| /* | 
 |  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. | 
 |  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) | 
 |  * | 
 |  * This version of the driver is specific to the FADS implementation, | 
 |  * since the board contains control registers external to the processor | 
 |  * for the control of the LevelOne LXT970 transceiver.  The MPC860T manual | 
 |  * describes connections using the internal parallel port I/O, which | 
 |  * is basically all of Port D. | 
 |  * | 
 |  * Right now, I am very wasteful with the buffers.  I allocate memory | 
 |  * pages and then divide them into 2K frame buffers.  This way I know I | 
 |  * have buffers large enough to hold one frame within one buffer descriptor. | 
 |  * Once I get this working, I will use 64 or 128 byte CPM buffers, which | 
 |  * will be much more memory efficient and will easily handle lots of | 
 |  * small packets. | 
 |  * | 
 |  * Much better multiple PHY support by Magnus Damm. | 
 |  * Copyright (c) 2000 Ericsson Radio Systems AB. | 
 |  * | 
 |  * Support for FEC controller of ColdFire processors. | 
 |  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) | 
 |  * | 
 |  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) | 
 |  * Copyright (c) 2004-2005 Macq Electronique SA. | 
 |  */ | 
 |  | 
 | #include <linux/config.h> | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/string.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/init.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/bitops.h> | 
 |  | 
 | #include <asm/irq.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/io.h> | 
 | #include <asm/pgtable.h> | 
 |  | 
 | #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \ | 
 |     defined(CONFIG_M5272) || defined(CONFIG_M528x) || \ | 
 |     defined(CONFIG_M520x) | 
 | #include <asm/coldfire.h> | 
 | #include <asm/mcfsim.h> | 
 | #include "fec.h" | 
 | #else | 
 | #include <asm/8xx_immap.h> | 
 | #include <asm/mpc8xx.h> | 
 | #include "commproc.h" | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_FEC2) | 
 | #define	FEC_MAX_PORTS	2 | 
 | #else | 
 | #define	FEC_MAX_PORTS	1 | 
 | #endif | 
 |  | 
 | /* | 
 |  * Define the fixed address of the FEC hardware. | 
 |  */ | 
 | static unsigned int fec_hw[] = { | 
 | #if defined(CONFIG_M5272) | 
 | 	(MCF_MBAR + 0x840), | 
 | #elif defined(CONFIG_M527x) | 
 | 	(MCF_MBAR + 0x1000), | 
 | 	(MCF_MBAR + 0x1800), | 
 | #elif defined(CONFIG_M523x) || defined(CONFIG_M528x) | 
 | 	(MCF_MBAR + 0x1000), | 
 | #elif defined(CONFIG_M520x) | 
 | 	(MCF_MBAR+0x30000), | 
 | #else | 
 | 	&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec), | 
 | #endif | 
 | }; | 
 |  | 
 | static unsigned char	fec_mac_default[] = { | 
 | 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
 | }; | 
 |  | 
 | /* | 
 |  * Some hardware gets it MAC address out of local flash memory. | 
 |  * if this is non-zero then assume it is the address to get MAC from. | 
 |  */ | 
 | #if defined(CONFIG_NETtel) | 
 | #define	FEC_FLASHMAC	0xf0006006 | 
 | #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) | 
 | #define	FEC_FLASHMAC	0xf0006000 | 
 | #elif defined (CONFIG_MTD_KeyTechnology) | 
 | #define	FEC_FLASHMAC	0xffe04000 | 
 | #elif defined(CONFIG_CANCam) | 
 | #define	FEC_FLASHMAC	0xf0020000 | 
 | #elif defined (CONFIG_M5272C3) | 
 | #define	FEC_FLASHMAC	(0xffe04000 + 4) | 
 | #elif defined(CONFIG_MOD5272) | 
 | #define FEC_FLASHMAC 	0xffc0406b | 
 | #else | 
 | #define	FEC_FLASHMAC	0 | 
 | #endif | 
 |  | 
 | /* Forward declarations of some structures to support different PHYs | 
 | */ | 
 |  | 
 | typedef struct { | 
 | 	uint mii_data; | 
 | 	void (*funct)(uint mii_reg, struct net_device *dev); | 
 | } phy_cmd_t; | 
 |  | 
 | typedef struct { | 
 | 	uint id; | 
 | 	char *name; | 
 |  | 
 | 	const phy_cmd_t *config; | 
 | 	const phy_cmd_t *startup; | 
 | 	const phy_cmd_t *ack_int; | 
 | 	const phy_cmd_t *shutdown; | 
 | } phy_info_t; | 
 |  | 
 | /* The number of Tx and Rx buffers.  These are allocated from the page | 
 |  * pool.  The code may assume these are power of two, so it it best | 
 |  * to keep them that size. | 
 |  * We don't need to allocate pages for the transmitter.  We just use | 
 |  * the skbuffer directly. | 
 |  */ | 
 | #define FEC_ENET_RX_PAGES	8 | 
 | #define FEC_ENET_RX_FRSIZE	2048 | 
 | #define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE) | 
 | #define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES) | 
 | #define FEC_ENET_TX_FRSIZE	2048 | 
 | #define FEC_ENET_TX_FRPPG	(PAGE_SIZE / FEC_ENET_TX_FRSIZE) | 
 | #define TX_RING_SIZE		16	/* Must be power of two */ | 
 | #define TX_RING_MOD_MASK	15	/*   for this to work */ | 
 |  | 
 | #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE) | 
 | #error "FEC: descriptor ring size contants too large" | 
 | #endif | 
 |  | 
 | /* Interrupt events/masks. | 
 | */ | 
 | #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */ | 
 | #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */ | 
 | #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */ | 
 | #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */ | 
 | #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */ | 
 | #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */ | 
 | #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */ | 
 | #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */ | 
 | #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */ | 
 | #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */ | 
 |  | 
 | /* The FEC stores dest/src/type, data, and checksum for receive packets. | 
 |  */ | 
 | #define PKT_MAXBUF_SIZE		1518 | 
 | #define PKT_MINBUF_SIZE		64 | 
 | #define PKT_MAXBLR_SIZE		1520 | 
 |  | 
 |  | 
 | /* | 
 |  * The 5270/5271/5280/5282 RX control register also contains maximum frame | 
 |  * size bits. Other FEC hardware does not, so we need to take that into | 
 |  * account when setting it. | 
 |  */ | 
 | #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ | 
 |     defined(CONFIG_M520x) | 
 | #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16) | 
 | #else | 
 | #define	OPT_FRAME_SIZE	0 | 
 | #endif | 
 |  | 
 | /* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and | 
 |  * tx_bd_base always point to the base of the buffer descriptors.  The | 
 |  * cur_rx and cur_tx point to the currently available buffer. | 
 |  * The dirty_tx tracks the current buffer that is being sent by the | 
 |  * controller.  The cur_tx and dirty_tx are equal under both completely | 
 |  * empty and completely full conditions.  The empty/ready indicator in | 
 |  * the buffer descriptor determines the actual condition. | 
 |  */ | 
 | struct fec_enet_private { | 
 | 	/* Hardware registers of the FEC device */ | 
 | 	volatile fec_t	*hwp; | 
 |  | 
 | 	/* The saved address of a sent-in-place packet/buffer, for skfree(). */ | 
 | 	unsigned char *tx_bounce[TX_RING_SIZE]; | 
 | 	struct	sk_buff* tx_skbuff[TX_RING_SIZE]; | 
 | 	ushort	skb_cur; | 
 | 	ushort	skb_dirty; | 
 |  | 
 | 	/* CPM dual port RAM relative addresses. | 
 | 	*/ | 
 | 	cbd_t	*rx_bd_base;		/* Address of Rx and Tx buffers. */ | 
 | 	cbd_t	*tx_bd_base; | 
 | 	cbd_t	*cur_rx, *cur_tx;		/* The next free ring entry */ | 
 | 	cbd_t	*dirty_tx;	/* The ring entries to be free()ed. */ | 
 | 	struct	net_device_stats stats; | 
 | 	uint	tx_full; | 
 | 	spinlock_t lock; | 
 |  | 
 | 	uint	phy_id; | 
 | 	uint	phy_id_done; | 
 | 	uint	phy_status; | 
 | 	uint	phy_speed; | 
 | 	phy_info_t const	*phy; | 
 | 	struct work_struct phy_task; | 
 |  | 
 | 	uint	sequence_done; | 
 | 	uint	mii_phy_task_queued; | 
 |  | 
 | 	uint	phy_addr; | 
 |  | 
 | 	int	index; | 
 | 	int	opened; | 
 | 	int	link; | 
 | 	int	old_link; | 
 | 	int	full_duplex; | 
 | }; | 
 |  | 
 | static int fec_enet_open(struct net_device *dev); | 
 | static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev); | 
 | static void fec_enet_mii(struct net_device *dev); | 
 | static irqreturn_t fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs); | 
 | static void fec_enet_tx(struct net_device *dev); | 
 | static void fec_enet_rx(struct net_device *dev); | 
 | static int fec_enet_close(struct net_device *dev); | 
 | static struct net_device_stats *fec_enet_get_stats(struct net_device *dev); | 
 | static void set_multicast_list(struct net_device *dev); | 
 | static void fec_restart(struct net_device *dev, int duplex); | 
 | static void fec_stop(struct net_device *dev); | 
 | static void fec_set_mac_address(struct net_device *dev); | 
 |  | 
 |  | 
 | /* MII processing.  We keep this as simple as possible.  Requests are | 
 |  * placed on the list (if there is room).  When the request is finished | 
 |  * by the MII, an optional function may be called. | 
 |  */ | 
 | typedef struct mii_list { | 
 | 	uint	mii_regval; | 
 | 	void	(*mii_func)(uint val, struct net_device *dev); | 
 | 	struct	mii_list *mii_next; | 
 | } mii_list_t; | 
 |  | 
 | #define		NMII	20 | 
 | static mii_list_t	mii_cmds[NMII]; | 
 | static mii_list_t	*mii_free; | 
 | static mii_list_t	*mii_head; | 
 | static mii_list_t	*mii_tail; | 
 |  | 
 | static int	mii_queue(struct net_device *dev, int request,  | 
 | 				void (*func)(uint, struct net_device *)); | 
 |  | 
 | /* Make MII read/write commands for the FEC. | 
 | */ | 
 | #define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18)) | 
 | #define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | \ | 
 | 						(VAL & 0xffff)) | 
 | #define mk_mii_end	0 | 
 |  | 
 | /* Transmitter timeout. | 
