| /* Shadow page table operations. | 
 |  * Copyright (C) Rusty Russell IBM Corporation 2006. | 
 |  * GPL v2 and any later version */ | 
 | #include <linux/mm.h> | 
 | #include <linux/types.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/random.h> | 
 | #include <linux/percpu.h> | 
 | #include <asm/tlbflush.h> | 
 | #include "lg.h" | 
 |  | 
 | #define PTES_PER_PAGE_SHIFT 10 | 
 | #define PTES_PER_PAGE (1 << PTES_PER_PAGE_SHIFT) | 
 | #define SWITCHER_PGD_INDEX (PTES_PER_PAGE - 1) | 
 |  | 
 | static DEFINE_PER_CPU(spte_t *, switcher_pte_pages); | 
 | #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu) | 
 |  | 
 | static unsigned vaddr_to_pgd_index(unsigned long vaddr) | 
 | { | 
 | 	return vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT); | 
 | } | 
 |  | 
 | /* These access the shadow versions (ie. the ones used by the CPU). */ | 
 | static spgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr) | 
 | { | 
 | 	unsigned int index = vaddr_to_pgd_index(vaddr); | 
 |  | 
 | 	if (index >= SWITCHER_PGD_INDEX) { | 
 | 		kill_guest(lg, "attempt to access switcher pages"); | 
 | 		index = 0; | 
 | 	} | 
 | 	return &lg->pgdirs[i].pgdir[index]; | 
 | } | 
 |  | 
 | static spte_t *spte_addr(struct lguest *lg, spgd_t spgd, unsigned long vaddr) | 
 | { | 
 | 	spte_t *page = __va(spgd.pfn << PAGE_SHIFT); | 
 | 	BUG_ON(!(spgd.flags & _PAGE_PRESENT)); | 
 | 	return &page[(vaddr >> PAGE_SHIFT) % PTES_PER_PAGE]; | 
 | } | 
 |  | 
 | /* These access the guest versions. */ | 
 | static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr) | 
 | { | 
 | 	unsigned int index = vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT); | 
 | 	return lg->pgdirs[lg->pgdidx].cr3 + index * sizeof(gpgd_t); | 
 | } | 
 |  | 
 | static unsigned long gpte_addr(struct lguest *lg, | 
 | 			       gpgd_t gpgd, unsigned long vaddr) | 
 | { | 
 | 	unsigned long gpage = gpgd.pfn << PAGE_SHIFT; | 
 | 	BUG_ON(!(gpgd.flags & _PAGE_PRESENT)); | 
 | 	return gpage + ((vaddr>>PAGE_SHIFT) % PTES_PER_PAGE) * sizeof(gpte_t); | 
 | } | 
 |  | 
 | /* Do a virtual -> physical mapping on a user page. */ | 
 | static unsigned long get_pfn(unsigned long virtpfn, int write) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned long ret = -1UL; | 
 |  | 
 | 	down_read(¤t->mm->mmap_sem); | 
 | 	if (get_user_pages(current, current->mm, virtpfn << PAGE_SHIFT, | 
 | 			   1, write, 1, &page, NULL) == 1) | 
 | 		ret = page_to_pfn(page); | 
 | 	up_read(¤t->mm->mmap_sem); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static spte_t gpte_to_spte(struct lguest *lg, gpte_t gpte, int write) | 
 | { | 
 | 	spte_t spte; | 
 | 	unsigned long pfn; | 
 |  | 
 | 	/* We ignore the global flag. */ | 
 | 	spte.flags = (gpte.flags & ~_PAGE_GLOBAL); | 
 | 	pfn = get_pfn(gpte.pfn, write); | 
 | 	if (pfn == -1UL) { | 
 | 		kill_guest(lg, "failed to get page %u", gpte.pfn); | 
 | 		/* Must not put_page() bogus page on cleanup. */ | 
 | 		spte.flags = 0; | 
 | 	} | 
 | 	spte.pfn = pfn; | 
 | 	return spte; | 
 | } | 
 |  | 
 | static void release_pte(spte_t pte) | 
 | { | 
 | 	if (pte.flags & _PAGE_PRESENT) | 
 | 		put_page(pfn_to_page(pte.pfn)); | 
 | } | 
 |  | 
 | static void check_gpte(struct lguest *lg, gpte_t gpte) | 
 | { | 
 | 	if ((gpte.flags & (_PAGE_PWT|_PAGE_PSE)) || gpte.pfn >= lg->pfn_limit) | 
