|  | /* | 
|  | * omap-pm-noop.c - OMAP power management interface - dummy version | 
|  | * | 
|  | * This code implements the OMAP power management interface to | 
|  | * drivers, CPUIdle, CPUFreq, and DSP Bridge.  It is strictly for | 
|  | * debug/demonstration use, as it does nothing but printk() whenever a | 
|  | * function is called (when DEBUG is defined, below) | 
|  | * | 
|  | * Copyright (C) 2008-2009 Texas Instruments, Inc. | 
|  | * Copyright (C) 2008-2009 Nokia Corporation | 
|  | * Paul Walmsley | 
|  | * | 
|  | * Interface developed by (in alphabetical order): | 
|  | * Karthik Dasu, Tony Lindgren, Rajendra Nayak, Sakari Poussa, Veeramanikandan | 
|  | * Raju, Anand Sawant, Igor Stoppa, Paul Walmsley, Richard Woodruff | 
|  | */ | 
|  |  | 
|  | #undef DEBUG | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/cpufreq.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/platform_device.h> | 
|  |  | 
|  | /* Interface documentation is in mach/omap-pm.h */ | 
|  | #include <plat/omap-pm.h> | 
|  | #include <plat/omap_device.h> | 
|  |  | 
|  | static bool off_mode_enabled; | 
|  | static u32 dummy_context_loss_counter; | 
|  |  | 
|  | /* | 
|  | * Device-driver-originated constraints (via board-*.c files) | 
|  | */ | 
|  |  | 
|  | int omap_pm_set_max_mpu_wakeup_lat(struct device *dev, long t) | 
|  | { | 
|  | if (!dev || t < -1) { | 
|  | WARN(1, "OMAP PM: %s: invalid parameter(s)", __func__); | 
|  | return -EINVAL; | 
|  | }; | 
|  |  | 
|  | if (t == -1) | 
|  | pr_debug("OMAP PM: remove max MPU wakeup latency constraint: " | 
|  | "dev %s\n", dev_name(dev)); | 
|  | else | 
|  | pr_debug("OMAP PM: add max MPU wakeup latency constraint: " | 
|  | "dev %s, t = %ld usec\n", dev_name(dev), t); | 
|  |  | 
|  | /* | 
|  | * For current Linux, this needs to map the MPU to a | 
|  | * powerdomain, then go through the list of current max lat | 
|  | * constraints on the MPU and find the smallest.  If | 
|  | * the latency constraint has changed, the code should | 
|  | * recompute the state to enter for the next powerdomain | 
|  | * state. | 
|  | * | 
|  | * TI CDP code can call constraint_set here. | 
|  | */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int omap_pm_set_min_bus_tput(struct device *dev, u8 agent_id, unsigned long r) | 
|  | { | 
|  | if (!dev || (agent_id != OCP_INITIATOR_AGENT && | 
|  | agent_id != OCP_TARGET_AGENT)) { | 
|  | WARN(1, "OMAP PM: %s: invalid parameter(s)", __func__); | 
|  | return -EINVAL; | 
|  | }; | 
|  |  | 
|  | if (r == 0) | 
|  | pr_debug("OMAP PM: remove min bus tput constraint: " | 
|  | "dev %s for agent_id %d\n", dev_name(dev), agent_id); | 
|  | else | 
|  | pr_debug("OMAP PM: add min bus tput constraint: " | 
|  | "dev %s for agent_id %d: rate %ld KiB\n", | 
|  | dev_name(dev), agent_id, r); | 
|  |  | 
|  | /* | 
|  | * This code should model the interconnect and compute the | 
|  | * required clock frequency, convert that to a VDD2 OPP ID, then | 
|  | * set the VDD2 OPP appropriately. | 
|  | * | 
|  | * TI CDP code can call constraint_set here on the VDD2 OPP. | 
|  | */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int omap_pm_set_max_dev_wakeup_lat(struct device *req_dev, struct device *dev, | 
|  | long t) | 
|  | { | 
|  | if (!req_dev || !dev || t < -1) { | 
|  | WARN(1, "OMAP PM: %s: invalid parameter(s)", __func__); | 
|  | return -EINVAL; | 
|  | }; | 
|  |  | 
|  | if (t == -1) | 
|  | pr_debug("OMAP PM: remove max device latency constraint: " | 
|  | "dev %s\n", dev_name(dev)); | 
|  | else | 
|  | pr_debug("OMAP PM: add max device latency constraint: " | 
|  | "dev %s, t = %ld usec\n", dev_name(dev), t); | 
|  |  | 
|  | /* | 
|  | * For current Linux, this needs to map the device to a | 
|  | * powerdomain, then go through the list of current max lat | 