 | */ | 
 | #define TX_TIMEOUT (2*HZ) | 
 |  | 
 | /* Register definitions for the PHY. | 
 | */ | 
 |  | 
 | #define MII_REG_CR          0  /* Control Register                         */ | 
 | #define MII_REG_SR          1  /* Status Register                          */ | 
 | #define MII_REG_PHYIR1      2  /* PHY Identification Register 1            */ | 
 | #define MII_REG_PHYIR2      3  /* PHY Identification Register 2            */ | 
 | #define MII_REG_ANAR        4  /* A-N Advertisement Register               */  | 
 | #define MII_REG_ANLPAR      5  /* A-N Link Partner Ability Register        */ | 
 | #define MII_REG_ANER        6  /* A-N Expansion Register                   */ | 
 | #define MII_REG_ANNPTR      7  /* A-N Next Page Transmit Register          */ | 
 | #define MII_REG_ANLPRNPR    8  /* A-N Link Partner Received Next Page Reg. */ | 
 |  | 
 | /* values for phy_status */ | 
 |  | 
 | #define PHY_CONF_ANE	0x0001  /* 1 auto-negotiation enabled */ | 
 | #define PHY_CONF_LOOP	0x0002  /* 1 loopback mode enabled */ | 
 | #define PHY_CONF_SPMASK	0x00f0  /* mask for speed */ | 
 | #define PHY_CONF_10HDX	0x0010  /* 10 Mbit half duplex supported */ | 
 | #define PHY_CONF_10FDX	0x0020  /* 10 Mbit full duplex supported */  | 
 | #define PHY_CONF_100HDX	0x0040  /* 100 Mbit half duplex supported */ | 
 | #define PHY_CONF_100FDX	0x0080  /* 100 Mbit full duplex supported */  | 
 |  | 
 | #define PHY_STAT_LINK	0x0100  /* 1 up - 0 down */ | 
 | #define PHY_STAT_FAULT	0x0200  /* 1 remote fault */ | 
 | #define PHY_STAT_ANC	0x0400  /* 1 auto-negotiation complete	*/ | 
 | #define PHY_STAT_SPMASK	0xf000  /* mask for speed */ | 
 | #define PHY_STAT_10HDX	0x1000  /* 10 Mbit half duplex selected	*/ | 
 | #define PHY_STAT_10FDX	0x2000  /* 10 Mbit full duplex selected	*/  | 
 | #define PHY_STAT_100HDX	0x4000  /* 100 Mbit half duplex selected */ | 
 | #define PHY_STAT_100FDX	0x8000  /* 100 Mbit full duplex selected */  | 
 |  | 
 |  | 
 | static int | 
 | fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep; | 
 | 	volatile fec_t	*fecp; | 
 | 	volatile cbd_t	*bdp; | 
 |  | 
 | 	fep = netdev_priv(dev); | 
 | 	fecp = (volatile fec_t*)dev->base_addr; | 
 |  | 
 | 	if (!fep->link) { | 
 | 		/* Link is down or autonegotiation is in progress. */ | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* Fill in a Tx ring entry */ | 
 | 	bdp = fep->cur_tx; | 
 |  | 
 | #ifndef final_version | 
 | 	if (bdp->cbd_sc & BD_ENET_TX_READY) { | 
 | 		/* Ooops.  All transmit buffers are full.  Bail out. | 
 | 		 * This should not happen, since dev->tbusy should be set. | 
 | 		 */ | 
 | 		printk("%s: tx queue full!.\n", dev->name); | 
 | 		return 1; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* Clear all of the status flags. | 
 | 	 */ | 
 | 	bdp->cbd_sc &= ~BD_ENET_TX_STATS; | 
 |  | 
 | 	/* Set buffer length and buffer pointer. | 
 | 	*/ | 
 | 	bdp->cbd_bufaddr = __pa(skb->data); | 
 | 	bdp->cbd_datlen = skb->len; | 
 |  | 
 | 	/* | 
 | 	 *	On some FEC implementations data must be aligned on | 
 | 	 *	4-byte boundaries. Use bounce buffers to copy data | 
 | 	 *	and get it aligned. Ugh. | 
 | 	 */ | 
 | 	if (bdp->cbd_bufaddr & 0x3) { | 
 | 		unsigned int index; | 
 | 		index = bdp - fep->tx_bd_base; | 
 | 		memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen); | 
 | 		bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]); | 
 | 	} | 
 |  | 
 | 	/* Save skb pointer. | 
 | 	*/ | 
 | 	fep->tx_skbuff[fep->skb_cur] = skb; | 
 |  | 
 | 	fep->stats.tx_bytes += skb->len; | 
 | 	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK; | 
 | 	 | 
 | 	/* Push the data cache so the CPM does not get stale memory | 
 | 	 * data. | 
 | 	 */ | 
 | 	flush_dcache_range((unsigned long)skb->data, | 
 | 			   (unsigned long)skb->data + skb->len); | 
 |  | 
 | 	spin_lock_irq(&fep->lock); | 
 |  | 
 | 	/* Send it on its way.  Tell FEC its ready, interrupt when done, | 
 | 	 * its the last BD of the frame, and to put the CRC on the end. | 
 | 	 */ | 
 |  | 
 | 	bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | 
 | 			| BD_ENET_TX_LAST | BD_ENET_TX_TC); | 
 |  | 
 | 	dev->trans_start = jiffies; | 
 |  | 
 | 	/* Trigger transmission start */ | 
 | 	fecp->fec_x_des_active = 0x01000000; | 
 |  | 
 | 	/* If this was the last BD in the ring, start at the beginning again. | 
 | 	*/ | 
 | 	if (bdp->cbd_sc & BD_ENET_TX_WRAP) { | 
 | 		bdp = fep->tx_bd_base; | 
 | 	} else { | 
 | 		bdp++; | 
 | 	} | 
 |  | 
 | 	if (bdp == fep->dirty_tx) { | 
 | 		fep->tx_full = 1; | 
 | 		netif_stop_queue(dev); | 
 | 	} | 
 |  | 
 | 	fep->cur_tx = (cbd_t *)bdp; | 
 |  | 
 | 	spin_unlock_irq(&fep->lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | fec_timeout(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 |  | 
 | 	printk("%s: transmit timed out.\n", dev->name); | 
 | 	fep->stats.tx_errors++; | 
 | #ifndef final_version | 
 | 	{ | 
 | 	int	i; | 
 | 	cbd_t	*bdp; | 
 |  | 
 | 	printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n", | 
 | 	       (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "", | 
 | 	       (unsigned long)fep->dirty_tx, | 
 | 	       (unsigned long)fep->cur_rx); | 
 |  | 
 | 	bdp = fep->tx_bd_base; | 
 | 	printk(" tx: %u buffers\n",  TX_RING_SIZE); | 
 | 	for (i = 0 ; i < TX_RING_SIZE; i++) { | 
 | 		printk("  %08x: %04x %04x %08x\n",  | 
 | 		       (uint) bdp, | 
 | 		       bdp->cbd_sc, | 
 | 		       bdp->cbd_datlen, | 
 | 		       (int) bdp->cbd_bufaddr); | 
 | 		bdp++; | 
 | 	} | 
 |  | 
 | 	bdp = fep->rx_bd_base; | 
 | 	printk(" rx: %lu buffers\n",  (unsigned long) RX_RING_SIZE); | 
 | 	for (i = 0 ; i < RX_RING_SIZE; i++) { | 
 | 		printk("  %08x: %04x %04x %08x\n", | 
 | 		       (uint) bdp, | 
 | 		       bdp->cbd_sc, | 
 | 		       bdp->cbd_datlen, | 
 | 		       (int) bdp->cbd_bufaddr); | 
 | 		bdp++; | 
 | 	} | 
 | 	} | 
 | #endif | 
 | 	fec_restart(dev, fep->full_duplex); | 
 | 	netif_wake_queue(dev); | 
 | } | 
 |  | 
 | /* The interrupt handler. | 
 |  * This is called from the MPC core interrupt. | 
 |  */ | 
 | static irqreturn_t | 
 | fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs) | 
 | { | 
 | 	struct	net_device *dev = dev_id; | 
 | 	volatile fec_t	*fecp; | 
 | 	uint	int_events; | 
 | 	int handled = 0; | 
 |  | 
 | 	fecp = (volatile fec_t*)dev->base_addr; | 
 |  | 
 | 	/* Get the interrupt events that caused us to be here. | 
 | 	*/ | 
 | 	while ((int_events = fecp->fec_ievent) != 0) { | 
 | 		fecp->fec_ievent = int_events; | 
 |  | 
 | 		/* Handle receive event in its own function. | 
 | 		 */ | 
 | 		if (int_events & FEC_ENET_RXF) { | 
 | 			handled = 1; | 
 | 			fec_enet_rx(dev); | 
 | 		} | 
 |  | 
 | 		/* Transmit OK, or non-fatal error. Update the buffer | 
 | 		   descriptors. FEC handles all errors, we just discover | 
 | 		   them as part of the transmit process. | 
 | 		*/ | 
 | 		if (int_events & FEC_ENET_TXF) { | 
 | 			handled = 1; | 
 | 			fec_enet_tx(dev); | 
 | 		} | 
 |  | 
 | 		if (int_events & FEC_ENET_MII) { | 
 | 			handled = 1; | 
 | 			fec_enet_mii(dev); | 
 | 		} | 
 | 	 | 
 | 	} | 
 | 	return IRQ_RETVAL(handled); | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | fec_enet_tx(struct net_device *dev) | 
 | { | 
 | 	struct	fec_enet_private *fep; | 
 | 	volatile cbd_t	*bdp; | 
 | 	struct	sk_buff	*skb; | 
 |  | 
 | 	fep = netdev_priv(dev); | 
 | 	spin_lock(&fep->lock); | 
 | 	bdp = fep->dirty_tx; | 
 |  | 
 | 	while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) { | 
 | 		if (bdp == fep->cur_tx && fep->tx_full == 0) break; | 
 |  | 
 | 		skb = fep->tx_skbuff[fep->skb_dirty]; | 
 | 		/* Check for errors. */ | 
 | 		if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | | 
 | 				   BD_ENET_TX_RL | BD_ENET_TX_UN | | 
 | 				   BD_ENET_TX_CSL)) { | 
 | 			fep->stats.tx_errors++; | 
 | 			if (bdp->cbd_sc & BD_ENET_TX_HB)  /* No heartbeat */ | 
 | 				fep->stats.tx_heartbeat_errors++; | 
 | 			if (bdp->cbd_sc & BD_ENET_TX_LC)  /* Late collision */ | 
 | 				fep->stats.tx_window_errors++; | 
 | 			if (bdp->cbd_sc & BD_ENET_TX_RL)  /* Retrans limit */ | 
 | 				fep->stats.tx_aborted_errors++; | 
 | 			if (bdp->cbd_sc & BD_ENET_TX_UN)  /* Underrun */ | 
 | 				fep->stats.tx_fifo_errors++; | 
 | 			if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */ | 
 | 				fep->stats.tx_carrier_errors++; | 
 | 		} else { | 
 | 			fep->stats.tx_packets++; | 
 | 		} | 
 |  | 
 | #ifndef final_version | 
 | 		if (bdp->cbd_sc & BD_ENET_TX_READY) | 
 | 			printk("HEY! Enet xmit interrupt and TX_READY.\n"); | 
 | #endif | 
 | 		/* Deferred means some collisions occurred during transmit, | 
 | 		 * but we eventually sent the packet OK. | 
 | 		 */ | 
 | 		if (bdp->cbd_sc & BD_ENET_TX_DEF) | 
 | 			fep->stats.collisions++; | 
 | 	     | 
 | 		/* Free the sk buffer associated with this last transmit. | 
 | 		 */ | 
 | 		dev_kfree_skb_any(skb); | 
 | 		fep->tx_skbuff[fep->skb_dirty] = NULL; | 
 | 		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK; | 
 | 	     | 
 | 		/* Update pointer to next buffer descriptor to be transmitted. | 
 | 		 */ | 
 | 		if (bdp->cbd_sc & BD_ENET_TX_WRAP) | 
 | 			bdp = fep->tx_bd_base; | 
 | 		else | 
 | 			bdp++; | 
 | 	     | 
 | 		/* Since we have freed up a buffer, the ring is no longer | 
 | 		 * full. | 
 | 		 */ | 
 | 		if (fep->tx_full) { | 
 | 			fep->tx_full = 0; | 
 | 			if (netif_queue_stopped(dev)) | 
 | 				netif_wake_queue(dev); | 
 | 		} | 
 | 	} | 
 | 	fep->dirty_tx = (cbd_t *)bdp; | 
 | 	spin_unlock(&fep->lock); | 
 | } | 
 |  | 
 |  | 