 | 		kill_guest(lg, "bad page table entry"); | 
 | } | 
 |  | 
 | static void check_gpgd(struct lguest *lg, gpgd_t gpgd) | 
 | { | 
 | 	if ((gpgd.flags & ~_PAGE_TABLE) || gpgd.pfn >= lg->pfn_limit) | 
 | 		kill_guest(lg, "bad page directory entry"); | 
 | } | 
 |  | 
 | /* FIXME: We hold reference to pages, which prevents them from being | 
 |    swapped.  It'd be nice to have a callback when Linux wants to swap out. */ | 
 |  | 
 | /* We fault pages in, which allows us to update accessed/dirty bits. | 
 |  * Return true if we got page. */ | 
 | int demand_page(struct lguest *lg, unsigned long vaddr, int errcode) | 
 | { | 
 | 	gpgd_t gpgd; | 
 | 	spgd_t *spgd; | 
 | 	unsigned long gpte_ptr; | 
 | 	gpte_t gpte; | 
 | 	spte_t *spte; | 
 |  | 
 | 	gpgd = mkgpgd(lgread_u32(lg, gpgd_addr(lg, vaddr))); | 
 | 	if (!(gpgd.flags & _PAGE_PRESENT)) | 
 | 		return 0; | 
 |  | 
 | 	spgd = spgd_addr(lg, lg->pgdidx, vaddr); | 
 | 	if (!(spgd->flags & _PAGE_PRESENT)) { | 
 | 		/* Get a page of PTEs for them. */ | 
 | 		unsigned long ptepage = get_zeroed_page(GFP_KERNEL); | 
 | 		/* FIXME: Steal from self in this case? */ | 
 | 		if (!ptepage) { | 
 | 			kill_guest(lg, "out of memory allocating pte page"); | 
 | 			return 0; | 
 | 		} | 
 | 		check_gpgd(lg, gpgd); | 
 | 		spgd->raw.val = (__pa(ptepage) | gpgd.flags); | 
 | 	} | 
 |  | 
 | 	gpte_ptr = gpte_addr(lg, gpgd, vaddr); | 
 | 	gpte = mkgpte(lgread_u32(lg, gpte_ptr)); | 
 |  | 
 | 	/* No page? */ | 
 | 	if (!(gpte.flags & _PAGE_PRESENT)) | 
 | 		return 0; | 
 |  | 
 | 	/* Write to read-only page? */ | 
 | 	if ((errcode & 2) && !(gpte.flags & _PAGE_RW)) | 
 | 		return 0; | 
 |  | 
 | 	/* User access to a non-user page? */ | 
 | 	if ((errcode & 4) && !(gpte.flags & _PAGE_USER)) | 
 | 		return 0; | 
 |  | 
 | 	check_gpte(lg, gpte); | 
 | 	gpte.flags |= _PAGE_ACCESSED; | 
 | 	if (errcode & 2) | 
 | 		gpte.flags |= _PAGE_DIRTY; | 
 |  | 
 | 	/* We're done with the old pte. */ | 
 | 	spte = spte_addr(lg, *spgd, vaddr); | 
 | 	release_pte(*spte); | 
 |  | 
 | 	/* We don't make it writable if this isn't a write: later | 
 | 	 * write will fault so we can set dirty bit in guest. */ | 
 | 	if (gpte.flags & _PAGE_DIRTY) | 
 | 		*spte = gpte_to_spte(lg, gpte, 1); | 
 | 	else { | 
 | 		gpte_t ro_gpte = gpte; | 
 | 		ro_gpte.flags &= ~_PAGE_RW; | 
 | 		*spte = gpte_to_spte(lg, ro_gpte, 0); | 
 | 	} | 
 |  | 
 | 	/* Now we update dirty/accessed on guest. */ | 
 | 	lgwrite_u32(lg, gpte_ptr, gpte.raw.val); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* This is much faster than the full demand_page logic. */ | 
 | static int page_writable(struct lguest *lg, unsigned long vaddr) | 
 | { | 
 | 	spgd_t *spgd; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spgd = spgd_addr(lg, lg->pgdidx, vaddr); | 
 | 	if (!(spgd->flags & _PAGE_PRESENT)) | 
 | 		return 0; | 
 |  | 
 | 	flags = spte_addr(lg, *spgd, vaddr)->flags; | 
 | 	return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW); | 
 | } | 
 |  | 
 | void pin_page(struct lguest *lg, unsigned long vaddr) | 
 | { | 
 | 	if (!page_writable(lg, vaddr) && !demand_page(lg, vaddr, 2)) | 
 | 		kill_guest(lg, "bad stack page %#lx", vaddr); | 
 | } | 
 |  | 
 | static void release_pgd(struct lguest *lg, spgd_t *spgd) | 
 | { | 
 | 	if (spgd->flags & _PAGE_PRESENT) { | 
 | 		unsigned int i; | 