|  | * constraints on that powerdomain and find the smallest.  If | 
|  | * the latency constraint has changed, the code should | 
|  | * recompute the state to enter for the next powerdomain | 
|  | * state.  Conceivably, this code should also determine | 
|  | * whether to actually disable the device clocks or not, | 
|  | * depending on how long it takes to re-enable the clocks. | 
|  | * | 
|  | * TI CDP code can call constraint_set here. | 
|  | */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int omap_pm_set_max_sdma_lat(struct device *dev, long t) | 
|  | { | 
|  | if (!dev || t < -1) { | 
|  | WARN(1, "OMAP PM: %s: invalid parameter(s)", __func__); | 
|  | return -EINVAL; | 
|  | }; | 
|  |  | 
|  | if (t == -1) | 
|  | pr_debug("OMAP PM: remove max DMA latency constraint: " | 
|  | "dev %s\n", dev_name(dev)); | 
|  | else | 
|  | pr_debug("OMAP PM: add max DMA latency constraint: " | 
|  | "dev %s, t = %ld usec\n", dev_name(dev), t); | 
|  |  | 
|  | /* | 
|  | * For current Linux PM QOS params, this code should scan the | 
|  | * list of maximum CPU and DMA latencies and select the | 
|  | * smallest, then set cpu_dma_latency pm_qos_param | 
|  | * accordingly. | 
|  | * | 
|  | * For future Linux PM QOS params, with separate CPU and DMA | 
|  | * latency params, this code should just set the dma_latency param. | 
|  | * | 
|  | * TI CDP code can call constraint_set here. | 
|  | */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int omap_pm_set_min_clk_rate(struct device *dev, struct clk *c, long r) | 
|  | { | 
|  | if (!dev || !c || r < 0) { | 
|  | WARN(1, "OMAP PM: %s: invalid parameter(s)", __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (r == 0) | 
|  | pr_debug("OMAP PM: remove min clk rate constraint: " | 
|  | "dev %s\n", dev_name(dev)); | 
|  | else | 
|  | pr_debug("OMAP PM: add min clk rate constraint: " | 
|  | "dev %s, rate = %ld Hz\n", dev_name(dev), r); | 
|  |  | 
|  | /* | 
|  | * Code in a real implementation should keep track of these | 
|  | * constraints on the clock, and determine the highest minimum | 
|  | * clock rate.  It should iterate over each OPP and determine | 
|  | * whether the OPP will result in a clock rate that would | 
|  | * satisfy this constraint (and any other PM constraint in effect | 
|  | * at that time).  Once it finds the lowest-voltage OPP that | 
|  | * meets those conditions, it should switch to it, or return | 
|  | * an error if the code is not capable of doing so. | 
|  | */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DSP Bridge-specific constraints | 
|  | */ | 
|  |  | 
|  | const struct omap_opp *omap_pm_dsp_get_opp_table(void) | 
|  | { | 
|  | pr_debug("OMAP PM: DSP request for OPP table\n"); | 
|  |  | 
|  | /* | 
|  | * Return DSP frequency table here:  The final item in the | 
|  | * array should have .rate = .opp_id = 0. | 
|  | */ | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void omap_pm_dsp_set_min_opp(u8 opp_id) | 
|  | { | 
|  | if (opp_id == 0) { | 
|  | WARN_ON(1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pr_debug("OMAP PM: DSP requests minimum VDD1 OPP to be %d\n", opp_id); | 
|  |  | 
|  | /* | 
|  | * | 
|  | * For l-o dev tree, our VDD1 clk is keyed on OPP ID, so we | 
|  | * can just test to see which is higher, the CPU's desired OPP | 
|  | * ID or the DSP's desired OPP ID, and use whichever is | 
|  | * highest. | 
|  | * | 
|  | * In CDP12.14+, the VDD1 OPP custom clock that controls the DSP | 
|  | * rate is keyed on MPU speed, not the OPP ID.  So we need to | 
|  | * map the OPP ID to the MPU speed for use with clk_set_rate() | 
|  | * if it is higher than the current OPP clock rate. | 
|  | * | 
|  | */ | 
|  | } | 
|  |  | 
|  |  | 
|  | u8 omap_pm_dsp_get_opp(void) | 
|  | { | 
|  | pr_debug("OMAP PM: DSP requests current DSP OPP ID\n"); | 