 | /* During a receive, the cur_rx points to the current incoming buffer. | 
 |  * When we update through the ring, if the next incoming buffer has | 
 |  * not been given to the system, we just set the empty indicator, | 
 |  * effectively tossing the packet. | 
 |  */ | 
 | static void | 
 | fec_enet_rx(struct net_device *dev) | 
 | { | 
 | 	struct	fec_enet_private *fep; | 
 | 	volatile fec_t	*fecp; | 
 | 	volatile cbd_t *bdp; | 
 | 	struct	sk_buff	*skb; | 
 | 	ushort	pkt_len; | 
 | 	__u8 *data; | 
 |  | 
 | 	fep = netdev_priv(dev); | 
 | 	fecp = (volatile fec_t*)dev->base_addr; | 
 |  | 
 | 	/* First, grab all of the stats for the incoming packet. | 
 | 	 * These get messed up if we get called due to a busy condition. | 
 | 	 */ | 
 | 	bdp = fep->cur_rx; | 
 |  | 
 | while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) { | 
 |  | 
 | #ifndef final_version | 
 | 	/* Since we have allocated space to hold a complete frame, | 
 | 	 * the last indicator should be set. | 
 | 	 */ | 
 | 	if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0) | 
 | 		printk("FEC ENET: rcv is not +last\n"); | 
 | #endif | 
 |  | 
 | 	if (!fep->opened) | 
 | 		goto rx_processing_done; | 
 |  | 
 | 	/* Check for errors. */ | 
 | 	if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | | 
 | 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) { | 
 | 		fep->stats.rx_errors++;        | 
 | 		if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { | 
 | 		/* Frame too long or too short. */ | 
 | 			fep->stats.rx_length_errors++; | 
 | 		} | 
 | 		if (bdp->cbd_sc & BD_ENET_RX_NO)	/* Frame alignment */ | 
 | 			fep->stats.rx_frame_errors++; | 
 | 		if (bdp->cbd_sc & BD_ENET_RX_CR)	/* CRC Error */ | 
 | 			fep->stats.rx_crc_errors++; | 
 | 		if (bdp->cbd_sc & BD_ENET_RX_OV)	/* FIFO overrun */ | 
 | 			fep->stats.rx_crc_errors++; | 
 | 	} | 
 |  | 
 | 	/* Report late collisions as a frame error. | 
 | 	 * On this error, the BD is closed, but we don't know what we | 
 | 	 * have in the buffer.  So, just drop this frame on the floor. | 
 | 	 */ | 
 | 	if (bdp->cbd_sc & BD_ENET_RX_CL) { | 
 | 		fep->stats.rx_errors++; | 
 | 		fep->stats.rx_frame_errors++; | 
 | 		goto rx_processing_done; | 
 | 	} | 
 |  | 
 | 	/* Process the incoming frame. | 
 | 	 */ | 
 | 	fep->stats.rx_packets++; | 
 | 	pkt_len = bdp->cbd_datlen; | 
 | 	fep->stats.rx_bytes += pkt_len; | 
 | 	data = (__u8*)__va(bdp->cbd_bufaddr); | 
 |  | 
 | 	/* This does 16 byte alignment, exactly what we need. | 
 | 	 * The packet length includes FCS, but we don't want to | 
 | 	 * include that when passing upstream as it messes up | 
 | 	 * bridging applications. | 
 | 	 */ | 
 | 	skb = dev_alloc_skb(pkt_len-4); | 
 |  | 
 | 	if (skb == NULL) { | 
 | 		printk("%s: Memory squeeze, dropping packet.\n", dev->name); | 
 | 		fep->stats.rx_dropped++; | 
 | 	} else { | 
 | 		skb->dev = dev; | 
 | 		skb_put(skb,pkt_len-4);	/* Make room */ | 
 | 		eth_copy_and_sum(skb, | 
 | 				 (unsigned char *)__va(bdp->cbd_bufaddr), | 
 | 				 pkt_len-4, 0); | 
 | 		skb->protocol=eth_type_trans(skb,dev); | 
 | 		netif_rx(skb); | 
 | 	} | 
 |   rx_processing_done: | 
 |  | 
 | 	/* Clear the status flags for this buffer. | 
 | 	*/ | 
 | 	bdp->cbd_sc &= ~BD_ENET_RX_STATS; | 
 |  | 
 | 	/* Mark the buffer empty. | 
 | 	*/ | 
 | 	bdp->cbd_sc |= BD_ENET_RX_EMPTY; | 
 |  | 
 | 	/* Update BD pointer to next entry. | 
 | 	*/ | 
 | 	if (bdp->cbd_sc & BD_ENET_RX_WRAP) | 
 | 		bdp = fep->rx_bd_base; | 
 | 	else | 
 | 		bdp++; | 
 | 	 | 
 | #if 1 | 
 | 	/* Doing this here will keep the FEC running while we process | 
 | 	 * incoming frames.  On a heavily loaded network, we should be | 
 | 	 * able to keep up at the expense of system resources. | 
 | 	 */ | 
 | 	fecp->fec_r_des_active = 0x01000000; | 
 | #endif | 
 |    } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */ | 
 | 	fep->cur_rx = (cbd_t *)bdp; | 
 |  | 
 | #if 0 | 
 | 	/* Doing this here will allow us to process all frames in the | 
 | 	 * ring before the FEC is allowed to put more there.  On a heavily | 
 | 	 * loaded network, some frames may be lost.  Unfortunately, this | 
 | 	 * increases the interrupt overhead since we can potentially work | 
 | 	 * our way back to the interrupt return only to come right back | 
 | 	 * here. | 
 | 	 */ | 
 | 	fecp->fec_r_des_active = 0x01000000; | 
 | #endif | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | fec_enet_mii(struct net_device *dev) | 
 | { | 
 | 	struct	fec_enet_private *fep; | 
 | 	volatile fec_t	*ep; | 
 | 	mii_list_t	*mip; | 
 | 	uint		mii_reg; | 
 |  | 
 | 	fep = netdev_priv(dev); | 
 | 	ep = fep->hwp; | 
 | 	mii_reg = ep->fec_mii_data; | 
 | 	 | 
 | 	if ((mip = mii_head) == NULL) { | 
 | 		printk("MII and no head!\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (mip->mii_func != NULL) | 
 | 		(*(mip->mii_func))(mii_reg, dev); | 
 |  | 
 | 	mii_head = mip->mii_next; | 
 | 	mip->mii_next = mii_free; | 
 | 	mii_free = mip; | 
 |  | 
 | 	if ((mip = mii_head) != NULL) | 
 | 		ep->fec_mii_data = mip->mii_regval; | 
 | } | 
 |  | 
 | static int | 
 | mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *)) | 
 | { | 
 | 	struct fec_enet_private *fep; | 
 | 	unsigned long	flags; | 
 | 	mii_list_t	*mip; | 
 | 	int		retval; | 
 |  | 
 | 	/* Add PHY address to register command. | 
 | 	*/ | 
 | 	fep = netdev_priv(dev); | 
 | 	regval |= fep->phy_addr << 23; | 
 |  | 
 | 	retval = 0; | 
 |  | 
 | 	save_flags(flags); | 
 | 	cli(); | 
 |  | 
 | 	if ((mip = mii_free) != NULL) { | 
 | 		mii_free = mip->mii_next; | 
 | 		mip->mii_regval = regval; | 
 | 		mip->mii_func = func; | 
 | 		mip->mii_next = NULL; | 
 | 		if (mii_head) { | 
 | 			mii_tail->mii_next = mip; | 
 | 			mii_tail = mip; | 
 | 		} | 
 | 		else { | 
 | 			mii_head = mii_tail = mip; | 
 | 			fep->hwp->fec_mii_data = regval; | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		retval = 1; | 
 | 	} | 
 |  | 
 | 	restore_flags(flags); | 
 |  | 
 | 	return(retval); | 
 | } | 
 |  | 
 | static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c) | 
 | { | 
 | 	int k; | 
 |  | 
 | 	if(!c) | 
 | 		return; | 
 |  | 
 | 	for(k = 0; (c+k)->mii_data != mk_mii_end; k++) { | 
 | 		mii_queue(dev, (c+k)->mii_data, (c+k)->funct); | 
 | 	} | 
 | } | 
 |  | 
 | static void mii_parse_sr(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	volatile uint *s = &(fep->phy_status); | 
 | 	uint status; | 
 |  | 
 | 	status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC); | 
 |  | 
 | 	if (mii_reg & 0x0004) | 
 | 		status |= PHY_STAT_LINK; | 
 | 	if (mii_reg & 0x0010) | 
 | 		status |= PHY_STAT_FAULT; | 
 | 	if (mii_reg & 0x0020) | 
 | 		status |= PHY_STAT_ANC; | 
 |  | 
 | 	*s = status; | 
 | } | 
 |  | 
 | static void mii_parse_cr(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	volatile uint *s = &(fep->phy_status); | 
 | 	uint status; | 
 |  | 
 | 	status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP); | 
 |  | 
 | 	if (mii_reg & 0x1000) | 
 | 		status |= PHY_CONF_ANE; | 
 | 	if (mii_reg & 0x4000) | 
 | 		status |= PHY_CONF_LOOP; | 
 | 	*s = status; | 
 | } | 
 |  | 
 | static void mii_parse_anar(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	volatile uint *s = &(fep->phy_status); | 
 | 	uint status; | 
 |  | 
 | 	status = *s & ~(PHY_CONF_SPMASK); | 
 |  | 
 | 	if (mii_reg & 0x0020) | 
 | 		status |= PHY_CONF_10HDX; | 
 | 	if (mii_reg & 0x0040) | 
 | 		status |= PHY_CONF_10FDX; | 
 | 	if (mii_reg & 0x0080) | 
 | 		status |= PHY_CONF_100HDX; | 
 | 	if (mii_reg & 0x00100) | 
 | 		status |= PHY_CONF_100FDX; | 
 | 	*s = status; | 
 | } | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 | /* The Level one LXT970 is used by many boards				     */ | 
 |  | 
 | #define MII_LXT970_MIRROR    16  /* Mirror register           */ | 
 | #define MII_LXT970_IER       17  /* Interrupt Enable Register */ | 
 | #define MII_LXT970_ISR       18  /* Interrupt Status Register */ | 
 | #define MII_LXT970_CONFIG    19  /* Configuration Register    */ | 
 | #define MII_LXT970_CSR       20  /* Chip Status Register      */ | 
 |  | 
 | static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	volatile uint *s = &(fep->phy_status); | 
 | 	uint status; | 
 |  | 
 | 	status = *s & ~(PHY_STAT_SPMASK); | 
 | 	if (mii_reg & 0x0800) { | 
 | 		if (mii_reg & 0x1000) | 
 | 			status |= PHY_STAT_100FDX; | 
 | 		else | 
 | 			status |= PHY_STAT_100HDX; | 
 | 	} else { | 
 | 		if (mii_reg & 0x1000) | 
 | 			status |= PHY_STAT_10FDX; | 
 | 		else | 
 | 			status |= PHY_STAT_10HDX; | 
 | 	} | 
 | 	*s = status; | 
 | } | 
 |  | 
 | static phy_cmd_t const phy_cmd_lxt970_config[] = { | 
 | 		{ mk_mii_read(MII_REG_CR), mii_parse_cr }, | 
 | 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */ | 
 | 		{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL }, | 
 | 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_lxt970_ack_int[] = { | 
 | 		/* read SR and ISR to acknowledge */ | 
 | 		{ mk_mii_read(MII_REG_SR), mii_parse_sr }, | 
 | 		{ mk_mii_read(MII_LXT970_ISR), NULL }, | 
 |  | 
 | 		/* find out the current status */ | 
 | 		{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */ | 
 | 		{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_info_t const phy_info_lxt970 = { | 
 | 	.id = 0x07810000,  | 
 | 	.name = "LXT970", | 
 | 	.config = phy_cmd_lxt970_config, | 
 | 	.startup = phy_cmd_lxt970_startup, | 
 | 	.ack_int = phy_cmd_lxt970_ack_int, | 
 | 	.shutdown = phy_cmd_lxt970_shutdown | 
 | }; | 
 | 	 | 
 | /* ------------------------------------------------------------------------- */ | 