 | 		spte_t *ptepage = __va(spgd->pfn << PAGE_SHIFT); | 
 | 		for (i = 0; i < PTES_PER_PAGE; i++) | 
 | 			release_pte(ptepage[i]); | 
 | 		free_page((long)ptepage); | 
 | 		spgd->raw.val = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static void flush_user_mappings(struct lguest *lg, int idx) | 
 | { | 
 | 	unsigned int i; | 
 | 	for (i = 0; i < vaddr_to_pgd_index(lg->page_offset); i++) | 
 | 		release_pgd(lg, lg->pgdirs[idx].pgdir + i); | 
 | } | 
 |  | 
 | void guest_pagetable_flush_user(struct lguest *lg) | 
 | { | 
 | 	flush_user_mappings(lg, lg->pgdidx); | 
 | } | 
 |  | 
 | static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable) | 
 | { | 
 | 	unsigned int i; | 
 | 	for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) | 
 | 		if (lg->pgdirs[i].cr3 == pgtable) | 
 | 			break; | 
 | 	return i; | 
 | } | 
 |  | 
 | static unsigned int new_pgdir(struct lguest *lg, | 
 | 			      unsigned long cr3, | 
 | 			      int *blank_pgdir) | 
 | { | 
 | 	unsigned int next; | 
 |  | 
 | 	next = random32() % ARRAY_SIZE(lg->pgdirs); | 
 | 	if (!lg->pgdirs[next].pgdir) { | 
 | 		lg->pgdirs[next].pgdir = (spgd_t *)get_zeroed_page(GFP_KERNEL); | 
 | 		if (!lg->pgdirs[next].pgdir) | 
 | 			next = lg->pgdidx; | 
 | 		else | 
 | 			/* There are no mappings: you'll need to re-pin */ | 
 | 			*blank_pgdir = 1; | 
 | 	} | 
 | 	lg->pgdirs[next].cr3 = cr3; | 
 | 	/* Release all the non-kernel mappings. */ | 
 | 	flush_user_mappings(lg, next); | 
 |  | 
 | 	return next; | 
 | } | 
 |  | 
 | void guest_new_pagetable(struct lguest *lg, unsigned long pgtable) | 
 | { | 
 | 	int newpgdir, repin = 0; | 
 |  | 
 | 	newpgdir = find_pgdir(lg, pgtable); | 
 | 	if (newpgdir == ARRAY_SIZE(lg->pgdirs)) | 
 | 		newpgdir = new_pgdir(lg, pgtable, &repin); | 
 | 	lg->pgdidx = newpgdir; | 
 | 	if (repin) | 
 | 		pin_stack_pages(lg); | 
 | } | 
 |  | 
 | static void release_all_pagetables(struct lguest *lg) | 
 | { | 
 | 	unsigned int i, j; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) | 
 | 		if (lg->pgdirs[i].pgdir) | 
 | 			for (j = 0; j < SWITCHER_PGD_INDEX; j++) | 
 | 				release_pgd(lg, lg->pgdirs[i].pgdir + j); | 
 | } | 
 |  | 
 | void guest_pagetable_clear_all(struct lguest *lg) | 
 | { | 
 | 	release_all_pagetables(lg); | 
 | 	pin_stack_pages(lg); | 
 | } | 
 |  | 
 | static void do_set_pte(struct lguest *lg, int idx, | 
 | 		       unsigned long vaddr, gpte_t gpte) | 
 | { | 
 | 	spgd_t *spgd = spgd_addr(lg, idx, vaddr); | 
 | 	if (spgd->flags & _PAGE_PRESENT) { | 
 | 		spte_t *spte = spte_addr(lg, *spgd, vaddr); | 
 | 		release_pte(*spte); | 
 | 		if (gpte.flags & (_PAGE_DIRTY | _PAGE_ACCESSED)) { | 
 | 			check_gpte(lg, gpte); | 
 | 			*spte = gpte_to_spte(lg, gpte, gpte.flags&_PAGE_DIRTY); | 
 | 		} else | 
 | 			spte->raw.val = 0; | 
 | 	} | 
 | } | 
 |  | 
 | void guest_set_pte(struct lguest *lg, | 
 | 		   unsigned long cr3, unsigned long vaddr, gpte_t gpte) | 
 | { | 
 | 	/* Kernel mappings must be changed on all top levels. */ | 
 | 	if (vaddr >= lg->page_offset) { | 
 | 		unsigned int i; | 
 | 		for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) | 
 | 			if (lg->pgdirs[i].pgdir) | 
 | 				do_set_pte(lg, i, vaddr, gpte); | 
 | 	} else { | 
 | 		int pgdir = find_pgdir(lg, cr3); | 
 | 		if (pgdir != ARRAY_SIZE(lg->pgdirs)) | 
 | 			do_set_pte(lg, pgdir, vaddr, gpte); | 
 | 	} | 