|  |  | 
|  | /* | 
|  | * For l-o dev tree, call clk_get_rate() on VDD1 OPP clock | 
|  | * | 
|  | * CDP12.14+: | 
|  | * Call clk_get_rate() on the OPP custom clock, map that to an | 
|  | * OPP ID using the tables defined in board-*.c/chip-*.c files. | 
|  | */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * CPUFreq-originated constraint | 
|  | * | 
|  | * In the future, this should be handled by custom OPP clocktype | 
|  | * functions. | 
|  | */ | 
|  |  | 
|  | struct cpufreq_frequency_table **omap_pm_cpu_get_freq_table(void) | 
|  | { | 
|  | pr_debug("OMAP PM: CPUFreq request for frequency table\n"); | 
|  |  | 
|  | /* | 
|  | * Return CPUFreq frequency table here: loop over | 
|  | * all VDD1 clkrates, pull out the mpu_ck frequencies, build | 
|  | * table | 
|  | */ | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void omap_pm_cpu_set_freq(unsigned long f) | 
|  | { | 
|  | if (f == 0) { | 
|  | WARN_ON(1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pr_debug("OMAP PM: CPUFreq requests CPU frequency to be set to %lu\n", | 
|  | f); | 
|  |  | 
|  | /* | 
|  | * For l-o dev tree, determine whether MPU freq or DSP OPP id | 
|  | * freq is higher.  Find the OPP ID corresponding to the | 
|  | * higher frequency.  Call clk_round_rate() and clk_set_rate() | 
|  | * on the OPP custom clock. | 
|  | * | 
|  | * CDP should just be able to set the VDD1 OPP clock rate here. | 
|  | */ | 
|  | } | 
|  |  | 
|  | unsigned long omap_pm_cpu_get_freq(void) | 
|  | { | 
|  | pr_debug("OMAP PM: CPUFreq requests current CPU frequency\n"); | 
|  |  | 
|  | /* | 
|  | * Call clk_get_rate() on the mpu_ck. | 
|  | */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_pm_enable_off_mode - notify OMAP PM that off-mode is enabled | 
|  | * | 
|  | * Intended for use only by OMAP PM core code to notify this layer | 
|  | * that off mode has been enabled. | 
|  | */ | 
|  | void omap_pm_enable_off_mode(void) | 
|  | { | 
|  | off_mode_enabled = true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_pm_disable_off_mode - notify OMAP PM that off-mode is disabled | 
|  | * | 
|  | * Intended for use only by OMAP PM core code to notify this layer | 
|  | * that off mode has been disabled. | 
|  | */ | 
|  | void omap_pm_disable_off_mode(void) | 
|  | { | 
|  | off_mode_enabled = false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Device context loss tracking | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_ARCH_OMAP2PLUS | 
|  |  | 
|  | u32 omap_pm_get_dev_context_loss_count(struct device *dev) | 
|  | { | 
|  | struct platform_device *pdev = to_platform_device(dev); | 
|  | u32 count; | 
|  |  | 
|  | if (WARN_ON(!dev)) | 
|  | return 0; | 
|  |  | 
|  | if (dev->parent == &omap_device_parent) { | 
|  | count = omap_device_get_context_loss_count(pdev); | 
|  | } else { | 
|  | WARN_ONCE(off_mode_enabled, "omap_pm: using dummy context loss counter; device %s should be converted to omap_device", | 
|  | dev_name(dev)); | 
|  | if (off_mode_enabled) | 
|  | dummy_context_loss_counter++; | 
|  | count = dummy_context_loss_counter; | 
|  | } | 
|  |  | 
|  | pr_debug("OMAP PM: context loss count for dev %s = %d\n", | 
|  | dev_name(dev), count); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | u32 omap_pm_get_dev_context_loss_count(struct device *dev) | 
|  | { | 
|  | return dummy_context_loss_counter; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* Should be called before clk framework init */ | 
|  | int __init omap_pm_if_early_init(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Must be called after clock framework is initialized */ | 
|  | int __init omap_pm_if_init(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void omap_pm_if_exit(void) | 
|  | { | 
|  | /* Deallocate CPUFreq frequency table here */ | 
|  | } | 
|  |  |