 | /* The Level one LXT971 is used on some of my custom boards                  */ | 
 |  | 
 | /* register definitions for the 971 */ | 
 |  | 
 | #define MII_LXT971_PCR       16  /* Port Control Register     */ | 
 | #define MII_LXT971_SR2       17  /* Status Register 2         */ | 
 | #define MII_LXT971_IER       18  /* Interrupt Enable Register */ | 
 | #define MII_LXT971_ISR       19  /* Interrupt Status Register */ | 
 | #define MII_LXT971_LCR       20  /* LED Control Register      */ | 
 | #define MII_LXT971_TCR       30  /* Transmit Control Register */ | 
 |  | 
 | /*  | 
 |  * I had some nice ideas of running the MDIO faster... | 
 |  * The 971 should support 8MHz and I tried it, but things acted really | 
 |  * weird, so 2.5 MHz ought to be enough for anyone... | 
 |  */ | 
 |  | 
 | static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	volatile uint *s = &(fep->phy_status); | 
 | 	uint status; | 
 |  | 
 | 	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC); | 
 |  | 
 | 	if (mii_reg & 0x0400) { | 
 | 		fep->link = 1; | 
 | 		status |= PHY_STAT_LINK; | 
 | 	} else { | 
 | 		fep->link = 0; | 
 | 	} | 
 | 	if (mii_reg & 0x0080) | 
 | 		status |= PHY_STAT_ANC; | 
 | 	if (mii_reg & 0x4000) { | 
 | 		if (mii_reg & 0x0200) | 
 | 			status |= PHY_STAT_100FDX; | 
 | 		else | 
 | 			status |= PHY_STAT_100HDX; | 
 | 	} else { | 
 | 		if (mii_reg & 0x0200) | 
 | 			status |= PHY_STAT_10FDX; | 
 | 		else | 
 | 			status |= PHY_STAT_10HDX; | 
 | 	} | 
 | 	if (mii_reg & 0x0008) | 
 | 		status |= PHY_STAT_FAULT; | 
 |  | 
 | 	*s = status; | 
 | } | 
 | 	 | 
 | static phy_cmd_t const phy_cmd_lxt971_config[] = { | 
 | 		/* limit to 10MBit because my prototype board  | 
 | 		 * doesn't work with 100. */ | 
 | 		{ mk_mii_read(MII_REG_CR), mii_parse_cr }, | 
 | 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | 
 | 		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_lxt971_startup[] = {  /* enable interrupts */ | 
 | 		{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL }, | 
 | 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | 
 | 		{ mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */ | 
 | 		/* Somehow does the 971 tell me that the link is down | 
 | 		 * the first read after power-up. | 
 | 		 * read here to get a valid value in ack_int */ | 
 | 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },  | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_lxt971_ack_int[] = { | 
 | 		/* acknowledge the int before reading status ! */ | 
 | 		{ mk_mii_read(MII_LXT971_ISR), NULL }, | 
 | 		/* find out the current status */ | 
 | 		{ mk_mii_read(MII_REG_SR), mii_parse_sr }, | 
 | 		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */ | 
 | 		{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_info_t const phy_info_lxt971 = { | 
 | 	.id = 0x0001378e,  | 
 | 	.name = "LXT971", | 
 | 	.config = phy_cmd_lxt971_config, | 
 | 	.startup = phy_cmd_lxt971_startup, | 
 | 	.ack_int = phy_cmd_lxt971_ack_int, | 
 | 	.shutdown = phy_cmd_lxt971_shutdown | 
 | }; | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 | /* The Quality Semiconductor QS6612 is used on the RPX CLLF                  */ | 
 |  | 
 | /* register definitions */ | 
 |  | 
 | #define MII_QS6612_MCR       17  /* Mode Control Register      */ | 
 | #define MII_QS6612_FTR       27  /* Factory Test Register      */ | 
 | #define MII_QS6612_MCO       28  /* Misc. Control Register     */ | 
 | #define MII_QS6612_ISR       29  /* Interrupt Source Register  */ | 
 | #define MII_QS6612_IMR       30  /* Interrupt Mask Register    */ | 
 | #define MII_QS6612_PCR       31  /* 100BaseTx PHY Control Reg. */ | 
 |  | 
 | static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	volatile uint *s = &(fep->phy_status); | 
 | 	uint status; | 
 |  | 
 | 	status = *s & ~(PHY_STAT_SPMASK); | 
 |  | 
 | 	switch((mii_reg >> 2) & 7) { | 
 | 	case 1: status |= PHY_STAT_10HDX; break; | 
 | 	case 2: status |= PHY_STAT_100HDX; break; | 
 | 	case 5: status |= PHY_STAT_10FDX; break; | 
 | 	case 6: status |= PHY_STAT_100FDX; break; | 
 | } | 
 |  | 
 | 	*s = status; | 
 | } | 
 |  | 
 | static phy_cmd_t const phy_cmd_qs6612_config[] = { | 
 | 		/* The PHY powers up isolated on the RPX,  | 
 | 		 * so send a command to allow operation. | 
 | 		 */ | 
 | 		{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL }, | 
 |  | 
 | 		/* parse cr and anar to get some info */ | 
 | 		{ mk_mii_read(MII_REG_CR), mii_parse_cr }, | 
 | 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_qs6612_startup[] = {  /* enable interrupts */ | 
 | 		{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL }, | 
 | 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_qs6612_ack_int[] = { | 
 | 		/* we need to read ISR, SR and ANER to acknowledge */ | 
 | 		{ mk_mii_read(MII_QS6612_ISR), NULL }, | 
 | 		{ mk_mii_read(MII_REG_SR), mii_parse_sr }, | 
 | 		{ mk_mii_read(MII_REG_ANER), NULL }, | 
 |  | 
 | 		/* read pcr to get info */ | 
 | 		{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */ | 
 | 		{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_info_t const phy_info_qs6612 = { | 
 | 	.id = 0x00181440,  | 
 | 	.name = "QS6612", | 
 | 	.config = phy_cmd_qs6612_config, | 
 | 	.startup = phy_cmd_qs6612_startup, | 
 | 	.ack_int = phy_cmd_qs6612_ack_int, | 
 | 	.shutdown = phy_cmd_qs6612_shutdown | 
 | }; | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 | /* AMD AM79C874 phy                                                          */ | 
 |  | 
 | /* register definitions for the 874 */ | 
 |  | 
 | #define MII_AM79C874_MFR       16  /* Miscellaneous Feature Register */ | 
 | #define MII_AM79C874_ICSR      17  /* Interrupt/Status Register      */ | 
 | #define MII_AM79C874_DR        18  /* Diagnostic Register            */ | 
 | #define MII_AM79C874_PMLR      19  /* Power and Loopback Register    */ | 
 | #define MII_AM79C874_MCR       21  /* ModeControl Register           */ | 
 | #define MII_AM79C874_DC        23  /* Disconnect Counter             */ | 
 | #define MII_AM79C874_REC       24  /* Recieve Error Counter          */ | 
 |  | 
 | static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	volatile uint *s = &(fep->phy_status); | 
 | 	uint status; | 
 |  | 
 | 	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC); | 
 |  | 
 | 	if (mii_reg & 0x0080) | 
 | 		status |= PHY_STAT_ANC; | 
 | 	if (mii_reg & 0x0400) | 
 | 		status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX); | 
 | 	else | 
 | 		status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX); | 
 |  | 
 | 	*s = status; | 
 | } | 
 |  | 
 | static phy_cmd_t const phy_cmd_am79c874_config[] = { | 
 | 		{ mk_mii_read(MII_REG_CR), mii_parse_cr }, | 
 | 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | 
 | 		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_am79c874_startup[] = {  /* enable interrupts */ | 
 | 		{ mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL }, | 
 | 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | 
 | 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },  | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_am79c874_ack_int[] = { | 
 | 		/* find out the current status */ | 
 | 		{ mk_mii_read(MII_REG_SR), mii_parse_sr }, | 
 | 		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr }, | 
 | 		/* we only need to read ISR to acknowledge */ | 
 | 		{ mk_mii_read(MII_AM79C874_ICSR), NULL }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */ | 
 | 		{ mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_info_t const phy_info_am79c874 = { | 
 | 	.id = 0x00022561, | 
 | 	.name = "AM79C874", | 
 | 	.config = phy_cmd_am79c874_config, | 
 | 	.startup = phy_cmd_am79c874_startup, | 
 | 	.ack_int = phy_cmd_am79c874_ack_int, | 
 | 	.shutdown = phy_cmd_am79c874_shutdown | 
 | }; | 
 |  | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 | /* Kendin KS8721BL phy                                                       */ | 
 |  | 
 | /* register definitions for the 8721 */ | 
 |  | 
 | #define MII_KS8721BL_RXERCR	21 | 
 | #define MII_KS8721BL_ICSR	22 | 
 | #define	MII_KS8721BL_PHYCR	31 | 
 |  | 
 | static phy_cmd_t const phy_cmd_ks8721bl_config[] = { | 
 | 		{ mk_mii_read(MII_REG_CR), mii_parse_cr }, | 
 | 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_ks8721bl_startup[] = {  /* enable interrupts */ | 
 | 		{ mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL }, | 
 | 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | 
 | 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },  | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = { | 
 | 		/* find out the current status */ | 
 | 		{ mk_mii_read(MII_REG_SR), mii_parse_sr }, | 
 | 		/* we only need to read ISR to acknowledge */ | 
 | 		{ mk_mii_read(MII_KS8721BL_ICSR), NULL }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */ | 
 | 		{ mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL }, | 
 | 		{ mk_mii_end, } | 
 | 	}; | 
 | static phy_info_t const phy_info_ks8721bl = { | 
 | 	.id = 0x00022161,  | 
 | 	.name = "KS8721BL", | 
 | 	.config = phy_cmd_ks8721bl_config, | 
 | 	.startup = phy_cmd_ks8721bl_startup, | 
 | 	.ack_int = phy_cmd_ks8721bl_ack_int, | 
 | 	.shutdown = phy_cmd_ks8721bl_shutdown | 
 | }; | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 | /* register definitions for the DP83848 */ | 
 |  | 
 | #define MII_DP8384X_PHYSTST    16  /* PHY Status Register */ | 
 |  | 
 | static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = dev->priv; | 