 | } | 
 |  | 
 | void guest_set_pmd(struct lguest *lg, unsigned long cr3, u32 idx) | 
 | { | 
 | 	int pgdir; | 
 |  | 
 | 	if (idx >= SWITCHER_PGD_INDEX) | 
 | 		return; | 
 |  | 
 | 	pgdir = find_pgdir(lg, cr3); | 
 | 	if (pgdir < ARRAY_SIZE(lg->pgdirs)) | 
 | 		release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx); | 
 | } | 
 |  | 
 | int init_guest_pagetable(struct lguest *lg, unsigned long pgtable) | 
 | { | 
 | 	/* We assume this in flush_user_mappings, so check now */ | 
 | 	if (vaddr_to_pgd_index(lg->page_offset) >= SWITCHER_PGD_INDEX) | 
 | 		return -EINVAL; | 
 | 	lg->pgdidx = 0; | 
 | 	lg->pgdirs[lg->pgdidx].cr3 = pgtable; | 
 | 	lg->pgdirs[lg->pgdidx].pgdir = (spgd_t*)get_zeroed_page(GFP_KERNEL); | 
 | 	if (!lg->pgdirs[lg->pgdidx].pgdir) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void free_guest_pagetable(struct lguest *lg) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	release_all_pagetables(lg); | 
 | 	for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) | 
 | 		free_page((long)lg->pgdirs[i].pgdir); | 
 | } | 
 |  | 
 | /* Caller must be preempt-safe */ | 
 | void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages) | 
 | { | 
 | 	spte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages); | 
 | 	spgd_t switcher_pgd; | 
 | 	spte_t regs_pte; | 
 |  | 
 | 	/* Since switcher less that 4MB, we simply mug top pte page. */ | 
 | 	switcher_pgd.pfn = __pa(switcher_pte_page) >> PAGE_SHIFT; | 
 | 	switcher_pgd.flags = _PAGE_KERNEL; | 
 | 	lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd; | 
 |  | 
 | 	/* Map our regs page over stack page. */ | 
 | 	regs_pte.pfn = __pa(lg->regs_page) >> PAGE_SHIFT; | 
 | 	regs_pte.flags = _PAGE_KERNEL; | 
 | 	switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTES_PER_PAGE] | 
 | 		= regs_pte; | 
 | } | 
 |  | 
 | static void free_switcher_pte_pages(void) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	for_each_possible_cpu(i) | 
 | 		free_page((long)switcher_pte_page(i)); | 
 | } | 
 |  | 
 | static __init void populate_switcher_pte_page(unsigned int cpu, | 
 | 					      struct page *switcher_page[], | 
 | 					      unsigned int pages) | 
 | { | 
 | 	unsigned int i; | 
 | 	spte_t *pte = switcher_pte_page(cpu); | 
 |  | 
 | 	for (i = 0; i < pages; i++) { | 
 | 		pte[i].pfn = page_to_pfn(switcher_page[i]); | 
 | 		pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED; | 
 | 	} | 
 |  | 
 | 	/* We only map this CPU's pages, so guest can't see others. */ | 
 | 	i = pages + cpu*2; | 
 |  | 
 | 	/* First page (regs) is rw, second (state) is ro. */ | 
 | 	pte[i].pfn = page_to_pfn(switcher_page[i]); | 
 | 	pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW; | 
 | 	pte[i+1].pfn = page_to_pfn(switcher_page[i+1]); | 
 | 	pte[i+1].flags = _PAGE_PRESENT|_PAGE_ACCESSED; | 
 | } | 
 |  | 
 | __init int init_pagetables(struct page **switcher_page, unsigned int pages) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		switcher_pte_page(i) = (spte_t *)get_zeroed_page(GFP_KERNEL); | 
 | 		if (!switcher_pte_page(i)) { | 
 | 			free_switcher_pte_pages(); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		populate_switcher_pte_page(i, switcher_page, pages); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | void free_pagetables(void) | 
 | { | 
 | 	free_switcher_pte_pages(); | 
 | } |