s); | 
|  | if (err) | 
|  | printk(KERN_ERR "SLUB: Unable to add boot slab %s" | 
|  | " to sysfs\n", s->name); | 
|  | } | 
|  |  | 
|  | while (alias_list) { | 
|  | struct saved_alias *al = alias_list; | 
|  |  | 
|  | alias_list = alias_list->next; | 
|  | err = sysfs_slab_alias(al->s, al->name); | 
|  | if (err) | 
|  | printk(KERN_ERR "SLUB: Unable to add boot slab alias" | 
|  | " %s to sysfs\n", s->name); | 
|  | kfree(al); | 
|  | } | 
|  |  | 
|  | resiliency_test(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __initcall(slab_sysfs_init); | 
|  | #endif |