 | 	volatile uint *s = &(fep->phy_status); | 
 |  | 
 | 	*s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC); | 
 |  | 
 | 	/* Link up */ | 
 | 	if (mii_reg & 0x0001) { | 
 | 		fep->link = 1; | 
 | 		*s |= PHY_STAT_LINK; | 
 | 	} else | 
 | 		fep->link = 0; | 
 | 	/* Status of link */ | 
 | 	if (mii_reg & 0x0010)   /* Autonegotioation complete */ | 
 | 		*s |= PHY_STAT_ANC; | 
 | 	if (mii_reg & 0x0002) {   /* 10MBps? */ | 
 | 		if (mii_reg & 0x0004)   /* Full Duplex? */ | 
 | 			*s |= PHY_STAT_10FDX; | 
 | 		else | 
 | 			*s |= PHY_STAT_10HDX; | 
 | 	} else {                  /* 100 Mbps? */ | 
 | 		if (mii_reg & 0x0004)   /* Full Duplex? */ | 
 | 			*s |= PHY_STAT_100FDX; | 
 | 		else | 
 | 			*s |= PHY_STAT_100HDX; | 
 | 	} | 
 | 	if (mii_reg & 0x0008) | 
 | 		*s |= PHY_STAT_FAULT; | 
 | } | 
 |  | 
 | static phy_info_t phy_info_dp83848= { | 
 | 	0x020005c9, | 
 | 	"DP83848", | 
 |  | 
 | 	(const phy_cmd_t []) {  /* config */ | 
 | 		{ mk_mii_read(MII_REG_CR), mii_parse_cr }, | 
 | 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | 
 | 		{ mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 }, | 
 | 		{ mk_mii_end, } | 
 | 	}, | 
 | 	(const phy_cmd_t []) {  /* startup - enable interrupts */ | 
 | 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | 
 | 		{ mk_mii_read(MII_REG_SR), mii_parse_sr }, | 
 | 		{ mk_mii_end, } | 
 | 	}, | 
 | 	(const phy_cmd_t []) { /* ack_int - never happens, no interrupt */ | 
 | 		{ mk_mii_end, } | 
 | 	}, | 
 | 	(const phy_cmd_t []) {  /* shutdown */ | 
 | 		{ mk_mii_end, } | 
 | 	}, | 
 | }; | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 |  | 
 | static phy_info_t const * const phy_info[] = { | 
 | 	&phy_info_lxt970, | 
 | 	&phy_info_lxt971, | 
 | 	&phy_info_qs6612, | 
 | 	&phy_info_am79c874, | 
 | 	&phy_info_ks8721bl, | 
 | 	&phy_info_dp83848, | 
 | 	NULL | 
 | }; | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 |  | 
 | #ifdef CONFIG_RPXCLASSIC | 
 | static void | 
 | mii_link_interrupt(void *dev_id); | 
 | #else | 
 | static irqreturn_t | 
 | mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs); | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_M5272) | 
 |  | 
 | /* | 
 |  *	Code specific to Coldfire 5272 setup. | 
 |  */ | 
 | static void __inline__ fec_request_intrs(struct net_device *dev) | 
 | { | 
 | 	volatile unsigned long *icrp; | 
 | 	static const struct idesc { | 
 | 		char *name; | 
 | 		unsigned short irq; | 
 | 		irqreturn_t (*handler)(int, void *, struct pt_regs *); | 
 | 	} *idp, id[] = { | 
 | 		{ "fec(RX)", 86, fec_enet_interrupt }, | 
 | 		{ "fec(TX)", 87, fec_enet_interrupt }, | 
 | 		{ "fec(OTHER)", 88, fec_enet_interrupt }, | 
 | 		{ "fec(MII)", 66, mii_link_interrupt }, | 
 | 		{ NULL }, | 
 | 	}; | 
 |  | 
 | 	/* Setup interrupt handlers. */ | 
 | 	for (idp = id; idp->name; idp++) { | 
 | 		if (request_irq(idp->irq, idp->handler, 0, idp->name, dev) != 0) | 
 | 			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq); | 
 | 	} | 
 |  | 
 | 	/* Unmask interrupt at ColdFire 5272 SIM */ | 
 | 	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3); | 
 | 	*icrp = 0x00000ddd; | 
 | 	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); | 
 | 	*icrp = (*icrp & 0x70777777) | 0x0d000000; | 
 | } | 
 |  | 
 | static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) | 
 | { | 
 | 	volatile fec_t *fecp; | 
 |  | 
 | 	fecp = fep->hwp; | 
 | 	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04; | 
 | 	fecp->fec_x_cntrl = 0x00; | 
 |  | 
 | 	/* | 
 | 	 * Set MII speed to 2.5 MHz | 
 | 	 * See 5272 manual section 11.5.8: MSCR | 
 | 	 */ | 
 | 	fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2; | 
 | 	fecp->fec_mii_speed = fep->phy_speed; | 
 |  | 
 | 	fec_restart(dev, 0); | 
 | } | 
 |  | 
 | static void __inline__ fec_get_mac(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	volatile fec_t *fecp; | 
 | 	unsigned char *iap, tmpaddr[ETH_ALEN]; | 
 |  | 
 | 	fecp = fep->hwp; | 
 |  | 
 | 	if (FEC_FLASHMAC) { | 
 | 		/* | 
 | 		 * Get MAC address from FLASH. | 
 | 		 * If it is all 1's or 0's, use the default. | 
 | 		 */ | 
 | 		iap = (unsigned char *)FEC_FLASHMAC; | 
 | 		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && | 
 | 		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) | 
 | 			iap = fec_mac_default; | 
 | 		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && | 
 | 		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) | 
 | 			iap = fec_mac_default; | 
 | 	} else { | 
 | 		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low; | 
 | 		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16); | 
 | 		iap = &tmpaddr[0]; | 
 | 	} | 
 |  | 
 | 	memcpy(dev->dev_addr, iap, ETH_ALEN); | 
 |  | 
 | 	/* Adjust MAC if using default MAC address */ | 
 | 	if (iap == fec_mac_default) | 
 | 		 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index; | 
 | } | 
 |  | 
 | static void __inline__ fec_enable_phy_intr(void) | 
 | { | 
 | } | 
 |  | 
 | static void __inline__ fec_disable_phy_intr(void) | 
 | { | 
 | 	volatile unsigned long *icrp; | 
 | 	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); | 
 | 	*icrp = (*icrp & 0x70777777) | 0x08000000; | 
 | } | 
 |  | 
 | static void __inline__ fec_phy_ack_intr(void) | 
 | { | 
 | 	volatile unsigned long *icrp; | 
 | 	/* Acknowledge the interrupt */ | 
 | 	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); | 
 | 	*icrp = (*icrp & 0x77777777) | 0x08000000; | 
 | } | 
 |  | 
 | static void __inline__ fec_localhw_setup(void) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  *	Do not need to make region uncached on 5272. | 
 |  */ | 
 | static void __inline__ fec_uncache(unsigned long addr) | 
 | { | 
 | } | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 |  | 
 | #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) | 
 |  | 
 | /* | 
 |  *	Code specific to Coldfire 5230/5231/5232/5234/5235, | 
 |  *	the 5270/5271/5274/5275 and 5280/5282 setups. | 
 |  */ | 
 | static void __inline__ fec_request_intrs(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep; | 
 | 	int b; | 
 | 	static const struct idesc { | 
 | 		char *name; | 
 | 		unsigned short irq; | 
 | 	} *idp, id[] = { | 
 | 		{ "fec(TXF)", 23 }, | 
 | 		{ "fec(TXB)", 24 }, | 
 | 		{ "fec(TXFIFO)", 25 }, | 
 | 		{ "fec(TXCR)", 26 }, | 
 | 		{ "fec(RXF)", 27 }, | 
 | 		{ "fec(RXB)", 28 }, | 
 | 		{ "fec(MII)", 29 }, | 
 | 		{ "fec(LC)", 30 }, | 
 | 		{ "fec(HBERR)", 31 }, | 
 | 		{ "fec(GRA)", 32 }, | 
 | 		{ "fec(EBERR)", 33 }, | 
 | 		{ "fec(BABT)", 34 }, | 
 | 		{ "fec(BABR)", 35 }, | 
 | 		{ NULL }, | 
 | 	}; | 
 |  | 
 | 	fep = netdev_priv(dev); | 
 | 	b = (fep->index) ? 128 : 64; | 
 |  | 
 | 	/* Setup interrupt handlers. */ | 
 | 	for (idp = id; idp->name; idp++) { | 
 | 		if (request_irq(b+idp->irq, fec_enet_interrupt, 0, idp->name, dev) != 0) | 
 | 			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq); | 
 | 	} | 
 |  | 
 | 	/* Unmask interrupts at ColdFire 5280/5282 interrupt controller */ | 
 | 	{ | 
 | 		volatile unsigned char  *icrp; | 
 | 		volatile unsigned long  *imrp; | 
 | 		int i; | 
 |  | 
 | 		b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0; | 
 | 		icrp = (volatile unsigned char *) (MCF_IPSBAR + b + | 
 | 			MCFINTC_ICR0); | 
 | 		for (i = 23; (i < 36); i++) | 
 | 			icrp[i] = 0x23; | 
 |  | 
 | 		imrp = (volatile unsigned long *) (MCF_IPSBAR + b + | 
 | 			MCFINTC_IMRH); | 
 | 		*imrp &= ~0x0000000f; | 
 | 		imrp = (volatile unsigned long *) (MCF_IPSBAR + b + | 
 | 			MCFINTC_IMRL); | 
 | 		*imrp &= ~0xff800001; | 
 | 	} | 
 |  | 
 | #if defined(CONFIG_M528x) | 
 | 	/* Set up gpio outputs for MII lines */ | 
 | 	{ | 
 | 		volatile u16 *gpio_paspar; | 
 | 		volatile u8 *gpio_pehlpar; | 
 |    | 
 | 		gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056); | 
 | 		gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058); | 
 | 		*gpio_paspar |= 0x0f00; | 
 | 		*gpio_pehlpar = 0xc0; | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) | 
 | { | 
 | 	volatile fec_t *fecp; | 
 |  | 
 | 	fecp = fep->hwp; | 
 | 	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04; | 
 | 	fecp->fec_x_cntrl = 0x00; | 
 |  | 
 | 	/* | 
 | 	 * Set MII speed to 2.5 MHz | 
 | 	 * See 5282 manual section 17.5.4.7: MSCR | 
 | 	 */ | 
 | 	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2; | 
 | 	fecp->fec_mii_speed = fep->phy_speed; | 
 |  | 
 | 	fec_restart(dev, 0); | 
 | } | 
 |  | 
 | static void __inline__ fec_get_mac(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	volatile fec_t *fecp; | 
 | 	unsigned char *iap, tmpaddr[ETH_ALEN]; | 
 |  | 
 | 	fecp = fep->hwp; | 
 |  | 
 | 	if (FEC_FLASHMAC) { | 
 | 		/* | 
 | 		 * Get MAC address from FLASH. | 
 | 		 * If it is all 1's or 0's, use the default. | 
 | 		 */ | 
 | 		iap = FEC_FLASHMAC; | 
 | 		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && | 
 | 		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) | 
 | 			iap = fec_mac_default; | 
 | 		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && | 
 | 		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) | 
 | 			iap = fec_mac_default; | 
 | 	} else { | 
 | 		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low; | 
 | 		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16); | 
 | 		iap = &tmpaddr[0]; | 
 | 	} | 
 |  | 
 | 	memcpy(dev->dev_addr, iap, ETH_ALEN); | 
 |  | 
 | 	/* Adjust MAC if using default MAC address */ | 
 | 	if (iap == fec_mac_default) | 
 | 		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index; | 
 | } | 
 |  | 
 | static void __inline__ fec_enable_phy_intr(void) | 
 | { | 
 | } | 
 |  | 
 | static void __inline__ fec_disable_phy_intr(void) | 
 | { | 
 | } | 
 |  | 
 | static void __inline__ fec_phy_ack_intr(void) | 
 | { | 
 | } | 
 |  | 
 | static void __inline__ fec_localhw_setup(void) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  *	Do not need to make region uncached on 5272. | 
 |  */ | 
 | static void __inline__ fec_uncache(unsigned long addr) | 
 | { | 
 | } | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 |  | 
 | #elif defined(CONFIG_M520x) | 
 |  | 
 | /* | 
 |  *	Code specific to Coldfire 520x | 
 |  */ | 
 | static void __inline__ fec_request_intrs(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep; | 
 | 	int b; | 
 | 	static const struct idesc { | 
 | 		char *name; | 
 | 		unsigned short irq; | 
 | 	} *idp, id[] = { | 
 | 		{ "fec(TXF)", 23 }, | 
 | 		{ "fec(TXB)", 24 }, | 
 | 		{ "fec(TXFIFO)", 25 }, | 
 | 		{ "fec(TXCR)", 26 }, | 
 | 		{ "fec(RXF)", 27 }, | 
 | 		{ "fec(RXB)", 28 }, | 
 | 		{ "fec(MII)", 29 }, | 
 | 		{ "fec(LC)", 30 }, | 
 | 		{ "fec(HBERR)", 31 }, | 
 | 		{ "fec(GRA)", 32 }, | 
 | 		{ "fec(EBERR)", 33 }, | 
 | 		{ "fec(BABT)", 34 }, | 
 | 		{ "fec(BABR)", 35 }, | 
 | 		{ NULL }, | 
 | 	}; | 
 |  | 
 | 	fep = netdev_priv(dev); | 
 | 	b = 64 + 13; | 
 |  | 
 | 	/* Setup interrupt handlers. */ | 
 | 	for (idp = id; idp->name; idp++) { | 
 | 		if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0) | 
 | 			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq); | 
 | 	} | 
 |  | 
 | 	/* Unmask interrupts at ColdFire interrupt controller */ | 
 | 	{ | 
 | 		volatile unsigned char  *icrp; | 
 | 		volatile unsigned long  *imrp; | 
 |  | 
 | 		icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 + | 
 | 			MCFINTC_ICR0); | 
 | 		for (b = 36; (b < 49); b++) | 
 | 			icrp[b] = 0x04; | 
 | 		imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 + | 
 | 			MCFINTC_IMRH); | 
 | 		*imrp &= ~0x0001FFF0; | 
 | 	} | 
 | 	*(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0; | 
 | 	*(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f; | 
 | } | 
 |  | 
 | static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) | 
 | { | 
 | 	volatile fec_t *fecp; | 
 |  | 
 | 	fecp = fep->hwp; | 
 | 	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04; | 
 | 	fecp->fec_x_cntrl = 0x00; | 
 |  | 
 | 	/* | 
 | 	 * Set MII speed to 2.5 MHz | 
 | 	 * See 5282 manual section 17.5.4.7: MSCR | 
 | 	 */ | 
 | 	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2; | 
 | 	fecp->fec_mii_speed = fep->phy_speed; | 
 |  | 
 | 	fec_restart(dev, 0); | 
 | } | 
 |  | 
 | static void __inline__ fec_get_mac(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	volatile fec_t *fecp; | 
 | 	unsigned char *iap, tmpaddr[ETH_ALEN]; | 
 |  | 
 | 	fecp = fep->hwp; | 
 |  | 
 | 	if (FEC_FLASHMAC) { | 
 | 		/* | 
 | 		 * Get MAC address from FLASH. | 
 | 		 * If it is all 1's or 0's, use the default. | 
 | 		 */ | 
 | 		iap = FEC_FLASHMAC; | 
 | 		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && | 
 | 		   (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) | 
 | 			iap = fec_mac_default; | 
 | 		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && | 
 | 		   (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) | 
 | 			iap = fec_mac_default; | 
 | 	} else { | 
 | 		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low; | 
 | 		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16); | 
 | 		iap = &tmpaddr[0]; | 
 | 	} | 
 |  | 
 | 	memcpy(dev->dev_addr, iap, ETH_ALEN); | 
 |  | 
 | 	/* Adjust MAC if using default MAC address */ | 
 | 	if (iap == fec_mac_default) | 
 | 		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index; | 
 | } | 
 |  | 
 | static void __inline__ fec_enable_phy_intr(void) | 
 | { | 
 | } | 
 |  | 
 | static void __inline__ fec_disable_phy_intr(void) | 
 | { | 
 | } | 
 |  | 
 | static void __inline__ fec_phy_ack_intr(void) | 
 | { | 
 | } | 
 |  | 
 | static void __inline__ fec_localhw_setup(void) | 
 | { | 
 | } | 
 |  | 
 | static void __inline__ fec_uncache(unsigned long addr) | 
 | { | 
 | } | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 |  | 
 | #else | 
 |  | 
 | /* | 
 |  *	Code specific to the MPC860T setup. | 
 |  */ | 
 | static void __inline__ fec_request_intrs(struct net_device *dev) | 
 | { | 
 | 	volatile immap_t *immap; | 
 |  | 
 | 	immap = (immap_t *)IMAP_ADDR;	/* pointer to internal registers */ | 
 |  | 
 | 	if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0) | 
 | 		panic("Could not allocate FEC IRQ!"); | 
 |  | 
 | #ifdef CONFIG_RPXCLASSIC | 
 | 	/* Make Port C, bit 15 an input that causes interrupts. | 
 | 	*/ | 
 | 	immap->im_ioport.iop_pcpar &= ~0x0001; | 
 | 	immap->im_ioport.iop_pcdir &= ~0x0001; | 
 | 	immap->im_ioport.iop_pcso &= ~0x0001; | 
 | 	immap->im_ioport.iop_pcint |= 0x0001; | 
 | 	cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev); | 
 |  | 
 | 	/* Make LEDS reflect Link status. | 
 | 	*/ | 
 | 	*((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE; | 
 | #endif | 
 | #ifdef CONFIG_FADS | 
 | 	if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0) | 
 | 		panic("Could not allocate MII IRQ!"); | 
 | #endif | 
 | } | 
 |  | 
 | static void __inline__ fec_get_mac(struct net_device *dev) | 
 | { | 
 | 	bd_t *bd; | 
 |  | 
 | 	bd = (bd_t *)__res; | 
 | 	memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN); | 
 |  | 
 | #ifdef CONFIG_RPXCLASSIC | 
 | 	/* The Embedded Planet boards have only one MAC address in | 
 | 	 * the EEPROM, but can have two Ethernet ports.  For the | 
 | 	 * FEC port, we create another address by setting one of | 
 | 	 * the address bits above something that would have (up to | 
 | 	 * now) been allocated. | 
 | 	 */ | 
 | 	dev->dev_adrd[3] |= 0x80; | 
 | #endif | 
 | } | 
 |  | 
 | static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) | 
 | { | 
 | 	extern uint _get_IMMR(void); | 
 | 	volatile immap_t *immap; | 
 | 	volatile fec_t *fecp; | 
 |  | 
 | 	fecp = fep->hwp; | 
 | 	immap = (immap_t *)IMAP_ADDR;	/* pointer to internal registers */ | 
 |  | 
 | 	/* Configure all of port D for MII. | 
 | 	*/ | 
 | 	immap->im_ioport.iop_pdpar = 0x1fff; | 
 |  | 
 | 	/* Bits moved from Rev. D onward. | 
 | 	*/ | 
 | 	if ((_get_IMMR() & 0xffff) < 0x0501) | 
 | 		immap->im_ioport.iop_pddir = 0x1c58;	/* Pre rev. D */ | 
 | 	else | 
 | 		immap->im_ioport.iop_pddir = 0x1fff;	/* Rev. D and later */ | 
 | 	 | 
 | 	/* Set MII speed to 2.5 MHz | 
 | 	*/ | 
 | 	fecp->fec_mii_speed = fep->phy_speed =  | 
 | 		((bd->bi_busfreq * 1000000) / 2500000) & 0x7e; | 
 | } | 
 |  | 
 | static void __inline__ fec_enable_phy_intr(void) | 
 | { | 
 | 	volatile fec_t *fecp; | 
 |  | 
 | 	fecp = fep->hwp; | 
 |  | 
 | 	/* Enable MII command finished interrupt  | 
 | 	*/ | 
 | 	fecp->fec_ivec = (FEC_INTERRUPT/2) << 29; | 
 | } | 
 |  | 
 | static void __inline__ fec_disable_phy_intr(void) | 
 | { | 
 | } | 
 |  | 
 | static void __inline__ fec_phy_ack_intr(void) | 
 | { | 
 | } | 
 |  | 
 | static void __inline__ fec_localhw_setup(void) | 
 | { | 
 | 	volatile fec_t *fecp; | 
 |  | 
 | 	fecp = fep->hwp; | 
 | 	fecp->fec_r_hash = PKT_MAXBUF_SIZE; | 
 | 	/* Enable big endian and don't care about SDMA FC. | 
 | 	*/ | 
 | 	fecp->fec_fun_code = 0x78000000; | 
 | } | 
 |  | 
 | static void __inline__ fec_uncache(unsigned long addr) | 
 | { | 
 | 	pte_t *pte; | 
 | 	pte = va_to_pte(mem_addr); | 
 | 	pte_val(*pte) |= _PAGE_NO_CACHE; | 
 | 	flush_tlb_page(init_mm.mmap, mem_addr); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 |  | 
 | static void mii_display_status(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	volatile uint *s = &(fep->phy_status); | 
 |  | 
 | 	if (!fep->link && !fep->old_link) { | 
 | 		/* Link is still down - don't print anything */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	printk("%s: status: ", dev->name); | 
 |  | 
 | 	if (!fep->link) { | 
 | 		printk("link down"); | 
 | 	} else { | 
 | 		printk("link up"); | 
 |  | 
 | 		switch(*s & PHY_STAT_SPMASK) { | 
 | 		case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break; | 
 | 		case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break; | 
 | 		case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break; | 
 | 		case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break; | 
 | 		default: | 
 | 			printk(", Unknown speed/duplex"); | 
 | 		} | 
 |  | 
 | 		if (*s & PHY_STAT_ANC) | 
 | 			printk(", auto-negotiation complete"); | 
 | 	} | 
 |  | 
 | 	if (*s & PHY_STAT_FAULT) | 
 | 		printk(", remote fault"); | 
 |  | 
 | 	printk(".\n"); | 
 | } | 
 |  | 
 | static void mii_display_config(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	uint status = fep->phy_status; | 
 |  | 
 | 	/* | 
 | 	** When we get here, phy_task is already removed from | 
 | 	** the workqueue.  It is thus safe to allow to reuse it. | 
 | 	*/ | 
 | 	fep->mii_phy_task_queued = 0; | 
 | 	printk("%s: config: auto-negotiation ", dev->name); | 
 |  | 
 | 	if (status & PHY_CONF_ANE) | 
 | 		printk("on"); | 
 | 	else | 
 | 		printk("off"); | 
 |  | 
 | 	if (status & PHY_CONF_100FDX) | 
 | 		printk(", 100FDX"); | 
 | 	if (status & PHY_CONF_100HDX) | 
 | 		printk(", 100HDX"); | 
 | 	if (status & PHY_CONF_10FDX) | 
 | 		printk(", 10FDX"); | 
 | 	if (status & PHY_CONF_10HDX) | 
 | 		printk(", 10HDX"); | 
 | 	if (!(status & PHY_CONF_SPMASK)) | 
 | 		printk(", No speed/duplex selected?"); | 
 |  | 
 | 	if (status & PHY_CONF_LOOP) | 
 | 		printk(", loopback enabled"); | 
 | 	 | 
 | 	printk(".\n"); | 
 |  | 
 | 	fep->sequence_done = 1; | 
 | } | 
 |  | 
 | static void mii_relink(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	int duplex; | 
 |  | 
 | 	/* | 
 | 	** When we get here, phy_task is already removed from | 
 | 	** the workqueue.  It is thus safe to allow to reuse it. | 
 | 	*/ | 
 | 	fep->mii_phy_task_queued = 0; | 
 | 	fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0; | 
 | 	mii_display_status(dev); | 
 | 	fep->old_link = fep->link; | 
 |  | 
 | 	if (fep->link) { | 
 | 		duplex = 0; | 
 | 		if (fep->phy_status  | 
 | 		    & (PHY_STAT_100FDX | PHY_STAT_10FDX)) | 
 | 			duplex = 1; | 
 | 		fec_restart(dev, duplex); | 
 | 	} | 
 | 	else | 
 | 		fec_stop(dev); | 
 |  | 
 | #if 0 | 
 | 	enable_irq(fep->mii_irq); | 
 | #endif | 
 |  | 
 | } | 
 |  | 
 | /* mii_queue_relink is called in interrupt context from mii_link_interrupt */ | 
 | static void mii_queue_relink(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 |  | 
 | 	/* | 
 | 	** We cannot queue phy_task twice in the workqueue.  It | 
 | 	** would cause an endless loop in the workqueue. | 
 | 	** Fortunately, if the last mii_relink entry has not yet been | 
 | 	** executed now, it will do the job for the current interrupt, | 
 | 	** which is just what we want. | 
 | 	*/ | 
 | 	if (fep->mii_phy_task_queued) | 
 | 		return; | 
 |  | 
 | 	fep->mii_phy_task_queued = 1; | 
 | 	INIT_WORK(&fep->phy_task, (void*)mii_relink, dev); | 
 | 	schedule_work(&fep->phy_task); | 
 | } | 
 |  | 
 | /* mii_queue_config is called in interrupt context from fec_enet_mii */ | 
 | static void mii_queue_config(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 |  | 
 | 	if (fep->mii_phy_task_queued) | 
 | 		return; | 
 |  | 
 | 	fep->mii_phy_task_queued = 1; | 
 | 	INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev); | 
 | 	schedule_work(&fep->phy_task); | 
 | } | 
 |  | 
 | phy_cmd_t const phy_cmd_relink[] = { | 
 | 	{ mk_mii_read(MII_REG_CR), mii_queue_relink }, | 
 | 	{ mk_mii_end, } | 
 | 	}; | 
 | phy_cmd_t const phy_cmd_config[] = { | 
 | 	{ mk_mii_read(MII_REG_CR), mii_queue_config }, | 
 | 	{ mk_mii_end, } | 
 | 	}; | 
 |  | 
 | /* Read remainder of PHY ID. | 
 | */ | 
 | static void | 
 | mii_discover_phy3(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep; | 
 | 	int i; | 
 |  | 
 | 	fep = netdev_priv(dev); | 
 | 	fep->phy_id |= (mii_reg & 0xffff); | 
 | 	printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id); | 
 |  | 
 | 	for(i = 0; phy_info[i]; i++) { | 
 | 		if(phy_info[i]->id == (fep->phy_id >> 4)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (phy_info[i]) | 
 | 		printk(" -- %s\n", phy_info[i]->name); | 
 | 	else | 
 | 		printk(" -- unknown PHY!\n"); | 
 |        | 
 | 	fep->phy = phy_info[i]; | 
 | 	fep->phy_id_done = 1; | 
 | } | 
 |  | 
 | /* Scan all of the MII PHY addresses looking for someone to respond | 
 |  * with a valid ID.  This usually happens quickly. | 
 |  */ | 
 | static void | 
 | mii_discover_phy(uint mii_reg, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep; | 
 | 	volatile fec_t *fecp; | 
 | 	uint phytype; | 
 |  | 
 | 	fep = netdev_priv(dev); | 
 | 	fecp = fep->hwp; | 
 |  | 
 | 	if (fep->phy_addr < 32) { | 
 | 		if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) { | 
 | 			 | 
 | 			/* Got first part of ID, now get remainder. | 
 | 			*/ | 
 | 			fep->phy_id = phytype << 16; | 
 | 			mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), | 
 | 							mii_discover_phy3); | 
 | 		} | 
 | 		else { | 
 | 			fep->phy_addr++; | 
 | 			mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), | 
 | 							mii_discover_phy); | 
 | 		} | 
 | 	} else { | 
 | 		printk("FEC: No PHY device found.\n"); | 
 | 		/* Disable external MII interface */ | 
 | 		fecp->fec_mii_speed = fep->phy_speed = 0; | 
 | 		fec_disable_phy_intr(); | 
 | 	} | 
 | } | 
 |  | 
 | /* This interrupt occurs when the PHY detects a link change. | 
 | */ | 
 | #ifdef CONFIG_RPXCLASSIC | 
 | static void | 
 | mii_link_interrupt(void *dev_id) | 
 | #else | 
 | static irqreturn_t | 
 | mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs) | 
 | #endif | 
 | { | 
 | 	struct	net_device *dev = dev_id; | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 |  | 
 | 	fec_phy_ack_intr(); | 
 |  | 
 | #if 0 | 
 | 	disable_irq(fep->mii_irq);  /* disable now, enable later */ | 
 | #endif | 
 |  | 
 | 	mii_do_cmd(dev, fep->phy->ack_int); | 
 | 	mii_do_cmd(dev, phy_cmd_relink);  /* restart and display status */ | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static int | 
 | fec_enet_open(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 |  | 
 | 	/* I should reset the ring buffers here, but I don't yet know | 
 | 	 * a simple way to do that. | 
 | 	 */ | 
 | 	fec_set_mac_address(dev); | 
 |  | 
 | 	fep->sequence_done = 0; | 
 | 	fep->link = 0; | 
 |  | 
 | 	if (fep->phy) { | 
 | 		mii_do_cmd(dev, fep->phy->ack_int); | 
 | 		mii_do_cmd(dev, fep->phy->config); | 
 | 		mii_do_cmd(dev, phy_cmd_config);  /* display configuration */ | 
 |  | 
 | 		/* FIXME: use netif_carrier_{on,off} ; this polls | 
 | 		 * until link is up which is wrong...  could be | 
 | 		 * 30 seconds or more we are trapped in here. -jgarzik | 
 | 		 */ | 
 | 		while(!fep->sequence_done) | 
 | 			schedule(); | 
 |  | 
 | 		mii_do_cmd(dev, fep->phy->startup); | 
 |  | 
 | 		/* Set the initial link state to true. A lot of hardware | 
 | 		 * based on this device does not implement a PHY interrupt, | 
 | 		 * so we are never notified of link change. | 
 | 		 */ | 
 | 		fep->link = 1; | 
 | 	} else { | 
 | 		fep->link = 1; /* lets just try it and see */ | 
 | 		/* no phy,  go full duplex,  it's most likely a hub chip */ | 
 | 		fec_restart(dev, 1); | 
 | 	} | 
 |  | 
 | 	netif_start_queue(dev); | 
 | 	fep->opened = 1; | 
 | 	return 0;		/* Success */ | 
 | } | 
 |  | 
 | static int | 
 | fec_enet_close(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 |  | 
 | 	/* Don't know what to do yet. | 
 | 	*/ | 
 | 	fep->opened = 0; | 
 | 	netif_stop_queue(dev); | 
 | 	fec_stop(dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct net_device_stats *fec_enet_get_stats(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 |  | 
 | 	return &fep->stats; | 
 | } | 
 |  | 
 | /* Set or clear the multicast filter for this adaptor. | 
 |  * Skeleton taken from sunlance driver. | 
 |  * The CPM Ethernet implementation allows Multicast as well as individual | 
 |  * MAC address filtering.  Some of the drivers check to make sure it is | 
 |  * a group multicast address, and discard those that are not.  I guess I | 
 |  * will do the same for now, but just remove the test if you want | 
 |  * individual filtering as well (do the upper net layers want or support | 
 |  * this kind of feature?). | 
 |  */ | 
 |  | 
 | #define HASH_BITS	6		/* #bits in hash */ | 
 | #define CRC32_POLY	0xEDB88320 | 
 |  | 
 | static void set_multicast_list(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep; | 
 | 	volatile fec_t *ep; | 
 | 	struct dev_mc_list *dmi; | 
 | 	unsigned int i, j, bit, data, crc; | 
 | 	unsigned char hash; | 
 |  | 
 | 	fep = netdev_priv(dev); | 
 | 	ep = fep->hwp; | 
 |  | 
 | 	if (dev->flags&IFF_PROMISC) { | 
 | 		/* Log any net taps. */ | 
 | 		printk("%s: Promiscuous mode enabled.\n", dev->name); | 
 | 		ep->fec_r_cntrl |= 0x0008; | 
 | 	} else { | 
 |  | 
 | 		ep->fec_r_cntrl &= ~0x0008; | 
 |  | 
 | 		if (dev->flags & IFF_ALLMULTI) { | 
 | 			/* Catch all multicast addresses, so set the | 
 | 			 * filter to all 1's. | 
 | 			 */ | 
 | 			ep->fec_hash_table_high = 0xffffffff; | 
 | 			ep->fec_hash_table_low = 0xffffffff; | 
 | 		} else { | 
 | 			/* Clear filter and add the addresses in hash register. | 
 | 			*/ | 
 | 			ep->fec_hash_table_high = 0; | 
 | 			ep->fec_hash_table_low = 0; | 
 |              | 
 | 			dmi = dev->mc_list; | 
 |  | 
 | 			for (j = 0; j < dev->mc_count; j++, dmi = dmi->next) | 
 | 			{ | 
 | 				/* Only support group multicast for now. | 
 | 				*/ | 
 | 				if (!(dmi->dmi_addr[0] & 1)) | 
 | 					continue; | 
 | 			 | 
 | 				/* calculate crc32 value of mac address | 
 | 				*/ | 
 | 				crc = 0xffffffff; | 
 |  | 
 | 				for (i = 0; i < dmi->dmi_addrlen; i++) | 
 | 				{ | 
 | 					data = dmi->dmi_addr[i]; | 
 | 					for (bit = 0; bit < 8; bit++, data >>= 1) | 
 | 					{ | 
 | 						crc = (crc >> 1) ^ | 
 | 						(((crc ^ data) & 1) ? CRC32_POLY : 0); | 
 | 					} | 
 | 				} | 
 |  | 
 | 				/* only upper 6 bits (HASH_BITS) are used | 
 | 				   which point to specific bit in he hash registers | 
 | 				*/ | 
 | 				hash = (crc >> (32 - HASH_BITS)) & 0x3f; | 
 | 			 | 
 | 				if (hash > 31) | 
 | 					ep->fec_hash_table_high |= 1 << (hash - 32); | 
 | 				else | 
 | 					ep->fec_hash_table_low |= 1 << hash; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* Set a MAC change in hardware. | 
 |  */ | 
 | static void | 
 | fec_set_mac_address(struct net_device *dev) | 
 | { | 
 | 	volatile fec_t *fecp; | 
 |  | 
 | 	fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp; | 
 |  | 
 | 	/* Set station address. */ | 
 | 	fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) | | 
 | 		(dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24); | 
 | 	fecp->fec_addr_high = (dev->dev_addr[5] << 16) | | 
 | 		(dev->dev_addr[4] << 24); | 
 |  | 
 | } | 
 |  | 
 | /* Initialize the FEC Ethernet on 860T (or ColdFire 5272). | 
 |  */ | 
 |  /* | 
 |   * XXX:  We need to clean up on failure exits here. | 
 |   */ | 
 | int __init fec_enet_init(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	unsigned long	mem_addr; | 
 | 	volatile cbd_t	*bdp; | 
 | 	cbd_t		*cbd_base; | 
 | 	volatile fec_t	*fecp; | 
 | 	int 		i, j; | 
 | 	static int	index = 0; | 
 |  | 
 | 	/* Only allow us to be probed once. */ | 
 | 	if (index >= FEC_MAX_PORTS) | 
 | 		return -ENXIO; | 
 |  | 
 | 	/* Allocate memory for buffer descriptors. | 
 | 	*/ | 
 | 	mem_addr = __get_free_page(GFP_KERNEL); | 
 | 	if (mem_addr == 0) { | 
 | 		printk("FEC: allocate descriptor memory failed?\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* Create an Ethernet device instance. | 
 | 	*/ | 
 | 	fecp = (volatile fec_t *) fec_hw[index]; | 
 |  | 
 | 	fep->index = index; | 
 | 	fep->hwp = fecp; | 
 |  | 
 | 	/* Whack a reset.  We should wait for this. | 
 | 	*/ | 
 | 	fecp->fec_ecntrl = 1; | 
 | 	udelay(10); | 
 |  | 
 | 	/* Set the Ethernet address.  If using multiple Enets on the 8xx, | 
 | 	 * this needs some work to get unique addresses. | 
 | 	 * | 
 | 	 * This is our default MAC address unless the user changes | 
 | 	 * it via eth_mac_addr (our dev->set_mac_addr handler). | 
 | 	 */ | 
 | 	fec_get_mac(dev); | 
 |  | 
 | 	cbd_base = (cbd_t *)mem_addr; | 
 | 	/* XXX: missing check for allocation failure */ | 
 |  | 
 | 	fec_uncache(mem_addr); | 
 |  | 
 | 	/* Set receive and transmit descriptor base. | 
 | 	*/ | 
 | 	fep->rx_bd_base = cbd_base; | 
 | 	fep->tx_bd_base = cbd_base + RX_RING_SIZE; | 
 |  | 
 | 	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; | 
 | 	fep->cur_rx = fep->rx_bd_base; | 
 |  | 
 | 	fep->skb_cur = fep->skb_dirty = 0; | 
 |  | 
 | 	/* Initialize the receive buffer descriptors. | 
 | 	*/ | 
 | 	bdp = fep->rx_bd_base; | 
 | 	for (i=0; i<FEC_ENET_RX_PAGES; i++) { | 
 |  | 
 | 		/* Allocate a page. | 
 | 		*/ | 
 | 		mem_addr = __get_free_page(GFP_KERNEL); | 
 | 		/* XXX: missing check for allocation failure */ | 
 |  | 
 | 		fec_uncache(mem_addr); | 
 |  | 
 | 		/* Initialize the BD for every fragment in the page. | 
 | 		*/ | 
 | 		for (j=0; j<FEC_ENET_RX_FRPPG; j++) { | 
 | 			bdp->cbd_sc = BD_ENET_RX_EMPTY; | 
 | 			bdp->cbd_bufaddr = __pa(mem_addr); | 
 | 			mem_addr += FEC_ENET_RX_FRSIZE; | 
 | 			bdp++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Set the last buffer to wrap. | 
 | 	*/ | 
 | 	bdp--; | 
 | 	bdp->cbd_sc |= BD_SC_WRAP; | 
 |  | 
 | 	/* ...and the same for transmmit. | 
 | 	*/ | 
 | 	bdp = fep->tx_bd_base; | 
 | 	for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) { | 
 | 		if (j >= FEC_ENET_TX_FRPPG) { | 
 | 			mem_addr = __get_free_page(GFP_KERNEL); | 
 | 			j = 1; | 
 | 		} else { | 
 | 			mem_addr += FEC_ENET_TX_FRSIZE; | 
 | 			j++; | 
 | 		} | 
 | 		fep->tx_bounce[i] = (unsigned char *) mem_addr; | 
 |  | 
 | 		/* Initialize the BD for every fragment in the page. | 
 | 		*/ | 
 | 		bdp->cbd_sc = 0; | 
 | 		bdp->cbd_bufaddr = 0; | 
 | 		bdp++; | 
 | 	} | 
 |  | 
 | 	/* Set the last buffer to wrap. | 
 | 	*/ | 
 | 	bdp--; | 
 | 	bdp->cbd_sc |= BD_SC_WRAP; | 
 |  | 
 | 	/* Set receive and transmit descriptor base. | 
 | 	*/ | 
 | 	fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base)); | 
 | 	fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base)); | 
 |  | 
 | 	/* Install our interrupt handlers. This varies depending on | 
 | 	 * the architecture. | 
 | 	*/ | 
 | 	fec_request_intrs(dev); | 
 |  | 
 | 	/* Clear and enable interrupts */ | 
 | 	fecp->fec_ievent = 0xffc00000; | 
 | 	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB | | 
 | 		FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII); | 
 | 	fecp->fec_hash_table_high = 0; | 
 | 	fecp->fec_hash_table_low = 0; | 
 | 	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; | 
 | 	fecp->fec_ecntrl = 2; | 
 | 	fecp->fec_r_des_active = 0x01000000; | 
 |  | 
 | 	dev->base_addr = (unsigned long)fecp; | 
 |  | 
 | 	/* The FEC Ethernet specific entries in the device structure. */ | 
 | 	dev->open = fec_enet_open; | 
 | 	dev->hard_start_xmit = fec_enet_start_xmit; | 
 | 	dev->tx_timeout = fec_timeout; | 
 | 	dev->watchdog_timeo = TX_TIMEOUT; | 
 | 	dev->stop = fec_enet_close; | 
 | 	dev->get_stats = fec_enet_get_stats; | 
 | 	dev->set_multicast_list = set_multicast_list; | 
 |  | 
 | 	for (i=0; i<NMII-1; i++) | 
 | 		mii_cmds[i].mii_next = &mii_cmds[i+1]; | 
 | 	mii_free = mii_cmds; | 
 |  | 
 | 	/* setup MII interface */ | 
 | 	fec_set_mii(dev, fep); | 
 |  | 
 | 	/* Queue up command to detect the PHY and initialize the | 
 | 	 * remainder of the interface. | 
 | 	 */ | 
 | 	fep->phy_id_done = 0; | 
 | 	fep->phy_addr = 0; | 
 | 	mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy); | 
 |  | 
 | 	index++; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* This function is called to start or restart the FEC during a link | 
 |  * change.  This only happens when switching between half and full | 
 |  * duplex. | 
 |  */ | 
 | static void | 
 | fec_restart(struct net_device *dev, int duplex) | 
 | { | 
 | 	struct fec_enet_private *fep; | 
 | 	volatile cbd_t *bdp; | 
 | 	volatile fec_t *fecp; | 
 | 	int i; | 
 |  | 
 | 	fep = netdev_priv(dev); | 
 | 	fecp = fep->hwp; | 
 |  | 
 | 	/* Whack a reset.  We should wait for this. | 
 | 	*/ | 
 | 	fecp->fec_ecntrl = 1; | 
 | 	udelay(10); | 
 |  | 
 | 	/* Enable interrupts we wish to service. | 
 | 	*/ | 
 | 	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB | | 
 | 				FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII); | 
 |  | 
 | 	/* Clear any outstanding interrupt. | 
 | 	*/ | 
 | 	fecp->fec_ievent = 0xffc00000; | 
 | 	fec_enable_phy_intr(); | 
 |  | 
 | 	/* Set station address. | 
 | 	*/ | 
 | 	fec_set_mac_address(dev); | 
 |  | 
 | 	/* Reset all multicast. | 
 | 	*/ | 
 | 	fecp->fec_hash_table_high = 0; | 
 | 	fecp->fec_hash_table_low = 0; | 
 |  | 
 | 	/* Set maximum receive buffer size. | 
 | 	*/ | 
 | 	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; | 
 |  | 
 | 	fec_localhw_setup(); | 
 |  | 
 | 	/* Set receive and transmit descriptor base. | 
 | 	*/ | 
 | 	fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base)); | 
 | 	fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base)); | 
 |  | 
 | 	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; | 
 | 	fep->cur_rx = fep->rx_bd_base; | 
 |  | 
 | 	/* Reset SKB transmit buffers. | 
 | 	*/ | 
 | 	fep->skb_cur = fep->skb_dirty = 0; | 
 | 	for (i=0; i<=TX_RING_MOD_MASK; i++) { | 
 | 		if (fep->tx_skbuff[i] != NULL) { | 
 | 			dev_kfree_skb_any(fep->tx_skbuff[i]); | 
 | 			fep->tx_skbuff[i] = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Initialize the receive buffer descriptors. | 
 | 	*/ | 
 | 	bdp = fep->rx_bd_base; | 
 | 	for (i=0; i<RX_RING_SIZE; i++) { | 
 |  | 
 | 		/* Initialize the BD for every fragment in the page. | 
 | 		*/ | 
 | 		bdp->cbd_sc = BD_ENET_RX_EMPTY; | 
 | 		bdp++; | 
 | 	} | 
 |  | 
 | 	/* Set the last buffer to wrap. | 
 | 	*/ | 
 | 	bdp--; | 
 | 	bdp->cbd_sc |= BD_SC_WRAP; | 
 |  | 
 | 	/* ...and the same for transmmit. | 
 | 	*/ | 
 | 	bdp = fep->tx_bd_base; | 
 | 	for (i=0; i<TX_RING_SIZE; i++) { | 
 |  | 
 | 		/* Initialize the BD for every fragment in the page. | 
 | 		*/ | 
 | 		bdp->cbd_sc = 0; | 
 | 		bdp->cbd_bufaddr = 0; | 
 | 		bdp++; | 
 | 	} | 
 |  | 
 | 	/* Set the last buffer to wrap. | 
 | 	*/ | 
 | 	bdp--; | 
 | 	bdp->cbd_sc |= BD_SC_WRAP; | 
 |  | 
 | 	/* Enable MII mode. | 
 | 	*/ | 
 | 	if (duplex) { | 
 | 		fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */ | 
 | 		fecp->fec_x_cntrl = 0x04;		  /* FD enable */ | 
 | 	} | 
 | 	else { | 
 | 		/* MII enable|No Rcv on Xmit */ | 
 | 		fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06; | 
 | 		fecp->fec_x_cntrl = 0x00; | 
 | 	} | 
 | 	fep->full_duplex = duplex; | 
 |  | 
 | 	/* Set MII speed. | 
 | 	*/ | 
 | 	fecp->fec_mii_speed = fep->phy_speed; | 
 |  | 
 | 	/* And last, enable the transmit and receive processing. | 
 | 	*/ | 
 | 	fecp->fec_ecntrl = 2; | 
 | 	fecp->fec_r_des_active = 0x01000000; | 
 | } | 
 |  | 
 | static void | 
 | fec_stop(struct net_device *dev) | 
 | { | 
 | 	volatile fec_t *fecp; | 
 | 	struct fec_enet_private *fep; | 
 |  | 
 | 	fep = netdev_priv(dev); | 
 | 	fecp = fep->hwp; | 
 |  | 
 | 	fecp->fec_x_cntrl = 0x01;	/* Graceful transmit stop */ | 
 |  | 
 | 	while(!(fecp->fec_ievent & FEC_ENET_GRA)); | 
 |  | 
 | 	/* Whack a reset.  We should wait for this. | 
 | 	*/ | 
 | 	fecp->fec_ecntrl = 1; | 
 | 	udelay(10); | 
 |  | 
 | 	/* Clear outstanding MII command interrupts. | 
 | 	*/ | 
 | 	fecp->fec_ievent = FEC_ENET_MII; | 
 | 	fec_enable_phy_intr(); | 
 |  | 
 | 	fecp->fec_imask = FEC_ENET_MII; | 
 | 	fecp->fec_mii_speed = fep->phy_speed; | 
 | } | 
 |  | 
 | static int __init fec_enet_module_init(void) | 
 | { | 
 | 	struct net_device *dev; | 
 | 	int i, j, err; | 
 |  | 
 | 	printk("FEC ENET Version 0.2\n"); | 
 |  | 
 | 	for (i = 0; (i < FEC_MAX_PORTS); i++) { | 
 | 		dev = alloc_etherdev(sizeof(struct fec_enet_private)); | 
 | 		if (!dev) | 
 | 			return -ENOMEM; | 
 | 		err = fec_enet_init(dev); | 
 | 		if (err) { | 
 | 			free_netdev(dev); | 
 | 			continue; | 
 | 		} | 
 | 		if (register_netdev(dev) != 0) { | 
 | 			/* XXX: missing cleanup here */ | 
 | 			free_netdev(dev); | 
 | 			return -EIO; | 
 | 		} | 
 |  | 
 | 		printk("%s: ethernet ", dev->name); | 
 | 		for (j = 0; (j < 5); j++) | 
 | 			printk("%02x:", dev->dev_addr[j]); | 
 | 		printk("%02x\n", dev->dev_addr[5]); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | module_init(fec_enet_module_init); | 
 |  | 
 | MODULE_LICENSE("GPL"); |